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On Dyck path expansion formulas for rank 2
cluster variables

Amanda Burcroff

Abstract In this paper, we simplify and generalize formulas for the expansion of rank 2 cluster
variables. In particular, we prove an equivalent, but simpler, description of the colored Dyck
subpaths framework introduced by Lee and Schiffler. We then prove the conjectured bijectivity
of a map constructed by Feiyang Lin between collections of colored Dyck subpaths and com-
patible pairs, objects introduced by Lee, Li, and Zelevinsky to study the greedy basis. We use
this bijection along with Rupel’s expansion formula for quantum greedy basis elements, which
sums over compatible pairs, to provide a quantum generalization of Lee and Schiffler’s colored
Dyck subpaths formula.

1. Introduction
The theory of cluster algebras, introduced twenty years ago by Fomin and Zelevin-
sky [5], gives us a combinatorial framework for understanding the previously opaque
nature of certain algebras. Each cluster algebra is generated by its cluster variables,
which can be obtained via the recursive process of mutation. The Laurent phenome-
non says that each cluster variable in a rank-n cluster algebra can be expressed as a
Laurent polynomial in the n initial cluster variables. While in general, finding explicit
formulas for the Laurent expansions of arbitrary cluster variables is difficult, there has
been significant progress in understanding the expansions in low-rank cluster algebras.
In this work, we attempt to unify and simplify some existing expansion formulas for
rank-2 cluster variables and their quantum generalizations.

In 2011, Lee and Schiffler provided the first combinatorial formula for the Lau-
rent expansion of arbitrary skew-symmetric rank-2 cluster variables [10, Theorem 9].
They expressed the coefficients as sums over certain collections of non-overlapping
colored subpaths of a maximal Dyck path. This established the positivity of the Lau-
rent expansion in skew-symmetric rank 2 cluster algebras, and later for arbitrary rank
[11, 12]. Lee and Schiffler [9, Theorem 11] and Rupel [15, Theorem 6] then generalized
this formula (in the skew-symmetric and skew-symmetrizable cases, respectively) to
the non-commutative rank-2 setting, giving each collection a weight expressed as an
ordered product of two non-commuting initial cluster variables. In 2012, Lee, Li, and
Zelevinsky [8] defined the greedy basis for rank-2 cluster algebras, which includes the
cluster variables. They provided a combinatorial formula for the Laurent expansion of
each greedy basis elements as a sum over compatible pairs, certain collections of edges
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A. Burcroff

of a maximal Dyck path [8, Theorem 11]. Rupel later gave a non-commutative ana-
logue of this formula, which specializes to a formula for the coefficients in the quantum
rank-2 cluster algebra setting [16, Corollary 5.4]. In particular, each compatible pair
is weighted by a corresponding power of a quantum parameter q, where the exponent
is computed as a sum over all pairs of edges in the maximal Dyck path. Rupel [14,
Theorem 1.2] has also provided a quantum analogue to the Caldero–Chapoton expan-
sion formula [2] for rank-2 cluster variables expressed as a sum over indecomposable
valued-quiver representations.

To summarize, there are two different combinatorial formulas for the Laurent ex-
pansion of skew-symmetric rank-2 cluster variables: one in terms of collections of
colored Dyck subpaths [10] and the other in terms of compatible pairs [8]. The com-
binatorics of collections of colored Dyck subpaths and compatible pairs are somewhat
similar, suggesting that there might be a nice correspondence between them. A corre-
spondence was known to Lee, Li, and Zelevinsky [8] and they suggested in their 2012
paper that they planned to provide details in the future, but this has not yet appeared
in the literature. In 2021, Feiyang Lin constructed a map between a superset of the
collections of colored Dyck subpaths and compatible pairs and conjectured that the
map restricts to a bijection in [13, Conjecture 3]. Lin made partial progress toward
proving this, reducing the conjecture to a technical statement [13, Conjecture 4].

In this work, we start by providing a simplification of Lee–Schiffler’s formula for
rank-2 cluster variables in terms of colored Dyck subpath conditions. We then use
our simpler formula to prove Lin’s conjectures [13, Conjectures 3 & 4] that the map
constructed between collections of colored Dyck subpaths and compatible pairs is
indeed a bijection. (Our methods do not rely on the technical reformulation presented
by Lin.) This bijection gives an efficient method for generating all compatible pairs
in the cluster variable case. We then use the bijection along with Rupel’s quantum
weighting of compatible pairs [16] to provide a quantum version of Lee and Schiffler’s
rank-2 expansion formula for cluster variables. This new formula has the advantage of
requiring less computation than that in [16, Corollary 5.4] and explicitly calculating
the coefficients in the quantum case, rather than expressing each term as an ordered
product as in [15]. It is also more elementary than the expansion formula in [14],
which is based on the theory of valued quiver representations.

