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Rook theory of the Etzion-Silberstein
Conjecture

Anina Gruica & Alberto Ravagnani

Abstract In 2009, Etzion and Silberstein proposed a conjecture on the largest dimension of
a linear space of matrices over a finite field in which all nonzero matrices are supported on a
Ferrers diagram and have rank bounded below by a given integer. Although several cases of the
conjecture have been established in the past decade, proving or disproving it remains to date
a wide open problem. In this paper, we take a new look at the Etzion-Silberstein Conjecture,
investigating its connection with rook theory. Our results show that the combinatorics behind
this open problem is closely linked to the theory of q-rook polynomials associated with Ferrers
diagrams, as defined by Garsia and Remmel. In passing, we give a closed formula for the trailing
degree of the q-rook polynomial associated with a Ferrers diagram in terms of the cardinalities
of its diagonals. The combinatorial approach taken in this paper allows us to establish some
new instances of the Etzion-Silberstein Conjecture using a non-constructive argument. We also
solve the asymptotic version of the conjecture over large finite fields, answering a current open
question.

Introduction
Linear spaces of matrices whose ranks obey various types of constraints have been
extensively investigated in algebra and combinatorics with many approaches and tech-
niques; see [7–11, 16, 25, 27] and the references therein, among many others. In [13],
Etzion and Silberstein consider linear spaces of matrices over a finite field Fq that
are supported on a Ferrers diagram F and in which every nonzero matrix has rank
bounded below by a certain integer d. For the application considered in [13], it is
particularly relevant to determine the largest dimension of a linear space having the
described properties, which we call an [F , d]q-space in the sequel.

In the same paper, Etzion and Silberstein prove a bound on the dimension of any
[F , d]q-space, which is computed by deleting d − 1 lines (rows or columns) of the
diagram F and determining the smallest area that can be obtained in this way; see
Theorem 1.5 below for a precise statement. They also conjecture that said bound is
sharp for any pair (F , d) and any field size q, a problem that goes under the name of
the Etzion-Silberstein Conjecture.
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Since 2009, several cases of the conjecture have been settled using various ap-
proaches, but proving or disproving it remains to date an open problem. Most in-
stances of the conjecture that have been proved so far rely on “case-by-case” studies,
which divide Ferrers diagrams into classes and design proof techniques that work for
a specific class. The natural consequence of this is the lack of a “unified” approach to
solving the conjecture, which in turn makes it difficult to understand the potentially
very rich combinatorial theory behind it. One of the goals of this paper is to fill in
this gap.

In [1], Antrobus and Gluesing-Luerssen propose a new research direction and ini-
tiate the study of the Etzion-Silberstein Conjecture in the asymptotic regime. More
precisely, they investigate for which pairs (F , d) a randomly chosen space meets the
Etzion-Silberstein Bound with high probability over a sufficiently large finite field. In
the same article, they also answer the question for a class of pairs (F , d) called MDS-
constructible. The question asked by Antrobus and Gluesing-Luerssen generalizes the
problem of determining whether or not MRD codes in the rank metric are sparse for
large field sizes.

The goal of this paper is to explore the combinatorics behind the Etzion-Silberstein
Conjecture, with a particular focus on rook theory and the theory of Catalan numbers.
The approach taken in this paper will also allow us to establish the conjecture for some
parameter sets using a non-constructive approach, and to answer an open question
from [1]. More in detail, the contribution made by this paper is threefold.

(1) We study the combinatorics of MDS-constructible pairs, as defined in [1],
showing that a pair (F , d) is MDS-constructible precisely when the Etzion-
Silberstein Bound of [13] coincides with the trailing degree of the (d − 1)th
q-rook polynomial associated with the Ferrers diagram F . This gives a curi-
ous, purely combinatorial characterization of MDS-constructible pairs, which
we prove by giving a closed formula for the trailing degree of the q-rook poly-
nomial in terms of the diagonals of the underlying Ferrers diagram. The latter
result does not appear to be combinatorially obvious.

(2) We solve the asymptotic analogue of the Etzion-Silberstein Conjecture, deter-
mining for which dimensions k and for which pairs (F , d) the k-dimensional
[F , d]q-spaces are sparse or dense as the field size goes to infinity. This com-
pletes the results obtained in [1] by answering an open question from the same
paper using a combinatorial approach based on a classical result by Haglund.
The idea behind our proof also suggests a non-constructive approach to the
Etzion-Silberstein Conjecture, which we use to establish it in some new cases.

(3) The theory of MDS-constructible pairs appears to be closely related to that
of Catalan numbers. In this paper, we show that these count the MDS-
constructible pairs of the form (F , 2). We also obtain formulas for the MDS-
constructible pairs of the form (F , 3) for when F is a square Ferrers diagram.

This paper is organized as follows. Section 1 states the Etzion-Silberstein Conjec-
ture and introduces the needed preliminaries. The combinatorics of MDS-constructible
pairs and their connection with q-rook polynomials is investigated in Section 2. We
solve the asymptotic version of the Etzion-Silberstein Conjecture in Section 3 and
present the new cases we establish in Section 4. Closed formulas for the number of
some MDS-constructible pairs are given in Section 5, where we also highlight their
link with Catalan numbers.
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1. The Etzion-Silberstein Conjecture
Throughout this paper, q denotes a prime power and Fq is the finite field with q
elements. We let m and n denote positive integers and Fn×m

q the space of n × m
matrices with entries in Fq. For an integer i ∈ N, we let [i] = {1, . . . , i}. We start by
defining Ferrers diagrams.
Definition 1.1. An n × m Ferrers diagram is a subset F ⊆ [n] × [m] with the
following properties:

(1) (1, 1) ∈ F and (n, m) ∈ F ;
(2) if (i, j) ∈ F and j < m, then (i, j + 1) ∈ F (right-aligned);
(3) if (i, j) ∈ F and i > 1, then (i − 1, j) ∈ F (top-aligned).

We often denote a Ferrers diagram F as an array [c1, . . . , cm] of positive integers,
where for all 1 ⩽ j ⩽ m we set

cj = |{(i, j) : 1 ⩽ i ⩽ n, (i, j) ∈ F}|.
By the definition of Ferrers diagram, we have 1 ⩽ c1 ⩽ c2 ⩽ · · · ⩽ cm = m. For
1 ⩽ i ⩽ n, the ith row of F is the set of (i, j) ∈ F with j ∈ [m]. Analogously, for
1 ⩽ j ⩽ m, the jth column of F is the set of (i, j) ∈ F with i ∈ [n].

Ferrers diagrams are often represented as 2-dimensional arrays of “dots”, as Fig-
ure 1 illustrates.

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•

•
•
••

Figure 1. The Ferrers diagram F = [1, 3, 3, 4, 5, 5].

In this paper, we are interested in linear spaces made of matrices that are supported
on a Ferrers diagram, in the following precise sense.
Definition 1.2. The support of a matrix M ∈ Fn×m

q is the index set of its nonzero
entries, i.e. supp(M) = {(i, j) | Mij ̸= 0} ⊆ [n] × [m]. If F is an n × m Ferrers
diagram, then we say that M ∈ Fn×m

q is supported on F if supp(M) ⊆ F . We
denote by Fq[F ] the Fq-linear space of matrices that are supported on the Ferrers
diagram F .

Following the notation of Definition 1.2, Fq[F ] has dimension |F| over Fq. We study
linear spaces of matrices in which all nonzero matrices have rank bounded from below
by a given integer and are supported on a Ferrers diagram.
Definition 1.3. Let F be an n × m Ferrers diagram and let d ⩾ 1 be an integer. An
[F , d]q-space is an Fq-linear subspace C ⩽ Fq[F ] with the property that rk(M) ⩾ d
for all nonzero matrices M ∈ C.

