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A centralizer analogue to the
Farahat–Higman algebra

Samuel Creedon

Abstract We define a family of algebras FHm which generalise the Farahat–Higman algebra
introduced in [4] by replacing the role of the center of the group algebra of the symmetric
groups with centraliser algebras of symmetric groups. These algebras have a basis indexed
by marked cycle shapes, combinatorial objects which generalise proper integer partitions. We
analyse properties of marked cycle shapes and of the algebras FHm, demonstrating that some
of the former govern the latter. The main theorem of the paper proves that the algebra FHm

is isomorphic to the tensor product of the degenerate affine Hecke algebra with the algebra of
symmetric functions.

1. Introduction
For n ∈ Z⩾0, let Sn denote the symmetric group of permutations of [n] := {1, . . . , n}.
In [4], Farahat and Higman constructed an algebra, denoted here by FH0, allowing
one to analyse the centers Z(ZSn) for all n simultaneously. The structure of FH0 was
systematically studied and provided new results for the centers Z(ZSn) which led
to an alternative proof of Nakayama’s Conjecture regarding the p-blocks of Sn. We
summarise here the core features of their work in a manner easily comparable to the
results of this paper.

Permutations belong to the same conjugacy class if and only if they share the
same cycle type. Dropping trivial cycles from cycle types induces a natural bijection
between the set Ppr

n of proper (contain no part equal to 1) integer partitions of size no
greater than n and the set of conjugacy classes of Sn. Let CLn denote this bijection. As
an example Ppr

4 = {∅, (2), (2, 2), (3), (4)} and CL4((2, 2)) is the conjugacy class of S4
consisting of the permutations obtained by the product of two disjoint transpositions.
Working with proper partitions instead of partitions themselves allows for the indexing
of conjugacy classes in a uniform manner as n ranges over the nonnegative integers.
For λ ∈ Ppr

n , let Kn(λ) denote the formal sum of permutations in CLn(λ) viewed as an
element of the Z-algebra ZSn. Such class-sums form a Z-basis for the center Z(ZSn),
and so for any λ, µ ∈ Ppr

n

(1) Kn(λ)Kn(µ) =
∑

ν∈Ppr
n

aν
λ,µ(n)Kn(ν),
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with aν
λ,µ(n) ∈ Z the corresponding structure constants. These constants were proved

to be polynomial in n by [4, Theorem 2.2]. In other words, let t be a formal variable
and R := Int[t] the subalgebra of Q[t] consisting of all integer-valued polynomials, that
is all polynomials p(t) ∈ Q[t] such that p(Z) ⊆ Z. Then it was shown that there exists,
for each triple of proper partitions λ, µ, and ν, a polynomial fν

λ,µ(t) ∈ R such that
fν

λ,µ(n) = aν
λ,µ(n) for all n ∈ Z⩾0. Then Farahat and Higman defined an R-algebra

via the formal R-basis {K(λ) | λ ∈ Ppr :=
⋃

n⩾0 Ppr
n } and product given by

(2) K(λ)K(µ) =
∑

ν∈Ppr

fν
λ,µ(t)K(ν).

This is the algebra FH0, and it is obtained from the centers Z(ZSn) by replacing
the structure constants aν

λ,µ(n) with the corresponding polynomials fν
λ,µ(t), and by

replacing the class-sums Kn(λ) with the formal symbols K(λ), which can be thought of
as infinite analogues. Comparing Equation (1) with Equation (2) it is immediate that
we have surjective ring homomorphisms prn : FH0 → Z(ZSn) for each n ∈ Z⩾0 where
t 7→ n and K(λ) 7→ Kn(λ) (where Kn(λ) = 0 if |λ| > n). Moreover, given X, Y ∈ FH0,
one can show that prn(X) = prn(Y ) for all n ∈ Z⩾0 if and only if X = Y . Hence
structural information of the algebra FH0 equates to structural information for the
centers Z(ZSn) for all n ∈ Z⩾0 uniformly. Numerous results for FH0 were given in [4],
many of which were strongly connected to the combinatorics of proper partitions. The
main result was [4, Theorem 2.5] which described a family of generators E1, E2, . . .
for FH0, the non-zero images of such under prn providing generators for the centers
Z(ZSn) for each n ∈ Z⩾0. Then these new central generators were used to describe
central characters in positive characteristic, and from previous results of Farahat this
led to an alternative proof of Nakayama’s Conjecture.

Many of the results of [4] have been recast in a more modern light. An illumi-
nating retelling is given in [18, Section 3] which focuses on the role played by the
Jucys–Murphy elements L1, . . . , Ln of ZSn, which were at the center of the approach
to the representation theory of Sn taken in [16]. Notably it was shown in [8] that
prn(Ek) = ek(L1, . . . , Ln) where ek is the k-th elementary symmetric polynomial
in n commuting variables. Thus proving that the center Z(ZSn) is the subalgebra of
symmetric polynomials in the corresponding Jucys–Murphy elements. Ryba used the
Jucys–Murphy elements and their relation to FH0 to give an alternative approach to
describing the central characters in positive characteristic to what was done in [4],
which again led to a proof of Nakayama’s Conjecture. From this new perspective it
was proved in [18, Theorem 3.8] that we have an isomorphism FH0 ∼= R⊗ Sym of R-
algebras, where Sym is the Z-algebra of symmetric functions. This isomorphism maps
the generators Ek of FH0 to the k-th elementary symmetric functions, allowing one
to interpret the elements Ek as the “evaluation” of elementary symmetric functions
at the Jucys–Murphy elements L1, L2, . . . .

Beyond providing results for the centers Z(ZSn) and for the modular representa-
tion theory of Sn, the Farahat–Higman algebra FH0 has found other applications. For
example, in [12, p.131-132] a certain associated graded algebra G of FH0 is considered,
and is regarded as a Z-algebra as only constant polynomials are retained in the fil-
tration. This Z-algebra is isomorphic to the algebra of symmetric functions, and has
been studied in relation to enumeration problems for permutation factorisation, see
for example [5]. Analogous algebras for FH0 and G have also been defined by replacing
the group Sn with other finite groups. For example analogues in the setting of the
spin symmetric group algebras have been given in [19], of wreath products of the sym-
metric groups with any finite group in [21] and [18], and of the general linear group
over finite fields in [20]. Also in [7], the algebra FH0 was constructed as the invariant
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subspace of a projective limit of the semigroup algebras of partial permutations. Such
an approach gives an alternative proof to the polynomial property of the structure
constants aν

λ,µ(n), and has been modified to construct analogous algebras and results
for the general linear group in [13] and [9] and also for other classical groups in [9]
and [17].

On a more subtle note, the work of Farahat and Higman demonstrated the idea
of translating uniform polynomial behaviour of the structure of objects into a single
universal object to study. This concept is at the heart of forming Deligne’s category
in [3], where it is using the fact the constants appearing from the compositions of
morphisms between tensor spaces are polynomial. A detailed commentary from this
perspective can be found in [6, Section 1.1].

In this paper we define a family of R-algebras FHm indexed by nonnegative in-
tegers m. These generalise the Farahat–Higman algebra of [4] which is recovered by
setting m = 0, and is a subalgebra of each FHm. Instead of replacing the group Sn with
another finite group, we construct the algebras FHm by instead replacing the role of the
center Z(ZSn) with certain centraliser algebras. For any m ⩽ n let Stabn(m) denote
the subgroup of Sn consisting of permutations which fix the elements 1, 2, . . . , m.
Then we work with the centraliser algebra Zn,m consisting of all elements of ZSn

which commute with Stabn(m). When m = 0 then Zn,0 is simply the center Z(ZSn).
The algebra Zn,m has a basis consisting of orbit-sums which are indexed by a certain
subset Λ⩽n(m) of the set of m-marked cycle shapes (see Definition 3.1 for a formal
definition). These generalise proper integer partitions, where Λ⩽n(0) is naturally in bi-
jection with Ppr

n . The first main result of this paper is Theorem 3.3 which proves that
the structure constants associated to the orbit-sum basis of Zn,m are polynomial in n,
with such polynomials belonging to R. In an analogous manner to [4] we then define
FHm by a formal R-basis and product obtained by replacing structure constants with
their corresponding polynomials (see Definition 4.1 and Proposition 4.5). We analyse
the set of m-marked cycle shapes and also equip such a set with a product, turning
it into a monoid, and a degree function. We show that this degree function translates
into a filtration on FHm, and we show in Proposition 6.2 that the monoid product,
and certain combinatorial statistics associated to m-marked cycle shapes, govern the
leading term of the product of basis elements in FHm. We then utilise this result to
proveTheorem 9.5, the main theorem of the paper, which establishes an isomorphism
FHm

∼= R⊗Z (Hm⊗Sym) of R-algebras, where Hm is the degenerate affine Hecke alge-
bra. This generalises the isomorphism FH0 ∼= R⊗Sym given by [18, Theorem 3.8], and
highlights that the additional combinatorial information that m-marked cycle shapes
have over proper integer partitions translates algebraically to the extension of Sym by
tensoring with Hm. We conclude by summarising various results for the centraliser
algebras Zn,m obtained from analogous results for FHm in a uniform manner.

The motivation behind constructing such algebras was in studying the affine parti-
tion algebra Aaff

2k(z) defined in [1]. Notably the algebras FHm emerged from a desire to
understand the image of the action of Aaff

2k(z) on the tensor space M ⊗ V ⊗k with M
any CSn-module and V the permutation module induced from the action set [n]
(see [1, Theorem 3.3.2]). This connection will appear in a future paper. Also, effort
was made for all the results of FHm established in this paper to work in the integral
setting, that is over the ring R. This keeps the algebra FHm open as a potential tool
to analyse the modular representation theory of the centraliser algebras Zn,m, which
is an active area of research (see for example [2]).