The paper is organized as follows. In Section 2, we give an overview of the results,
culminating in the main results, Theorem 2.8 and Theorem 2.11. Section 3 contains
some preliminaries concerning maximal Dyck paths. The proof of the simplification
of Lee and Schiffler’s [10] colored Dyck subpath conditions is the focus of Section 4.
Section 5 contains the proof of Lin’s conjectures [13, Conjectures 3 & 4], establishing
a bijection between collections of colored Dyck subpaths from the Lee–Schiffler [10]
setting and compatible pairs from the Lee–Li–Zelevinsky [8] setting. This bijection is
applied to Rupel’s [16] quantum weighting on compatible pairs to yield a quantum
analogue of Lee–Schiffler’s [10] expansion formula in Section 6. We conclude with a
discussion of further directions in Section 7.

2. Statement of results
For a positive integer r and variables X1, X2, we consider the sequence {Xn}n∈Z of
expressions recursively defined by

(1) Xn+1 = Xr
n + 1
Xn−1

.

This sequence is precisely the set of variables of the rank-2 cluster algebra A(r, r)
associated to the r-Kronecker quiver, which consists of two vertices with r arrows

Algebraic Combinatorics, Vol. 7 #2 (2024) 530



On Dyck path expansion formulas for rank 2 cluster variables

between them. The sequence is periodic when r = 1, and otherwise all Xn are distinct.
For background on cluster algebras, see [4].

Definition 2.1. For nonnegative integers a and b, the maximal Dyck path P(a, b) is
the path proceeding by unit north and east steps from (0, 0) to (a, b) that is closest to
the line segment between (0, 0) and (a, b) without crossing strictly above it. For two
vertices u,w along such a path, let s(u,w) denote the slope of the line segment between
them.

Let {cn}∞
n=1 be the sequence of non-negative integers defined recursively by:

(2) c1 = 0, c2 = 1, and cn = rcn−1 − cn−2 for r ⩾ 2 .
Let Cn = P(cn−1, cn−2) and Dn = P(cn−1 − cn−2, cn−2). We label the leftmost vertex
at each height of Dn by vi for i = 0, . . . , cn−2, with the subindex increasing from
south to north; such vertices are called northwest corners. Let γ(i, k) be the subpath
spanning from vi to vk for any 0 ⩽ i < k ⩽ b. An example of the maximal Dyck path
D5 = P(5, 3) when r = 3 is shown in Figure 1.

Lemma 2.2. Let t(i) be the minimum integer greater than i such that s(vi, vt(i)) > s.
Then we have t(i) − i = cm − wcm−1 for a unique choice of 2 ⩽ w ⩽ r − 1 and
3 ⩽ m ⩽ n− 2.

This result allows us to simplify the expansion formula of Lee and Schiffler, which is
briefly described below. The next few definitions and Corollary 2.4 emulate the results
of Lee and Schiffler, except for slight modifications due to the simplified coloring
conditions above.

Definition 2.3 (cf. Definition 4.1). For any 0 ⩽ i < k ⩽ cn−2, let γ(i, k) be the
subpath of Dn from vi to vk, which is assigned a color as follows:

(1) If s(vi, vt) ⩽ s for all t such that i < t ⩽ k, then γ(i, k) is blue.
(2∗) Otherwise, let m,w be chosen with respect to i as in Lemma 2.2. Then we say

γ(i, k) is (m,w)-brown.(1)

A subpath of Dn is a path of the form γ(i, k) or a single edge αi. We denote the
set of such subpaths by P ′(Dn). We define the set F ′(Dn) to contain any collection
of subpaths in P ′(Dn) satisfying that

(i) no two subpaths share an edge,
(ii) two subpaths share a vertex only if at least one of them is a single edge, and
(iii) at least one of the cm−1 −wcm−2 edges preceding each (m,w)-brown subpath

is contained in another subpath.
Given β ∈ F ′(Dn), the quantity |β|1 is defined additively over the subpaths, taking
value k−i on γ(i, k) and value 0 on single edges. The quantity |β|2 is the total number
of edges in β. This yields the following expansion formula for the cluster variables.

Corollary 2.4 (analogue of [10, Theorem 9]). Consider the cluster algebra A(r, r)
with cluster variables Xi for i ∈ Z. For n ⩾ 3, we have

Xn = X
−cn−1
1 X

−cn−2
2

∑
β∈F ′(Dn)

X
r|β|1
1 X

r(cn−1−|β|2)
2

and
X3−n = X

−cn−1
2 X

−cn−2
1

∑
β∈F ′(Dn)

X
r|β|1
2 X

r(cn−1−|β|2)
1 .

(1)The color brown was chosen because it is the combination of Lee and Schiffler’s red and green
cases.
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Figure 1. The leftmost image shows the maximal Dyck path D5 for
r = 3, along with the corresponding 5 × 3 grid and main diagonal.
The northwest corners are labeled and depicted as filled vertices. The
center image is the collection β of colored Dyck subpaths in F ′(D5)
from Example 2.5, consisting of the blue subpath γ(0, 1), the single
edge α6 (shown in orange), and the (3, 2)-brown subpath γ(2, 3). The
rightmost image is the compatible pair on C5 that β maps to under Φ,
where an edge is thickened whenever it is included in the compatible
pair.

A generalization of the above expansion result to the case of skew-symmetric rank-
2 cluster algebras with coefficients is presented at the end of Subsection 4.3 (see
Corollary 4.19).