In coding theory, [F , d]q-spaces naturally arise in the construction of large subspace
codes via the so-called multilevel construction; see [13] for the details. In [13, Theorem
1], Etzion and Silberstein establish an upper bound for the dimension of an [F , d]q-
space. In order to state the bound, we need to introduce the following quantities.
Notation 1.4. Let F = [c1, . . . , cm] be an n × m Ferrers diagram and let 1 ⩽ d ⩽
min{n, m} be an integer. For 0 ⩽ j ⩽ d − 1, let κj(F , d) =

∑m−d+1+j
t=1 max{ct − j, 0}.

We then set
κ(F , d) = min{κj(F , d) | 0 ⩽ j ⩽ d − 1}.(1)
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Note that, by definition, κj(F , d) is the number of points in the Ferrers diagram F
after removing the topmost j rows and the rightmost d − 1 − j columns. We can now
state the bound proved by Etzion and Silberstein.

Theorem 1.5 (see [13, Theorem 1]). Let F be an n × m Ferrers diagram and let
1 ⩽ d ⩽ min{n, m} be an integer. Let C be an [F , d]q-space. We have

dim(C) ⩽ κ(F , d).

We call an [F , d]q-space that meets the bound of Theorem 1.5 with equality opti-
mal. When F = [n]×[m], the bound reads as dim(C) ⩽ max{n, m}(min{n, m}−d+1),
which is the well-known Singleton-type bound for a rank-metric code established
by Delsarte; see [8, Theorem 5.4]. Subspaces of Fn×m

q meeting the Singleton-type
bound with equality are called maximum-rank-distance codes (MRD codes in short)
and form a central theme in contemporary coding theory and combinatorics; see
[3, 5, 8, 14,18,22,23,29,30,32,35] among many others.

Example 1.6. Let F = [1, 3, 3, 4, 5, 5] be the Ferrers diagram of Figure 1. Then an
[F , 4]q-space is optimal if its dimension is 7, where the minimum in (1) can be attained
by deleting the top row and the 2 rightmost columns.

In [13], Etzion and Silberstein conjecture that the bound of Theorem 1.5 is sharp
for all pairs (F , d) and for any field size q; see [13, Conjecture 1]. The conjecture has
been proven in several cases; see for instance [2,12,13,19,24,33,34,38,39]. At the time
of writing this paper, it is not known whether or not optimal [F , d]q-spaces exist for
all parameters, i.e. whether the conjecture by Etzion-Silberstein holds.

Conjecture 1.7 (Etzion-Silberstein [13]). For every prime power q, every n × m
Ferrers diagram F , and every integer 1 ⩽ d ⩽ min{n, m}, there exists an [F , d]q-
space of maximum dimension κ(F , d).

Note that Conjecture 1.7 is stated for finite fields only and it is false in general for
infinite fields; see [19].

This paper studies some combinatorial problems that are naturally connected with
Conjecture 1.7, with particular focus on rook theory. In passing, we will show how
some instances of the conjecture can be established using a non-constructive approach;
see Section 4.

2. Combinatorics of MDS-constructible pairs
There exists a special class of pairs (F , d) for which the bound of Theorem 1.5
can be attained with equality, for q sufficiently large, using MDS error-correcting
codes; see [26] for the coding theory terminology. In [1], these pairs are called MDS-
constructible for natural reasons. The construction of [F , d]q-spaces based on MDS
codes can be found in [12, 19], although it dates back to [29], where it appears in a
slightly different context. In order to state the existence result corresponding to this
construction, we need the following concept.

Notation 2.1. For 1 ⩽ r ⩽ m + n − 1, define the rth diagonal of the n × m matrix
board as

Dr = {(i, j) ∈ [n] × [m] : j − i = m − r} ⊆ [n] × [m].

Note that in Notation 2.1 we consider more diagonals than in [1, Definition VI.5].
This choice will play a crucial role in some of our results. We are interested in the
number of elements on the diagonals of a Ferrers diagram.
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Figure 2. Graphical representation of the diagonals and of the Fer-
rers diagram F = [1, 3, 3, 4, 6, 6] in the 6 × 7 matrix board.

Example 2.2. The elements on the diagonals of F = [1, 3, 3, 4, 6, 6, 6] can be seen in
Figure 2. We have |Di ∩ F| = i for 1 ⩽ i ⩽ 6, |D7 ∩ F| = 6, |D8 ∩ F| = 2, and
|Di ∩ F| = 0 for 9 ⩽ i ⩽ 12.

The construction of [F , d]q-spaces based on MDS error-correcting codes gives the
following lower bound on their dimension; the case of algebraically closed fields is
treated in [1, Section VI].

Theorem 2.3 (see [12, 19, 29]). Let F be an n × m Ferrers diagram with m ⩾ n and
let 1 ⩽ d ⩽ n be an integer. If q ⩾ max{|Di ∩ F| : 1 ⩽ i ⩽ m} − 1, then there exists
an [F , d]q-space of dimension

∑m
i=1 max{0, |Di ∩ F| − d + 1}.

A pair (F , d) MDS-constructible if the bound of Theorem 1.5 is attained with
equality, for q large, via the construction of Theorem 2.3.

Definition 2.4. Let F be an n × m Ferrers diagram with m ⩾ n and let 1 ⩽ d ⩽ n
be an integer. The pair (F , d) is MDS-constructible if

(2) κ(F , d) =
m∑

i=1
max{0, |Di ∩ F| − d + 1}.

Remark 2.5. We briefly illustrate the construction used in the proof of Theorem 2.3,
where we follow [12, Section IV] or similarly [19, Theorem 32]. Let F be an n × m
Ferrers diagram with m ⩾ n and let 1 ⩽ d ⩽ n be an integer such that the pair
(F , d) is MDS-constructible. Let q ⩾ max{|Di ∩ F| : 1 ⩽ i ⩽ m} − 1. Consider the set
I = {1 ⩽ i ⩽ m : |Di ∩ F| ⩾ d} = {i1, . . . , iℓ} and for all i ∈ I let ni = |Di ∩ F|. By
our assumption on q, there exists a linear MDS code Ci ⩽ Fni

q of minimum distance
d. Now for (xi1 , . . . , xiℓ

) ∈ Ci1 × · · · × Ciℓ
we let M = M(xi1 , . . . , xiℓ

) ∈ Fq[F ] be the
matrix with the vector xij in the positions indexed by Dij ∩ F for all 1 ⩽ j ⩽ ℓ, and
with zeros everywhere else. Let

C = {M(xi1 , . . . , xiℓ
) : (xi1 , . . . , xiℓ

) ∈ Ci1 × · · · × Ciℓ
}.

One can show that C is an optimal [F , d]q-space of dimension
∑ℓ

j=1(nij − d + 1),
which in turn establishes Theorem 2.3.

Before diving into the rook theory of MDS-constructible pairs, we include a few
observations about Definition 2.4 and in particular on the restriction m ⩾ n.

Remark 2.6.
(1) The sum on the RHS of (2) is not symmetric in n and m, even though the

assumption m ⩾ n is not restrictive (up a transposition of the Ferrers diagram,
if necessary). In particular, which value between n and m is the largest plays
a role, a priori, in the definition of an MDS-constructible pair. At the end
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of this section we will return to this point and show that MDS-constructible
pairs admit a characterization that is perfectly symmetric in n and m and
that has a specific rook theory significance; see Theorems 2.15 and 2.19 below.
For that characterization, it is crucial to consider all the m + n − 1 diagonals
introduced in Notation 2.1 (and not only the first m).

(2) Definition 2.4 does not reflect “optimality” when d = 1. Indeed, when d = 1
we have κ(F , 1) = |F| for any n×m Ferrers diagram. In particular, the bound
of Theorem 1.5 is sharp and attained by the ambient space Fq[F ], which often
makes the construction described in Remark 2.5 suboptimal. The definition of
MDS-constructible pair that we will propose at the end of this section solves
this very minor inconvenience.

