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Asymptotic and catalytic containment
of representations of SU(n)

Tobias Fritz

Abstract Given two finite-dimensional representations ρ and σ of SU(n), when is there n ∈ N
such that ρ⊗n is isomorphic to a subrepresentation of σ⊗n? When is there a third representa-
tion η such that ρ⊗η is a subrepresentation of σ⊗η? We call these the questions of asymptotic
and catalytic containment, respectively.

We answer both questions in terms of an explicit family of inequalities. These inequalities
are generically necessary and sufficient in the following sense. If two representations satisfy all
inequalities strictly, then asymptotic and catalytic containment follow (the former in generic
cases). Conversely, if asymptotic or catalytic containment holds, then the inequalities must
hold non-strictly. These results are an instance of a recent Vergleichsstellensatz applied to the
representation semiring.

1. Introduction
The goal of this note is to prove the following result:

Theorem 1.1. For n ⩾ 2 and finite-dimensional complex vector spaces V and W , let
ρ : SU(n) −→ GL(V ), σ : SU(n) −→ GL(W )

be continuous representations of SU(n), or equivalently algebraic representations of
SL(n,C). Suppose that the following conditions hold:

(i) The associated characters ch satisfy
(1) chρ(x) < chσ(x)

for all x ∈ Rn
+ with x1 · · ·xn = 1, and

(ii) For the associated weight polytopes WP, we have
(2) WP(ρ) ⊆ int(WP(σ)),

where int denotes interior.
Then the following subrepresentation relations hold:

(a) Catalytic: there is a nonzero representation η such that
(3) ρ⊗ η ↪→ σ ⊗ η.

(b) Asymptotic: if σ is generic, then
(4) ρ⊗n ↪→ σ⊗n ∀n ≫ 1.
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Conversely, if (3) holds for some nonzero η or (4) holds for some n ⩾ 1, then the
inequalities in (i) hold at least non-strictly, and similarly for (ii) in the sense that
WP(ρ) ⊆ WP(σ).

In this theorem and throughout the paper, all of our representations are assumed
finite-dimensional complex, and as usual continuous for SU(n) and algebraic for
SL(n,C), and we will use both of these interchangeably. We say that a represen-
tation is generic if it contains both the trivial and the standard representation as
subrepresentations. Finally, the weight polytope WP(ρ) of a representation ρ is the
convex hull of the weights of ρ in the vector space sl∗n.

Remark 1.2. The converse part mentioned at the end of Theorem 1.1 is easy to
prove. We include it mainly in order to indicate that our forward direction, which
gives a sufficient condition for catalytic and asymptotic containment, is generically
necessary as well: the only difference between the two directions is the strictness of
the inequalities (and the genericity assumption on σ in the asymptotic case).

Remark 1.3. Condition (ii) can be thought of as extending (i) to infinity, in the sense
that it is equivalent to

(5) lim
r→∞

r

√
chρ(xr) < lim

r→∞
r
√

chσ(xr)

for all x ∈ Rn
+ with x1 · · ·xn = 1, where the map x 7→ xr is defined componentwise.

This follows by the fact that each side is given by maximization over the weight
polytope, as in

log
(

lim
r→∞

r

√
chρ(xr)

)
= max

α∈WP(ρ)

n∑
i=1

αi log xi,

which follows from the definitions upon choosing a basis of weight vectors.

We prove Theorem 1.1 in Section 4. It follows as an application of a recent Ver-
gleichsstellensatz(1) proven in [5], which is a separation theorem for preordered
semirings that we recall in Section 2. This application is facilitated by some prelim-
inary considerations on Schur polynomials in Section 3. In Section 5, we present a
somewhat more explicit form of Theorem 1.1 for n = 2 as Theorem 5.1.

The main open problem is as follows.

Problem 1.4. Formulate a generalization of Theorem 1.1 that holds similarly for all
compact Lie groups in place of SU(n).

Mainly, it is not clear to us on which set of points the corresponding inequalities (1)
will be required to hold in the case of a general compact Lie group. We expect that
everything else can be generalized verbatim, and also that the application of our
Vergleichsstellensatz will still go through, based on suitably generalized versions of
Propositions 3.2 and 3.3.

