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On the EKR-module property

Cai-Heng Li & Venkata Raghu Tej Pantangi

Abstract In recent years, the generalization of the Erdős–Ko–Rado (EKR) theorem to permu-
tation groups has been of much interest. A transitive group is said to satisfy the EKR-module
property if the characteristic vector of every maximum intersecting set is a linear combination
of the characteristic vectors of cosets of stabilizers of points. This generalization of the well-
known permutation group version of the Erdős–Ko–Rado (EKR) theorem was introduced by K.
Meagher in [28]. In this article, we present several infinite families of permutation groups satis-
fying the EKR-module property, which shows that permutation groups satisfying this property
are quite diverse.

1. Introduction
The Erdős–Ko–Rado (EKR) theorem [15] is a classical result in extremal set theory.
This celebrated result considers collections of pairwise intersecting k-subsets of an
n-set. The result states that if n ⩾ 2k, for any collection S of pairwise intersecting
k-subsets, the cardinality |S| ⩽

(
n−1
k−1

)
. Moreover in the case n > 2k, if |S| =

(
n−1
k−1

)
,

then S is a collection of k-subsets containing a common point. (When n = 2k, the
collection of k-subsets that avoid a fixed point is also a collection of

(
n−1
k−1

)
pairwise

intersecting subsets.) From a graph-theoretic point of view, this is the characterization
of maximum independent sets in Kneser graphs.

There are many interesting generalizations of this result to other classes of objects
with respect to certain forms of intersection. One such generalization, given by Frankl
and Wilson [17], considers collections of pairwise non-trivially intersecting k-subspaces
of a finite n-dimensional vector space, which corresponds to independent sets in q-
Kneser graphs. The book [19] is an excellent survey, including many generalizations
of the EKR theorem.

In this article, we are concerned with EKR-type results for permutation groups.
The first result of this kind was obtained by Deza and Frankl [16], who investigated
families of pairwise intersecting permutations. Two permutations σ, τ ∈ Sn are said
to intersect if the permutation στ−1 fixes a point. A set of permutations is called
an intersecting set if στ−1 fixes a point for any two members σ and τ of the set.
Clearly the stabilizer in Sn of a point or its coset is a canonically occurring family
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of pairwise intersecting permutations, of size (n − 1)!. In [16], it was shown that if
S is a family of pairwise intersecting permutations, then |S| ⩽ (n − 1)!. In the same
paper, it was conjectured that if the equality |S| = (n− 1)! is met, then S has to be a
coset of a point stabilizer. This conjecture was proved by Cameron and Ku (see [9]).
An independent proof was given by Larose and Malvenuto (see [24]). Later, Godsil
and Meagher (see [18]) gave a different proof. A natural next step is to ask similar
questions about general transitive permutation groups.

Let G be a finite group acting transitively on a set Ω. An intersecting subset of
G with respect to this action is a subset S ⊂ G in which any two elements intersect.
Obviously, a point stabilizer Gα, its left cosets gGα, and right cosets Gαg are inter-
secting sets, which we call canonical intersecting sets. An intersecting set of maximum
possible size is called a maximum intersecting set. Noting that the size of a canonical
intersecting set is |Gα| = |G|/|Ω|, we see that the size of a maximum intersecting set
is at least |G|/|Ω|. It is now natural to ask the following:

(A) Is the size of every intersecting set in G bounded above by the size of a point
stabilizer?

(B) Is every maximum intersecting set canonical?
As mentioned above, the results of Deza–Frankl, Cameron–Ku, and Larose–

Malvenuto show that the answer to both these questions in positive for the natural
action of a symmetric group. However, not all permutation groups satisfy similar
properties, although there are many interesting examples that do. We now formally
define the conditions mentioned in the above questions.

Definition 1.1. A transitive group G on Ω is said to satisfy the EKR property if every
intersecting set has size at most |G|/|Ω|, and further said to satisfy the strict-EKR
property if every maximum intersecting set is canonical.

When the action is apparent, these properties will be attributed to the group.
We have already seen that the natural action of Sn satisfies both the EKR and
the strict-EKR property. EKR properties of many specific permutation groups have
been investigated (see [1, 3, 27, 30, 31, 32]). In particular, it was shown that all 2-
transitive group actions satisfy the EKR property, see [30, Theorem 1.1], but not
every 2-transitive group satisfies the strict-EKR property; for instance, with respect
to the 2-transitive action of PGL(n, q) (with n ⩾ 3) on the 1-spaces, the stabilizer of
a hyperplane is also a maximum intersecting set.

However, it is shown in [30] that 2-transitive groups satisfy another interesting
property called the EKR-module property, defined below.

For a transitive group G on Ω and a subset S ⊂ G, let

vS =
∑
s∈S

s ∈ CG,

the characteristic vector of S in the group algebra CG. For α, β ∈ Ω and g ∈ G
with g · α = β, we write

vα,β =
∑
t∈G
t·α=β

t =
∑
x∈Gα

gx = g
∑
x∈Gα

x = vgGα ,

the characteristic vector of the canonical intersecting set gGα, which we call a canon-
ical vector for convenience. The next definition was first introduced in [28].

Definition 1.2. A finite transitive group G on a set Ω is said to satisfy the EKR-
module property if the characteristic vector of each maximum intersecting set of G on
Ω is a linear combination of canonical vectors, that is, the vectors in {vα,β | α, β ∈ Ω}.
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The name is from the so called “module method” described in [2].
We remark that
(a) a group action satisfying the strict-EKR property also satisfies the EKR-

module property, but the converse statement is not true;
(b) and there exist group actions that satisfy the EKR-module property but not

the EKR property, see [29, Theorem 5.2], and the following Example 1.3;

Example 1.3. Consider the action of A4 on the set Ω of cosets of a subgroup H ∼= Z2.
We observe that the Sylow 2-subgroup N of A4 is an intersecting set. As 4 = |N | >
|A4/|Ω| = 2, this action does not satisfy the EKR property. Consider an intersecting
set S. Then given t ∈ S, the set St−1 is an intersecting set containing the identity.
By the definition of an intersecting set, we have St−1 ⊂

⋃
g∈A4

gHg−1 = N . This shows

that any maximum intersecting set must be coset of N . Any coset of N is a union of
two disjoint cosets of H, and thus this action satisfies the EKR-module property.

We will now construct an example of a group action that satisfies the EKR property,
but not the EKR-module property. Prior to doing so, we mention a well-known result.
Consider a transitive action of a group G on a set Ω. A subset R ⊂ G is said to be
a regular subset, if for any (α, β) ∈ Ω2, there is a unique r ∈ R such that r · α = β.
Corollary 2.2 of [3] states that permutation groups which contain a regular subset,
satisfy the EKR property.

For a group G and a subgroup H ⩽ G, let

[G : H] = {xH | x ∈ G},

the set of left cosets of H in G. Then G acts transitively on [G : H] by left multi-
plication. Moreover, each transitive action of a group is equivalent to such a coset
action.

Example 1.4. Consider G = S5 (isomorphic to PGL(2, 5)) and a subgroup H ⩽ G
isomorphic to the dihedral group of size 12. We consider the action of G on Ω = [G :
H]. We first show that this action satisfies the EKR property, by demonstrating the
existence of a regular subset. We consider the cyclic subgroup C := ⟨(1, 2, 3, 4, 5)⟩ and
the 4-cycle t := (2, 3, 5, 4). We claim that R := C ∪ tC is a regular set. As |R| = |Ω|,
this claim will follow by showing that for r, s ∈ R with r ̸= s, we have rgH ̸= sgH,
for all g ∈ G. This is equivalent to showing that g−1r−1sg /∈ H, for all g ∈ G. It is
easy to verify that for any two distinct r, s ∈ R , r−1s is either a 4-cycle or a 5-cycle,
and thus g−1r−1sg /∈ H. We can now conclude that R is a regular subset. Therefore,
by [3, Corollary 2.2], G satisfies the EKR property. Thus the size of any intersecting
set is bounded above by |H| = 12.