Example 2.5. For r = 3, the collection of colored subpaths β = {γ(0, 1), α6, γ(2, 3)}
is in F ′(D5). This collection is depicted in Figure 1 by thickened paths of the cor-
responding colors, where the single vertical edge α6 is represented by a thick orange
edge. Note that in this case, we have |β|1 = 2 and |β|2 = 6.

We now define the compatible pairs in Cn, introduced by Lee–Li–Zelevinsky [8],
and we will show that these are in bijection with collections of colored Dyck subpaths
of Dn. Given two vertices u,w in a maximal Dyck path P(a, b), let −→uw denote the
subpath proceeding east from u to w, continuing cyclically around P(a, b) if u is to
the east of w. Let |uw|1 (resp. |uw|2) denote the number of horizontal (resp. vertical)
edges of −→uw. Given a set of horizontal edges S1 and vertical edges S2 in P(a, b), the
pair (S1, S2) is compatible if, for every edge in S1 with left vertex u and every edge S2
with top vertex w, there exists a lattice point t ̸= u,w in the subpath −→uw such that

|tw|1 = r|−→tw ∩ S2|2 or |ut|2 = r|−→ut ∩ S1|1 .
Let the horizontal (resp. vertical) edges of Cn be labeled by ηi (resp. νi), increasing

to the east (resp. north). Lin defined the following map Φ from F ′(Dn) to pairs
(S1, S2) in Cn. Note that while we define Φ as a map on blue/brown colored subpaths,
it was originally defined for Lee–Schiffler’s blue/green/red colored subpaths, and the
two definitions are essentially identical.

Definition 2.6 ([13]). Given β ∈ F ′(Dn), let Φ(β) = (Φ1(β),Φ2(β)), where
Φ1(β) = {ηj : αj is not a part of any subpath of β} ,
Φ2(β) = {νj : γ(i, k) ∈ β for some i < j ⩽ k} .

Example 2.7. The compatible pair ({η4, η5}, {ν1, ν3}) obtained by applying Φ to the
collection of subpaths β ∈ F ′(D5) from Example 2.5 is shown in Figure 1.

Theorem 2.8. The map Φ is a bijection between collections of colored subpaths in
F ′(Dn) and compatible pairs in Cn.

Switching to the quantum setting, we will now work inside the quantum torus
T := Z[q±1]⟨Z±1

1 , Z±1
2 : Z1Z2 = q2Z2Z1⟩. The quantum rank-2 r-Kronecker cluster

algebra Aq(r, r) is the Z[q±1] subalgebra of the skew field of fractions of T generated
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by the quantum cluster variables {Zn}n∈Z, which follow the recursion Zn+1Zn−1 =
q−rZr

n + 1 (cf. Equation 1). We use the bijectivity of Φ along with Rupel’s quantum
weighting on compatible pairs [16] to construct a quantum weighting of collections of
colored subpaths.

For β = {β1, . . . , βt} ∈ F ′(Dn), where βi appears to the left of βi+1, we define the
set of complimentary subpaths β0, β1, . . . , βt such that βi. For 1 ⩽ i ⩽ t − 1, let βi

contain all edges and northwest corners between the end of βi and the start of βi+1,
where a northwest corner on the boundary of a path is included in βi unless it is the
right endpoint of a brown or blue subpath. We set β0 to be the portion of the path
before β1 excluding v0, and we set βt to be the portion of the path after βt including
vcn−2 . Note that it is possible for some βi to be empty. Let |βi|1 (resp. |βi|2) denote
the number of northwest corners (resp. edges) in βi.

Definition 2.9. For β = {β1, . . . , βt} ∈ F ′(Dn), we let

wq(β) = (cn−1 + cn−2 − 1) +
t∑

j=0
r|βj |2

(
t∑

i=1
(−1)1i<j |βi|2

)

+
(
r|βj |1 − r2|βj |2

)( t∑
i=1

(−1)1i<j |βi|1

)
,

where 1i<j takes value 1 when i < j and 0 otherwise. We then set
uq(β) = wq(β) − (cn−1 + cn−2 − 1) + (cn−1 − r|β|1)(cn − r|β|2) .

Example 2.10. For the collection β ∈ F ′(D5) from Example 2.5, we have β0 = β3 =
∅, β1 = {α4, α5}, and β2 = {v2}. We thus have wq(β) = 10.

We prove that the quantum cluster variable Laurent coefficients can be expressed
as a sum over weighted collections of subpaths in F ′(Dn).

Theorem 2.11. Consider the quantum cluster algebra Aq(r, r) with quantum cluster
variables Zi for i ∈ Z. For n ⩾ 4, we have

Zn = Z
−cn−1
1 Z

−cn−2
2

∑
β∈F ′(Dn)

quq(β)Z
r|β|1
1 Z

r(cn−1−|β|2)
2

and
Z3−n = Z

−cn−1
2 Z

−cn−2
1

∑
β∈F ′(Dn)

quq(β)Z
r|β|1
2 Z

r(cn−1−|β|2)
1 .

3. Preliminaries
Let r ⩾ 2 be fixed throughout this paper. Both the Lee–Schiffler and Lee–Li–
Zelevinsky expansion formulas involve sums over certain collections of edges in a
maximal Dyck path. Moreover, the width and height of these Dyck paths have certain
recursive properties that are used in the proofs of both formulas. We begin by setting
up a framework for studying these paths and describing their recursive behavior.