The structure of this paper is as follows: Section 2 proves some technical results
describing the cardinalities of certain orbits. Section 3 uses such results to prove the
polynomial property of the structure constants in the centraliser algebras Zn,m. We
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also set up some notation including that of an m-marked cycle shape and its degree. In
Section 4 we define the R-algebras FHm and prove that RSm and FH0 are subalgebras.
In Section 5 we describe a monoid structure on the set of m-marked cycles shapes and
give a concrete criteria for a permutation to belong to the orbit associated to a given
m-marked cycle shape. Section 6 uses this product to describe the leading terms of
products of basis elements in FHm. In Section 7 we simply recall some facts about
the algebra of symmetric functions and Section 8 recalls the Jucys–Murphy elements
of ZSn and their relationship to the Farahat–Higman algebra FH0. We end with
Section 9 which proves the isomorphism FHm

∼= R ⊗Z (Hm ⊗ Sym) and summarises
various results for FHm and the centraliser algebras Zn,m.

2. Polynomial Cardinality of m-Classes
For a finite set A ⊂ N we write S(A) to denote the group of permutations of A.
For any n ⩾ 0 we write [n] := {1, . . . , n} and Sn := S([n]), with the convention
that [0] = ∅ and S0 the trivial group. We will set SN := ∪n⩾1Sn, the group of
permutations of N with finite support. We denote the support of any π ∈ SN by
Sup(π) = {i ∈ N | π(i) ̸= i} and set ||π|| := |Sup(π)|. For any r ⩾ 1 consider the r-fold
direct product S×r

N . For π = (πi)r
i=1 ∈ S×r

N let Sup(π) := Sup(π1)∪· · ·∪Sup(πr) and
set ||π|| := |Sup(π)|. For any m ⩾ 0 let Stab(m) denote the subgroup of SN consisting
of the permutations which fix each element of [m], in particular Stab(0) = SN. The
group Stab(m) acts on the r-fold direct product S×r

N by component-wise conjugation.
We call the respected orbits the m-classes of S×r

N . We denote the m-class of S×r
N

containing π = (πi)r
i=1 ∈ S×r

N by

CLN,m(π) := {(σi)r
i=1 ∈ S×r

N | σi = τπiτ
−1 for all i ∈ [r] and some τ ∈ Stab(m)}.

Example 2.1. Let m = r = 2 and consider π = ((1, 3)(2, 4), (3, 4, 5)) ∈ S×2
N . Then

the m-class containing π is given by

CLN,2(π) = {((1, a)(2, b), (a, b, c)) | (a, b, c) ∈ (N\[2])!3}

where (N\[2])!3 is the subset of the 3-fold direct product of N\[2] consisting of all
tuples with pairwise distinct entries.

Given any m ⩾ 0 and π = (πi)r
i=1 ∈ S×r

N define

Supm(π) := Sup(π) ∩ [m], and Supm(π) := Sup(π)\[m],

and write ||π||m and ||π||m for the cardinalities of Supm(π) and Supm(π) respectively.
Let C be an m-class of S×r

N and let π = (πi)r
i=1, σ = (σi)r

i=1 ∈ C. Hence there exists
some τ ∈ Stab(m) such that σi = τπiτ

−1 for each i ∈ [r]. Conjugating πi by τ
permutes the entries within the cycles of πi according to τ , thus for each i ∈ [r]
the permutations πi and σi must have the same cycle structure, and the relative
positions of the elements of [m] among their cycles must agree. Hence ||π|| = ||σ||,
||π||m = ||σ||m, and ||π||m = ||σ||m, and so it makes sense to define ||C|| := ||π||,
||C||m := ||π||m, and ||C||m := ||π||m for any π ∈ C.

Let n ⩾ m, then we set Stabn(m) := Stab(m)∩Sn. Similar to the above situation,
this group acts on the r-fold direct product S×r

n by component-wise conjugation.
We call the respected orbits the m-classes of S×r

n . We denote the m-class of S×r
n

containing π = (πi)r
i=1 ∈ S×r

n by

CLn,m(π) := {(σi)r
i=1 ∈ S×r

n | σi = τπiτ
−1 for all i ∈ [r] and some τ ∈ Stabn(m)}.

Again we can set ||C|| := ||π||, ||C||m := ||π||m, and ||C||m := ||π||m for any m-class
C of S×r

n and any π ∈ C. Given any m-class C of S×r
N we write Cn := C ∩S×r

n .
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Example 2.2. Continuing from Example 2.1 let C = CLN,2(π). For any n ⩾ 2 one can
deduce that

Cn =
{
{((1, a)(2, b), (a, b, c)) | (a, b, c) ∈ ([n]\[2])!3}, n ⩾ 5
∅, 2 ⩽ n ⩽ 4

When n ⩾ 5 the set Cn is an m-class of S×2
n .

As the above example suggests, when C is an m-class of S×r
N and n ⩾ m, then the

set Cn is either empty or an m-class of S×r
n . The following proposition proves this

and gives a criteria for when Cn is empty.

Proposition 2.3. Let C be an m-class of S×r
N and n ⩾ m. Then Cn is non-empty if

and only if

(3) n ⩾ ||C||m + m.

In this case Cn is an m-class of S×r
n and the m-classes of S×r

n appear uniquely in
this manner.

Proof. Fix π = (πi)r
i=1 ∈ C. All elements in C are of the form (τπiτ

−1)r
i=1 for some

τ ∈ Stab(m). The set Supm(τπτ−1) is all elements of N\[m] for which at least one
τπiτ

−1 acts non-trivially. Thus τπτ−1 ∈ Cn if and only if Supm(τπτ−1) ⊂ [n]\[m].
For this to be the case we must have

|Supm(τπτ−1)| = ||C||m ⩽ |[n]\[m]| = n−m.

Rearranging gives Equation (3). So Cn = ∅ whenever n < ||C||m + m. Now assume
Equation (3) holds. Let t : Supm(π)→ [n]\[m] be an injective map, which exists since
Equation (3) holds. We have Supm(τπτ−1) = τ (Supm(π)), the image of Supm(π)
under τ . Then fix a permutation τt ∈ Stab(m) such that τt(i) = t(i) for all i ∈
Supm(π). Hence Supm(τtπτ−1

t ) ⊂ [n]\[m] and so Cn is non-empty as it contains
σ := τtπτ−1

t .
We now want to prove that Cn is an m-class of S×r

n . Since σ := τtπτ−1
t ∈ Cn

and Cn = C ∩ S×r
n , any element of Cn is of the form τστ−1 for τ ∈ Stab(m) such

that Supm(τστ−1) ⊂ [n]\[m]. If τ ∈ Stabn(m) then clearly Supm(τστ−1) ⊂ [n]\[m],
thus we have CLn,m(σ) ⊂ Cn. Hence the equality CLn,m(σ) = Cn occurs if one can
show that whenever τστ−1 ∈ Cn for some τ ∈ Stab(m) there exists a τ ′ ∈ Stabn(m)
such that τστ−1 = τ ′σ(τ ′)−1. Given such a τ we must have that Supm(τστ−1) =
τ (Supm(σ)) ⊂ [n]\[m]. Since we also have that Supm(σ) ⊂ [n]\[m], let τ ′ be any
permutation of [n]\[m] with the property that τ ′(i) := τ(i) for all i ∈ Supm(σ), then
it is clear that τστ−1 = τ ′σ(τ ′)−1 and so CLn,m(σ) = Cn. Hence for any σ ∈ S×r

n

we have (CLN,m(σ))n = CLn,m(σ). Since orbits intersect trivially all such m-classes
of S×r

n appear as the intersection of a unique m-class of S×r
N with S×r

n . □

We now end this section by presenting a result describing the cardinality of the
set Cn when C is an m-class of S×r

N and n ⩾ m. Notably we show that the cardinality
of such a set is polynomial in n.

Proposition 2.4. Let C be an m-class of S×r
N . For n ⩾ m,

|Cn| =
1

b(C) (n−m)(n−m− 1) · · · (n−m− ||C||m + 1)

where b(C) ∈ N is a constant depending only on the class C and not on n.

Proof. Assume n ⩾ ||C||m + m, so Cn is an m-class of S×r
n by Proposition 2.3.

Pick π = (πi)r
i=1 ∈ Cn, then Cn = CLn,m(π) is the orbit of π in S×r

n under the action
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of Stabn(m) by component-wise conjugation. Thus by the Orbit-Stabilizer Theorem
we have

|Cn| =
|Stabn(m)|

|StabStabn(m)(π)|
where StabStabn(m)(π) = {τ ∈ Stabn(m)|τπτ−1 = π} is the subgroup of Stabn(m)
whose elements fix π under component-wise conjugation. Consider Stabn([m] ∪
Supm(π)), the subgroup of Sn consisting of all permutations which act triv-
ially on [m] ∪ Supm(π). Naturally Stabn([m] ∪ Supm(π)) ⊂ StabStabn(m)(π). Now
let S(Supm(π)) denote the subgroup of Sn consisting of the permutations of Supm(π).
Then S(Supm(π)) ⊂ Stabn(m), and

StabS(Supm(π))(π) = {τ ∈ S(Supm(π))|τπτ−1 = π}

is also a subgroup of StabStabn(m)(π).
Claim: We have a group isomorphism

StabStabn(m)(π) ∼= Stabn([m] ∪ Supm(π))× StabS(Supm(π))(π).

Note that the two subgroups Stabn([m] ∪ Supm(π)) and StabS(Supm(π))(π) com-
mute and have trivial intersection. So to prove this claim we only need to show
that any permutation τ ∈ StabStabn(m)(π) can be expressed as τ = τ1τ2 for some
τ1 ∈ Stabn([m]∪Supm(π)) and τ2 ∈ StabS(Supm(π))(π). Let τ ∈ StabStabn(m)(π), then
by definition τπiτ

−1 = πi for each i ∈ [r]. We seek to show that the sets [n]\Sup(π)
and Sup(π) are invariant under the action of τ . Suppose for contradiction this is not
the case, hence there exists an a ∈ [n]\Sup(π) such that τ(a) = b ∈ Sup(π). Then for
each i ∈ [r],

πi(b) = (τπiτ
−1)(b) = (τπi)(a) = τ(a) = b.