Now we consider subgroup K ∼= A4 of G. It is easy to check that KK−1 = K ⊂
∪gHg−1 and thus K is a maximum intersecting set. In this case, canonical intersecting
sets are cosets of a conjugate of H. Every canonical intersecting set contains exactly
3 even permutations. Also every permutation in K is even. Now consider the sign
character λ. For every canonical intersecting set S, we have λ(vS) = 0. On the other
hand, we have λ(vK) ̸= 0. From this, we see that vK cannot be a linear combination
of the characteristic vectors of the canonical intersecting sets. Therefore this action
does not satisfy the EKR-module property.

We will now describe the main results of our paper.

1.1. Main results. Our first result is a characterization of the EKR-module prop-
erty of a group action, in terms of the characters of the group in question. Given a
group G, a complex character χ of G, and a subset A ⊆ G, by χ(vA), we denote the
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sum
∑
a∈A

χ(a). We now describe our first result, a characterization of the EKR-module

property in terms of character sums.

Theorem 1.5. Let G be a finite group, H < G, and Ω = [G : H]. Let C = {χ ∈
Irr(G) : χ(vH) = 0}, and S be the collection of maximum intersecting sets in G.
Then G on Ω satisfies the EKR-module property if and only if χ(vS) = 0 for any
S ∈ S and any χ ∈ C.

We note that Example 1.4 can be viewed as an application of the above result.
In Example 1.4, the sign character λ is a character such that λ(vH) = 0. However,
for the maximum intersecting set K, we have λ(vK) ̸= 0. Thus by Theorem 1.5, the
action in Example 1.4 does not satisfy the EKR-module property.

Given an action of G on Ω, the derangement graph ΓG, Ω is the graph whose vertex
set is G, and vertices g, h ∈ G are adjacent if and only if gh−1 does not fix any point
in Ω. Then a set S ⊆ G is an intersecting set if and only if it is an independent set in
ΓG, Ω. Therefore, the study of intersecting sets could benefit from the various results
from spectral graph theory about independent sets. Many authors (for instance, see
[31, 32]) have studied the EKR and strict-EKR properties of various group actions
from this point of view.

Theorem 3.4 is a characterization of the EKR-module property of a group action
in terms of spectra of weighted adjacency matrices of the corresponding derangement
graph.

It is well known (see [3, Corollary 2.2]) that permutation groups with regular
subsets satisfy the EKR property. However, as observed in example 1.4, such groups
do not necessarily satisfy the EKR-module property. The following theorem shows
that every permutation group with a regular normal subgroup satisfies the EKR-
module property.

Theorem 1.6. Transitive group actions with a regular normal subgroup satisfy both
the EKR and the EKR-module property.

A few classes of permutation groups with a regular normal subgroup are Frobenius
groups, affine groups, primitive groups of type HS, HC, and TW (for a description of
these, we refer the reader to [33]).

After showing that all 2-transitive groups satisfy the EKR-module property, the
authors of [30] mention that the next natural step is to consider rank 3 permutation
groups. As a first step, we consider this problem for the class of primitive rank 3
permutation groups. The next theorem reduces the problem to almost simple groups.
(Recall that a finite group is called almost simple if it has a unique minimal normal
subgroup, which is non-abelian and simple.)

Theorem 1.7. Let G be a primitive permutation group on Ω of rank 3. Then either
the action of G on Ω satisfies both the EKR and the EKR-module property, or G is
an almost simple group.

We would like to mention that when n is sufficiently large, the rank 3 action of Sn
on 2-subsets of [n], satisfies the strict-EKR property, and thereby the EKR-module
property. This was proved in [14]. Example 1.4 shows that this fails when n = 5.

In [7], a finite group G is defined to satisfy the weak EKR property, if every transi-
tive action of G satisfies the EKR property. A finite group G is defined to satisfy the
strong EKR property, if every transitive action of G satisfies the strict-EKR property.
Theorem 1 of [7] shows that nilpotent group satisfies the weak EKR property. This
result was extended to supersolvable groups in [25]. It is easy to check that every
abelian group satisfies the strong EKR property. Theorem 3 of [7] states that a finite
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non-abelian nilpotent group satisfies the strong EKR property if and only if it is a
direct product of a 2-group and an abelian group of odd order. We now make the
following analogous definition.

Definition 1.8. A finite group G is said to satisfy the EKR-module property if every
transitive action of G satisfies the EKR-module property.

As mentioned before, groups with the strict-EKR property have the EKR-module
property. It is then natural to ask whether the converse statement is true or not.

It is shown in [7, Theorem 3] that there are infinitely many nilpotent groups of
nilpotency class 2 that do not satisfy the strict-EKR property. The next result then
answers the question in negative.

Theorem 1.9. Nilpotent groups of nilpotency class 2 satisfy the EKR-module property.

It is shown in [7, Theorem 2] that a group G satisfying the EKR property for every
transitive action is necessarily solvable. However, there do exist non-solvable groups
(see Remark 6.2) which have the EKR-module property.

An analogue of the EKR-module property has been observed in other generaliza-
tions of the EKR theorem. Consider a graph X and a prescribed set of “canonically”
occurring cliques. We say that the graph satisfies the EKR-module property, if the
characteristic vector of any maximum clique is a linear combination of the character-
istic vectors of the canonical cliques. In the context of permutation groups satisfying
the EKR-module property, the complement of the corresponding derangement graph
satisfies the EKR-module property. In Chapter 5 of [19], there are a few examples of
strongly regular graphs satisfying the EKR-module property. In [4], the authors show
that Peisert-type graphs satisfy the EKR-module property. Let q be an odd prime
power. Let F and E be finite fields of order q2 and q respectively. A Peisert-type
graph of type (m, q) is a Cayley graph of the form Cay(F, S), where the “connection”
set S is a union of m distinct cosets of the multiplicative group E× in F×. It is clear
that any set of the form sE + b, with s ∈ S and b ∈ F , is a clique. We deem these
to be the canonical cliques. In [4], the authors show that characteristic vector of any
maximum clique in a Peisert-type graph, is a linear combination of the characteristic
vectors of canonical cliques. In § 7, we give a shorter independent proof of the same.

2. The EKR-module property and character theory
In this section, we gather some tools which are used to prove our main results, and
then prove Theorem 1.5.

Let K = G(Ω) be the kernel of G on Ω. Here Ω = [G : H] for some H ⩽ G. The
following simple lemma shows that we may assume without loss of generality that K
is trivial.

Lemma 2.1. Let π : G → G/K be the natural quotient map. Then a subset S ⊂ G is
a maximum intersecting set of G if and only if π(S) is a maximum intersecting set
of G/K.

Proof. Given an intersecting set A ⊂ G, we note that AK := {ak : a ∈ A & k ∈ K}
is also an intersecting set. So any maximum intersecting set in G must be a union of
K-cosets. Let s1, s2, . . . sr ∈ G be such that S =

⋃
siK is a maximum intersecting

subset of G. We see that π(S) = {siK : 1 ⩽ i ⩽ r} is an intersecting set in G/K.
Now consider a maximum intersecting set T = {tiK : 1 ⩽ i ⩽ s} of G/K.

It is clear that π−1(T ) =
⋃
tiK ⊂ G is an intersecting set. So we have |T ||K| =

|π−1(T )| ⩽ |S|, and |S|/|K| = |π(S)| ⩽ |T |. This shows that π(S) (respectively
π−1(T )) is a maximum intersecting set of G/K (respectively G). □
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As an immediate consequence, we get the following corollary.