Recall the sequence cn defined recursively by Equation 2. While the indexing of
the sequence {cn}n⩾1 is identical to the indexing in the work of Lee and Schiffler [10],
the indexing is shifted by one from that defined by Lin [13], i.e. it is equivalent to
{cn−1}n⩾1 in Lin’s work. It is straightforward to check that for n > 1, the quantities
cn and cn+1 are relatively prime, hence so are cn and cn+1−cn. Thus, the only vertices
of Dn and Cn that lie on the main diagonal are the first and last.

Fix a, b ∈ N. Consider a rectangle with vertices (0, 0), (0, b), (a, 0), and (a, b) having
a designated diagonal from (0, 0) to (a, b).
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Figure 2. The maximal Dyck paths D6 (above) and C6 (below) are
shown with some of their vertex and edge labels for r = 3. Each
northwest corner of D6 is labeled with both its corresponding wi and
vj label. Some edges of C6 are labeled; the νi’s refer to the vertical
edge left of the label, and the ηj ’s refer to the horizontal edge below
the label.

Definition 3.1. A Dyck path is a lattice path in Z2 starting at (0, 0) and ending
at a lattice point (a, b) where a, b ⩾ 0, proceeding by only unit north and east steps
and never passing strictly above the diagonal. Given a Dyck path P , we denote the
number of east steps by |P |1 and the number of north steps by |P |2. The length
of the Dyck path P is the quantity |P |1 + |P |2. We denote the set of lattice points
contained in the Dyck path P , ordered from left to right and including both endpoints,
by V (P ) = {w0, w1, . . . , w|P |1+|P |2}.

The Dyck paths from (0, 0) to (a, b) form a partially ordered set by comparing the
heights at all vertices. The maximal Dyck path P(a, b), as defined in Definition 2.1, is
the maximal element under this partial order. We focus on the following two classes
of maximal Dyck paths, defined for n ⩾ 3, Cn = P(cn−1, cn−2) and Dn = P(cn−1 −
cn−2, cn−2).

Recall that a vertex of a maximal Dyck path P is a northwest corner if there are
no vertices directly north of (equivalently, to the east of) it. In Dn, these are precisely
the vertices labeled by vi for some 0 ⩽ i ⩽ cn−2.

When a and b are relatively prime, as is the case for Cn and Dn, we can associate
to this Dyck path the (lower) Christoffel word of slope b

a on the alphabet {E,N}.
This word can be constructed by reading the edges of the maximal Dyck path from
(0, 0) to (a, b), recording an E for each east step and an N for each north step. For
further background on Christoffel words, see [1].

Example 3.2. Let r = 3. The Christoffel words corresponding to the maximal Dyck
paths D6 and C6 depicted in Figure 2 are

E2NE2NENE2NE2NENE2NEN and E3NE3NE2NE3NE3NE2NE3NE2N ,
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respectively.

Remark 3.3. The Christoffel word corresponding to Cn is obtained by applying the
morphism θ = {E 7→ E,N 7→ EN}, i.e. the map that replaces each instance of the
letter N with the string EN , to the Christoffel word corresponding to Dn. This follows
directly from, for example, [1, Lemma 2.2].

Observation 3.4. It is straightforward to calculate that

V (C3) = {(0, 0), (1, 0)} and V (C4) = {(0, 0), (1, 0), . . . , (r, 0), (r, 1)}

As we shall see, both of these families of Dyck paths have a recursive structure.
The following lemma is a special case of a result of Rupel.

Lemma 3.5 ([15, Lemma 3]). For all n ⩾ 4, the maximal Dyck path Dn consists of
r − 1 copies of Dn−1 followed by a copy of Dn−1 with a prefix Dn−2 removed. In
particular, Dn−1 (resp. Cn−1) is a subpath of Dn (resp. Cn).

This allows us to define the limit of these paths, which can be realized by taking a
union of finite subpaths.

Definition 3.6. Let C (resp. D) be the infinite path on Z2 formed by the union⋃
n⩾3 Cn (resp.

⋃
n⩾3 Dn). We identify the paths Cn and Dn with the prefix of the

same length of C and D, respectively. Thus, the vertices of D are labeled by wi and
the northwest corners by vj, as described after Definition 2.1 in Section 2. Similarly,
horizontal edges of C are labeled by ηi and the vertical edges are labeled by νj.

4. Simplification of the colored Dyck subpaths conditions
4.1. Lee–Schiffler expansion formula. We first recall the original expansion
formula given by Lee and Schiffler [10] for rank-two skew-symmetric cluster variables.
This requires us to set up the language of colored subpaths in a Dyck path via Lee and
Schiffler’s conventions, which differs from that in Section 2. We then describe the map
between certain non-overlapping collections of colored subpaths, namely from F(Dn)
as defined by Lee–Schiffler to the set F ′(Dn) which we defined after Definition 2.3 in
Section 2.

Let s denote the slope of the main diagonal of Dn, so s = cn−2
cn−1−cn−2

.