Thus πi fixes b for each i ∈ [r], but this gives the desired contradiction since b ∈
Sup(π). Thus the sets [n]\Sup(π) and Sup(π) are invariant under the action of τ ,
which implies a decomposition τ = τ1τ2 where τ1 is a permutation of [n]\Sup(π)
and τ2 is a permutation of Sup(π). Naturally τ1 and τ2 commute, and since τ fixes [m],
both τ1 and τ2 must also fix [m]. As such τ1 is an element of Stabn([m] ∪ Supm(π))
as desired, and τ2 ∈ S(Supm(π)). Lastly note that for each i ∈ [r],

πi = τπiτ
−1 = τ2τ1πiτ

−1
1 τ−1

2 = τ2πiτ
−1
2

since τ1 commutes with both τ2 and πi. Thus τ2πiτ
−1
2 = πi for each i ∈ [r], implying

that τ2 belongs to StabS(Supm(π))(π). Hence the claim holds.
Returning to the cardinality of Cn, recall that |Supm(π)| = ||C||m. Also observe

that the size of the group S(Supm(π)) depends only on the class C, in particular it is
independent of n. This implies the same for the cardinality of StabS(Supm(π))(π), and
so we write b(C) := |StabS(Supm(π))(π)|. Hence we have that

|Cn| =
|Stabn(m)|

|Stabn([m] ∪ Supm(π))||StabS(Supm(π))(π)|

= (n−m)!
(n−m− ||C||m)!b(C)

= 1
b(C) (n−m)(n−m− 1) · · · (n−m− ||C||m + 1).

We assumed n ⩾ ||C||m + m so that Cn is an m-class of S×r
n . By Proposition 2.3 the

set Cn is empty when m ⩽ n < ||C||m + m, and such values of n are precisely those
which give zero in the above formula for |Cn|. Hence this formula holds for all n ⩾ m,
completing the proof. □
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3. Centraliser Algebras and Polynomial Structure Constants
Above we worked with S×r

n for arbitrary r ⩾ 1, but for the remainder of the paper
(with the exception of the proof of Theorem 3.3) we specialise to the case r = 1.
Let m ⩾ 0, C be an m-class of SN, and π ∈ C. As mentioned before C is completely
determined by the cycle structure of π and the relative positions of the elements of [m]
among the cycles. If one was to take π and replace each of the elements in N\[m] among
the non-trivial cycles with a formal symbol, say ∗, then the resulting object would
retain the defining characteristics of C, and so could represent it.

Definition 3.1. For a finite set A, we call (ai)l
i=1 ∈ A×l, for some l ∈ N, a cycle if

we only care about the order of the entries up to cyclic shifts, and say it has length l.
For ∗ a formal symbol, we define an m-marked cycle shape to be a finite collection of
cycles with entries in [m] ∪ {∗} with the following properties:

(1) The multiset of entries among the cycles equals [m]∪{∗n} for some n ∈ Z⩾0,
in particular each element of [m] appears precisely once.

(2) Cycles containing only ∗ must be of length at least two.
We write an m-marked cycle shape as a formal product of its cycles by juxtaposition,
where the order of the cycles is immaterial. We let Λ(m) denote the set of all such
m-marked cycle shapes.

Example 3.2. An example of a 6-marked cycle shape is
λ = (2, 6)(5)(1, ∗, ∗, 4, ∗)(3, ∗, ∗)(∗, ∗)(∗, ∗, ∗) ∈ Λ(6).

The multiset of entries among the cycles of λ is [6]∪{∗10}. Cyclicly shifting the entries
of any of the cycles or rearranging the cycles in any order will result in an alternative
expression of λ.

The 0-marked cycle shapes only contain the symbol ∗, and we will refer to these
as cycle shapes. Clearly one may identify the set Λ(0) with the set of proper parti-
tions Ppr. We consider the empty set ∅ an element of Λ(0) consisting of no cycles. The
subset of Λ(m) consisting of the m-marked cycle shapes which contain no symbols ∗
may be identified with Sm, and so we write Sm ⊂ Λ(m).

As discussed above the set of m-marked cycles shapes Λ(m) provides a natural
indexing set for the collection of m-classes of SN: For λ ∈ Λ(m) let CLN,m(λ) denote
the corresponding m-class. The permutations of CLN,m(λ) are those obtained from λ
by replacing the symbols ∗ with distinct elements from N\[m]. For example, letting λ
be the 6-marked cycle shape displayed in Example 3.2, we have that

CLN,6(λ) =
{

(2, 6)(1, a1, a2, 4, a3)(3, a4, a5)(a6, a7)(a8, a9, a10)
∣∣∣(ai)10

i=1 ∈ (N\[6])!10
}

.

Recall the quantities ||C||, ||C||m, and ||C||m for any m-class C of SN. Then for λ ∈
Λ(m) we write
||λ|| := ||CLN,m(λ)||, ||λ||m := ||CLN,m(λ)||m, and ||λ||m := ||CLN,m(λ)||m.

The quantity ||λ|| is the number of entries among the cycles of length at least two,
||λ||m is the number of ∗ symbols appearing among the cycles, and ||λ||m is the number
of elements from [m] which appear in cycles of length at least two. We define a map
degm : Λ(m)→ Z⩾m by setting

degm(λ) := ||λ||m + m.

We call degm(λ) the degree of λ, which is defined with the inequality of Proposition 2.3
in mind. Specially, for n ⩾ m, the m-classes of Sn are indexed by

Λ⩽n(m) := {λ ∈ Λ(m) | degm(λ) ⩽ n}.
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For λ ∈ Λ⩽n(m) we denote the corresponding m-class by CLn,m(λ) = (CLN,m(λ))n,
which consists of all permutations of Sn one can obtain from λ by replacing the
symbols ∗ with distinct elements from [n]\[m].

Consider the Z-algebra ZSn. For any n ⩾ m we define the m-centraliser algebra
Zn,m := {z ∈ ZSn | τz = zτ for all τ ∈ Stabn(m)}.

When m = 0 then Stabn(0) = Sn and Zn,0 = Z(ZSn). For any λ ∈ Λ(m) we define
the m-class sum by

Kn(λ) :=
∑

π∈CLn,m(λ)

π.

Note by Proposition 2.3 we have that Kn(λ) ̸= 0 if and only if degm(λ) ⩽ n. Also one
can deduce that the set of m-class sums {Kn(λ) | λ ∈ Λ⩽n(m)} provides a Z-basis
for the centraliser algebra Zn,m. As such the product of any two such elements must
decomposed into a linear combination of the same, that is for any λ, µ ∈ Λ⩽n(m) we
have that

Kn(λ)Kn(µ) =
∑

ν∈Λ⩽n(m)

aν
λ,µ(n)Kn(ν)

with structure constants aν
λ,µ(n) ∈ Z⩾0. We now show these structure constants are

polynomial in n. Let t be a formal variable and R := Int[t] the subring of Q[t] of all
polynomials p(t) such that p(Z) ⊆ Z.

Theorem 3.3. For each λ, µ, ν ∈ Λ(m) there exists a unique polynomial fν
λ,µ(t) ∈ R

such that
Kn(λ)Kn(µ) =

∑
ν∈Λ⩽n(m)

fν
λ,µ(n)Kn(ν)

in Zn,m for any n ⩾ m. We refer to the polynomials fν
λ,µ(t) as the structure polyno-

mials.

Proof. Fix λ, µ, ν ∈ Λ(m). Consider the set of pairs
A = {(π1, π2) ∈ CLN,m(λ)× CLN,m(µ) | π1π2 ∈ CLN,m(ν)} ⊂ SN ×SN.

When A = ∅ we set fν
λ,µ(t) := 0. Assume A ̸= ∅ and let (π1, π2) ∈ A. For any τ ∈

Stab(m) we have that (τπ1τ−1)(τπ2τ−1) = τ(π1π2)τ−1 which belongs to CLN,m(ν)
since π1π2 does. So (τπ1τ−1, τπ2τ−1) belongs to A for any τ ∈ Stab(m). Thus for
some indexing set I, the set A is the union of m-classes C(i) of SN × SN for each
i ∈ I. For any (π(i)

1 , π
(i)
2 ) ∈ C(i),

||C(i)||m = |Supm(π(i)
1 ) ∪ Supm(π(i)

2 )| ⩽ |Supm(π(i)
1 )|+ |Supm(π(i)

2 )| = ||λ||m + ||µ||m.

Thus by Proposition 2.3 we have for any n ⩾ ||λ||m + ||µ||m +m that C(i)
n is an m-class

of Sn ×Sn for each i ∈ I. This implies that I is finite. Also by Proposition 2.4 we
have for any n ⩾ m that

|A ∩ (Sn ×Sn)| =
∑
i∈I

1
b(C(i))

(n−m)(n−m− 1) · · · (n−m− ||C(i)||m + 1),

where b(C(i)) are constants independent of n. By definition of A, the multiplicity of
Kn(ν) in the product Kn(λ)Kn(µ) is |A ∩ (Sn ×Sn)| divided by |CLn,m(ν)|. Again
by Proposition 2.4 we have that

|CLn,m(ν)| = 1
b(ν) (n−m)(n−m− 1) · · · (n−m− ||ν||m + 1)

where b(ν) = b(CLN,m(ν)) is a constant independent of n. For any (π(i)
1 , π

(i)
2 ) ∈ C(i),

||ν||m = |Supm(π(i)
1 π

(i)
2 )| ⩽ |Supm(π(i)

1 ) ∪ Supm(π(i)
2 )| = ||C(i)||.
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Thus we have that |A ∩ (Sn ×Sn)| divided by |CLn,m(ν)| is given by

b(ν)
∑
i∈I

1
b(C(i))

(n−m− ||ν||m)(n−m− ||ν||m − 1) · · · (n−m− ||C(i)||m + 1).