(1)This term was introduced in [5] by analogy with the Nullstellensatz, which can be thought of as
a separation theorem for commutative rings, and the various Positivstellensätze of real algebra, which
are separation theorems for ordered rings. While the Nullstellensatz is concerned with zeros (German
Nullstellen) of polynomials and a Positivstellensatz makes statements about when a polynomial
or ring element belongs to the positive cone, a Vergleichsstellensatz is concerned with comparing
(German vergleichen) elements of a preordered semiring.
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Asymptotic and catalytic containment of representations of SU(n)

2. Background: A Vergleichsstellensatz for preordered
semirings

Here, we present our recent Vergleichsstellensatz [5, Theorem 7.15] for preordered
semirings after a brief recap of the relevant definitions. Recall that a semiring is like
a ring, except in that the existence of additive inverses is not required. Throughout,
all of our semirings are assumed commutative.

Definition 2.1. A preordered semiring is a semiring S together with a preorder
relation ⩽ such that both addition and multiplication are monotone,

a ⩽ b =⇒ a+ c ⩽ b+ c, ac ⩽ bc.

Two especially important preordered semirings are the following:
• The nonnegative reals R+ with the standard ordering and algebraic structure.
• The tropical reals TR+ := (R∪ {−∞},max,+) with the standard ordering.

The following definition combines the notion of power universal element introduced
as [5, Definition 3.27] with the special case characterization given in [5, Lemma 3.29].

Definition 2.2. Let S be a preordered semiring with 1 ⩾ 0. Then an element u ∈ S
is power universal if u ⩾ 1 and for every nonzero a ∈ S there is k ∈ N such that

a ⩽ uk, auk ⩾ 1.

Remark 2.3. (1) If such S has a power universal element and 1 ̸⩽ 0, then it
follows that S is both zerosumfree and has no zero divisors [5, Remark 3.36].

(2) By u ⩾ 1, it is enough to check the power universality inequalities on a
generating subset which includes the element 2 = 1 + 1. This follows from the
fact that the set of a ∈ S that satisfy the relevant conditions is closed under
addition (since it contains 2) and under multiplication (obviously).

Our Vergleichsstellensatz then reads as follows, where we restrict the present for-
mulation to those statements that are of interest to us here.

Theorem 2.4 ([5, Theorem 7.15]). Let S be a preordered semiring with 1 > 0 and a
power universal element u. Suppose that nonzero a, b ∈ S satisfy the following:

(1) For all monotone homomorphisms ϕ : S → R+,
(6) ϕ(a) < ϕ(b).

(2) For all monotone homomorphisms ψ : S → TR+ with ψ(u) > 0,
(7) ψ(a) < ψ(b).
Then also the following hold:

• There is nonzero c ∈ S such that
(8) ac ⩽ bc.

• If b is power universal as well, then
(9) an ⩽ bn ∀n ≫ 1.
Conversely, if (8) holds for some nonzero c or (9) holds for some n ⩾ 1, then the
inequalities (6) and (7) hold non-strictly.

In [5] we also gave a concrete form for a “catalyst” c as in (8), but this concrete form
will be of less interest to us here. A first application of a related Vergleichsstellensatz
to the asymptotics of random walks on topological abelian groups has been given
in [4]. The present paper presents our second application.
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3. The preordered semiring of Schur positive polynomials
Fixing a number of variables n ∈ N, we write Schurn for the semiring of Schur positive
symmetric integer polynomials in n variables, preordered such that p ⩽ q if and only
if q − p is Schur positive.

Equivalently, Schurn is the preordered semiring consisting of formal sums
∑

λ pλsλ

of basis elements sλ indexed by partitions λ = (λ1 ⩾ · · · ⩾ λℓ > 0) of length ℓ ⩽ n
and with coefficients pλ ∈ N. These multiply via the unique bilinear extension of

(10) sµsν =
∑

λ

cλ
µνsλ

with Littlewood-Richardson coefficients cλ
µν , and the preorder is the coefficientwise

one. The unit element of Schurn is 1 = s(), the Schur polynomial associated to the
empty partition. For 0 ⩽ j ⩽ n, we also write ej = s(1,...,1)︸ ︷︷ ︸

j times

for the corresponding

elementary symmetric polynomial.

Lemma 3.1. For every nonempty partition λ,

sλ ⩽ e
|λ|
1 .