Corollary 2.2. Let G be a finite transitive group on Ω with kernel K = G(Ω), and
let π : G → G/K be the natural quotient map. Then the following hold:

(i) G satisfies the EKR (respectively strict-EKR) property if and only if G/K
satisfies the EKR (respectively strict-EKR) property;

(ii) G satisfies the EKR-module property if and only if G/K satisfies the EKR-
module property.

Proof. Set Q := G/K. We note that for all ω ∈ Ω and g ∈ G, we have π(g)Qω =
π(gGω) and gGω = π−1(π(g)Qω). The proof now follows from Lemma 2.1. □

For any g ∈ G, we denote by Hg the subgroup gHg−1. Given α = aH ∈ Ω, we have
Gα = Ha. Thus, with respect to this action, we see that the set {aHb : a, b ∈ G}
is the set of canonical intersecting sets. By IG(Ω), we denote the subspace of CG
spanned by the set {vaHb : a, b ∈ G} of the characteristic vectors of the canonical
intersecting sets. By the definition of the EKR-module property, the action of G on
Ω satisfies the EKR-module property if and only if vS ∈ IG(Ω) for every maximum
intersecting set S in G.

We observe that for every a, b, g, h ∈ G, we have gvaHbh = vgahHh−1b . Therefore,
IG(Ω) is a two-sided ideal of the group algebra CG. The two-sided ideals of complex
group algebras are characterized by the Artin–Wedderburn decomposition.

We will now recall some basic facts on group algebra, proofs of which can be found
in any standard text on representation theory such as [22]. Let Irr(G) be the set of

irreducible complex characters of G. For χ ∈ Irr(G), we define Mχ :=
χ(1)∑
i=1

Wi, where

{W1,W2, . . .Wχ(1)} are the right submodules of CG that afford the character χ. By
Maschke’s theorem, we have the decomposition

CG =
⊕

χ∈Irr(G)
Mχ.

For each χ ∈ Irr(G), we have dimC(Mχ) = χ(1)2 and that Mχ is a minimal two-
sided ideal containing the centrally primitive idempotent

eχ = χ(1)
|G|

∑
g∈G

χ(g−1)g.

By orthogonality relations among characters, we have

(1) eχeψ =
{

1 if χ = ψ,
0 otherwise.

Using the fact that CG is a semi-simple algebra, we now get the following descrip-
tion of two-sided ideals of CG

Lemma 2.3. Given a two-sided ideal J of CG, there is a subset YJ ⊆ Irr(G) such that
J =

⊕
χ∈YJ

⟨eχ⟩.

Our investigation of the EKR-module property of the action of G on Ω, will benefit
from the description of IG(Ω) as a direct sum of simple ideals of CG. We recall that
IG(Ω), is the subspace of CG spanned by the set {vaHb : a, b ∈ G}. We also showed
that it is a two-sided ideal.
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Lemma 2.4. Let G be a finite group, H < G a subgroup, and Ω = [G : H] be the space
of left cosets of H. Let YH = {χ ∈ Irr(G) : χ(vH) ̸= 0}. Then, the linear span IG(Ω)
of {vaHg : a, g ∈ G} decomposes as the sum

⊕
χ∈YH

⟨eχ⟩ of simple ideals of CG.

Proof. For any subset S ⊂ G and ψ ∈ Irr(G), we have
|G|
ψ(1)eψvS = |G|

ψ(1)
∑
s∈S

eψs

=
∑
s∈S

∑
g∈G

ψ(sg−1)g

=
∑
g∈G

g
∑
s∈S

ψ(sg−1)

=
∑
g∈G

ψ(vSg−1)g.

Therefore for any χ ∈ YH , we have 0 ̸= eχvH ∈ ⟨eχ⟩ ∩ IG(Ω) ⊂ IG(Ω). As ⟨eχ⟩ is a
minimal ideal, we conclude that ⟨eχ⟩ ⊂ IG(Ω).

Now consider θ ∈ Irr(G) ∖ YH . In this case, we have θ(vHg ) = θ(vH) = 0. Let
Θ : G → GLθ(1)(C) be a unitary representation affording θ as its character. Given a
subset S ⊂ G, we define MS :=

∑
s∈S

Θ(s). As Θ is a unitary representation, we have

MS−1 = M†
S , that is, MS−1 is the conjugate transpose of MS . Now given a, g ∈ H,

we have
MHga−1MaHg =

∑
x,y∈Hg

Θ(x)Θ(y) =
∑

x,y∈Hg

Θ(xy) = |H|MHg .

As θ(vHg ) = 0, we have 0 = Tr(MaHg ) = Tr(MHga−1MaHg ). Since MHga−1 = M†
aHg ,

this can only happen when MaHg = 0. Therefore, θ(vaHg ) = 0, and we conclude that
eθvaHg = 0. Thus eθ annihilates IG(Ω). As e2

θ = 1 ̸= 0, eθ cannot be an element of
the ideal IG(Ω). Now the result follows by applying Lemma 2.3 and equation (1). □

As an immediate application, we obtain a significantly shorter proof of Lemma 4.1
and Lemma 4.2 of [2]. The content of these two results is presented as the following
corollary. We will use the following technical result in the proof of Theorem 1.7. We
would like to mention that it was a key result that led to the “Module Method”
described in [2].

Corollary 2.5. Let G ⩽ Sym(Ω) be a 2-transitive permutation group with π ∈ Irr(G)
such that 1 + π is the corresponding permutation character. Given α, β ∈ Ω, set
vα,β :=

∑
{g∈G : g·α=β}

g and vG :=
∑
g∈G

g. Then

(1) IG(Ω) = ⟨e1⟩ + ⟨eπ⟩ is a vector space of dimension 1 + (|Ω| − 1)2;
(2) and the set

Bω := {vG} ∪ {vα, β : (α, β) ∈ (Ω ∖ {ω})2},
is a basis set of IG(Ω) for any ω ∈ Ω.

Proof. Part (1) follows immediately from Lemma 2.4.
We observe that for α ∈ Ω, we have vα,ω = vG−

∑
β ̸=ω

vα, β . Therefore, every vector

of the form vγ, δ is in the linear span of the elements of Bω, and thus Bω spans IG(Ω).
Linear independence follows as IG(Ω) is a |Bω|-dimensional subspace. □

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. Given χ ∈ C = {χ ∈ Irr(G) : χ(vH) = 0}, by Lemma 2.4
and (1), we have eχx = 0, for all x ∈ IG(Ω). By the definition of the EKR-module
property, for any maximum intersecting set S, we have vS ∈ IG(Ω). The equality
χ(vS) = 0 follows from eχvS = 0.

We now prove the other direction. Suppose that for any χ ∈ C and any maximum
intersecting set S, we have χ(vS) = 0. Fix a maximum intersecting set S. If S is a
maximum intersecting set, then so is Sg−1, for all g ∈ G. Therefore, χ(vSg−1) = 0,
for all χ ∈ C and all g ∈ G. Thus |G|

χ(1)eχvS =
∑
g∈G

χ(vSg−1)g = 0, for all χ ∈ C.

Further, by the equality
∑

ψ∈Irr(G)
eψ = 1, we have

vS =
( ∑
ψ∈Irr(G)

eψ

)
× vS =

( ∑
ψ/∈C

eψ

)
× vS .

By Lemma 2.4,
∑
ψ/∈C

eψ ∈ IG(Ω). Since IG(Ω) is an ideal, we have vS ∈ IG(Ω). Thus

the EKR-module property is satisfied. □

We note that if S is a maximum intersecting set, then for any t ∈ S, the set St−1

is a maximum intersecting set that contains the identity element. So every maximum
intersecting set is a “translate” of an intersecting set containing the identity. The
following corollary shows that, as far as the EKR-module property is concerned, we
can restrict ourselves to maximum intersecting sets containing the identity.