Hence let fν
λ,µ(t) be the polynomial obtained from the above expression by replacing n

with t. What remains to be shown is that fν
λ,µ(t) belongs to R. It is known that a

polynomial f(t) ∈ Q[t] of degree d belongs to R if and only if it is integer valued
on d + 1 consecutive integers. Well we have shown that each fν

λ,µ(t) is integer valued
on the infinite set {m, m + 1, . . . } since the evaluation at such an integer n gives
the coefficient of the term Kn(ν) in the product Kn(λ)Kn(µ) in the Z-algebra Zn,m,
hence fν

λ,µ(t) ∈ R. □

Specialising the above theorem to the case m = 0 recovers [4, Theorem 2.2]. It is
worth remarking that in [4] they instead used reduced partitions as the indexing set
for their classes as opposed to cycle shapes, but there is a natural correspondence
between them. Also when m = 0, the degree deg0(λ) simply counts the number of ∗
symbols present in λ ∈ Λ(0), i.e. deg0(λ) = |Sup(π)| = ||π|| for any π ∈ CLn,0(λ). In [4]
they focus on the length rd0(λ) of λ (which we call the reduced degree of λ), which
is the minimal number of transpositions needed to represent π for any π ∈ CLn,0(λ).
Comparing these quantities we have that rd0(λ) = deg0(λ)− l where l is the number
of cycles in λ.

4. The Farahat–Higman Algebras FHm

Knowing that the structure constants of Zn,m are polynomial in n allows us to define
a new R-algebra FHm, in an analogous manner to the Farahat–Higman algebra. Recall
that R = Int[t] ⊂ Q[t] is the ring of integer-valued polynomials. We first define FHm as
a free R-module equipped with a product, and then shortly prove that such a product
realises it as an R-algebra.

Definition 4.1. Let FHm be the free R-module with formal basis {K(λ) | λ ∈ Λ(m)}.
Equip this module with the product given by the R-linear extension of

K(λ)K(µ) =
∑

ν∈Λ(m)

fν
λ,µ(t)K(ν)

where fν
λ,µ(t) are the structure polynomials given in Theorem 3.3.

For n ⩾ m, fν
λ,µ(n) gives the multiplicity of Kn(ν) in the product Kn(λ)Kn(µ)

in Zn,m. Hence fν
λ,µ(t) = 0 whenever ||ν|| > ||λ||+ ||µ||. As such the product described

above for FHm is well-defined since only a finite number of terms will appear in the
product of any two elements.

We say a distributive ring is an object satisfying all the axioms of a ring except
possibly the associativity of the product and the existence of a multiplicative iden-
tity. Thus a ring is a special case of a distributive ring. From definition we certainly
have that FHm is a distributive ring. We seek to show that the product given in
Definition 4.1 is associative and that FHm possess a multiplicative identity. This will
follow since FHm is determined by the algebras Zn,m for all n ⩾ m, as we will now
demonstrate.

By definition of the structure polynomials we must have a surjective homomor-
phism of distributive rings prn,m : FHm → Zn,m given by prn,m(K(λ)) = Kn(λ) and
prn,m(f(t)) = f(n) for all λ ∈ Λ(m) and f(t) ∈ R.
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Lemma 4.2. The intersection of the kernels of prn,m for all n ⩾ m is trivial, that is
K :=

⋂
n⩾m

Ker(prn,m) = {0}

Proof. Let L be any finite subset of Λ(m), and

x :=
∑
λ∈L

pλ(t)K(λ).

Assume x ∈ K, we seek to show that x = 0. Let n > max{degm(λ) | λ ∈ L}, then

prn,m(x) =
∑
λ∈L

pλ(n)Kn(λ) = 0,

since x ∈ Ker(prn,m). However, the set {Kn(λ) | λ ∈ Λ(m), degm(λ) ⩽ n} forms a
Z-basis for Zn,m, so for the above equation to hold we require that n is a root of pλ(t)
for each λ ∈ L. But this must hold for infinitely many choices of n, implying that
each polynomial pλ(t) must be zero, and so x = 0 as desired. □

Lemma 4.3. For any X, Y ∈ FHm, then X = Y if and only if prn,m(X) = prn,m(Y )
for all n ⩾ m.

Proof. The forward implication is immediate, while the reverse implication follows
since it implies that X − Y belongs to ∩n⩾mKer(prn,m) which equals {0} from
Lemma 4.2. □

Thus we can solve any product in FHm by computing a corresponding one in Zn,m

for arbitrary n ⩾ m.

Example 4.4. Consider the two 2-marked cycle shapes λ = (1, 2)(∗, ∗) and µ =
(1)(2)(∗, ∗). We have that deg2(λ) = deg2(µ) = 4, hence Kn(λ) and Kn(µ) are non-
zero if and only if n ⩾ 4. Let n ⩾ 2, then

Kn(λ)Kn(µ) =

 ∑
{a,b}⊆[n]\[2]

(1, 2)(a, b)

  ∑
{c,d}⊆[n]\[2]

(c, d)


=

∑
{a,b}⊆[n]\[2]

∑
{c,d}⊆[n]\[2]

(1, 2)(a, b)(c, d).

If the two cycles (a, b) and (c, d) are disjoint then the resulting permutation
is (1, 2)(a, b)(c, d), and there are two such ways to obtain such. If the two cycles share
a single element, then the resulting permutation gives (1, 2)(a, b, c), and the number
of ways to arrive at this from a product of two transpositions is three. Lastly if the
two cycles agree then the result is simply (1, 2), and there are as many ways to do
this as there are two-element subsets of [n]\[2]. Thus altogether we have that

Kn(λ)Kn(µ) = 2Kn(τ1) + 3Kn(τ2) +
(

n− 2
2

)
Kn(τ3)

where τ1 = (1, 2)(∗, ∗)(∗, ∗), τ2 = (1, 2)(∗, ∗, ∗), and τ3 = (1, 2). Note that(
n− 2

2

)
= 1

2(n− 2)(n− 3).

Thus Kn(λ)Kn(µ) = 2Kn(τ1) + 3Kn(τ2) + 1
2 (n − 2)(n − 3)Kn(τ3) for all n ⩾ 2,

noting that when n = 2, 3 both sides of the equality are zero since Kn(τ) = 0 for
all τ ∈ {λ, µ, τ1, τ2}, and the polynomial in n which is the coefficient of Kn(τ3) has
both 2 and 3 as roots. Thus by Lemma 4.3 we have that the relation

K(λ)K(µ) = 2K(τ1) + 3K(τ2) + 1
2(t− 2)(t− 3)K(τ3)
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holds in FHm, in particular fτ1
λ,µ(t) = 2, fτ2

λ,µ(t) = 3, and fτ3
λ,µ(t) = 1

2 (t− 2)(t− 3).

Proposition 4.5. The distributive ring FHm is an R-algebra.

Proof. We need to prove that the product is associative and a multiplicative identity
exists. For the identity, consider K(∅m) where ∅m is the m-marked cycle shape
(1)(2) . . . (m). The m-class CLn,m(∅m) contains only the identity, so Kn(∅m) is
the identity of Zn,m for any n ⩾ m, implying K(∅m) is the identity of FHm by
Lemma 4.3. For any (X, Y, W ) ∈ Z×3

n,m let [X, Y, W ] := (XY )W − X(Y W ). Then
prn,m([X, Y, W ]) = 0 for all n ⩾ m as Zn,m is associative. So [X, Y, W ] = 0 by
Lemma 4.3, showing that FHm is associative. □

We end this section by describing two natural R-subalgebras of FHm.

Lemma 4.6. We have an injective R-algebra homomorphism RSm → FHm defined by
the R-linear extension of π 7→ K(π) for all π ∈ Sm(⊂ Λ(m)).

Proof. For n ⩾ m, CLn,m(π) = {π} for any π ∈ Sm. Hence prn,m(K(π)) = Kn(π) = π
showing we have a homomorphism by Lemma 4.3. Injectivity follows by construction
of FHm. □

Consider the injective map (−)m : Λ(0)→ Λ(m) which sends a cycle shape λ ∈ Λ(0)
to the m-marked cycle shape λm obtained from λ by adjoining the trivial cycles
(1)(2) . . . (m).

Lemma 4.7. We have an injective R-algebra homomorphism FH0 → FHm defined by
the R-linear extension of K(λ) 7→ K(λm) for all λ ∈ Λ(0).

Proof. By Lemma 4.3 one can show that fν
λm,µm

(t) = 0 for all λ, µ ∈ Λ(0) when-
ever ν ̸= γm for any γ ∈ Λ(0). Thus it suffices to show that fνm

λm,µm
(t) = fν

λ,µ(t) for
any λ, µ, ν ∈ Λ(0). Let FH∗

m denote the R-subalgebra of FHm generated by K(λm) for
all λ ∈ Λ(0). Clearly for any n ⩾ 0 we have prn+m,m(FH∗

m) = Z(ZS([n + m]\[m])).
Similarly for any n ⩾ 0 we have that prn,0(FH0) = Z(ZSn). Clearly we have a
Z-algebra isomorphism Z(ZS([n + m]\[m])) ∼= Z(ZSn), which may be realised by
the R-linear extension of conjugation σn(−)σ−1

n : Z(ZS([n + m]\[m])) → Z(ZSn)
where σn is any permutation of Sn+m such that σ([n + m]\[m]) = [n]. By definition
of (−)m we have that Kn(λ) = σnKn+m(λm)σ−1

n for all n ⩾ 0 and λ ∈ Λ(0). Hence
by applying Lemma 4.3 we deduce that fνm

λm,µm
(t) = fν

λ,µ(t) for any λ, µ, ν ∈ Λ(0).
Injectivity of FH0 → FHm follows since {K(λm) | λ ∈ Λ(0)} is R-linearly independent
by construction. □

With this result in mind we will often identify FH0 as the R-subalgebra of FHm

consisting of R-linear combination of basis elements K(λ) where λ contains the trivial
cycles (1)(2) · · · (m), i.e. identifying FH0 with the R-subalgebra FH∗

m described in the
above proof. Since prn,0(FH0) = Z(ZSn), it is easy to deduce from Lemma 4.3 that
FH0 is commutative, and hence a commutative R-subalgebra of FHm.

5. Monoid of m-Marked Cycle Shapes
To show certain structural properties of the algebras FHm it will prove helpful to
equip the set of m-marked cycle shapes Λ(m) with an associative product. To do such
we will construct a monoid which we may identify with Λ(m). This will also allow us
to give a more concrete criteria for a permutation to belong to an m-class.