Definition 4.1 ([10], cf. Definition 2.3). For any 0 ⩽ i < k ⩽ cn−2, let α(i, k) be the
subpath of Dn defined as follows:

(1) If s(vi, vt) ⩽ s for all t such that i < t ⩽ k, then α(i, k) is defined to be the
subpath from vi to vk; each such subpath is called blue.

(2) If s(vi, vt) > s for some i < t ⩽ k, then
(2-a) if the smallest such t is of the form i+cm−wcm−1 for some 3 ⩽ m ⩽ n−2

and 1 ⩽ w ⩽ r − 2, then α(i, k) is defined to be the subpath from vi to
vk; each such subpath is called (m,w)-green.

(2-b) otherwise, α(i, k) is set to be the subpath from the vertex immediately
below vi to vk; each such subpath is called red.

Each such pair i, k corresponds to precisely one subpath of Dn. Denote the single
edges of Dn be by α1, . . . , αcn−1 proceeding from southwest to northeast, and let

P(Dn) = {α(i, k) : 0 ⩽ i < k ⩽ cn−2} ∪ {α1, . . . , αcn−1} .
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The formula involves sums over collections of subsets of P(Dn) satisfying certain
non-overlapping requirements. In particular, Lee and Schiffler set

F(Dn) = {{β1, . . . , βt} : t ⩾ 0, βj ∈ P(Dn) for all 1 ⩽ j ⩽ t,

if j ̸= j′ then βj and βj′ have no common edge,
if βj = α(i, k) and βj′ = α(i′, k′) then i ̸= k′ and i′ ̸= k,
and if βj is (m,w)-green then at least one of the
(cm−1 − wcm−2) edges preceding vi is contained
in some βj′} .

For any collection of subpaths β, we associate two non-negative integers |β|1 and
|β|2. The first quantity |β|1 is defined to be 0 on single edges and k − i on α(i, k),
then extended additively on unions of these subpaths. The second quantity |β|2 is the
total number of edges αi covered by the subpaths in β. We can now state the original
formulation of Lee and Schiffler’s expansion result.

Theorem 4.2 ([10, Theorem 9]). For n ⩾ 3, we have

Xn = X
−cn−1
1 X

−cn−2
2

∑
β∈F(Dn)

X
r|β|1
1 X

r(cn−1−|β|2)
2

and
X3−n = X

−cn−1
2 X

−cn−2
1

∑
β∈F(Dn)

X
r|β|1
2 x

r(cn−1−|β|2)
1 .

In order to show that our expansion formula Corollary 2.4 is equivalent to Theo-
rem 4.2, we define the map χ which connects the colored subpaths in both settings.

Definition 4.3. We define a map χ : F(Dn) → F ′(Dn) that modifies the colored
subpaths of β ∈ F(Dn) via the following rules:

• each red subpath is split into two subpaths: its leftmost edge (viewed as a single
edge) and the remainder of the path, which is a (3, r − 1)-brown subpath;

• each (m,w)-green subpath changes color to become an (m,w)-brown subpath
if w > 1 or an (m+ 1, r − 1)-subpath if w = 1;

• the blue subpaths and single edges remain unchanged.

Note that the set of edges covered by β is preserved under χ. Lemma 4.18 estab-
lishes that χ is well-defined and is in fact a weight-preserving bijection with respect
to |β|1 and |β|2. The statement and proof of Lemma 4.18 appear in Subsection 4.3.

4.2. Vertices and slopes in Dn. We now prove several results relating to the
position of vertices in Dn and the slopes of the line segments between northwest
corners of Dn. To help illuminate the recursive structure of the infinite path D, which
contains each Dn as a prefix, we define a map taking vertices to northwest corners in
D.

Definition 4.4. Let µ : V (D) → V (D) be the map sending wi, the ith vertex of D, to
vi, the ith northwest corner of D.

The following result describes the behavior of µ in terms of coordinates.

Lemma 4.5. If wi ∈ V (D) has coordinates (x, y), then we have

µ(wi) = ((r − 1)x+ (r − 2)y, x+ y) .
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Figure 3. The top image depicts a collection of colored Dyck sub-
paths in F(D6), consisting of the blue path α(0, 1), the single edge
α4, the red path α(2, 5), the single edge α16, and the (3, 1)-green
path α(6, 8). By applying the map χ to the top collection, we obtain
the collection of colored Dyck subpaths in F ′(D6) depicted in the
bottom image. This collection consists of the blue path γ(0, 1), the
single edges α4 and α6, the (3, 2)-brown path γ(2, 5), the single edge
α16, and the (4, 2)-brown path γ(6, 8).

Proof. Fix n large enough such that (x, y) ∈ V (Dn). For each (x, y) ∈ V (Dn), the
claim is equivalent to showing that the following inequalities hold:

x+ y

(r − 1)x+ (r − 2)y ⩽
cn−1

cn − cn−1
<

x+ y + 1
(r − 1)x+ (r − 2)y .

In order to prove the first inequality, we first note that
cn−2

cn−1 − cn−2
⩾
y

x
,

which holds since (x, y) ∈ V (Dn). Cross multiplying and adding ycn−2 to both sides
yields

cn−2

cn−1
⩾

y

x+ y
.