Corollary 2.6. Let G be a finite group with the identity 1G, H < G, and Ω = [G :
H]. Let C = {χ ∈ Irr(G) : χ(vH) = 0}, and

S0 = {S0 : S0 is a maximum intersecting set with 1G ∈ S0}.
Then G on Ω satisfies the EKR-module property if and only if χ(vS0) = 0 for any
S0 ∈ S0 and any χ ∈ C.

Proof. At first, we assume that χ(vS0) = 0, for all S0 ∈ S and χ ∈ C. Fix a χ ∈ C
and a maximum intersecting set S . Let P : G → GLn(C) be a unitary representa-
tion affording χ as its character. Given a set X ⊂ G, define MX :=

∑
x∈X

P (x). We

observe that MSMS−1 =
∑
t∈S

MSt−1 . Then Tr(MSt−1) = χ(vSt−1). As P is a unitary

representation, MS−1 is the conjugate transpose of MS , and thus

(2) Tr
(
MSM

†
S

)
=

∑
t∈S

χ(vSt−1).

For any t ∈ S, the set St−1 is a maximum intersecting set containing the identity
1G. Therefore, we have χ(vSt−1) = χ(vH) = 0, for all t ∈ S. Thus by (2), we have
Tr(MSM

†
S) = 0. As M†

S is the conjugate transpose of MS , the matrix MSM
†
S is a

diagonal matrix whose entries are the norms of rows of MS . Thus, Tr(MSM
†
S) = 0 im-

plies that MS = 0. We can now conclude that χ(vS) = Tr(MS) = 0. By Theorem 1.5,
the action of G on Ω satisfies the EKR-module property.

The other direction follows directly from Theorem 1.5. □

3. The EKR-module property and spectral graph theory
Results from spectral graph theory have proved useful in characterizing maximum
intersecting sets in some permutation groups (for instance, see [30, 31, 32]). Let G
be a group acting on Ω = [G : H], for some H ⩽ G. An element g ∈ G is called
a derangement if it does not fix any point in Ω. Let Der(G,Ω) denote the set of
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derangements in G. It is easy to see that Der(G,Ω) = G ∖
⋃
g∈G

gHg−1. By ΓG,Ω,

we denote the Cayley graph on G, with Der(G,Ω) as the “connection set”. We now
observe that intersecting sets in G are the same as independent sets/co-cliques in
ΓG,Ω. This observation enables us to use some popular spectral bounds on sizes of
independent sets in regular graphs. Before describing these, we recall some standard
definitions.

For graph X on n vertices, a real symmetric matrix M whose rows and columns are
indexed by the vertex set of X, is said to be compatible with X, if Mu,v = 0 whenever
u is not adjacent to v in X. Clearly, the adjacency matrix of X is compatible with
X. Given a subset S of the vertex set, by vS , we denote the characteristic vector
of S. We now state the following famous result which is referred to as either the
Delsarte–Hoffman bound or the ratio bound.

Lemma 3.1 ([19, Theorem 2.4.2]). Let M be a real symmetric matrix with constant
row sum d, which is compatible with a graph X on n vertices. If the least eigenvalue
of M is τ , then for any independent set S in X,

|S| ⩽ n(−τ)
d− τ

,

and if equality holds, then

vS − |S|
n

vX
is a τ -eigenvector for M .

The application of the above lemma on clever choices of ΓG,Ω-compatible matrices,
proved useful in characterization of maximum intersecting sets for many permutation
groups (for instance see [31, 32]). We will now describe these in detail.

Definition 3.2. Let G be a group acting transitively on a set Ω. A (G,Ω)-compatible
class function is a real valued class function f : G → R such that: (i) f(g) = 0 for all
g /∈ Der(G,Ω); and (ii) f(d) = f(d−1) for all d ∈ Der(G,Ω).

Let f be a (G,Ω)-compatible class function . Consider the matrix Mf indexed by
G × G, that satisfies Mf

g,h = f(gh−1) for all (g, h) ∈ G × G. Clearly Mf is a ΓG,Ω-
compatible matrix. We now describe the spectra of such matrices. The description of
spectra of matrices of the form Mf is a special case of well-know results by Babai
([5]) and Diaconis–Shahshahani ([13]). The following lemma, which is a special case
of Lemma 5 of [13], describes the spectra of matrices of the form Mf .

Lemma 3.3 (Babai, Diaconis–Shahshahani). Let G be a permutation group on Ω, with
Der(G,Ω) ⊂ G being the set of derangements. Let f : G → R be (G,Ω)-compatible
class function. Define Mf ∈ CG×G to be the matrix satisfying Mf

g, h = f(g−1h),
for all g, h ∈ G. Then Mf is a ΓG,Ω = Cay(G,Der(G,Ω))-compatible matrix with
spectrum Spec(Mf ) := {λχ,f : χ ∈ Irr(G)}, where

λχ,f = 1
χ(1)

∑
g∈G

f(g)χ(g).

Given ν ∈ Spec(Mf ), the ν-eigenspace in CG is the two-sided ideal∑
{χ : χ∈Irr(G) and λχ,f =ν}

⟨eχ⟩ .

We are now ready to give a sufficient condition for EKR-module property in terms
of spectra of ΓG,Ω-compatible matrices. Let f : G → R be a (G,Ω)-compatible class
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function. Then the row sum of Mf is rf :=
∑
g∈G

f(g). Let τ be the least eigenvalue of

Mf . By Lemma 3.1, for any intersecting set S, we have

|S| ⩽ |G|(−τ)
rf − τ

.

Let us assume that equality holds for some intersecting set S. By Lemmas 3.1 and
3.3, if S is an maximum intersecting set, then vS is in the 2-sided ideal

⟨e1⟩ +
∑

{χ : χ∈Irr(G) and λχ,f =τ}

⟨eχ⟩ .

Now by application of Lemma 2.4, we obtain the following sufficient condition for
EKR-module property.

Theorem 3.4. Let G be a group acting on the set Ω of left cosets of a subgroup H.
Assume that there is an intersecting set S and a (G,Ω)-compatible class function
f : G → R satisfying the following:

(i) |S| = |G|(−τ)
d− τ

, where d =
∑
g∈G

f(g) and τ is the least eigenvalue of Mf ; and

(ii) {
χ ∈ Irr(G) : 1

χ(1)
∑
g∈G

f(g)χ(g) = τ

}
⊆ {χ ∈ Irr(G) : χ(vH) ̸= 0} .

Then |S| is the size of a maximum intersecting set in G and the action of G on Ω
satisfies the EKR-module property.

At this point, we remark that the proofs of EKR ([32]) and EKR-module proper-
ties ([30]) of 2-transitive groups, involved finding a class function that satisfies the
conditions of Theorem 3.4. We also note that the converse of the above result is false.
We illustrate this using the following example.