Let Um be the free commutative monoid on the set {u1, . . . , um}. We have a natural
left monoid action φ : Sm → End(Um) given by φ(π)(ui) = uπ(i) for all π ∈ Sm and
i ∈ [m], where End(Um) is the monoid of all monoid endomorphisms Um → Um. Now
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let C denote the free commutative monoid on the infinite set {c1, c2, . . . }. Then the
monoid we are interested in is (Sm ⋉φ Um) × C, where ⋉φ denotes the semidirect
product with respect to the action φ. The underlying set is Sm × Um × C and the
product is given by

(π, p, a)(σ, q, b) = (πσ, φ(σ)(p)q, ab)
for (π, p, a), (σ, q, b) ∈ Sm × Um × C. We abuse notation and write π = (π, 1, 1),
p = (1, p, 1), and a = (1, 1, a). For any set A we let ZA

⩾0 denote the set of all functions
f : A → Z⩾0 with finite support, that is the subset of elements a ∈ A such that
f(a) ̸= 0 is finite. Then we define

ud :=
m∏

i=1
u

d(i)
i and cl :=

∏
i∈N

c
l(i)
i

for any d ∈ Z[m]
⩾0 and l ∈ ZN

⩾0, which are well-defined by commutativity and since l
has finite support. Then as sets we have that

(Sm ⋉φ Um)× C =
{

πudcl | π ∈ Sm, d ∈ Z[m]
⩾0 , l ∈ ZN

⩾0

}
.

Moreover, the product may be described by
(4) (πudcl)(σueck) = πσuσ◦d+ecl+k

where σ ◦ d ∈ Z[m]
⩾0 is defined by (σ ◦ d)(i) = d(σ−1(i)). In particular, the operator ◦

realises the set Z[m]
⩾0 as a left action set of Sm. The set Λ(m) of m-marked cycle

shapes is in a natural one-to-one correspondence with this monoid: Consider the map
(Sm ⋉φ Um)× C → Λ(m) given by sending πudcl to the m-marked cycle shape con-
sisting, for each i ∈ N, l(i) many cycles of length i + 1 containing only the symbol ∗,
and where the remaining cycles are constructed from those of π by adding d(i) sym-
bols ∗ after the entry i, for each i ∈ [m] (see examples below). This map is a bijection
since there is a natural inverse to consider. With this correspondence in mind, we
identify Λ(m) with the monoid (Sm ⋉φ Um)× C.

Examples 5.1.
(1) Let λ be the 6-marked cycle shape given in Example 3.2, then we have the

identification
(1, 4)(2, 6)(3)(5)u2

1u2
3u1

4c1
1c1

2 = (2, 6)(5)(1, ∗, ∗, 4, ∗)(3, ∗, ∗)(∗, ∗)(∗, ∗, ∗),
where we have added colours to aid in demonstrating the correspondence.

(2) Consider the 4-marked cycle shapes written as elements of (Sm ⋉φ Um) × C
by λ = (1, 2)(3, 4)u1u2, and µ = (1, 4)(2)(3)u2

3c1. Their product is given by
λµ = ((1, 2)(3, 4)u1u2)

(
(1, 4)(2)(3)u2

3c1
)

= (1, 3, 4, 2)u2u2
3u4c1.

Thus when writing λ and µ as m-marked cycle shapes we have
λµ = ((1, ∗, 2, ∗)(3, 4)) ((1, 4)(2)(3, ∗, ∗)(∗, ∗)) = (1, 3, ∗, ∗, 4, ∗, 2, ∗)(∗, ∗).

Given any element λ ∈ Λ(m), we will freely move between viewing it as an m-
marked cycle shape or as an element of (Sm ⋉φ Um)× C, i.e. as an expression of the
form πudcl. As we know, a permutation σ belongs to the m-class CLN,m(λ) if and
only if σ may be obtained from λ by replacing the symbols ∗ with distinct elements
from N\[m]. When expressing λ = πudcl, then from the above discussion it is clear
that we have the following equivalent criteria for when σ belongs to CLN,m(λ) given
in terms of π, d, and l.

Lemma 5.2. We have σ ∈ CLN,m(πudcl) if and only if the following hold:
(i) the number of cycles of σ of length i + 1 containing no elements of [m] is l(i),
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(ii) σd(i)+1(i) = π(i) for each i ∈ [m], and σn(i) ̸∈ [m] for any 1 ⩽ n ⩽ d(i).
□

Item (ii) above gives a concrete way of describing the relative positions of the
elements of [m] within a permutation σ, and is completely captured by π and d.
Recall the quantities ||λ||, ||λ||m, and ||λ||m for an m-marked cycle shape λ ∈ Λ(m).
Then when expressing λ = πudcl, one can deduce that

||λ|| = |Sup(π)|+
∑

i∈[m]

d(i) +
∑
i∈N

(i + 1)l(i), ||λ||m =
∑

i∈[m]

d(i) +
∑
i∈N

(i + 1)l(i),

||λ||m = |Sup(π)|.

Recall the degree function degm : Λ(m)→ Z⩾m given by degm(λ) = ||λ||m + m. The
codomain Z⩾m is a monoid under the addition a +m b := a + b−m for all a, b ∈ Z⩾m

with m the identity. Viewing Λ(m) as a monoid, then by consulting Equation (4)
one can deduce that degm is a monoid homomorphism, and hence provides a grading
for Λ(m). For n ∈ Z⩾0 define Λn(m) := {λ ∈ Λ(m) | degm(λ) = n} to be the n-th
graded component of Λ(m). We have that Λn(m) is non-empty if and only if n ⩾ m.
We have the disjoint unions

Λ(m) =
⊔

m⩽n

Λn(m), Λ⩽n(m) =
⊔

m⩽i⩽n

Λi(m).

We now describe generating functions which record the cardinalities of Λn(m)
and Λ⩽n(m). For a generating function F (t) in a formal variable t, we let [tn]F (t)
denote the coefficient of the n-th degree term tn.

Proposition 5.3. Let t be a formal variable. As generating functions we have

(5)
∞∑

n=0
|Λn(m)|tn = m!tm

(1− t)m

∞∏
n=2

1
1− tn

,

and

(6)
∞∑

n=0
|Λ⩽n(m)|tn = m!tm

(1− t)m

∞∏
n=1

1
1− tn

.

Proof. We begin by showing Equation (5). For any πudcl ∈ Λ(m) we have that

deg(πudcl) = m +
∑

i∈[m]

d(i) +
∑
i∈N

(i + 1)l(i).

For any x ∈ Z⩾0 define the subsets of Λ(m) given by

SU (x) :=

πud

∣∣∣∣∣ π ∈ Sm, d ∈ Z[m]
⩾0 ,

∑
i∈[m]

d(i) = x


and

C(x) :=
{

cl

∣∣∣∣∣ l ∈ ZN
⩾0,

∑
i∈N

(i + 1)l(i) = x

}
.

For a, b ∈ Z⩾0, let πud ∈ SU (a) and cl ∈ C(b), then we have degm(πudcl) = a+ b+m,
and all elements in Λ(m) of degree a+b+m appear uniquely in such a manner. Hence
for any n ∈ Z⩾0 we have that

|Λn+m(m)| =
∑

a,b⩾0
a+b=n

|SU (a)||C(b)|.
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Therefore, if F (t) is the generating function such that [tn]F (t) = |SU (n)|, and G(t)
the generating function such that [tn]G(t) = |C(n)|, then
(7) [tn](tmF (t)G(t)) = |Λn(m)|.
The elements of C(n) are the m-marked cycle shapes where the elements of [m] belong
to cycles of length one, and the remaining cycles contain n symbols ∗ in total. The
cycles containing only the symbols ∗ must be of length at least two. Thus one can
deduce that

G(t) =
∞∑

n=0
|C(n)|tn =

∞∏
n=2

1
1− tn

,

since the factor (1 − tn)−1 accounts for the number of cycles of length n containing
only the symbols ∗ present in such an m-marked cycle shape. As for the set SU (n),
it is clear that its cardinality is m! times the number of maps d ∈ Z[m]

⩾0 such that
the sum of d(i) for each i ∈ [m] is precisely n. The number of such maps is precisely
the coefficient of tn in the generating function (1− t)−m, since each factor (1− t)−1

accounts for the choice of the image of a given element of [m]. As such

F (t) =
∞∑

n=0
|SU (n)|tn = m!

(
1

1− t

)m

.

Hence from Equation (7) we have that
∞∑

n=0
|Λn(m)|tn = tmm!

(
1

1− t

)m ∞∏
n=2

1
1− tn

,

which is precisely Equation (5). For Equation (6), this follows from Equation (5) by
noting that for any generating function A(t), the new generating function (1−t)−1A(t)
records the partial sums of the coefficients of A(t), that is [tn]

(
(1− t)−1A(t)

)
equals

the sum of [ti]A(t) as i runs from 0 to n. □

Let Pn be the set of all partitions of n. Then the above proposition allows us to
give a formula for the size of Λ⩽n(m) in terms of the sizes of the sets Pi for i ⩽ n.

Corollary 5.4. The cardinality of Λ⩽n(m) is given by

|Λ⩽n(m)| =
∑

a⩾m,b⩾0
a+b=n

m!
(

a− 1
a−m

)
|Pb|.

Proof. The following two identities are well-known:
∞∑

n=0
|Pn|tn =

∞∏
n=1

1
1− tn

and
(

1
1− t

)m

=
∞∑

n=0

(
m + n− 1

n

)
tn.

The latter implies(
t

1− t

)m

=
∞∑

n=0

(
m + n− 1

n

)
tn+m =

∞∑
n=m

(
n− 1
n−m

)
tn.

Then the result follows from Equation (6) of Proposition 5.3. Note we are using the
generalised binomial coefficients here when m = 0. □

Lastly, with the identification Λ(m) = (Sm ⋉φ Um)× C, we have that

FHm = SpanR{K(πudcl) | π ∈ Sm, d ∈ Z[m]
⩾0 , l ∈ ZN

⩾0}.

Note that the R-subalgebra generated by the elements K(cl) for all l ∈ ZN
⩾0 is precisely

the subspace FH∗
m described in the proof of Lemma 4.7 consisting of all basis elements
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indexed by m-marked cycles shapes with the elements of [m] appearing in trivial
cycles. As such FH0 ∼= SpanR{K(cl) | l ∈ ZN

⩾0} ⊂ FHm.