A natural question is whether MDS-constructible pairs (F , d) admit a purely com-
binatorial characterization in terms of known structural invariants of a Ferrers dia-
gram. In this section, we will answer the question in the affirmative, proving that
MDS-constructible pairs are precisely those for which the Etzion-Silberstein Bound
of Theorem 1.5 takes the same value as the trailing degree of the (d − 1)th q-rook
polynomial associated with F ; see Corollary 2.21. This curious fact does not appear
to be have an obvious combinatorial explanation.

The main tool in our approach is a closed formula for the trailing degree of a
q-rook polynomial in terms of the diagonals of the underlying Ferrers diagram; see
Theorem 2.15. We start by recalling the needed rook theory terminology.

Definition 2.7. An n×m non-attacking rook placement is a subset C ⊆ [n]× [m]
with the property that no two elements of C share the same row or column index. In
this context, the elements of C are called rooks.

In [15], Garsia and Remmel propose a definition for the q-analogue of the rook
polynomial associated with a Ferrers diagram. The definition is based on the following
quantity.

Notation 2.8. Let F be an n × m Ferrers diagram and let C ⊆ F be an n × m non-
attacking rook placement. We denote by inv(C, F) the number computed as follows:
Cross out all the dots from F that either correspond to a rook of C, or are above or
to the right of any rook of C; then inv(C, F) is the number of dots of F not crossed
out.

The q-rook polynomials of a Ferrers diagram are defined as follows.

Definition 2.9. Let F be an n × m Ferrers diagram and let r ⩾ 0 be an integer. The
rth q-rook polynomial of F is

Rq(F , r) =
∑

C∈NAR(F,r)

qinv(C,F) ∈ Z[q],

where NAR(F , r) denotes the set of n × m non-attacking rook placements C ⊆ F
having cardinality |C| = r.

We also recall that the trailing degree of a polynomial R =
∑

i aiq
i ∈ Z[q] is

the minimum i with ai ̸= 0, where the zero polynomial has trailing degree −∞.
Therefore, following the notation of Definition 2.9, the trailing degree of the rth q-
rook polynomial of F is the minimum value of inv(C, F), as C ranges over the set
NAR(F , r), whenever the rth q-rook polynomial is nonzero. Since the trailing degree
of the q-rook polynomial will play a crucial role in this paper, we introduce a symbol
for it.
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Rook theory of the Etzion-Silberstein Conjecture

Notation 2.10. Following the notation of Definition 2.9, we denote the trailing degree
of the polynomial Rq(F , r) by τ(F , r).

We illustrate the concepts introduced before with an example.

Example 2.11. Consider the 5 × 5 Ferrers diagram F = [1, 3, 3, 4, 5]. Figure 3 rep-
resents a non-attacking rook placement C ∈ NAR(F , 3), where we also illustrate
the deletions that compute inv(C, F) according to Notation 2.8. Note that we have
inv(C, F) = 5. Moreover, the third q-rook polynomial of F can be computed as fol-
lows:

Rq(F , 3) =
∑

C∈NAR(F,3)

qinv(C,F)

= 6q3 + 18q4 + 27q5 + 28q6 + 20q7 + 11q8 + 4q9 + q10.

Therefore, τ(F , 3) = 3.

•
R
×
×
×

•
×
R
×

×
•
•

R
×
×•

Figure 3. The non-attacking rook placement C =
{(2, 4), (3, 2), (4, 5)}. The rooks are marked with “R”. The symbol
“×” illustrates the cancellations operated to compute inv(C, F).

In [21, Theorem 1], Haglund shows that the theory of q-rook polynomials for Ferrers
diagrams is closely connected with the problem of enumerating the number of matrices
having prescribed rank and F as profile.

Notation 2.12. Let F be an n × m Ferrers diagram and let r ⩾ 0 be an integer. We
denote by Pq(F , r) the size of the set of matrices M ∈ Fq[F ] of rank r.

The next result was established in [17] and it heavily relies on [21, Theorem 1].

Theorem 2.13 (see [17, Proposition 7.11]). Let F be an n × m Ferrers diagram and
let r ⩾ 0 be an integer. Then Pq(F , r) is a polynomial in q whose degree satisfies

deg(Pq(F , r)) + τ(F , r) = |F|.

In some of our statements, we will assume κ(F , r) ⩾ 1. The next result shows
that this assumption only excludes pairs (F , d) for which the corresponding q-rook
polynomial is the zero polynomial, and for which Conjecture 1.7 is trivial.

Proposition 2.14. Let F be an n × m Ferrers diagram and let 1 ⩽ r ⩽ min{n, m}
be an integer. Then κ(F , r) ⩾ 1 if and only if there exists a matrix M ∈ Fq[F ] with
rk(M) ⩾ r.

Proof. Note that κ(F , r) ⩾ 1 implies that |Di ∩ F| = i for all 1 ⩽ i ⩽ r, as we
will show later in Claim A. Therefore, under this assumption, there exists a matrix
M ∈ Fq[F ] with rk(M) ⩾ r, for example by choosing M to be the matrix with 1’s
in the positions indexed by Dr and 0’s elsewhere. For the other implication, suppose
κ(F , r) = 0. From Theorem 1.5 it follows that there cannot exist M ∈ Fq[F ] with
rk(M) ⩾ r, since we assume that r ⩾ 1. □
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As already mentioned, the main rook theory contribution of this section is a closed
formula for the trailing degree of a q-rook polynomial associated with a Ferrers dia-
gram F . In contrast with the definition of the “inv” statistics (Notation 2.8), which
considers vertical and horizontal deletions, our characterization is expressed in terms
of the diagonals of F .

Theorem 2.15. Let F be an n × m Ferrers diagram and let 1 ⩽ r ⩽ min{n, m} be an
integer with κ(F , r) ⩾ 1. We have

τ(F , r) =
m+n−1∑

i=1
max{0, |Di ∩ F| − r}.

The main ingredient in the proof of Theorem 2.15 is the following technical result.
Its role in the proof of Theorem 2.15 will become clear later.

Lemma 2.16. Let F = [c1, . . . , cm] be an n × m Ferrers diagram with m ⩾ 2. Let
1 ⩽ r ⩽ min{n, m} be an integer with κ(F , r) ⩾ 1. Denote by F ′ = [c1, . . . , cm−1] the
cm−1 × (m − 1) Ferrers diagram obtained from F by deleting the rightmost column.
Moreover, denote the diagonals of the new matrix board of size cm−1 × (m − 1) by
D′

i ⊆ [cm−1] × [m − 1], for 1 ⩽ i ⩽ cm−1 + m. We have
m+n−1∑

i=1
min{r, |Di ∩ F|} =

max
{

n +
cm−1+m−2∑

i=1
min{r − 1, |D′

i ∩ F ′|}, r +
cm−1+m−2∑

i=1
min{r, |D′

i ∩ F ′|}

}
.

Proof. Define I := {1 ⩽ i ⩽ min{n, m} : r ⩾ |Di ∩ F|}. The remainder of the proof
contains multiple claims, which we prove separately. We start with the following one,
which heavily relies on our assumption κ(F , r) ⩾ 1.
Claim A. We have |Di ∩ F| = i for all 1 ⩽ i ⩽ r.