Hence we have
cn−1

cn − cn−1
= cn−1

(r − 1)cn−1 − cn−2

= 1
(r − 1) − cn−2

cn−1

⩾
1

(r − 1) − y
x+y

= x+ y

(r − 1)x+ (r − 2)y ,

as desired.
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We can prove the second inequality similarly. Since we have cn−2
cn−1−cn−2

< y+1
x , then

cross multiplying and adding (y + 1)cn−2 to both sides yields
cn−2

cn−1
<

y + 1
x+ y + 1 .

Thus, we can conclude
cn−1

cn − cn−1
= 1

(r − 1) − cn−2
cn−1

<
1

(r − 1) − y+1
x+y+1

⩽
x+ y + 1

(r − 1)x+ (r − 2)y . □

We now study the slopes of the line segments between northwest corners of D,
as these play a central role in the definition of colored Dyck subpaths in both our
setting and the Lee–Schiffler setting. We will utilize several classical results concerning
maximal Dyck paths and Christoffel words, which can be found, for example, in [1].

Definition 4.6. For n ⩾ 3, we define the function πn : {0, 1, . . . , cn−1} → Z by

πn(i) := xcn−2 − (i− x)(cn−1 − cn−2) where wi = (x, i− x) ∈ Dn .

Remark 4.7. Note that we have πn(0) = πn(cn−1) = 0. It is a standard result from
the theory of Christoffel words (see, for example, [1, Lemma 1.3]) that the sequence
πn(1), πn(2), . . . , πn(cn−1) is a permutation of the elements {0, 1, . . . , cn−1 − 1}, and
this is order-isomorphic to the sequence of distances from each vertex to the line
segment between w0 and wcn−1 . Thus, s(wi, wj) ⩾ s = s(w0, wcn−1) in Dn if and only
if πn(j) ⩽ πn(i).

Example 4.8. For r = 3, the values π6(0), π6(1), . . . , π6(21) are given by the following
sequence:

0, 8, 16, 3, 11, 19, 6, 14, 1, 9, 17, 4, 12, 20, 7, 15, 2, 10, 18, 5, 13, 0 .

We now prove some relations between the sequences {πn(i)}cn−1
i=0 and {πn−1(i)}cn−2

i=0 .

Lemma 4.9. For any vertex with coordinates (x, y) in Dn−1 where n ⩾ 4, we have

πn(rx+ (r − 1)y) = πn−1(x+ y) .

Proof. By Lemma 3.5 and Lemma 4.5, both (x, y) and µ(wx+y) = ((r − 1)x + (r −
2)y, x + y) are vertices of Dn. Hence, we can expand the right-hand side using Defi-
nition 4.6 and apply the relation cn = rcn−1 − cn−2 to obtain

πn(rx+ (r − 1)y) = ((r − 1)x+ (r − 2)y)cn−2 − (x+ y)(cn−1 − cn−2)
= ((r − 1)x+ (r − 2)y)cn−2 − (x+ y)((r − 1)cn−2 − cn−3)
= −ycn−2 + (x+ y)cn−3

= xcn−3 − y(cn−2 − cn−3) .

Comparing with Definition 4.6, we see that the final quantity is precisely πn−1(x+y),
as desired. □

Lemma 4.10. For n ⩾ 3, the set {(x, y) ∈ V (Dn) : πn(x+ y) ∈ {0, . . . , cn−2 − 1}} is
precisely the set of northwest corners of Dn.

Proof. We proceed inductively on n. The base case n = 3 is straightforward to check.
Remark 4.7 implies that π−1

n (0) = {v0, vcn−1} and that πn(i) takes each value of
{1, 2, . . . , cn−1−1} exactly once for i ∈ {2, 3, . . . , cn−1}. For each vertex (x, y) ∈ Dn−1,
we can evaluate

πn(rx+ (r − 1)y) = πn−1(x+ y) ∈ {0, 1, 2, . . . , cn−2 − 1} .
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Moreover, the unique vertex (x′, y′) ∈ Dn such that x′ +y′ = rx+(r−1)y is µ(wx+y).
Since the image of µ applied to the set V (Dn−1) is the set of northwest corners of
Dn, the desired set equality holds. □

Example 4.11. We can see the statement of Lemma 4.10 illustrated in comparing the
path D6 at the top of Figure 2 and Example 4.8. The northwest corners of D6 are
the vertices w0, w2, w3, w6, w8, w11, w14, w16, w19, and w21. The subscripts of these
northwest corner are precisely the inputs i ∈ {0, 1, . . . , 21} such that 0 ⩽ π6(i) ⩽ 7 =
c4 − 1, as seen in Example 4.8.

Corollary 4.12. Applying the morphism λ = {E 7→ Er−1N,N 7→ Er−2N} to the
Christoffel word for Dn yields the Christoffel word for Dn+1.

Applying the morphism θ◦λ◦θ−1 to the Christoffel word for Cn yields the Christoffel
word for Cn+1, where θ is the morphism {E 7→ E,N 7→ EN}.