6. Leading Terms via Monoid Product
We extend the degree function degm : Λ(m)→ Z⩾m to one acting on FHm by setting

deg

 ∑
λ∈Λ(m)

fλ(t)K(λ)

 = max{degm(λ) | fλ(t) ̸= 0}.

In particular degm(K(λ)) = degm(λ). We seek to show that the product of two basis
elements of FHm admits a unique leading term with regards to this degree function.
To prove this we will use the following lemma.

Lemma 6.1. For λ, µ ∈ Λ(m), let g ∈ CLN,m(λ) and h ∈ CLN,m(µ). The equality

(8) Supm(g) ∩ Supm(h) = ∅

holds if and only if gh ∈ CLN,m(λµ).

Proof. Suppose that gh ∈ CLN,m(λµ), then since degm is a monoid homomorphism

|Supm(gh)| = ||λµ||m = ||λ||m + ||µ||m = |Supm(g)|+ |Supm(h)|.

Since also Supm(gh) ⊂ Supm(g) ∪ Supm(h), we have Supm(g) ∩ Supm(h) = ∅. This
proves the “if” statement. For the “only if” let λ = πudcl and µ = σueck for π, σ ∈
Sm, d, e ∈ Z[m]

⩾0 , and l, k ∈ ZN
⩾0. By Equation (4),

λµ = πσuσ◦d+ecl+k.

Hence the result follows if we show that gh satisfies items (i) and (ii) of Lemma 5.2
with respect to πσuσ◦d+ecl+k. For item (i), since Equation (8) is upheld, it is clear
that the number of cycles of gh of length i + 1 which contain no elements of [m]
is l(i) + k(i), since this is the sum of such cycles of g and h. For item (ii), pick
any x ∈ [m] and set y := σ(x) and z := π(y). Since h ∈ CLN,m(σueck), item (ii) of
Lemma 5.2 tells us that

h : x 7→ i1 7→ i2 7→ · · · 7→ ie(x) 7→ y

where {i1, i2, . . . , ie(x)} ∩ [m] = ∅. Similarly since g ∈ CLN,m(πudcl), we have that

g : y 7→ j1 7→ j2 7→ · · · 7→ jd(y) 7→ z

where {j1, j2, . . . , jd(y)} ∩ [m] = ∅. Since Equation (8) is upheld, we must have that

gh : x 7→ i1 7→ · · · 7→ ie(x) 7→ j1 7→ · · · jd(y) 7→ z.

Thus (gh)d(y)+e(x)+1(x) = (πσ)(x) and (gh)n(x) ̸∈ [m] for any 1 ⩽ n ⩽ d(y) + e(x).
One may also note that d(y) = d(σ−1(x)) = (σ ◦ d)(x), and hence gh also upholds
item (ii) of Lemma 5.2. □

Proposition 6.2. Let λ = πudcl, µ = σueck ∈ Λ(m). In FHm we have that

K(λ)K(µ) = cλ,µK(λµ) +
∑

ν∈Λ(m)
degm(ν)<degm(λµ)

fν
λ,µ(t)K(ν)

where cλ,µ ∈ N is the constant given by

cλ,µ =
∞∏

i=1

(
(l + k)(i)

l(i)

)
,
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Proof. Let g ∈ CLN,m(λ), h ∈ CLN,m(µ), then Supm(gh) ⊂ Supm(g) ∪ Supm(h). Thus
if gh ∈ CLN,m(ν) for ν ∈ Λ(m) then ||ν||m ⩽ ||λ||m + ||µ||m. Hence degm(ν) ⩽
degm(λ) +m degm(µ) = degm(λµ). Thus we have

K(λ)K(µ) =
∑

ν∈Λ(m)
degm(ν)⩽degm(λµ)

fν
λ,µ(t)K(ν).

Suppose gh ∈ CLN,m(ν) with degm(ν) = degm(λµ). This implies that ||ν||m = ||λµ||m
and hence we must have Supm(g) ∩ Supm(h) = ∅. Thus by Lemma 6.1 we have that
ν = λµ. Therefore

K(λ)K(µ) = fλµ
λ,µ(t)K(λµ) +

∑
ν∈Λ(m)

degm(ν)<degm(λµ)

fν
λ,µ(t)K(ν).

It remains to show fλµ
λ,µ(t) = cλ,µ. Let ω ∈ CLN,m(λµ) and

Aλ,µ(ω) := {(g, h) ∈ CLN,m(λ)× CLN,m(µ) | gh = ω}.
By Equation (4) we have λµ = πσuσ◦d+ecl+k, and so by Lemma 5.2, for any x ∈ [m],
we have that ω : x 7→ i1 7→ · · · 7→ i(σ◦d+e)(x) 7→ (πσ)(x), where {i1, · · · , i(σ◦d+e)(x)}∩
[m] = ∅. Any pair (g, h) ∈ Aλ,µ(ω) satisfies Equation (8), and since their product
gives ω we must have that

h : x 7→ i1 7→ · · · 7→ ie(x) 7→ σ(x),
g : σ(x) 7→ ie(x)+1 7→ · · · 7→ i(σ◦d+e)(x) 7→ (πσ)(x).

So if we construct a pair (g, h) ∈ CLN,m(λ) × CLN,m(µ) such that gh = ω, the cycles
containing elements of [m] in g and h are predetermined by ω. Hence we are just
concerned with the cycles which contain no elements of [m]. In ω there are (l + k)(i)
number of such cycles of length i + 1, while g and h containing l(i) and k(i) such
cycles respectively. Thus to construct a pair (g, h) ∈ Aλ,µ(ω), it is simply a matter of
how one distributes the cycles containing no elements of [m] of ω among either g or
h. The binomial coefficient (

(l + k)(i)
l(i)

)
counts the number of ways to allocate such cycles of length i + 1 of ω to the permu-
tation g (with the remaining cycles allocated to h). Therefore

fλµ
λ,µ(t) = |Aλ,µ(ω)| =

∞∏
i=1

(
(l + k)(i)

l(i)

)
,

where the product is only formally infinite since the functions (l + k), l, and k have
finite support. □

Remark 6.3. The above proposition shows that FHm is filtered by the degree function
degm, and there exists a unique leading term for the product K(λ)K(µ), being that
of cλ,µK(λµ). As such the associated graded algebra with respect to this filtration
is isomorphic to the twisted semigroup algebra of the monoid Λ(m) with twisting
T : Λ(m)× Λ(m)→ R given by T : (λ, µ) 7→ cλ,µ.

Remark 6.4. The associated graded algebra of FHm, with respect to filtering by
degree, is not analogous to the associated graded algebra G of FH0 mentioned in the
introduction. To get G one needs to filter FH0 via the reduced degree function rd0
defined by rd0(λ) = deg0(λ) − l where λ ∈ Λ(0) and l is the number of cycle in λ.
Presumably this can be generalised to FHm by proving that it is filtered by the reduce
degree function rdm defined by rdm(λ) = degm(λ) − l where λ ∈ Λ(m) and l is the
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number of non-trivial cycles in λ. However, such is not pursued here as the simpler
degree function is enough for our purposes.

From the formula given in the above proposition, one can deduce that cλ,µ = 1 if
and only if λ and µ share no cycles of the same length consisting of only the symbols ∗,
i.e. whenever l(i) ̸= 0 then k(i) = 0. If one was to extend R to a ring which contains
the inverses to any natural number, say its field of fractions Q(t), then the above
leading term result could be applied to easily deduce generating sets for the Q(t)-
algebra Q(t) ⊗R FHm. For example, let si = (i, i + 1) for any i ∈ [m] be the simple
transposition in Sm, then by arguing by induction on the degree, Proposition 6.2 can
be employed to show that the set
(9) {K(si), K(ui), K(cj) | i ∈ [m], j ∈ N}
generates Q(t) ⊗R FHm as a Q(t)-algebra since {si, ui, cj | i ∈ [m], j ∈ N} generates
Λ(m) = (Sm ⋉φ Um)× C.

7. Symmetric Functions
Consider the polynomial Z-algebra Z[x1, . . . , xn] in n commuting variables. The
group Sn acts on this algebra by permuting the variables. A polynomial is sym-
metric if it is Sn-invariant. Denote the Z-subalgebra of symmetric polynomials
by Symn. We are interested in two types of symmetric polynomials, and to describe
one type it will be helpful to set up some notation. A tuple α = (a1, a2, . . . , al) of
positive integers is a partition whenever a1 ⩾ a2 ⩾ · · · ⩾ al. We say α has length l
and size a1 + · · · + al. Let P(k, l) be the set of partitions of size k and length l.
When k = l = 0 let P(0, 0) = {∅}.

Definition 7.1. For any k ⩾ 0, the elementary symmetric polynomials are given by

ek(x1, . . . , xn) :=
∑

i1<i2<···<ik

xi1xi2 · · ·xik

Hence ek is the sum of all monomials with k variables. In particular e0 = 1 and ek = 0
for k > n.

Definition 7.2. For α = (a1, a2, . . . , al) ∈ P(k, l), the monomial symmetric polyno-
mials are given by

mα(x1, . . . , xn) :=
∑

(i1,i2,...,il)∈[n]!l

xa1
i1

xa2
i2
· · ·xal

il

Recall that [n]!l is the subset of the l-fold cartesian product of [n] consisting of tuples
with pairwise distinct entries. Hence mα is the sum of all monomials whose expo-
nents match the partition α up to rearrangement. In particular m∅ = 1 and mα = 0
whenever l > n.