Proof of the claim. It is enough to prove that |Dr ∩ F| = r, because F is a Ferrers
diagram. Towards a contradiction, assume that |Dr ∩ F| < r and let (i, m − r + i) ∈
Dr\F for some integer 1 ⩽ i ⩽ r. Then for every (a, b) ∈ [n] × [m] with a > i − 1
and b < m − r + i + 1 we have (a, b) /∈ F . In particular, κi−1(F , r) = 0. This is a
contradiction, because 1 ⩽ κ(F , r) ⩽ κi−1(F , r). ▲

A straightforward consequence of Claim A is that |I| ⩾ r. We will also need the
following intermediate result.
Claim B. We have

m+n−1∑
i=1

min{r, |Di ∩ F|} =
cm−1+m−1∑

i=1
min{r, |Di ∩ F|}.(3)

Proof of the claim. We will show that |Di∩F| = 0 for i ⩾ cm−1+m, which establishes
the claim. Since F is a Ferrers diagram, for all (a, b) ∈ F with b ⩽ m−1 we have that
a ⩽ cm−1. Now if |Di ∩ F| > 0 for some i ⩾ cm−1 + m, then there exists (a, b) ∈ F
with b ⩽ m − cm−1 and a ⩾ cm−1 + 1, yielding a contradiction. ▲

We continue by investigating each of the two expressions in the maximum in the
statement of the lemma separately. First of all, we have

n +
cm−1+m−2∑

i=1
min{r − 1, |D′

i ∩ F ′|}
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= n +
cm−1+m−1∑

i=2
min{r − 1, |D′

i−1 ∩ F ′|}

= n +
n∑

i=2
min{r − 1, |D′

i−1 ∩ F ′|} +
cm−1+m−1∑

i=n+1
min{r − 1, |D′

i−1 ∩ F ′|}

= n +
n∑

i=2
min{r − 1, |Di ∩ F| − 1} +

cm−1+m−1∑
i=n+1

min{r − 1, |Di ∩ F|}

= n − (n − 1) +
n∑

i=2
min{r, |Di ∩ F|} +

cm−1+m−1∑
i=n+1

min{r − 1, |Di ∩ F|}

= 1 +
n∑

i=2
min{r, |Di ∩ F|} +

cm−1+m−1∑
i=n+1

min{r − 1, |Di ∩ F|}.

Since min{r, |D1 ∩ F|} = |D1 ∩ F| = 1, we then obtain

n +
cm−1+m−2∑

i=1
min{r − 1, |D′

i ∩ F ′|} =
n∑

i=1
min{r, |Di ∩ F|}

+
cm−1+m−1∑

i=n+1
min{r − 1, |Di ∩ F|}

⩽
cm−1+m−1∑

i=1
min{r, |Di ∩ F|}

=
m+n−1∑

i=1
min{r, |Di ∩ F|},(4)

where the latter equality follows from Claim B.
Claim C. Assume that r < min{n, m}. If r ⩽ i < min{n, m} and |Di ∩ F| ⩽ r, then
|Di+1 ∩ F| ⩽ r. Moreover, if |Dmin{n,m} ∩ F| ⩽ r, then we have |Di ∩ F| ⩽ r − 1 for
all min{n, m} + 1 ⩽ i ⩽ n + m − 1.

Proof of the claim. Let r ⩽ i ⩽ min{n, m}−1 and |Di ∩F| ⩽ r. Since r < min{n, m}
and |Di ∩ F| ⩽ r, we have |Di\F| = t ⩾ 1. Let Di\F = {(a1, b1), . . . , (at, bt)} with
a1 < · · · < at. We have

{(a1 + 1, b1), . . . , (at + 1, bt)} ∪ {(a1, b1 − 1), . . . , (at, bt − 1)} ⊆ Di+1\F .

Since |{a1, a1 + 1, . . . , at, at + 1}| ⩾ t + 1, it follows that

|{(a1 + 1, b1), . . . , (at + 1, bt)} ∪ {(a1, b1 − 1), . . . , (at, bt − 1)}| ⩾ t + 1.

Therefore |Di+1\F| ⩾ t + 1, hence

i + 1 − |Di+1 ∩ F| = |Di+1\F| ⩾ |Di\F| + 1 = i − |Di ∩ F| + 1 ⩾ i − r + 1,(5)

where we used that |Di| = i and that |Di+1| = i + 1. Rewriting (5) proves the first
statement in the claim.

For the second part, suppose that |Dmin{n,m} ∩ F| ⩽ r and write |Dmin{n,m}\F| =
{(a1, b1), . . . , (at, bt)} ̸= ∅ with a1 < · · · < at. Then following the same reasoning as
before one shows that |Dmin{n,m}+1\F| ⩾ t + 1 and, similar to (5), that

min{n, m} − |Dmin{n,m}+1 ∩ F| ⩾ min{n, m} − r + 1,
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where we used that |Dmin{n,m}+1| ⩽ min{n, m}. This shows that |Dmin{n,m}+1 ∩F| ⩽
r − 1. In an analogous way one proves that |Di ∩ F| ⩽ r − 1 for all min{n, m} + 1 ⩽
i ⩽ n + m − 1. ▲

The following claim gives a sufficient condition for when the bound in (4) is attained
with equality.
Claim D. If |I| > r, then |Di ∩ F| ⩽ r − 1 for all min{n, m} + 1 ⩽ i ⩽ m + n − 1. In
particular, |Di ∩ F| ⩽ r − 1 for all n + 1 ⩽ i ⩽ cm−1 + m − 1.

Proof of the claim. Let |I| = s > r. Clearly we then have r < min{n, m}. Write I =
{i1, . . . , is} with i1 < i2 < · · · < is ⩽ min{n, m}. By Claim A we have ij = j for all
j ∈ {1, . . . , r}. In particular, r < is. Note that by definition of I we have |Dis

∩F| ⩽ r
and by Claim C this implies that is = min{n, m}. Using the second part of Claim C
we also conclude that |Di ∩ F| ⩽ r − 1 for all min{n, m} + 1 ⩽ i ⩽ m + n − 1. ▲

If |I| > r, then by Claim D we have equality in (4), which means

n +
cm−1+m−2∑

i=1
min{r − 1, |D′

i ∩ F ′|} =
m+n−1∑

i=1
min{r, |Di ∩ F|}.(6)

Note moreover that if i ∈ I\{1}, then we have min{r, |Di ∩ F|} = min{r, |D′
i−1 ∩

F ′|} + 1 and if i ∈ [n]\I then min{r, |Di ∩ F|} = min{r, |D′
i−1 ∩ F ′|}. Furthermore,

for all i ⩾ n + 1 we have min{r, |Di ∩ F|} = min{r, |D′
i−1 ∩ F ′|}. Therefore

m+n−1∑
i=1

min{r, |Di ∩ F|}

=
cm−1+m−1∑

i=1
min{r, |Di ∩ F|}

=
∑
i∈I

min{r, |Di ∩ F|} +
∑

i∈[n]\I

min{r, |Di ∩ F|} +
cm−1+m−1∑

i=n+1
min{r, |Di ∩ F|}

= 1 +
∑

i∈I\{1}

(
min{r, |D′

i−1 ∩ F ′|} + 1
)

+
∑

i∈[n]\I

min{r, |D′
i−1 ∩ F ′|}

+
cm−1+m−1∑

i=n+1
min{r, |D′

i−1 ∩ F ′|}

= |I| +
cm−1+m−2∑

i=1
min{r, |D′

i ∩ F ′|},

where the first equality follows from Claim B. In particular,
m+n−1∑

i=1
min{r, |Di ∩ F|} ⩾ r +

cm−1+m−2∑
i=1

min{r, |D′
i ∩ F ′|},

with equality if and only if |I| = r. Together with (6), this concludes the proof. □

We are now ready to establish Theorem 2.15.

Proof of Theorem 2.15. Since the union of the diagonals D1, . . . , Dm+n−1 is the entire
matrix board [n] × [m], we have

(7) |F| −
m+n−1∑

i=1
min{r, |Di ∩ F|} =

m+n−1∑
i=1

max{0, |Di ∩ F| − r}.
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Therefore, by Theorem 2.13, proving Theorem 2.15 is equivalent to proving that

(8) deg(Pq(F , r)) =
m+n−1∑

i=1
min{r, |Di ∩ F|}.

It follows from [17, Theorem 7.1] that for an n × m Ferrers diagram F = [c1, . . . , cm]
the quantity deg(Pq(F , r)) is uniquely determined by the recursion

(9) deg(Pq(F , r)) = max
{

n + deg(Pq(F ′, r − 1)), r + deg(Pq(F ′, r))
}

,

where F ′ = [c1, . . . , cm−1], with initial conditions:

(10)


deg(Pq(F , 0)) = 0 for all Ferrers diagrams F ,

deg(Pq(F , 1)) = c1 if F = [c1] is a c1 × 1 Ferrers diagram,
deg(Pq(F , r)) = −∞ if F is a c1 × 1 Ferrers diagram and r ⩾ 2.