Proof. Let wi denote the Christoffel word for Di. Applying the map µ to V (Dn) takes
a vertex (x, y) to ((r − 1)x+ (r − 2)y, x+ y). Hence, by Lemma 4.10, the index j of
the kth vertical edge αj in Dn+1, i.e. the positions of y’s in wn+1, is equal to

r|{αn
i : i < j, αn

i is horizontal}| + (r − 1)|{αn
i : i < j, αn

i is vertical}| + 1 .

This is precisely the position of y’s in the word λ(wn), hence we can conclude that
λ(wn) = wn+1. The second statement follows from Remark 3.3. □

Finally, we can determine the rest of the values of πn from its values on the north-
west corners.

Observation 4.13. Suppose that (i, j) ∈ Dn is not a northwest corner. Let (i′, j) be
the corner vertex immediately preceding (i, j). Then it follows from the definition of
πn that

πn(i+ j) = πn(i′ + j) + (i− i′)cn−2 .

4.3. Proof of the simplification. We now show that the map χ (see Defini-
tion 4.3) is well-defined and weight-preserving with respect to |β|1 and |β|2. This
shows that our definition of F ′(Dn) is, in a sense, equivalent to that of Lee–Schiffler.

Observation 4.14. Lemma 4.9 states that the values of πn on the northwest corners
of Dn lie in the set {0, 1, . . . , cn−2 −1}. Since πn is injective on the interior of Dn, this
implies that the values of πn of the vertices which are not northwest corners constitute
the set {cn−2, cn−2 + 1, . . . , cn−1 − 1}.

The colors of paths in Lee and Schiffler’s setting depend on the number of northwest
corners that one needs to traverse from the starting endpoint of the path until the
slope to the northwest corner was at least the slope of the diagonal. We also consider
the slopes between vertices on Dn that are not necessarily northwest corners, which
will help us to derive results about the northwest corners. We in turn use this to
determine which vertex wd(i) to the east of a given vertex wi is the first such that the
slope between wi and wd(i) is at least that of the diagonal.

Definition 4.15. For 0 ⩽ i < cn−1, we define

d(i) = min ({j ∈ {i+ 1, i+ 2, . . . , cn−1} : s(wi, wj) ⩾ s)})
= min ({j ∈ {i+ 1, i+ 2, . . . , cn−1} : πn(j) ⩽ πn(i)}) .

Note that d(i) is well-defined since s(wi, wcn−1) ⩾ s for all 0 ⩽ i < cn−1, and the
fact that the two expressions are equivalent follows directly from Remark 4.7. We now
show some properties of how the functions d and µ interact.

Algebraic Combinatorics, Vol. 7 #2 (2024) 539



A. Burcroff

Corollary 4.16. Suppose wi is a northwest corner of Dn for n ⩾ 4. Let wi = µ (wi′)
for some wi′ ∈ Dn−1, and let (x, y) = wd(i′) in Dn−1 with d(i′)− i′ = mcn−2 −wcn−3.
Then we have wd(i) = ((r − 1)x+ (r − 2)y, x+ y), and d(i) − i = mcn−1 − wcn−2.

If wi is not a northwest corner, then wd(i) is the northwest corner immediately
following wi. In particular, d(i) − i ⩽ r − 1.

Proof. By Observation 4.13, the function πn(i) increases when the step preceding wi

is an east step. Since d(i) > i is chosen minimally such that πn(d(i)) ⩽ πn(i), we must
have that wd(i) is preceded by a north step, i.e. wd(i) is a northwest corner. Lemma 4.10
implies that wd(i) must then be the image of wd(i′) under the correspondence between
vertices of Dn−1 and northwest corners of Dn. It is straightforward to check that the
distances follow the formula described under this correspondence. The second claim
follows directly from Observation 4.14. □

From this, we can determine that the values d(i) − i are of a particular form.

Lemma 4.17. For all positive integers i, we have d(i) − i = cm −wcm−1 for a unique
choice of 2 ⩽ w ⩽ r − 1 and 3 ⩽ m ⩽ n− 2.

Proof. We prove this via induction on n. The base case n = 3 is straightforward to
check. Suppose the statement holds on Cn−1. Whenever wi is not a northwest corner
of Cn, then we have d(i) − i < r by Corollary 4.16, so d(i) − i = c3 − wc2 for some
2 ⩽ w ⩽ r− 1 or d(i) = r− 1 = c4 − (r− 1)c3. Otherwise, if wi is a northwest corner
of Cn, then wi = µ(wi′) for some wi′ ∈ Cn−1. By assumption, d(i′) − i′ = cm −wcm−1
for some appropriate choice of m,w. Applying Corollary 4.16, we can conclude that
d(i) − i = cm+1 − wcm.

The fact that this representation is unique follows immediately from the fact that,
for all m ⩾ 2, we have cm − (r − 1)cm−1 > cm−1 − 2cm−2. □

We are now ready to establish that the value t(i) − i, as given in Lemma 2.2, can
also be represented as cm − wcm−1 for an appropriate choice of m,w.