Example 3.5. The group G := PGL(2, 7) has a subgroup H isomorphic to D8 (the
dihedral group with 16 elements). It is easy to check with the help of a computer
algebra system, that the action of G on the space ΩH := [G : H], satisfies the
strict-EKR property, and thus the EKR-module property. We claim that there is
no (G, ΩH)-compatible class function which satisfies conditions (i) and (ii) of The-
orem 3.4, simultaneously. To prove this, we use some information about character
table of G, which can be found in [10]. Let C3, C6, and C7 be the conjugacy classes
of elements of orders 3, 6, and 7 respectively. Any derangement with respect to this
action is in C3 ∪ C6 ∪ C7. From the character table of G, it follows that there exist
α, β, γ ∈ Irr(G) such that α(1) = β(1) = 6, γ(1) = 8 and IndGH(1) = 1 + α + β + γ.
There is another character δ ∈ Irr(G) ∖ {α, β} with δ(1) = 6. Let f be a (G, ΩH)-
compatible class function with f |C3 = a, f |C6 = b and f |C7 = c. From the character
table, it follows that df =

∑
g∈G

f(g) = 56a+ 56b+ 48c, λα,f = λβ,f = λδ,f = −8c, and

that λγ,f = −7a− 7b+ 6c. As this action satisfies the strict-EKR property, the size of
a maximum intersecting set is |H| = 16. Assume that f and S := H satisfy conditions
(i) and (ii) of Theorem 3.4. We cannot have λα,f = τ , else we have λδ,f = τ , which
contradicts condition (ii). This forces λγ,f = −7(a + b) + 6c = τ . From condition
(i), we have 1

21 = |S|/|G| = −τ
df − τ

, and so it follows that (a + b) = 2c and thus

τ = −7(a+b)+6c = −8c = λδ,f , which again contradicts condition (ii). Thus, we can
conclude there exists no (G, ΩH)-compatible class function f satisfying the premise
of Theorem 3.4.
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4. Proof of Theorem 1.6
In this section, we prove Theorem 1.6. By Corollary 2.2, we can restrict ourselves to
permutation groups that contain a regular normal subgroup. Let A be a finite group
and H ⩽ Aut(A). We consider the permutation action of G := A⋊H on A, defined
by (a, σ) ·b = aσ(b), for all a, b ∈ A and σ ∈ H. It is well-known that any permutation
group with a regular normal subgroup, is of the form G ⩽ Sym(A). By [1, Corollary
2.2], permutation groups which contain a regular subgroup, satisfy the EKR property.
Thus the action of G on A satisfies the EKR property.

Before starting the proof, we prove an elementary result that we will use later.
Every element of G is of the form (a, σ), where a ∈ A and σ ∈ H. Note that
(a, σ)(b, π) = (aσ(b), σπ). We need the following well-known result for technical rea-
sons.

Lemma 4.1. Consider g = (a, σ) ∈ G, with a ∈ A and σ ∈ H. If g fixes a point then
(i) g is conjugate to σ via an element of A; and
(ii) σ is the unique A-conjugate of g in H.

Proof. For convenience, given x ∈ A, we identify (x, 1H) ∈ G with x ∈ A. Given any
b ∈ A, we have (a, σ) · b = aσ(b). So (a, σ) fixes b if and only if a = bσ(b−1).

Now for c ∈ A, we have

c−1(bσ(b−1), σ)(c) = (c−1bσ(bc−1), σ).

Thus (c−1bσ(bc−1), σ) ∈ H if and only if c−1bσ(bc−1) = 1G. Then the proof follows
from setting c = b. □

We will now prove the theorem by using Corollary 2.6. Let S0 be any maximum
intersecting set with 1G ∈ S0. As S0 is an intersecting set, for all s ∈ S0, the element
s = s1−1

G fixes some point. Thus by Lemma 4.1, given s ∈ S0, there exists a unique
element σs ∈ H and an element as ∈ A, such that a−1

s sas = σs ∈ H. We now claim
that {σs : s ∈ S0} = H. Since G satisfies the EKR property, we have |S0| = |H|.
Therefore, {σs : s ∈ S0} = H is equivalent to injectivity of the map s 7→ σs.

Suppose that for some s, r ∈ S0, we have σs = σr. Then, we have

sr−1 = asσsa
−1
s arσ

−1
r a−1

r = asσs(a−1
s ar)σ−1

s a−1
r ∈ A.

As S0 is an intersecting set, sr−1 ∈ A fixes a point. Since A acts regularly, we must
have sr−1 = 1. Thus s 7→ σs is injective, and {σs : s ∈ S0} = H. As s ∈ S0 is
conjugate to σs, for any ψ ∈ Irr(G), we have ψ(vS0) =

∑
s∈S0

ψ(σs) = ψ(vH). Therefore,

if χ ∈ {ψ : ψ ∈ Irr(G) & ψ(vH) = 0} and S0 is a maximum intersecting set containing
1G, we have χ(vS0) = 0. Now, by Corollary 2.6, Theorem 1.6 is proved. □

5. The EKR-module property for primitive rank 3 group actions
In this section, we study the EKR-module property for primitive permutation groups
of rank 3, and prove Theorem 1.7. Let G be a primitive permutation group on Ω of
rank 3. To prove Theorem 1.7, we may assume that G is not an almost simple group.
Then either

(a) G is affine, so that G has a regular normal subgroup, or
(b) G is in product action, and G ⩽ T ≀ S2 on Ω2, where T ⩽ Sym(Ω) is 2-

transitive.
If G is affine, then G indeed satisfies both the EKR and EKR-module property by

Theorem 1.6. We thus assume further that G is in product action in the rest of this
section.
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Let T ⩽ Sym(Ω) be a 2-transitive group, and let H = Tω < T , where ω ∈ Ω.
Let G = T ≀ S2, and M = H ≀ S2. Then G naturally acts on Ω2, with M = G(ω,ω).
Obviously,

{(ω, ω)}, (Ω ∖ {ω}) × (Ω ∖ {ω}), and ((Ω ∖ {ω}) × {ω})
⋃

({ω} × (Ω ∖ {ω}))
are the orbits of M = G(ω,ω) on Ω2. Thus G is of rank 3.

In view of Corollary 2.6, it is beneficial to obtain descriptions of the set Irr(G) of
irreducible characters of G, and of the maximum intersecting sets in G containing
the identity. As one would expect, the 2-transitive action T on Ω plays a major role.
Before going any further, we establish some notation. In G = T ≀S2 = (T ×T )⋊S2, by
π, we denote the unique 2-cycle in S2. Elements of G∖(T ×T ) are of the form (s, r)π,
where s, r ∈ T . By (s, r)π, we denote the product of elements (s, r) and π of G.

We start by describing Irr(G). The subgroup N := T×T of G is a normal subgroup
of index 2. By Clifford theory ([22, 6.19]), restriction of any irreducible character
ν ∈ Irr(G) to N is either an irreducible G-invariant character of N , or the sum of
two G-conjugate irreducible characters of N . From well-known results on characters
of direct products, we have

Irr(N) = {χ× λ : χ, λ ∈ Irr(T )}.
Let χ, λ be two distinct irreducible characters of T , then the inertia subgroup in G of
χ× λ is N , and therefore σχ,λ := IndGN (χ× λ) is an irreducible character of G, with
ResGN (σχ,λ) = χ×λ+λ×χ. Now consider an irreducible character of N , of the form
χ × χ. Let P : T → GL(V ) be a representation affording χ as its character. Then
P ⊗P : N → GL(V ⊗ V ) is a representation of N that affords χ× χ as its character.
Let π be the unique 2-cycle in S2. Define Ψ : G → GL(V ⊗V ) to be the representation
such that Ψ|N= P ⊗ P and Ψ(π)(v ⊗ w) = w ⊗ v for all v, w ∈ V . The character
ρχ afforded by Ψ is an irreducible character of G that extends χ × χ. We also have
ρχ((s, r)π)) = χ(rs) for all r, s ∈ T . By a result of Gallagher ([22, 6.17]), there is
exactly one other irreducible character of G whose restriction to N is χ× χ, namely
βρχ, where β is the unique non-trivial linear character with kernel N . Therefore by
Clifford theory any irreducible character is one of the characters defined above.

Lemma 5.1. The set
{ρχ : χ ∈ Irr(T )} ∪ {βρχ : χ ∈ Irr(T )} ∪ {σχ,λ : χ, λ ∈ Irr(T ) and χ ̸= λ}

is the complete set of irreducible characters of G.

We now describe the permutation character for the action G on Ω2. As T is a 2-
transitive group, there exists ψ ∈ Irr(T ) such that 1 +ψ is the permutation character
for T . A computation then shows that Λ := 1+ρψ+σψ,1 is the permutation character
for G.

The next lemma follows from the proof of Lemma 3.5 of [21], which is essentially
the same as Lemma 4.2 of [3].