By Lemma 2.16, the quantity

∆q(F , r) :=
{

−∞ if κ(F , r) = 0,∑m+n−1
i=1 min{r, |Di ∩ F|} otherwise,

satisfies the recursion and the initial conditions in (9) and (10), respectively. Therefore
it must be that deg(Pq(F , r)) = ∆q(F , r) holds for every F and r, which proves the
theorem. □

We can now return to the combinatorial characterization of MDS-constructible
pairs. We start by observing the following.

Proposition 2.17. Let F be an n × m Ferrers diagram and let 1 ⩽ d ⩽ min{n, m}
be an integer. We have

κ(F , d) ⩾
m+n−1∑

i=1
max{0, |Di ∩ F| − d + 1}.

Proof. Let 0 ⩽ j ⩽ d−1 be an integer such that κj(F , d) = κ(F , d). Denote by Fj the
subset of F made by those points that are not contained in the topmost j rows of F ,
nor in its rightmost d − 1 − j columns. We have |Di ∩ Fj | ⩾ max{|Di ∩ F| − d + 1, 0}
for all 1 ⩽ i ⩽ m + n − 1. Summing these inequalities over i gives

(11) κ(F , d) =
m+n−1∑

i=1
|Di ∩ Fj | ⩾

m+n−1∑
i=1

max{0, |Di ∩ F| − d + 1},

where the first equality in (11) follows from the fact that the diagonals are disjoint
and their union is F . □

The bound of Proposition 2.17 is not sharp in general.

Example 2.18. The value of τ(F , d−1) for the 5×6 Ferrers diagram F = [5, 5, 5, 5, 5, 5]
and d = 4 is τ(F , 3) = 6. Note that we have κ(F , 4) = 12 > 6 = τ(F , 3).

The following theorem shows that when defining MDS-constructible pairs one can
consider the sum over all the diagonals, if d ⩾ 2. This gives us a characterization of
MDS-constructible pairs that is symmetric in n and m; see Remark 2.6.

Theorem 2.19. Let F be an n × m Ferrers diagram with m ⩾ n and let 2 ⩽ d ⩽ n be
an integer. Then the following are equivalent:

(1) κ(F , d) =
∑m

i=1 max{0, |Di ∩ F| − d + 1}, i.e. the pair (F , d) is MDS-
constructible in the sense of Definition 2.4;
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(2) κ(F , d) =
∑m+n−1

i=1 max{0, |Di ∩ F| − d + 1}.

Proof. By Proposition 2.17, we have
m∑

i=1
max{|Di ∩ F| − d + 1, 0} ⩽

m+n−1∑
i=1

max{0, |Di ∩ F| − d + 1} ⩽ κ(F , d).

Thus (F , d) being MDS-constructible implies κ(F , d) =
∑m+n−1

i=1 max{0, |Di∩F|−d+
1}. For the other direction, we need to show that if κ(F , d) =

∑m+n−1
i=1 max{0, |Di ∩

F| − d + 1}, then κ(F , d) =
∑m

i=1 max{0, |Di ∩ F| − d + 1} as well. We proceed by
contradiction and suppose that

κ(F , d) =
m+n−1∑

i=1
max{|Di ∩ F| − d + 1, 0} >

m∑
i=1

max{|Di ∩ F| − d + 1, 0}.

Then there exists a diagonal Du, for some u ⩾ m + 1, with |Du ∩ F| − d + 1 > 0. Let
0 ⩽ j ⩽ d−1 be such that κ(F , d) = κj(F , d). Denote by Fj the subset of F made by
those points that are not contained in the topmost j rows of F , nor in its rightmost
d − 1 − j columns. Then |Fj | = κ(F , d) and as in the proof of Proposition 2.17 we
have |Di ∩ Fj | ⩾ max{0, |Di ∩ F| − d + 1} for all 1 ⩽ i ⩽ m + n − 1. Summing over i
gives

κ(F , d) =
m+n−1∑

i=1
|Di ∩ Fj | ⩾

m+n−1∑
i=1

max{0, |Di ∩ F| − d + 1} = κ(F , d),

where the first equality follows from the definition of Fj and the latter equality is by
assumption. Since |Di ∩ Fj | ⩾ max{0, |Di ∩ F| − d + 1} for all 1 ⩽ i ⩽ m + n − 1, this
implies |Di ∩ Fj | = max{0, |Di ∩ F| − d + 1} for all 1 ⩽ i ⩽ m + n − 1. In particular,
since |Du ∩ F| − d + 1 > 0 by assumption, we must have |Du ∩ Fj | = |Du ∩ F| − d + 1.
This implies that Du ∩F contains d−1 entries that belong to the topmost j rows and
rightmost d − 1 − j columns of F . This is however a contradiction, because m ⩾ n,
d ⩾ 2, and u ⩾ m + 1, again by assumption. □

In view of Theorem 2.19, we propose the following slightly modified definition
of MDS-constructible pair, which coincides with the one of [1] when m ⩾ n and
d ⩾ 2. This addresses the points discussed in Remark 2.6. Notice that according
to our definition the pair (F , 1) is always MDS-constructible, while it might not be
according to Definition 2.4.

Definition 2.20 (updates Definition 2.4). Let F be an n × m Ferrers diagram and
let 1 ⩽ d ⩽ min{n, m} be an integer. The pair (F , d) is MDS-constructible if

κ(F , d) =
m+n−1∑

i=1
max{0, |Di ∩ F| − d + 1}.

By combining Theorem 2.15 with Theorem 2.19, we finally obtain a pure rook
theory characterization of MDS-constructible pairs.

Corollary 2.21. Let F be an n × m Ferrers diagram and let 1 ⩽ d ⩽ min{n, m} be
an integer with κ(F , d) ⩾ 1. The following are equivalent:

(1) The pair (F , d) is MDS-constructible, according to Definition 2.20;
(2) κ(F , d) = τ(F , d − 1).

In words, Corollary 2.21 states that the construction of [12,19,29] is optimal if and
only if the Etzion-Silberstein Bound of Theorem 1.5 coincides with the trailing degree
of the (d − 1)th q-rook polynomial of F .
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3. Asymptotics of the Etzion-Silberstein Conjecture
In this section we solve a problem that can be regarded as the “asymptotic” analogue
of the Etzion-Silberstein Conjecture for q → +∞ (see Problem 3.3 below for a precise
statement). As we will see, this problem has again a strong connection with rook
theory. In the remainder of the paper we will use the notion of MDS-constructible
pair introduced in Definition 2.20.

Notation 3.1. We denote by [
a
b

]
q

=
b−1∏
i=0

(
qa − qi

)
(qb − qi)

be the q-binomial coefficient of integers a ⩾ b ⩾ 0, which counts the number of b-
dimensional subspaces of an a-dimensional space over Fq; see e.g. [36]. We will also use
the standard Bachmann-Landau notation (“Big O”, “Little O”, and “∼”) to describe
the asymptotic growth of real-valued functions; see for example [6]. If Q denotes the
set of prime powers, we omit “q ∈ Q” when writing q → +∞.

In the remainder of this paper we will repeatedly need the following asymptotic
estimate for the q-binomial coefficient:

(12)
[
a
b

]
q

∼ qb(a−b) as q → +∞,

for all integers a ⩾ b ⩾ 0. We will apply this well-known fact throughout the paper
without explicitly referring to it.

When studying the Etzion-Silberstein Conjecture in the asymptotic regime, we
are interested in the asymptotic behavior, as q → +∞, of the proportion of opti-
mal [F , d]q-spaces among all spaces having the same dimension. This motivates the
following definition.