It is well known that Symn is generated (transcendentally) by e1, e2, . . . , en. That
is to say that we have a Z-algebra isomorphism Symn

∼= Z[e1, . . . , en] with the
latter being a free polynomial algebra in n commuting generators. One may show
that {mα | α ∈ P(k, l), k ⩾ 0, n ⩾ l ⩾ 0} forms a Z-basis for Symn. Assigning each
variable xi a degree of 1, let Symk

n denote the degree k component of Symn. In partic-
ular ek, mα ∈ Symk

n for any α ∈ P(k, l). For any N > n we have a surjective Z-module
homomorphisms ρN,n : Symk

N → Symk
n given by evaluating the variables xn+1, . . . , xN

at zero. One can show that the collection of such morphisms defines an inverse system
for the Z-modules Symk

n (with fixed k), and so we have the inverse limit

Symk := lim←−Symk
n.
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Any element of Symk is of the form (f1, f2, . . . ) with fn ∈ Symk
n and where ρN,n(fN ) =

fn for all N > n. One can note that ρN,n(mα(x1, . . . , xN )) = mα(x1, . . . , xn) for
any N > n and α ∈ P(k, l). Thus we write mα = (mα(x1), mα(x1, x2), . . . ) and call
such elements of Symk the monomial symmetric functions. The same can be said
for ek since ek = m(1k) where (1k) is the partition of size k consisting of k parts equal
to 1. The Z-algebra of symmetric functions is given by

Sym :=
⊕

k∈Z⩾0

Symk.

We have the isomorphism of Z-algebras Sym ∼= Z[e1, e2, . . . ], and a Z-basis of Sym
given by {mα | α ∈ P(k, l), k ⩾ l ⩾ 0}.

8. Jucys–Murphy Elements and Generators of FH0

In this section we recall the Jucys–Murphy elements of the symmetric group algebras,
and their connections to the Farahat–Higman algebras, see also [18, Section 3].

Definition 8.1. For each 1 ⩽ i ⩽ n, the i-th Jucys–Murphy element Li of ZSn is

Li :=
∑

1⩽j<i

(j, i).

Note that L1 = 0. The following relations are well-known.

Lemma 8.2. The following hold within ZSn:
(1) LiLj = LjLi for all i, j ∈ [n]
(2) siLj = Ljsi for all i ∈ [n− 1] and j ̸= i, i + 1
(3) Li+1 = siLisi + si for all i ∈ [n− 1]

where si = (i, i+1) is the simple transposition exchanging i and i+1 for all i ∈ [n−1].

It was shown in [15, Theorem 1.9] that the center Z(ZSn) is precisely the collection
of all symmetric polynomials in the Jucys–Murphy elements L1, . . . , Ln. From the last
section, this implies that

(10) Z(ZSn) = ⟨e1(L1, . . . , Ln), . . . , en(L1, . . . , Ln)⟩.

We know the center Z(ZSn) has a Z-basis given by the set {Kn(λ) | λ ∈ Λ⩽n(0)}.
It is natural to ask how the elementary symmetric polynomials in the Jucys–Murphy
elements decompose as a linear combination of class sums. This was answered in [8,
Section 3] as we recall now. Let λ ∈ Λ(0) contain l many cycles. Recall the reduced
degree of λ is rd0(λ) := deg0(λ)− l, i.e. the number of symbols ∗ present in λ minus
the number of cycles. Then it was shown that

ek(L1, . . . , Ln) =
∑

λ∈Λ⩽n(0)
rd0(λ)=k

Kn(λ)

for any k ∈ [n]. Recall that prn,0(FH0) = Z(ZSn), and from the above formula
there are natural elements of FH0 to consider which project down to the elementary
symmetric polynomials in the Jucys–Murphy elements.

Definition 8.3. For any k ∈ Z⩾0 define

Ek :=
∑

λ∈Λ(0)
rd0(λ)=k

K(λ),
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Note only finitely many elements of Λ(0) have reduced degree k, so the above
definition is well-defined. These elements project down to the elementary symmetric
polynomials in the corresponding Jucys–Murphy elements, and are precisely the ele-
ments discussed in the introduction. In particular, they were shown in [4] to generate
all of FH0, which we record here.

Theorem 8.4. [Theorem 2.5 of [4]] The set of elements {E1, E2, . . . } generates FH0
as an R-algebra.

As was also mentioned in the introduction, it was proven in [18, Theorem 3.8] that
we have an isomorphism FH0 ∼= R⊗Z Sym of R-algebras which associates Ek to ek. In
the next section we will prove an analogous result for FHm inTheorem 9.5, and to do
so it will be helpful to discuss elements of FH0 which are to the monomial symmetric
polynomials mα what the elements Ek are to the ek.

Lemma 8.5. For any k ⩾ l ⩾ 0 and α ∈ P(k, l), there exists an element Mα ∈ FH0
such that

prn,0(Mα) = mα(L1, . . . , Ln)
for all n ∈ Z⩾0.

Proof. As Sym = Z[e1, e2, . . . ] then mα is a finite Z-linear combination of monomials
in e1, e2, . . . . Letting Mα be obtained from mα by replacing ek with Ek gives the
element we are looking for. □

We wish to say a little more about the elements Mα. For α = (a1, . . . , al) ∈ P(k, l)
let α ∈ Λ(0) denote the cycle shape with l cycles of lengths a1 + 1, a2 + 1, . . . , al + 1.
When α = ∅ then ∅ = ∅. One can see that rd0(α) = k, the size of α. Then in the
proof of Theorem 1.9 of [15], see also [18, Proposition 3.11], the following result was
proven. Let P := ∪k⩾l⩾0P(k, l). Note that the map (−) : P → Λ(0) sending α 7→ α
is a bijection.

Proposition 8.6. Let α ∈ P be such that deg0(α) ⩽ n, then

mα(L1, . . . , Ln) = Kn(α) +
∑

cµ(n)Kn(µ),

where the sum runs over all µ ∈ Λ(0) such that rd0(µ) < rd0(α) or that rd0(µ) =
rd0(α) and µ contains less cycles than α (noting that only finitely many such µ exist),
and where cµ(n) ∈ Z⩾0.

Applying Lemma 4.3 allows us to deduce the following:

Lemma 8.7. Let α ∈ P, then

(11) Mα = K(α) +
∑

cµ(t)K(µ),

where the sum runs over all µ ∈ Λ(0) such that rd0(µ) < rd0(α) or that rd0(µ) =
rd0(α) and µ contains less cycles than α (noting that only finitely many such µ exist),
and where cµ(t) ∈ R are such that cµ(n) are the coefficients of Kn(µ) in the above
proposition.

We may now show that the elements Mα provide an R-basis for FH0.

Proposition 8.8. The set {Mα | α ∈ P} gives an R-basis for FH0.

Proof. By Equation (11) the set {Mα|α ∈ P} is R-linearly independent, hence we only
need to show that it spans FH0. Equip the R-basis {K(λ)|λ ∈ Λ(0)} of FH0 with the
partial order < defined by letting K(µ) < K(λ) if rd0(µ) < rd0(λ) or if rd0(µ) = rd0(λ)
and µ contains less cycles than λ. For any n ∈ Z⩾0 let FH⩽n

0 denote the Z-module
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spanned by K(λ) such that rd0(λ) ⩽ n. We prove FH⩽n
0 ⊂ SpanR{Mα | α ∈ P} by

induction on n. The base case FH⩽0
0 = SpanR{K(∅)} holds since M∅ = K(∅) =

K(∅). Consider FH⩽n
0 for some n ⩾ 1, and let

K =
∑

λ∈Λ(0)
rd0(λ)⩽n

fλ(t)K(λ) ∈ FH⩽n
0 .

Let K(λ′) be a maximal element in {K(λ) | fλ(t) ̸= 0} with respect to <. Let α be the
unique partition of P such that α = λ′, then K−fλ′(t)Mα is an element of FH⩽n

0 whose
terms are strictly less than K(λ′) in the partial order or incomparable. Continuing
this procedure of removing maximal basis elements will lead to an element of FH⩽n−1

0 ,
and by induction the result will belong to the R-span of {Mα | α ∈ P}. Since we got
their by subtracting some R-linear combination of elements Mα, the starting element
K must also belong to the R-span of {Mα | α ∈ P} which completes the proof by
induction. The proposition follows since FH0 is the union of FH⩽n

0 for all n ⩾ 0. □

9. The Isomorphism FHm
∼= R⊗Z (Hm ⊗ Sym)

In this section we recall the definition of the degenerate affine Hecke algebra Hm, and
some of its structural properties. We define some elements of FHm which mimic the
variables generators of Hm, and end by proving the isomorphism in the section title.

Definition 9.1. The degenerate affine Hecke algebra Hm is the Z-algebra presented
with generating set {si, yj | 1 ⩽ i ⩽ m− 1, j ∈ [m]} and defining relations

(1i) s2
i = 1, i ∈ [m− 1].

(1ii) sisj = sjsi, j ̸= i− 1, i + 1.
(1iii) sisi+1si = si+1sisi+1, i ∈ [m −

2].

(2i) yiyj = yjyi i, j ∈ [m].
(2ii) siyj = yjsi j ̸= i, i + 1.
(2iii) yi+1 = siyisi + si i ∈ [m− 1].

The elements si are the simple transpositions (i, i + 1) of Sm. The algebra Hm has
a basis of the form

(12) {πy
d(1)
1 · · · yd(m)

m | π ∈ Sm, d ∈ Z[m]
⩾0 }.

For a proof see [11, Theorem 3.2.2]. Hence one can deduce that the subalgebra gener-
ated by the elements si is a copy of ZSm, and similarly the subalgebra generated by
the variable generators y1, . . . , ym is a copy of the polynomial Z-algebra Z[y1, . . . , ym].
Moreover, as a Z-module we have Hm

∼= ZSm⊗Z[y1, . . . , ym]. By Lemma 8.2, we have
a surjective Z-algebra homomorphism Hm → ZSm given by si 7→ si and yj 7→ Lj .

We now show that the algebra FHm contains like-minded elements.

Definition 9.2. For any i ∈ [m] define elements Yi ∈ FHm by

Yi := K(ui) +
∑

j∈[m]
j<i

K((j, i)) = K(ui) + Li,

where we have identified RSm with {K(π) | π ∈ Sm ⊂ Λ(m)} by Lemma 4.6.

Example 9.3. In FH3 we have

Y1 = K((∗, 1)), Y2 = K((∗, 2)) + K((1, 2)), Y3 = K((∗, 3)) + K((1, 3)) + K((2, 3)),

where we have dropped the trivial cycles (1), (2), and (3) from each of the 3-marked
cycle shapes appearing.