Lemma 5.2. Every maximum intersecting set for the action of T × T on Ω2 is of the
form S ×R, where S and R are maximum intersecting sets with respect to the action
of T on Ω.

We now give the following characterization of maximum intersecting sets in the
group G = T ≀ S2.

Lemma 5.3. The action of G on Ω2 satisfies the EKR property. If S is a maximum
intersecting set in G that contains the identity, then there are maximum intersecting
sets X, W , Z in T such that:

(i) S = (W × Z) ∪ (X ×X−1)π, and
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(ii) W and Z contain the identity of T .
Proof. As T is a 2-transitive group, by the main results of [32] and [30], the action of
T on Ω satisfies both EKR and EKR-module properties. By Lemma 5.2, a maximum
intersecting set for the action of N := T ×T on Ω2 is of the form S×R, where S and
R are maximum intersecting sets in T . Therefore, the action of N on Ω2 also satisfies
the EKR property. The subgroup N of G is a transitive subgroup satisfying the EKR
property, and so by Lemma 3.3 of [32], we see that the action of G also satisfies the
EKR property.

We consider a maximum intersecting set S with respect to the action of G on Ω2.
We further assume that S contains the identity element. With this assumption, every
element of S must fix a point in Ω2. Now S ∩ N and (S ∩ Nπ)π−1 are intersecting
sets with respect to the action of N on Ω2. We note that H × H ⩽ N is a point
stabilizer for this action. Since the action of N on Ω2 satisfies the EKR property, we
have |H × H| ⩾ |(S ∩ N)| and |H × H| ⩾ |(S ∩ Nπ)π−1|. Now since the action of
G on Ω2 satisfies the EKR property, M is a point stabilizer, and S is a maximum
intersecting set in G, we have 2|H × H| = |M | = |S| = |(S ∩ Nπ)π−1| + |(S ∩ N)|.
Therefore, both S ∩N and (S ∩Nπ)π−1 are maximum intersecting sets in N . Using
Lemma 5.2, we see that there are maximum intersecting sets W , Z, X, Y in T , such
that (i) S ∩N = W ×Z; and (ii) (S ∩Nπ) = (X×Y )π. As S ∩N contains the identity
of N , W and Z must contain the identity of T . We will now show that X−1 = Y .

Given x ∈ X and y ∈ Y , consider the element (x, y)π ∈ (S ∩ Nπ) ⊂ S. As we
assume that S contains the identity, (x, y)π must fix a point. That is to say, 0 ̸=
Λ((x, y)π) = 1 +ψ(xy), where Λ and ψ are as described prior to the statement of the
lemma. As 1 +ψ is the permutation character for the action of T on Ω, 1 +ψ(xy) ̸= 0
if and only if xy ∈ T fixes a point of Ω. Thus for for a given y ∈ Y , the set X ∪ {y−1}
is an intersecting set in T . As X is a maximum intersecting set in T , we must have
y−1 ∈ X. This shows that Y = X−1. □

We recall that Λ = 1 + ρψ + σψ,1 is the permutation character for the action of G
on Ω2, where ψ ∈ Irr(T ) is such that 1+ψ is the permutation character for the action
of T on Ω. By Corollary 2.6, EKR-module property of G is equivalent to showing
that ν(vS) = 0 for all maximum intersecting sets S that contain the identity and
ν ∈ Irr(G) ∖ {1, σψ,1, ρψ}. Let S0 be a maximum intersecting set in G such that
1G ∈ S0. By Lemma 5.3, there are maximum intersecting sets X,W,Z in T such that
: Z and W contain the identity of T ; and S0 = W ×Z∪

(
Z × Z−1)

π. For any distinct
pair χ, λ ∈ Irr(T ), we can compute the following character sums:

(I) ρχ(vS0) = χ(vW )χ(vZ) +
∑
r,s∈Z

χ(r−1s) = χ(vW )χ(vZ) +
∑
r∈Z

χ(vr−1Z);

(II) βρχ(vS0) = χ(vW )χ(vZ) −
∑
r,s∈Z

χ(r−1s) = χ(vW )χ(vZ) −
∑
r∈Z

χ(vr−1Z); and

(III) σχ, λ(vS0) = χ(vW )λ(vZ) + λ(vW )χ(vZ).
We need to compute χ(vS), for all χ ∈ Irr(T ) and all maximum intersecting sets S in
T . To do so, we use the EKR and EKR-module properties of 2-transitive groups.
Lemma 5.4. Let T ⩽ Sym(Ω) be a 2-transitive group with H ⩽ G being the point
stabilizer. Let ψ ∈ Irr(T ) be such that 1 + ψ is the permutation character. If S is an
maximum intersecting set in T , then

(i) ψ(S) = |H|, when 1 ∈ S;
(ii) ψ(S) = −|H|/ψ(1), provided 1 /∈ S; and
(iii) ν(S) = 0 for all irreducible characters ν /∈ {1, ψ}.

Proof. As T is 2-transitive, it satisfies both the EKR and EKR-module properties.
By Corollary 2.5, vS is in the ideal J = ⟨e1⟩ + ⟨eψ⟩. By the orthogonality relations
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among centrally primitive idempotents, we see that left multiplication by e1 + eψ
is a projection onto J . That is (e1 + eψ)(vS) = vS . Writing both sides as a linear
combination of the elements in the basis set {t ∈ T} of the group algebra CT , and
equating the coefficients of the identity element on both sides, yields the first two
formulae.

Part (iii) is a direct consequence of Corollary 2.6. □

Pick a maximum intersecting set S0 in G such that 1G ∈ S0, and let ν ∈ Irr(G) ∖
{1, σψ,1, ρψ, βρψ}. Now applying Lemma 5.4 (ii) and the character sum formulas
(I) (II) and (III) given above yields that ν(vS0) = 0. As 1, σψ,1, ρψ are the only
irreducibles that contribute to the permutation character for the action of G on Ω2,
in view of Corollary 2.6, we need to show that βρψ(vS0) = 0. This is indeed true by
Lemma 5.4, and then Theorem 1.7 follows from an application of Corollary 2.6. □

6. Some groups satisfying the EKR-module property
In this section, we study groups satisfying the EKR-module property. Recall (from
Definition 1.8) that a finite group G satisfies the EKR-module property if every tran-
sitive action of G satisfies the EKR-module property. We first prove Theorem 1.9.

6.1. Proof of Theorem 1.9. In this subsection, we consider transitive actions of
nilpotent groups of nilpotency class 2. By [7, Theorem 3], all transitive actions of
nilpotent groups satisfy the EKR property. In the same paper, it was also shown
that there are examples of class-2 nilpotent groups that do not satisfy the strict-EKR
property. We will show that all transitive actions of class-2 nilpotent groups satisfy
the EKR-module property. Our proof is a proof by contradiction.

Recall the following well-known result from character theory.

Lemma 6.1. Let G be a group, ψ an irreducible complex character of G, and z an
element of the centre of G. Then for all g ∈ G, we have ψ(gz) = ψ(g)ψ(z).

Proof. Let ρ : G → GL(V ) be a representation affording ψ as its character. As
z is in the centre, the map ρ(z) : V → V is a G-module homomorphism. Thus,
by Schur’s lemma, ρ(z) acts like a scalar matrix, and thus ψ(gz) = Tr(ρ(gz)) =
Tr(ρ(g))Tr(ρ(z)) = ψ(g)ψ(z). □

Assume that Theorem 1.9 is false. LetN be a class-2 nilpotent groupN , andH ⩽ N
such that the action of N on Ω = [N : H] does not satisfy the EKR-module property.
We may further assume that |N | + |Ω| is as small as possible. By the minimality of
(N,Ω) and by Corollary 2.2, the action of N on Ω must be a permutation action.
In other words, H is core-free, that is,

⋂
n∈N

nHn−1 = {1N}. As the action of N on

Ω does not satisfy the EKR-module property, by Theorem 1.5, there is a character
χ ∈ {ψ : ψ ∈ Irr(N) & ψ(vH) = 0} and a maximum intersecting set S such that
χ(vS) ̸= 0. We fix one such pair χ,S.