Definition 3.2. Let F be an n × m Ferrers diagram. For 1 ⩽ k ⩽ |F| and 1 ⩽ d ⩽
min{n, m}, let

δq(F , k, d) :=
|{C ⩽ Fn×m

q : C is an [F , d]q-space, dim(C) = k}|[
|F|
k

]
q

denote the density (function) of [F , d]q-spaces among all k-dimensional subspaces
of Fq[F ]. Their asymptotic density as q → +∞ is limq→+∞ δq(F , k, d), when the
limit exists. Moreover, when the asymptotic density tends to 1 (as q → +∞), we say
the corresponding spaces are dense; if it tends to 0, we say that they are sparse.

The following problem can be viewed as the “asymptotic” analogue of the Etzion-
Silberstein Conjecture.

Problem 3.3. Fix an n × m Ferrers diagram F and an integer 1 ⩽ d ⩽ min{n, m}.
Determine for which values of 1 ⩽ k ⩽ |F| we have limq→+∞ δq(F , k, d) = 0
and for which values we have limq→+∞ δq(F , k, d) = 1. Determine the value of
limq→+∞ δq(F , κ(F , d), d).

Problem 3.3 has been proposed and solved in [1] for some classes of pairs (F , d).
The two main results of [1] in this context are the following.

Theorem 3.4 (see [1, Theorem VI.8]). Let F be an n×m Ferrers diagram with m ⩾ n
and let 1 ⩽ d ⩽ n be an integer. If (F , d) is MDS-constructible and κ = κ(F , d), then
limq→+∞ δq(F , κ, d) = 1.
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Theorem 3.5 (see [1, Corollary VI.13]). Let F be an n × m Ferrers diagram with
m ⩾ n and let κ = κ(F , n). Then (F , n) is MDS-constructible if and only if
limq→+∞ δq(F , κ, n) = 1.

Both Theorem 3.4 and Theorem 3.5 were established in [1] by using arguments
based on the algebraic closure of Fq. As the reader will soon notice, the approach
taken in this paper is of a completely different nature. It will allow us to generalize [1,
Corollary VI.13] and to solve Problem 3.3 completely, answering the question stated
in [1, Open Problem (a)]; see Corollary 3.11 below.

The next result shows that Problem 3.3 exhibits a very strong connection with
rook theory. More in detail, it proves that the decisive dimension for sparseness and
density is precisely the trailing degree of the (d − 1)th q-rook polynomial associated
with F .

Theorem 3.6. Let F be an n×m Ferrers diagram and let 2 ⩽ d ⩽ n and 1 ⩽ k ⩽ |F|
be integers with κ(F , d) ⩾ 1. The following hold.

(1) If k ⩽ τ(F , d − 1), then limq→+∞ δq(F , k, d) = 1.
(2) If k ⩾ τ(F , d − 1) + 2, then limq→+∞ δq(F , k, d) = 0.
(3) If k = τ(F , d − 1) + 1, then lim supq→+∞ δq(F , k, d) ⩽ 1/2.

The proof of Theorem 3.6 relies on [21, Theorem 1] and on the machinery developed
in [20] to estimate the asymptotic density of (non-)isolated vertices in bipartite graphs.
We start by introducing the needed terminology.

Definition 3.7. The ball of radius r in Fq[F ] is the set

Bq(F , r) :=
r⋃

i=0
{M ∈ Fq[F ] : rk(M) = i}.

The cardinality of Bq(F , r) is denoted by bq(F , r) in the sequel. Note that, by defini-
tion, we have bq(F , r) =

∑r
i=0 Pq(F , i), where Pq(F , i) is defined in Notation 2.12.

A formula for bq(F , r) for all F and r can be found in [17, Theorem 5.3]. We will
also need the following result.

Corollary 3.8. Let F be an n × m Ferrers diagram and let r ⩾ 0 be an integer.
Then Pq(F , r) and bq(F , r) are polynomials in q of the same degree. In particular,

τ(F , r) = |F| − deg(bq(F , r)).

Proof. It is well known that Pq(F , r) is a polynomial in q; see e.g. [17, 21]. There-
fore, by definition, bq(F , r) is a polynomial in q as well. The fact that Pq(F , r) and
bq(F , r) have the same degree follows from [17, Theorem 7.13]. The last identity in
the statement directly follows from Theorem 2.13. □

We are now ready to establish Theorem 3.6.

Proof of Theorem 3.6. By [20, Theorem 4.2 (1)], if deg(bq(F , d − 1)) ⩽ |F| − k
then we have limq→+∞ δq(F , k, d) = 1. From Corollary 3.8 it follows that we have
deg(bq(F , d−1)) ⩽ |F|−k if and only if k ⩽ τ(F , d−1). Analogously, one can use [20,
Theorem 4.2 (2)] to show that if k ⩾ τ(F , d − 1) + 2, then limq→+∞ δq(F , k, d) = 0.
Finally, by [20, Proposition 4.4] we have lim supq→+∞ δq(F , k, d) ⩽ 1/2 when k =
τ(F , d − 1) + 1. □

Theorem 3.6 generalizes the sparseness of MRD codes established in [20], as the
following remark illustrates.
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Remark 3.9. In the special case where F = [m, . . . , m] is an n×m Ferrers diagram, the
optimal [F , d]q-spaces correspond exactly to n × m MRD codes of minimum distance
d. Note that for n ⩾ 2 we always have m(n−d+1) = κ(F , d) ⩾

∑m+n−1
i=1 max{0, |Di ∩

F|−d+1}+2 = (m−d+1)(n−d+1)+2. Therefore, by Theorem 2.15, Theorem 3.6
generalizes the sparseness of MRD codes established in [20].

Note that in the third scenario of Theorem 3.6 we do not have sparseness in general
(even though we have non-density). The following example based on [1] shows that
δq(F , k, d) can indeed converge to a positive constant when k = τ(F , d − 1).

Example 3.10. Consider the 2 × m Ferrers diagram F = [2, . . . , 2] with m ⩾ 2 and
let d = 2. We have κ(F , 2) = m and, by Theorem 2.15, τ(F , 1) =

∑m+1
i=1 max{0, |Di ∩

F| − 1} = m − 1. It follows from [1, Corollary VII.6] that

0 < lim
q→+∞

δq(F , m, 2) =

 m∑
j=0

(−1)j

j!

(d−1)(n−d+1)

< 1.

In particular, optimal [F , 2]q-spaces are neither sparse, nor dense.

Combining Theorem 2.19 with Theorem 3.6 we obtain the following corollary, which
shows that optimal [F , d]q-spaces are dense as q → +∞ if and only if the pair (F , d)
is MDS-constructible. This also answers [1, Open Problem (a)].

Corollary 3.11. Let F be an n×m Ferrers diagram and let 1 ⩽ d ⩽ n be an integer
with κ(F , d) ⩾ 1. The following are equivalent:

(1) limq→+∞ δ(F , κ(F , d), d) = 1;
(2) (F , d) is MDS-constructible.

We conclude this section with the following observation.

Remark 3.12. Corollary 3.11 shows that the Etzion-Silberstein Conjecture holds
whenever the pair (F , d) is MDS-constructible and q is large, with a proof that does
not depend on the construction of [12,19,29].

4. Existence results
In this very short section we show how some (new) instances of the Etzion-Silberstein
Conjecture can be established in a non-constructive way using a purely combina-
torial argument. We will obtain existence of optimal [F , d]q-spaces for some MDS-
constructible pairs (F , d) and for values of q that are smaller than the minimum
value needed in Theorem 2.3(1).

Proposition 4.1. Let F be an n × m Ferrers diagram and let 2 ⩽ d ⩽ min{n, m}
and 1 ⩽ k ⩽ κ(F , d) be integers. There are at least[

|F|
k

]
q

− bq(F , d − 1) − 1
q − 1

[
|F| − 1
k − 1

]
q

(13)

k-dimensional [F , d]q-spaces. In particular, if the expression in (13) is larger than 0,
then such a space exists.