Proof. By the Pieri rule, we have cλ
(1) ν = 1 if and only if λ arises from ν by adding a

single box, i.e. if there is a row index j such that j = 0 or νj−1 > νj , and

λi =
{
νi + 1 if i = j,

νi if i ̸= j.

We now prove the claim by induction on the size of λ. The statement is trivial for
λ = (1), which is the smallest nonempty partition, since s(1) = e1. For the induction
step, let ν be such that λ arises from ν by adding a single box as above. Then
assuming sν ⩽ e

|ν|
1 by induction hypothesis gives

sλ ⩽ sνe1 ⩽ e
|ν|+1
1 ,

where the first inequality is by cλ
(1) ν = 1. This coincides with the claim by |λ| =

|ν| + 1. □

Proposition 3.2. The monotone homomorphisms Schurn → R+ with trivial kernel
can be parametrized by y ∈ Rn

>0 and are given by the evaluation maps

Schurn −→ R+,

p 7−→ p(y).

We thank Richard Stanley for the most difficult argument in the following proof,
namely the final step of establishing yj ∈ R based on [1].(2)

Proof. The fact that these maps take nonnegative values and are monotone is imme-
diate by the sum over semistandard Young tableaux formula for the Schur polynomi-
als sλ, and it is obvious that they are homomorphisms. Also trivial kernel is obvious
by yi > 0 for all i.

Conversely, let ϕ : Schurn → R+ be any monotone homomorphism with trivial
kernel. With Λn the ring of symmetric polynomials in n variables, we have Λn =
Schurn − Schurn as the Schur polynomials form a basis. Therefore ϕ uniquely extends
to a ring homomorphism Λn → R, which we also denote ϕ by abuse of notation,

(2)See also https://mathoverflow.net/questions/419823/.
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such that ϕ(sλ) ⩾ 0 for all partitions λ of length ℓ(λ) ⩽ n. Consider now the monic
single-variable real polynomial given by

p(t) :=
n∑

i=0
ϕ(ei) tn−i =

n∏
j=1

(t+ yj),

where the yj are defined by the second equation, with the −yj being the roots of p.
These are a priori complex numbers where the non-real ones come in complex conju-
gate pairs. However, we claim that actually yj ∈ R>0 for all j, and that ϕ is given by
the evaluation homomorphism at y = (y1, . . . , yn). Starting with the latter, we have
ϕ(ei) = ei(y) for all i by Vieta’s formulas, and ϕ(f) = f(y) for all f ∈ Λn then follows
by the fundamental theorem on symmetric polynomials.

It remains to be shown that yj ∈ R>0. By a result of Aissen and Whitney [1, 6.](3),
our claim that p has real and negative roots is equivalent to the Hankel matrix of its
coefficients

H := (ϕ(ei−j))i,j∈N

being totally positive, where our notation uses padding by zeros for the elementary
symmetric polynomials with index not in {0, . . . , n}. But the nonzero minors of H
are all of the form ϕ(sλ/µ) by the second Jacobi–Trudi formula [6, Corollary 7.16.2],
and the skew Schur polynomials sλ/µ are well-known to be Schur positive, giving
ϕ(sλ/µ) > 0 by the trivial kernel assumption. It follows that H is indeed totally
positive. □

Although we will not need this, it is interesting to note that y, y′ ∈ Rn
+ define the

same evaluation homomorphism if and only if they differ by a coordinate permutation.
This follows by Vieta’s formulas together with the fact that the coefficients of a
polynomial uniquely determine its roots.

Proposition 3.3. The monotone homomorphisms Schurn → TR+ with trivial kernel
can be parametrized by y ∈ Rn and are given by

Schurn −→ TR+,∑
α∈Nn

pαx
α 7−→ max

α∈Nn : pα ̸=0

n∑
i=1

αiyi.
(11)

In other words, these homomorphisms are given by linear maximization over the
Newton polytope of p in a fixed direction specified by y. This is similar to the case of
polynomial semirings [5, Example 2.9].

Proof. We first argue that every such map, denote it ψy, is a monotone homomorphism
with trivial kernel. Monotonicity of ψy is obvious, since p ⩽ q implies that the Newton
polytope of p is contained in that of q. The fact that the Newton polytope of a
product of two polynomials with nonnegative coefficients is the Minkowski sum of
their Newton polytopes implies that ψy is multiplicative. Additivity is a consequence
of the Newton polytope of a sum being the convex hull of their unions. Hence ψy is a
monotone homomorphism, and it has trivial kernel since it takes the value −∞ only
on p = 0.