As N is nilpotent, it has a non-trivial centre, which we denote by Z. Given a
character ψ of N , we denote its kernel, {n ∈ N : ψ(n) = ψ(1)}, by ker(ψ). As
every non-trivial normal subgroup of a nilpotent group intersects non-trivially with
the centre, we either have ker(χ) ∩ Z ̸= {1N}, or that χ is a faithful character.

We first assume that χ is faithful. As N is a class-2 nilpotent group, we have
Z ⊃ [N,N ]. Since N is non-abelian, given y ∈ N ∖ Z, we can pick x ∈ N be such
that z := xyx−1y−1 ̸= 1N . As χ is faithful, we have χ(z) ̸= 1. Since xyx−1 = zy, we
have χ(y) = χ(xyx−1) = χ(yz). As z is a central element, by Lemma 6.1, we have
χ(y) = χ(y)χ(z). As χ(z) ̸= 1, we must have χ(y) = 0 for all y ∈ N ∖ Z. Recall that
H is core-free, and thus H ∩Z = {1N}. We can now conclude that χ(vH) = χ(1) ̸= 0.
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This contradicts our initial condition that χ(vH) = 0, and therefore χ cannot be
faithful.

Now we are left with the case when χ is not faithful. By ker(χ), we denote the
kernel of a corresponding representation. We set Zχ = ker(χ) ∩ Z. We note that
Zχ is a non-trivial normal subgroup of N . As H is a core-free subgroup, we have
Zχ∩nHn−1 = {1N}, for all n ∈ N . Thus the action of Zχ on Ω is semi-regular. If the
action of Zχ is regular, then it is a regular normal subgroup, and thus by Theorem 1.6,
the action of N on Ω must satisfy the EKR-module property. As this contradicts our
assumption, the action of Zχ on Ω must be semi-regular and intransitive. As Zχ�N ,
the set Ω̃ of Zχ orbits on Ω, is a block system for the action of N on Ω. Since Zχ acts
intransitively, we have |Ω̃| ≨ |Ω|, and thus |N | + |Ω̃| ≨ |N | + |Ω|. We now consider
the transitive action of N on Ω̃. The elements of HZχ fix the Zχ-orbit containing the
element H ∈ Ω. Observing that |N |/|HZχ| = |N |/|H||Zχ| = |Ω|/|Zχ| = |Ω̃|, we can
conclude that HZχ is a stabilizer for the action of N on Ω̃. As S is an intersecting
set with respect to the action of N on Ω, the set SZχ is an intersecting set with
respect to the action of N on Ω̃. Since Zχ is a central semi-regular subgroup in
N ⩽ Sym(Ω) and S is an intersecting set, we can conclude that |SZχ| = |S||Zχ|. As
we mentioned above, transitive actions of nilpotent groups satisfy the EKR property,
and thus since S is a maximum intersecting set with respect to the action of N on
Ω, we have |S| = |H|, and therefore |SZχ| = |HZχ|. We can now see that SZχ is
a maximum intersecting set with respect to the action of N on Ω̃. As Zχ ⩽ ker(χ)
is a central subgroup, by using Lemma 6.1, we have χ(vSZχ) = |Zχ| × χ(vS) and
χ(vHZχ

) = |Zχ| × χ(vH). By our choice of χ and S, χ(vH) = 0 and χ(vS) ̸= 0.
Therefore SZχ is a maximum intersecting set with respect to the action of N on Ω̃
and χ is a character in {ψ ∈ Irr(G) : ψ(vHZχ

) = 0}, such that χ(vSZχ
) ̸= 0. So by

Theorem 1.5, the action of N on Ω̃ does not satisfy the EKR-module property. Now
since |N | + |Ω̃| ≨ |N | + |Ω|, this conclusion contradicts the minimality of (N, Ω).
Therefore our assumption that χ is not faithful must be false.

Both cases return contradictions, and hence our initial assumption that Theorem
1.9 fails, must be false. This concludes the proof. □

We end this section with a remark comparing the class of groups that satisfy the
weak EKR property (as defined in [7]) and class of groups that satisfy the EKR-
module property.

Remark 6.2. Theorem 1.9 and Theorem 3 of [7] establish the existence of infinitely
many groups that satisfy both the weak EKR and EKR-module properties, but not
the strict-EKR property. Theorem 2 of [7] shows that groups that satisfy the weak
EKR property are necessarily solvable. However, the EKR-module property is not
so restrictive. For instance, the simple group A5 satisfies the EKR-module property.
This is easily verifiable with the use of a computer. Alternatively, this can also be
proved using Theorem 1.5 and Theorem 3.4.

7. The EKR-module property in strongly regular graphs
In the section, we consider maximum cliques in the Peisert-type strongly regular
graphs defined in [4]. These are a subclass of strongly regular graphs found in [8].
Consider a strongly regular graph X, with a prescribed set C of “naturally” occurring
cliques. Cliques in C will be called canonical cliques. We say that X satisfies the EKR-
module property with respect to C if the characteristic vector of every maximum clique
in X is a linear combination of characteristic vectors of the cliques in C. We now define
Peisert-type graphs.
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Definition 7.1. Let q be an odd prime power. Then a Peisert-type graph of type
(m, q) is a Cayley graph on the additive group of Fq2 with its “connection” set S being
a union of m cosets of F×

q in F×
q2 such that F×

q ⊂ S.

Given a Peisert-type graph of type (m, q), with connection set S. For any s ∈ S
and x ∈ Fq2 , the set sFq +x is a naturally occurring clique. By a canonical clique in a
Peiset-type graph, we mean a clique of the form sFq+x, where s ∈ S and x ∈ Fq2 . The
main result of [4] is the following shows that Peisert-type graphs satisfy EKR-module
property. In this section, we give a shorter and different proof of the same.

Theorem 7.2 ([4, Theorem 1.3]). The characteristic vector of a maximum clique in
a Peisert-type graph is a linear combination of characteristic vectors of its canonical
cliques.

We now collect some results about Peisert-type graphs and some general results
about strongly regular graphs. The main result of [8] shows that Peisert-type graphs
are strongly regular. A different proof of the same is given in [4]. We will give a proof
using a standard technique of finding eigenvalues of an abelian Cayley graph.

Lemma 7.3. A Peisert-type graph of type (m, q) is strongly regular with eigenvalues
k := m(q − 1) with multiplicity 1, q − m with multiplicity m(q − 1), and −m with
multiplicity q2 − 1 −m(q − 1).

Proof. Let X be a Peisert-type graph of type (m, q) whose connection set is S =
m−1⋃
i=0

ciF×
q (with c0 = 1). Let A be the adjacency matrix of X. Considering an additive

character of χ of Fq as a column vector, we see that Aχ = χ(vS)χ, where χ(vS) =∑
s∈S

χ(s).

If χ is not the trivial character, Ker(χ) ̸= Fq2 , and so at most one of {ciFq : 0 ⩽
i ⩽ m − 1} can be a subgroup of Ker(χ). Thus if ciFq ⊂ Ker(χ) for some i, then
the restriction χ|cjFq

of χ onto the subgroup cjFq, is a non-trivial character whenever
j ̸= i. Otherwise, Ker(χ) will have two 1-dimensional subspaces of Fq2 and thus must
be equal to Fq2 .

Assume that χ is a non-trivial character with ciFq ⊆ Ker(χ). As the sum of values
of a non-trivial character are zero, in this case, we have

χ(vS) =
∑

x∈ciF×
q

χ(x) +
∑
j ̸=i

∑
x∈cjF×

q

χ(x)

= q − 1 − (m− 1) = q −m.