Proof. The [F , d]q-spaces of dimension k are the k-dimensional subspaces of Fq[F ]
that intersect bq(F , d − 1) trivially, i.e. in {0}. We denote by B(F , d − 1) a set of

(1)After the submission of this paper, the Etzion-Silberstein conjecture was proved in yet more
cases, including for all MDS-constructible pairs and for any q, in [28].
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representatives (up to Fq-multiples) of the nonzero elements of bq(F , d − 1). We have
|B(F , d − 1)| = (bq(F , d − 1) − 1)/(q − 1). Counting the cardinality of the set

{(C, B) : B ∈ B(F , d − 1), C ⩽ Fq[F ], dim(C) = k, B ∈ C}
in two ways we obtain

|B(F , d − 1)|
[
|F| − 1
k − 1

]
q

=
∑

B∈B(F,d−1)

|{C ⩽ Fq[F ] : dim(C) = k, B ∈ C}|

=
∑

C⩽Fq [F ],
dim(C)=k

|{B ∈ B(F , d − 1) : B ∈ C}|

⩾ |{C ⩽ Fq[F ] : dim(C) = k, C is not an [F , d]q-space}|.
The lower bound in the statement is a direct consequence of the above inequality and
of the definition of q-binomial coefficient. □

Example 4.2. Consider the 5 × 6 Ferrers diagram in Figure 4. We have |F| = 20
and for d = 4 the pair (F , d) is MDS-constructible. By the construction described
in Remark 2.5, we know that for q ⩾ max{|Di ∩ F| : 1 ⩽ i ⩽ 6} − 1 = 4 there
exists an optimal [F , d]q-space of dimension κ(F , 4) = 3. However, for q = 3 we have
bq(F , 3) = 243679185 (where we computed the value using [17, Theorem 5.3]) and
thus by Proposition 4.1 we have[

20
3

]
3

− (243679185 − 1)
2

[
19
2

]
3

= 345241120940998775695104,

meaning that there are at least 345241120940998775695104 optimal [F , d]q-spaces
already for q = 3. The lower bound for q = 2 is however negative (its value is
−6510288900541266).

•

•
•
•
••

•
•
••

•
•

•

•
•

•

•
•

•
•

Figure 4. The Ferrers diagram F = [2, 3, 3, 3, 4, 5] for Example 4.2.

Table 1 collects some examples of parameter sets for which Proposition 4.1 gives
existence of optimal [F , d]-spaces for small values of q.

Even though optimal [F , d]q-spaces are dense when (F , d) is an MDS-constructible
pair (Theorem 3.6), we conclude this section by showing that the optimal spaces
actually obtained from MDS codes via the construction illustrated in Remark 2.5 are
very few.

Notation 4.3. Let F be an n × m Ferrers diagram with m ⩾ n and let 2 ⩽ d ⩽ n be
an integer for which (F , d) is MDS-constructible. We denote by MC(F , d) the set of
codes constructed as in Remark 2.5.

Proposition 4.4. Let F be an n × m Ferrers diagram with m ⩾ n and let 2 ⩽ d ⩽ n
be an integer such that (F , d) is MDS-constructible. We have

|MC(F , d)| ⩽
ℓ∏

j=1

[
nij

nij − d + 1

]
q

,
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F d κ(F , d) q lower bound constructible as in Remark 2.5
[2, 3, 4, 4, 4, 5, 6] 5 3 3 1.06 · 1033 for q ⩾ 4

[2, 2, 2, 2, 3, 4, 5, 6, 7] 3 15 3 1.79 · 10128 for q ⩾ 7
[2, 3, 4, 4, 5, 5, 5, 5, 5, 7] 6 2 2 2.92 · 1024 for q ⩾ 5
[1, 3, 4, 6, 6, 6, 6, 7, 8] 7 3 4 1.1 · 1079 for q ⩾ 7
[4, 6, 6, 6, 7, 7, 7, 8, 9] 8 3 5 6.19 · 10118 for q ⩾ 8

Table 1. Examples illustrating Proposition 4.1. Note that the
bounds on q in the last column of the table are based on the as-
sumption that the MDS conjecture holds, i.e. that there exists an
[n, k]q MDS code if and only if n ⩽ q + 1 for all prime powers q and
integers 2 ⩽ k ⩽ q − 1, except when q is even and k ∈ {3, q − 1}, in
which case n ⩽ q + 2; see [31].

where the set I = {i1, . . . , iℓ} is defined as in Remark 2.5 and nij = |Dij ∩ F| for all
ij ∈ I.

Proof. The statement of the theorem easily follows by overestimating the number of
linear MDS codes in F

nij
q of minimum distance d by the number of linear spaces of

dimension nij
− d + 1 over Fq, for all ij ∈ I. □

The following result gives the asymptotic density of optimal [F , d]-spaces con-
structed as in Remark 2.5 within the set of spaces with the same parameters, where
we make use of Theorem 3.6.

Corollary 4.5. Let F be an n × m Ferrers diagram with m ⩾ n and let 1 ⩽ d ⩽ n
be an integer such that (F , d) is MDS-constructible. Let κ = κ(F , d). We have

|MC(F , d)|[
|F|
κ

]
q

δq(F , κ, d)
∈ O

(
q−κ(|F|−κ−d+1)

)
as q → +∞.

Proof. We combine the upper bound for |MC(F , d)| in Proposition 4.4 with the fact
that if (F , d) is MDS-constructible then we have limq→+∞ δq(F , κ, d) = 1; see Theo-
rem 3.6. We let I = {i1, . . . , iℓ} and nij = |Dij ∩F| for all ij ∈ I as in Proposition 4.4.
It holds that [

nij

nij − d + 1

]
q

∼ q(nij
−d+1)(d−1) as q → +∞

for all ij ∈ I. Therefore we have |MC(F , d)| ∈ O
(
q(d−1)κ

)
as q → +∞, where we used

the fact that
∑ℓ

j=1(nij
− d + 1)(d − 1) = (d − 1)κ, since (F , d) is MDS-constructible.

Therefore, we have

|MC(F , d)|[
|F|
κ

]
q

∈ O
(

q−κ(|F|−κ−d+1)
)

as q → +∞,

which concludes the proof. □

Therefore, only a very small fraction of optimal [F , d]q-spaces can be obtained
using the construction of Remark 2.5 in the case where (F , d) is MDS-constructible
and q is large.
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5. Counting MDS-constructible pairs
Since MDS-constructible pairs play a crucial role in the theory of [F , d]q-spaces, it is
natural to ask how many there are for a given board size n × m and whether or not
most pairs (F , d) are MDS-constructible. In this section we will completely answer
this question for d = 2 and for d = 3 when n = m. In the case d = 2, the number of
MDS-constructible pairs (F , d) will be given by Catalan numbers; see [37].

Proposition 5.1. The number of n × m Ferrers diagrams is
(

m+n−2
n−1

)
.

Proof. We consider an (n−1)×(m−1) grid associated to F as in Figure 5. Then n×m
Ferrers diagrams are in bijection with the paths on the grid from the top left corner
to the bottom right corner. Each such path can be seen as a tuple (s1, . . . , sm+n−2),
where each si corresponds to either a D or to an R, where D means “down” and R
means “right”. Since there are n − 1 D’s and m − 1 R’s in total, there are

(
m+n−2

n−1
)

such sequences. □

Notation 5.2. In the sequel, we denote by P(n, m) the set of “down-and-right” paths
in an (n − 1) × (m − 1) grid, as in the proof of Proposition 5.1. More formally, an
element of P(n, m) is a vector in {0, 1}m+n−2 whose entries sum to m − 1, but we
find the graphical representation more convenient for this paper.

We include an example that visualizes how a path in an (n − 1) × (m − 1) grid
corresponds to an n × m Ferrers diagram.

Example 5.3. Let n = 4 and m = 6. The path (in red) in Figure 5 is the sequence
RRDRDRRD. The corresponding 4 × 6 Ferrers diagram is F = [1, 1, 2, 3, 3, 4].