Conversely, suppose that ψ : Schurn → TR+ is a monotone homomorphism with
trivial kernel. We first make some preliminary observations.

(3)See [2] for the proof of this result announced in [1].
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• The dual Pieri rule [6, p. 340]: the product of a Schur polynomial sµ with an
elementary symmetric polynomial ej decomposes as

(12) sµej =
∑

λ

sλ,

where the sum is over all partitions λ that can be obtained from µ by adding
j boxes in distinct rows.

• Applying ψ to the multiplication rule (10) yields
(13) ψ(sµ) + ψ(sν) = max

λ : cλ
µν ̸=0

ψ(sλ)

for all partitions µ and ν, where throughout we only consider partitions of
length ⩽ n.

• ψ is monotone with respect to dominance ordering:
µ ⊴ ν =⇒ ψ(sµ) ⩽ ψ(sν).

To see this, we can assume without loss of generality that µ is obtained
from ν by moving a single box from row i down to row j > i, meaning that
µ and ν coincide in all rows apart from

µi = νi − 1, µj = νj + 1,
and j = i+1 (box moves down by one row and left by any number of columns)
or µi = µj (box moves left by one column and down any number of rows) [3,
Proposition 2.3]. Then any way of adding at least m :=

∑
k<νi

(n− ν′
k) boxes

to µ so as to obtain a new partition necessarily also adds the extra box at
(i, νi). By repeated application of the Pieri rule, it follows that every Schur
polynomial that occurs in the expansion of sµe

m
1 also occurs in the expansion

of sνe
m
1 . Applying ψ to this statement gives

ψ(sµ) +mψ(e1) ⩽ ψ(sν) +mψ(e1),
and hence also the desired ψ(sµ) ⩽ ψ(sν).

• With µ+ ν denoting the usual sum of partitions, we have(4)

ψ(sµ+ν) = ψ(sµ) + ψ(sν).
Indeed this follows from the previous two items upon noting that µ+ ν is

dominance maximal among all partitions λ with cλ
µν ̸= 0 by the Littlewood-

Richardson rule.
• For every λ,

(14) ψ(sλ) =
λ1∑

j=1
ψ(eλ′

j
).

This is a direct consequence of the previous item applied to the decompo-
sition of λ as a sum of columns.

• For all j = 1, . . . , n,(5)

(15) ψ(ej+1) + ψ(ej−1) ⩽ 2ψ(ej).
Indeed by (12), every term in the Schur polynomial expansion of ej−1ej+1

also appears in the Schur polynomial expansion of ejej . (In fact ejej =
ej−1ej+1 + s(2,...,2).)

(4)We owe this observation, which facilitates a more insightful line of proof than our original one
in the next item, to an anonymous referee.

(5)We again use the conventions e0 = 1 and en+1 = 0.
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To start the main argument, for every f ∈ Schurn we have the unique decomposition
into Schur polynomials

f =
∑

λ

fλsλ

with coefficients fλ ∈ N. Hence for the actual claim, for a given ψ : Schurn → TR+ it
is enough to show that there is y ∈ Rn such that

(16) ψ(sλ) = ψy(sλ)

for all λ. To this end, for every j = 1, . . . , n we put(6)

yj := ψ(ej) − ψ(ej−1),

where the second term vanishes for j = 1 since e0 = 1. We then have y1 ⩾ · · · ⩾ yn

thanks to (15), and

(17) ψ(ej) =
j∑

i=1
yi

by definition. By the sum over semistandard Young tableaux formula for sλ, we can
evaluate ψy(sλ) directly using the definition (11). Because of y1 ⩾ · · · ⩾ yn, the Young
tableaux that attains the maximum is the minimal one, namely the one in which the
i’th row is filled with only i’s for every i = 1, . . . , ℓ(λ), so that

ψy(sλ) =
ℓ(λ)∑
i=1

λiyi.