Algebraic Combinatorics, Vol. 7 #2 (2024) 356



A centralizer analogue to the Farahat–Higman algebra

Since degm(ui) = m + 1 we have that prm,m(K(ui)) = 0, hence prm,m(Yi) = Li.
However, one can deduce that when n > 0 the elements prn+m,m(Yi) do not get sent to
the Jucys–Murphy elements Li of ZSn+m but rather σnLn+iσ

−1
n for any σn ∈ Sn+m

for which σn([m]) = {n + 1, . . . , n + m}. Nonetheless they retain counterparts to the
relations of Lemma 8.2:

Lemma 9.4. The following relations hold within FHm:
(1) YiYj = YjYi for all i, j ∈ [n]
(2) K(si)Yj = YjK(si) for all i ∈ [n− 1] and j ̸= i, i + 1
(3) Yi+1 = K(si)YiK(si) + K(si) for all i ∈ [n− 1]

where si = (i, i+1) is the simple transposition exchanging i and i+1 for all i ∈ [n−1].

Proof. (1): For any n ⩾ 0 and i, j ∈ [m] we have

prn+m,m(YiYj) = σnLi+mLj+mσ−1
n = σnLj+mLi+mσ−1

n = prn+m,m(YjYi),

since the Jucys–Murphy elements commute. So applying Lemma 4.3 gives YiYj =
YjYi. (2): It follows as a straight forward application of Lemma 4.3 that K(si) com-
mutes with K(uj) whenever i ∈ [n − 1] and j ̸= i, i + 1, and we already know that
K(si) commutes with Lj , so (2) holds. (3): Again by Lemma 4.3 one can show that
K(si)K(ui)K(si) = K(ui+1), and hence

K(si)YiK(si) = K(ui+1) + siLisi = K(ui) + Li+1 −K(si) = Yj −K(si),

where we used (3) of Lemma 8.2. Rearranging gives (3). □

Theorem 9.5. We have an isomorphism of R-algebras ϕ : R⊗Z (Hm ⊗ Sym)→ FHm

defined by si 7→ K(si), yj 7→ Yj, and ek 7→ Ek for i ∈ [m− 1], j ∈ [m], and k ⩾ 0.

Proof. To prove ϕ is a homomorphism it suffices to show that the relations of Defini-
tion 9.1 are respected, and that the elements ϕ(ek) commute with Im(ϕ). Relations (1)
of Definition 9.1 are respected by Lemma 4.6, and relations (2) are respected by
Lemma 9.4. Also ϕ(ek) = Ek ∈ FH0 ⊂ FHm, hence the images ϕ(e1), ϕ(e2), . . . com-
mute with one another since FH0 is commutative. Moreover, since they belong to FH0,
their projections down to Zn,m via prn,m consist of permutations which act trivially
on [m]. Therefore ϕ(ek) commutes with ϕ(si) = K(si) for any k ⩾ 0 and i ∈ [m− 1].
Lastly we have that

[ϕ(ek), ϕ(yj)] = [ϕ(ek), Yj ] = [ϕ(ek), K(uj)].

We have that prn,m(K(uj)) is the sum of transpositions (a, j) for all a ∈ [n]\[m],
which commutes with any permutation which fixes the elements [m]. In particular
prn,m(K(uj)) must commute with prn,m(ϕ(ek)), and so by Lemma 4.3 we have that
K(uj) commutes with ϕ(ek). Hence [ϕ(ek), ϕ(yj)] = 0, and so ϕ(ek) commutes with
Im(ϕ). Thus ϕ is an R-algebra homomorphism. For surjectivity we show K(λ) ∈ Im(ϕ)
for any λ ∈ Λ(m). Write λ = πudcl and consider the element K(cl) which belongs to
the R-subalgebra FH0 of FHm. By Theorem 8.4 their exists C ∈ Sym = Z[e1, e2 . . . ]
such that ϕ(C) = K(cl). Then by employing the leading term result of Proposition 6.2,
we have that

ϕ
(

πy
d(1)
1 · · · yd(m)

m C
)

= K(π)Y d(1)
1 · · ·Y d(m)

m K(cl) = K(πudcl) + T

where T stands for an R-linear combination of terms K(µ) such that degm(µ) <
degm(λ). Hence arguing by induction on the degree of λ shows surjectivity, noting
that the base case is immediate since the basis elements of degree zero are precisely
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K(π) = ϕ(π) for some π ∈ Sm ⊂ Λ(m). For injectivity, by Equation (12) and recalling
that the monomial symmetric functions form a Z-basis of Sym, we have that the set

B :=
{

πy
d(1)
1 · · · yd(m)

m ⊗mα | π ∈ Sm, d ∈ Z[m]
⩾0 , α ∈ P

}
forms an R-basis of R ⊗Z (Hm ⊗ Sym). We seek to show that ϕ(B) is R-linearly
independent. Equip the basis set {K(πudcl) | π ∈ Sm, d ∈ Z[m]

⩾0 , l ∈ ZN
⩾0} of FHm

with the partial order < define by K(σueck) < K(πudcl) if (i) the degree of σueck

is strictly less than that of πudcl, (ii) their degrees agree but rd0(ck) < rd0(cl),
(iii) their degrees agree and rd0(ck) = rd0(cl) but ck contains less cycles than cl.
Note Proposition 6.2 tells us that the product of K(λ) and K(µ) in FHm results
in cλ,µK(λµ) plus addition terms all lower in the order < where cλ,µ ∈ N. Recall
that cλ,µ = 1 whenever λ and µ share no cycles of the same size which contain only
the symbol ∗. From Equation (11) and Proposition 6.2 we have that ϕ acts on an
element of B by

ϕ
(

πy
d(1)
1 · · · yd(m)

m ⊗mα

)
= K(π)Y d(1)

1 · · ·Y d(m)
m Mα = K(πudα) + T

where T is an R-linear combination of basis elements K(λ) of FHm which are strictly
less with respect to <. As such, in the image of any finite R-linear combination of
elements of B under ϕ, we may pick out a non-zero term which is incomparable or
strictly greater than any other term with respect to <, showing that ϕ(B) is R-linearly
independent in FHm, which proves that ϕ is also injective. □

Remark 9.6. The C-algebra C ⊗Z (Hm ⊗ Sym) and close variations have made ap-
pearances within the literature. In [14], they aimed to give a centraliser construction
for the degenerate affine Hecke algebra in a manner comparable to how the Yangians
arise from a projective limit of universal enveloping algebras of gln. No such projec-
tive system exists for the group algebras of the symmetric groups, so instead they
work with the larger semigroup of partial permutations. Algebras Am := A0 ⊗ H̃m

were constructed, where H̃m is a degenerate affine counterpart to the semigroup al-
gebra of partial permutations, and A0 was shown to be isomorphic to the algebra
of shifted symmetric functions. In our setting the lack of a projective system was
sidestepped by employing the techniques of Farahat and Higman on the centraliser
algebras Zn,m, which allowed us to stay working with the symmetric group itself. Also
C ⊗Z (Hm ⊗ Sym) appears in the Heisenberg category Heis of M. Khovanov defined
in [10]. Such a category is a monoidal category generated by two objects ↑ and ↓, and
where the morphism spaces are defined diagrammatically. In [10, Proposition 4] it was
shown that the endomorphism algebra EndHeis(↑⊗m) is isomorphic to C⊗Z(Hm⊗Sym).

We collect some consequences of the above theorem.

Corollary 9.7. The algebra FHm is generated by K(si), Yj, and Ek for i ∈ [m− 1],
j ∈ [m], and k ⩾ 0.

Corollary 9.8. The algebra FHm has an R-basis given by the set{
K(π)Y d(1)

1 · · ·Y d(m)
m Mα | π ∈ Sm, d ∈ Z[m]

⩾0 , α ∈ P
}

,

where the associated structure constants belong to Z.

Corollary 9.9. The center of FHm is Sym[Y1, . . . , Ym]⊗ FH0, which is generated by
the elements Ek and ek(Y1, . . . , Ym) for all k ⩾ 0.

Proof. ByTheorem 9.5 it is clear that the result follows if Sym[y1, . . . , ym] is the center
of Hm, which is shown in [11, Theorem 3.3.1]. □
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For any m, n ∈ Z⩾0, let σn,m ∈ Sn+m be the permutation given by the product of
transpositions (i, n + i) for each i ∈ [m]. In one-line notation we have that

σn,m = (n + 1)(n + 2) · · · (n + m)12 · · ·m.

Let (−)σn,m : ZSn+m → ZSn+m denote the Z-linear extension of conjugation
by σn,m. Let S′

m denote the subgroup of Sn+m of permutations of the set
{n + 1, . . . , n + m}. Then restricting (−)σn,m to Zn+m,m yields an isomorphism
between Zn+m,m and (ZSn+m)S′

m := {z ∈ ZSn+m | za = az for all a ∈ S′
m}.

Recall that for any i ∈ [m] we have that prn+m,m(Yi) = σn,mLi+mσ−1
n,m, so twisting

by (−)σn,m gives an epimorphism

(−)σn,m ◦ prn+m,m : FHm → (ZSn+m)S
′
m ,

sending Yi 7→ Ln+i and Ek 7→ ek(L1, . . . , Ln) where L1, . . . , Ln+m are the Jucys–
Murphy elements of ZSn+m. Therefore, feeding the above results through this epi-
morphism gives a uniform and alternative manner of proving the following:

Corollary 9.10. The Z-algebra (ZSn+m)S′
m is generated by the elements si, Ln+j,

and ek(L1, . . . , Ln) for i ∈ [m− 1], j ∈ [m], and n ⩾ k ⩾ 0.

Corollary 9.11. The algebra (ZSn+m)S′
m has an basis given by the set{

πL
d(1)
n+1 · · ·L

d(m)
n+mmα(L1, . . . , Ln) | πudα ∈ Λ⩽n(m)

}
.

Corollary 9.12. The subalgebra Sym[L1, . . . , Ln|Ln+1, . . . , Ln+m] of polynomials
symmetric in the first n and last m Jucys–Murphy elements is central in (ZSn+m)S′

m .
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