• • • • • •

• • • •

• • •

•

Figure 5. Path in P(4, 6) and its corresponding Ferrers diagram.

Remark 5.4. Define the bijection
Tn,m : {n × m Ferrers diagrams F} → {m × n Ferrers diagrams F},

where Tn,m(F) = {(m + 1 − j, n + 1 − i) : (i, j) ∈ F} ⊆ [m] × [n] for all n × m Ferrers
diagrams F . Note that Tn,m is simply the transposition of Ferrers diagrams. It is
straightforward to check that Tn,m induces a bijection between the MDS-constructible
pairs (F , d), where F is an n × m Ferrers diagram and 1 ⩽ d ⩽ min{n, m}, and the
MDS-constructible pairs (F , d), where F is an m × n Ferrers diagram and 1 ⩽ d ⩽
min{n, m}. In particular, for all 1 ⩽ d ⩽ min{n, m}, counting the number of n × m
Ferrers diagrams such that (F , d) is MDS-constructible is equivalent to counting the
number of m × n Ferrers diagrams F such that (F , d) is MDS-constructible. This
shows that the assumption m ⩾ n, which we include in the statements of this section
to simplify the notation and the proofs, is not restrictive.

We will establish a connection between MDS-constructible pairs and a special class
of paths defined as follows.
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Definition 5.5. A path P = s1, . . . , sm+n−2 in P(n, m) is called a generalized Dyck
path if, for all ℓ ∈ {1, . . . , m + n − 2},

|{i ∈ [ℓ] : si = R}| ⩾ |{i ∈ [ℓ] : si = D}|.

Note that the path depicted in Figure 5 is a generalized Dyck path. The notion of
Dyck paths is well-known and it corresponds to the case n = m in our definition of
generalized Dyck paths.

We start by analysing the case where d = 2. Note that for any n × m Ferrers
diagram F with m ⩾ n, the value of κ(F , 2) can always be obtained by counting the
number of dots left in F after deleting the topmost row. In particular, if |Di ∩ F| ⩾ 1
for some i > m, then

m+n−1∑
i=1

max{0, |Di ∩ F| − 1} > |F| − m = κ(F , 2),

meaning that (F , 2) is not MDS-constructible. From this observation (and its con-
verse) we obtain the following simple result.

Proposition 5.6. Let F be an n × m Ferrers diagrams with m ⩾ n ⩾ 2. Then (F , 2)
is MDS-constructible if and only if |Di ∩ F| = 0 for all i > m.

Note that the Ferrers diagrams described in Proposition 5.6 are exactly those di-
agrams whose corresponding path in P(n, m) is a generalized Dyck path. From this
characterization we are able to count them.

Theorem 5.7. The number of n × m Ferrers diagrams F with m ⩾ n ⩾ 2 for which
the pair (F , 2) is MDS-constructible is

m − n + 1
m

(
m + n − 2

n − 1

)
.

In particular, the number of n × n Ferrers diagrams F for which (F , 2) is MDS-
constructible is the (n − 1)th Catalan numbers.

Proof. Counting the the number of generalized Dyck paths is a classical problem in
enumerative combinatorics; see the introduction of [4] for a closed formula. □

By Theorem 5.7 we know that the proportion of n × m Ferrers diagrams F with
m ⩾ n for which the pair (F , 2) is MDS-constructible within the set of all n × m
Ferrers diagrams is (m − n + 1)/m. In particular, for fixed n and large m, almost
every Ferrers diagram F has the property that (F , 2) is MDS-constructible.

In the remainder of this section we concentrate on n × n Ferrers diagrams (square
case). We start by observing that if F is an n × n Ferrers diagram such that (F , 2) is
MDS-constructible, then Proposition 5.6 implies that κ(F , 3) = κ1(F , 3) = |F|−2n+
1. In particular, it is easy to see that

∑n
i=1 max{0, |Di ∩F|−2} =

∑n
i=2 max{0, |Di ∩

F|−2} = |F|−2n+1, by the definition of a Ferrers diagram. This yields the following
result.

Corollary 5.8. If F is an n × n Ferrers diagram such that (F , 2) is MDS-
constructible, then also (F , 3) is MDS-constructible.

Remark 5.9. (1) If we consider the non-square case (n ⩽ m − 1), then Corol-
lary 5.8 is not necessarily true. As a counterexample, consider the 3×4 Ferrers
diagram F = [1, 1, 3, 3]. Then κ(F , 2) =

∑6
i=1 max{|Di ∩ F| − 1, 0} = 4, i.e.

the pair (F , 2) is MDS-constructible. On the other hand, κ(F , 3) = 2 ̸= 1 =∑6
i=1 max{|Di ∩ F| − 2, 0}, meaning that (F , 3) is not MDS-constructible.
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(2) Corollary 5.8 does not extend to larger values of d in an obvious way. Con-
sider e.g. F = [1, 1, 3, 3, 5]. It is easy to see that (F , 3) is MDS-constructible.
However, we have κ(F , 4) = 2 ̸= 1 =

∑9
i=1 max{0, |Di ∩ F| − 3}, implying

that the pair (F , 4) is not MDS-constructible.

We can now count the number of square Ferrers diagrams F for which the pair
(F , 3) is MDS-constructible.

Corollary 5.10. Let n ⩾ 3. The number of n × n Ferrers diagrams F for which
(F , 3) is MDS-constructible is

1
n

(
2n − 2
n − 1

)
+ 2

n − 1

(
2n − 4
n − 2

)
.

Proof. By Theorem 5.7 and Corollary 5.8, it suffices to prove that the number of
n × n Ferrers diagrams F for which (F , 3) is MDS-constructible, and (F , 2) is not
MDS-constructible, is

2
n − 1

(
2n − 4
n − 2

)
.

Fix an arbitrary n × n Ferrers diagram F . Let 0 ⩽ ℓ ⩽ 2 be such that κ(F , d) =
κℓ(F , d), where in the case that there exist more than just one such ℓ and one of the
possible ones is ℓ = 1, we always set ℓ = 1. Denote by Fℓ the subset of F made by
those points that are not contained in the topmost ℓ rows of F , nor in its rightmost
d − 1 − ℓ columns. By the definition of ℓ, we have

κ(F , 3) =
{

|F| − 2n if ℓ ∈ {0, 2},

|F| − 2n + 1 if ℓ = 1.

If κ(F , 3) = |F| − 2n + 1, we know that κ(F , 3) can be attained by counting the
points of the Ferrers diagram F without the topmost row and rightmost column.
In particular, in this case (F , 3) is MDS-constructible if and only if (F , 2) is MDS-
constructible. Now assume that ℓ = 0. Then F has (at least) two columns of length
n on the very right. Therefore,

∑2n−1
i=1 max{0, |Di ∩ F| − 2} = |F| − 2n if and only if

Dn+1 ∩ F = (n, n − 1) and |Di ∩ F| = 0 for i > n + 1. Similarly, if ℓ = 2 then (F , 3)
is MDS-constructible if and only if Dn+1 ∩ F = (2, 1) and |Di ∩ F| = 0 for i > n + 1.
Claim E. The number of n × n Ferrers diagrams for which Dn+1 ∩ F = (n, n − 1) and
|Di ∩ F| = 0 for i > n + 1 is 1

n−1
(2n−4

n−2
)
.

Proof of the claim. These Ferrers diagrams correspond to Dyck paths in P(n − 1, n −
1). The count of these Dyck paths is the formula given in Theorem 5.7, which proves
the claim. ▲

By symmetry, the formula in Claim E also gives the number of Ferrers diagrams
for which Dn+1 ∩ F = (2, 1) and |Di ∩ F| = 0 for i > n + 1, proving the desired result
(we are using that n ⩾ 3). □

Finding a formula for the number of MDS-constructible pairs (F , d) for arbitrary
d seems to be a difficult task, where the main hurdle we encountered lies in the
description of all deletions that attain the minimum in Notation 1.4. We leave this to
future research.
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