But then by the definition of the yi and (14), we have

ψy(sλ) =
ℓ(λ)∑
i=1

λi(ψ(ei) − ψ(ei−1)) =
ℓ(λ)∑
i=1

(λi − λi+1)ψ(ei) =
λ1∑

j=1
ψ(eλ′

j
) = ψ(sλ),

where the second to last equation is elementary and the last one is by (14). This
proves the desired (16). □

Remark 3.4. Our Theorem 2.4 does not directly apply to Schurn (or equivalently to
the representation theory of GL(n,C)), since Schurn does not have a power universal
element: there is no u such that e1u

k ⩾ 1 for any k, because expanding the left-hand
side into Schur polynomials does not produce any constant terms. This is analogous
to a polynomial semiring like R+[x] not having a power universal element [5, Exam-
ple 3.37].

4. Proof of Theorem 1.1
We write Rep(SL(n,C)) for the set of isomorphism classes of representations, con-
sidered as a semiring with respect to direct sum as addition and tensor product as
multiplication. It is preordered with respect to containment of representations (up to
isomorphism).

Next, we will identify Rep(SL(n,C)) with a preordered semiring constructed from
Schurn. We write

Tn := {x ∈ Cn | x1 · · ·xn = 1} = {x ∈ Cn | en(x) = 1},

(6)Note that this is where the assumption that ψ has trivial kernel comes in: it guarantees
ψ(ej−1) > −∞.
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and identify this variety with the maximal torus of SL(n,C) consisting of the diagonal
matrices. Let now SchurS

n be the semiring obtained by quotienting Schurn by the
semiring congruence generated by

en ∼ 1.
Under the isomorphism Rep(GL(n,C)) ∼= Schurn, this identifies the determinant rep-
resentation with the trivial representation.

Lemma 4.1. Considering every f ∈ SchurS
n as a function on Tn identifies SchurS

n with
a subsemiring of the ring of regular functions on Tn.

Proof. Since en =
∏n

i=1 xi evaluates to 1 on Tn, we have a well-defined homomorphism
from SchurS

n to the regular functions on Tn. To prove its injectivity, suppose that
f |Tn

= g|Tn
for representatives f, g ∈ Schurn. Then we have a symmetric polynomial

h := f − g that vanishes on Tn. The fundamental theorem on symmetric polynomials
now implies that h is a multiple of the elementary symmetric polynomial en = s(1,...,1).

□

Lemma 4.2. SchurS
n is a preordered semiring with p ⩽ q if and only if q − p has a

Schur positive representative.

Proof. For transitivity, suppose that p ⩽ q ⩽ r, so that both q − p and r − q have
Schur positive representatives. Then their sum is a Schur positive representative of
r − p, showing p ⩽ r. All other relevant conditions are straightforward to verify. □

We henceforth consider SchurS
n as a preordered semiring. The following standard

result then summarizes the well-understood representation theory in type An−1.

Proposition 4.3. Associating to every representation ρ : SL(n,C) → GL(V ) the
regular function on Tn given by

(18) chρ(x1, . . . , xn) := tr (ρ (diag(x1, . . . , xn)))

defines an isomorphism of preordered semirings Rep(SU(n))
∼=−→ SchurS

n.

Of course, the inverse isomorphism is given by decomposing a Schur positive poly-
nomial p into Schur polynomials, p =

∑
λ pλsλ, constructing the direct sum of the

associated irreducibles with multiplicities pλ, and noting that this is well-defined on
SchurS

n .

Lemma 4.4. u := 1 + e1 is power universal in SchurS
n.

This is equivalent to the standard representation-theoretic fact that every (not
necessarily) irreducible representation is contained in a tensor power of the direct
sum of the trivial and the standard representation. We nevertheless offer a proof for
completeness.

Proof. By Remark 2.3, it is enough to verify the relevant inequalities a ⩽ uk and
auk ⩾ 1 on a = 2 and on a = sλ for any partition λ. Starting with the latter, in
Schurn we have sλ ⩽ e

|λ|
1 by Lemma 3.1, and hence also sλ ⩽ u|λ| in SchurS

n . For the
lower bound, we have eλ1

n ⩽ sλe
k
1 with k =

∑n
i=1(λi −λ1) by the dual Pieri rule, since

every term in the Schur polynomial expansion on the left-hand side also appears on
the right-hand side. This proves the relevant inequality in SchurS

n .
Concerning 2, note that en ⩽ en

1 gives the upper bound 2 = 1 + en ⩽ un in SchurS
n .