The set on non-trivial characters χ with ciFq ⊂ Ker(χ) is in one-one correspondence
with the non-trivial characters of Fq2/ciFq. Thus there are at least m(q−1) characters
χ such that Aχ = (q − m)χ. As distinct characters are orthogonal the dimension of
the (q −m)-eigenspace of A is atleast m(q − 1).

Similarly, if χ is a non-trivial character with ciFq ̸⊆ Ker(χ) for all 0 ⩽ i ⩽ m− 1,
we have χ(vS) = −m. Thus there are atleast q2 − 1 − m(q − 1) characters χ such
that Aχ = (−m)χ. As distinct characters are orthogonal the dimension of the (−m)-
eigenspace of A is atleast q2 − 1 −m(q − 1).

If χ is the trivial character χ0, we have Aχ0 = |S|χ0. With this, we have found
all the eigenvalues of A and their corresponding eigenspaces. As A has exactly three
distinct eigenvalues, it is a strongly regular graph. □

LetX be a strongly regular graph with parameters (v, k, λ, µ), which is a k-regular
graph on v vertices such that
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(i) any two adjacent vertices have exactly λ common neighbours, and
(ii) any two non-adjacent vertices have exactly µ common neighbours.

We further assume that X is primitive, that is, both X and its complement are
connected. It is well known ([20, Lemma 10.2.1]) that the adjacency matrix A of
X has exactly three distinct eigenvalue. As X is k-regular and connected, k is an
eigenvalue of A with multiplicity 1. Let r, s with r > s be the other eigenvalues.

Our proof uses some results on graphs in association schemes. For a quick intro-
duction to the preliminaries on graphs in association schemes, we refer the reader
to Chapter 3 of [19]. We first recall the following well-known result linking strongly
regular graphs with association schemes. By J and I, we denote the all-one matrix
and the identity matrix respectively.

Lemma 7.4 ([19, Lemma 5.1.1]). Let X be a graph with A as its adjacency matrix.
Then X is strongly regular if and only if AX := {I, A, A := J − I − A} is an
association scheme.

By C[AX ], we denote the linear span of matrices in AX . This is referred to as the
Bose-Mesner algebra. By a well-known result ([19, Theorem 3.4.4]), the projections
onto eigenspaces of A is an orthogonal basis of idempotents of C[AX ]. The matrix J is
the projection onto the k-eigenspace. We denote Er and Es to be the projections onto
the r-eigenspace and the s-eigenspace respectively. We have A = kJ + rEr + sEs,
I = J

n + Er + Es, and so {Jn , Er, Es} is an orthogonal basis of idempotents of
C[AX ]. We now mention a bound by Delsarte (see equation (3.25) of [11]) on cliques
in strongly regular graphs. We state the formulation of this result as given in [19,
Corollary 3.7.2].

Lemma 7.5. Let X be k-regular strongly regular graph with s as the least eigenvalue
of its adjacency matrix. If C is a clique in X, then |C| ⩽ 1 − k

s .
Moreover, if C is a clique that meets the bound with equality, then the characteristic

vector vC is orthogonal to the s-eigenspace.

Given a subset B of the vertex set of X, by vB , we denote the characteristic vector
of B, and by 1, the all-one vector. Consider the C-linear span Vmax of characteristic
vectors of maximum cliques in X. By the above lemma, we have |C| ⩽ 1 − k

s , for any
clique C. Assume that there is a clique C of size 1 − k

s , then by the above Lemma,
Vmax is orthogonal to the s-eigenspace. We will now show that Vmax is in the image
of J

n + Er.

Lemma 7.6. Let X be k-regular strongly regular graph on n vertices with {k, r, s}
with r > s as set of distinct eigenvalues of its adjacency matrix. If X has a clique of
size 1 − k

s , then vC − |C|
n 1 is an r-eigenvector.

Proof. From Lemma 7.5, we have EsvS = 0. As 1 is a k-eigenvector, it is also orthog-
onal to the s-eigenspace. Since JvC = |C|1, the vector vC − |C|

n 1 is orthogonal to
both the k-eigenspace and the s-eigenspace, and so must lie in the r-eigenspace. □

We are now ready to prove Theorem 7.2.

Proof of Theorem 7.2. Let X be a Peisert-type graph of type (m, q) whose connection

set is S =
m−1⋃
i=0

ciF×
q (with c0 = 1). By Lemmas 7.3, 7.5 and 7.6, we obtain the next

result.

Lemma 7.7. If C is a maximum clique in X, then |C| = q and vC − 1
q1 is a (q−m)-

eigenvector.
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Thus, given x ∈ Fq2 and 0 ⩽ i ⩽ m−1, the canonical clique ciFq+x is a maximum
clique and vci,x := vciFq+x− 1

q1 is a (q−m)-eigenvector. By Lemma 7.3, the dimension
of the (q − m)-eigenspace is m(q − 1). Using the above Lemma, we can now deduce
that Theorem 7.2 follows from showing that {vci,x : x ∈ Fq2 & 0 ⩽ i ⩽ m−1} spans
an m(q − 1) dimensional vector space.

Given an additive character χ of Fq2 , we set vχ :=
∑

z∈Fq2

χ(z)z. In the proof of

Lemma 7.3, we see that the (q −m)-eigenspace Vq−m, is spanned by

{vχ : χ is non-trivial and ciFq ⊆ Ker(χ) for some 0 ⩽ i ⩽ m− 1}.

Let Ei =
〈
{vχ : Fq2 ⊋ Ker(χ) ⊃ ciFq}

〉
. Then we have

Vq−m =
⊕
Ei.

By [ , ], we denote the natural orthogonal form on C[Fq2 ]. With respect to this
form, we have E⊥

i =
⊕
j ̸=i

Ej . If χ is a non-trivial character, then

[vχ,vci,x] = χ(x)
∑
z∈ciFq

χ(z).

Therefore, vci,x ∈ Ei for all x ∈ Fq2 . We will now show that vectors of the form vci,x

span Ei. Considering x ∈ F×
q2 and fi,x := vci, 0 − vci, x = vciFq − vciFq+x. As the

set {vciFq+x : x ∈ Fq2} is a set of q orthogonal vectors, the set {fi,x : x ̸= 0}
spans a q − 1 dimensional vector space. Therefore {vci,x : x ∈ Fq2} spans Ei. Thus
{vci,x : x ∈ Fq2 & 0 ⩽ i ⩽ m− 1} spans Vq−m =

⊕
Ei. This concludes the proof of

Theorem 7.2. □

8. Conclusion and further work
We end this paper with some directions for future research. Theorem 4.5 of [2], pro-
vides a sufficient condition for a 2-transitive group to satisfy the strict-EKR property.
They refer to this as the module method. EKR-module property of 2-transitive groups
is a key result that makes this method work. It is now natural to ask the following
question.

Problem 8.1. Find a condition under which EKR-module property implies the strict-
EKR property. More specifically, generalize Ahmadi and Meagher’s module method to
group actions satisfying the EKR-module property.

After finding a strong characterization of intersecting sets in 2-transitive groups,
the authors of [30], noted that investigating intersecting sets in rank 3 group actions
is a natural progression.

Problem 8.2. (1) Which rank 3 group actions satisfy the EKR property?
(2) Which rank 3 group actions satisfy the EKR-module property?
(3) Which rank 3 group actions satisfy the strict-EKR property?

Theorem 1.7 reduces (1) and (2) of the above problem to the following two classes:
(a) primitive rank 3 actions of almost simple groups and (b) imprimitive rank 3
actions. We end by noting that, a classification of primitive rank 3 actions of almost
simple groups is well known (see [6, 23, 26]). In [12], a classification of imprimitive
rank 3 group actions was achieved.
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