The lower bound 2 ⩾ 1 is trivial. □

The main part of the proof is now straightforward boilerplate:
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Proof of Theorem 1.1. Using Proposition 4.3, we work with SchurS
n instead of

Rep(SU(n)). By Lemma 4.4, we know that every element that corresponds to a
generic representation is power universal.

The proof is then completed by the following observations:
• The monotone homomorphisms SchurS

n → R+ correspond to the evaluation
maps at x ∈ Tn. Indeed this is an immediate consequence of Proposition 3.2
together with the definition of SchurS

n as the quotient of Schurn by en ∼ 1,
and noting that every such homomorphism necessarily has trivial kernel by
the existence of a power universal element.

• Proposition 3.3 tells us that the monotone homomorphisms Schurn → TR+
are given by linear optimization over the Newton polytope in a fixed direction
y ∈ Rn. Such a homomorphism descends to SchurS

n if and only if
∑

i yi = 0.
Under the isomorphism SchurS

n
∼= Rep(SL(n,C)), these homomorphisms cor-

respond exactly to linear optimization over the weight polytope in a specified
direction. This produces condition (ii) upon noting that linear optimization
over one polytope is strictly dominated by linear optimization over a second
one in all directions if and only if the first is contained in the interior of the
second. □

5. The case of SL(2,C)
It is worth considering the case n = 2 in a bit more detail, since there the conditions of
Theorem 1.1 take a more explicit form. We identify representations of SU(2) with their
multiplicities. These are maps m : N>0 → N, assigning to each d > 0 the multiplicity
of the irreducible representation of dimension d.

Theorem 5.1. Let
ρ : SL(2,C) → GL(V ), σ : SL(2,C) → GL(W )

be algebraic representations with multiplicity maps mρ, mσ : N>0 → N. Suppose that
the following conditions hold:

(i’) For all α ∈ [0,∞),

(19)
∑

d ∈ N>0

mρ(d) sinh(αd)
sinh(α) <

∑
d ∈ N>0

mσ(d) sinh(αd)
sinh(α)

(ii’)
(20) max{d ∈ N>0 | mρ(d) > 0} < max{d ∈ N>0 | mσ(d) > 0}.
Then the following subrepresentation relations hold:

(a) Catalytic: there is a nonzero representation η such that
(21) ρ⊗ η ↪→ σ ⊗ η.

(b) Asymptotic: if σ is generic, then
(22) ρ⊗n ↪→ σ⊗n ∀n ≫ 1.
Conversely, if (21) holds for some nonzero η or (22) holds for some n ⩾ 1, then the
inequalities in (19) and (20) hold at least non-strictly.

For α = 0, the inequality (19) needs to be understood in terms of L’Hôpital’s rule,
which makes it equivalent to

dim(ρ) < dim(σ).
In its non-strict form, this is an obvious necessary condition for catalytic and asymp-
totic containment.
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Proof. In order to derive this from Theorem 1.1, it is enough to identify condition (i)
there with the present (i’), and similarly for (ii) with (ii’).

For the former, let ιd : SL(2,C) → GL(Cd) be the irrep of dimension d ⩾ 1. It is
well-known that its character satisfies

tr(ιd(diag(eα, e−α)) = sinh(αd)
sinh(α) ,

and the L’Hôpital extension gives the correct character value at α = 0, namely the
dimension d. This implies that the two sides of (19) are the relevant character values
for ρ and σ. Since every solution of x1x2 = 1 with x1, x2 ∈ R+ is of the form x1 = eα

and x2 = e−α for some α ∈ R, the equivalence with (i) follows upon noting that we
can assume α ⩾ 0 without loss of generality.

For the tropical part, note that the weight polytope of the irrep ιd can be identified
with the interval [−(d − 1),+(d − 1)] ⊆ R. Since the weight polytope of a general
representation is the union of the weight polytopes of its irreducible components, the
weight polytope criterion (ii) from Theorem 1.1 is manifestly equivalent to the present
condition (ii’). □

Remark 5.2. Our proof of Theorem 1.1 relied on the classification of monotone ho-
momorphisms Rep(SL(n,C)) → R+, which we have performed in the proof of The-
orem 1.1 based on Proposition 3.2. For n = 2, the same classification formulated in
terms of the hyperbolic sine as in (19) also appears in work of Székelyhidi and Vajday
on the SU(2) hypergroup [7, Theorem 1].
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