Proof of Lemma 2.2. We prove this via induction on n, with the straightforward base
case n = 3. Fix a northwest corner vi = wj ∈ Cn, and let t(i) be the minimum positive
integer such that s(vi, vt(i)) ⩾ s. Since vi is a northwest corner, we have vi = µ(wi′)
for some wi′ ∈ Cn−1. Applying Lemma 4.17, we have that d(i′) − i′ = cm −wcm−1 for
a unique choice of 2 ⩽ w ⩽ r − 1 and 3 ⩽ m ⩽ n − 2. By Remark 4.7, we have that
t(i) − i = d(i′) − i′. Thus, t(i) − i is of the desired form. □

The following lemma establishes that χ preserves weights.

Lemma 4.18. For all n ⩾ 3, we have β ∈ F(Dn) if and only if χ(β) ∈ F ′(Dn).
Moreover, we have |β|i = |χ(β)|i for i = 1, 2.

Proof of Lemma 4.18. Fix β ∈ F(Dn). Suppose α(i, k) ∈ β. By Lemma 2.2, either
we have that α(i, k) is (m,w)-green, or we have that t(i) − i = 1. In this case,
condition (2∗) of Definition 2.3 enforces that the edge immediately preceding α(i, k)
is contained in βj . By the non-overlapping condition for membership in F(Dn), we
have βj ̸= α(i′, k′) for any i′, k′. Thus, βj = α′

i for some i′. In particular, it does not
contribute to |β|1 and contributes 1 to |β|2, which is the same as if we had considered
α(i, k) to contain this preceding edge. □

We can now combine the results about the map χ in order to prove the expansion
formula in our setting.
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Proof of Corollary 2.4. This modified expansion formula follows immediately from
Lemma 2.2 and from the expansion formula (Theorem 4.2) given by Lee and Schif-
fler [10]. □

We now furthermore discuss a generalization of Corollary 2.4 to the setting of the
framed r-Kronecker cluster algebra with principal coefficients. While there is a more
general theory of cluster algebras with coefficients (see, for example, [6]), we will give
a brief explicit description of this cluster algebra here. For a positive integer r, initial
cluster variables X1, X2 and coefficient variables Y1, Y2, we consider the sequence
{X̃n}n∈Z and {Ỹn}n∈Z defined by

Ỹn+1 = Ỹ r
n

Ỹn−1
, where Ỹ1 = Y1 and Ỹ2 = Y r

1 Y2,

X̃n+1 = X̃r
n + Ỹn−1

X̃n−1
, where X̃1 = X1 and X̃2 = X2 .

The use of tildes is to distinguish the settings with and without coefficients. Let P
be the tropical semifield Trop[Y1, Y2]. The framed r-Kronecker cluster algebra Ã(r, r)
with principal coefficients is the ZP[X̃1, X̃2] algebra generated by the cluster variables
{X̃n}n∈Z. Note that when we specialize to the case Y1 = Y2 = 1, we recover the
classical r-Kronecker cluster algebra.

Corollary 4.19. Consider the framed r-Kronecker cluster algebra Ã(r, r) with princi-
pal coefficients, having initial cluster variables X1, X2 and coefficient variables Y1, Y2.
For n ⩾ 4, the cluster variable X̃n is given by

X̃n = X
−cn−1
1 X

−cn−2
2

∑
β∈F ′(Dn)

X
r|β|1
1 X

r(cn−1−|β|2)
2 Y

|β|2
1 Y

|β|1
2

and
X3−n = X

−cn−1
2 X

−cn−2
1

∑
β∈F ′(Dn)

X
r|β|1
2 X

r(cn−1−|β|2)
1 Y

−|β|2
2 Y

−|β|1
1 .

Proof. Setting deg(Xi) = ei and deg(Yi) = (−1)i+1re3−i, it is known that the cluster
variable X̃n is a homogeneous Laurent polynomial by [6, Proposition 6.1]. More-
over, this degree is readily calculated from the recurrence relations on g-vectors to be
−cn−1e1 + cne2 for n ⩾ 2 and c−n+3e1 − c−n+2e2 for n < 2 (see, for example, [13,
Subsection 4.1]). This determines the powers of Y1 and Y2 that must appear in each
monomial term, yielding the above expansion formula directly from Corollary 2.4. □

5. Bijection between compatible pairs and colored subpaths of
Dyck paths

In this section, we prove a conjecture of Feiyang Lin that the map Φ, constructed by
Lin and described in Definition 2.6, is a bijection between the collections of colored
subpaths introduced by Lee–Schiffler [10] and the compatible pairs introduced by
Lee–Li–Zelevinsky [8]. This shows the correspondence between the objects summed
over by each set of authors in their expansion formulas for rank-2 cluster algebras.
Specifically, we show that Lin’s map is a bijection between collections β of colored
Dyck subpaths in F ′(Dn) with a fixed |β|1 and |β|2 and compatible pairs on Cn

consisting of |β|1 vertical edges and (cn−1 − |β|2) horizontal edges.
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5.1. Compatible pairs and Lin’s map. The rank-2 cluster expansion formula given
by Lee–Li–Zelevinsky [8] sums over certain subsets of edges of a maximal Dyck path,
known as compatible pairs, which we discuss here. We will mainly work over Cn,
though sometimes we work in more generality. Let S1 be a subset of the vertical
edges of a maximal Dyck path P(a, b), and let S2 be a subset of the horizontal edges
of P(a, b).

In order to study compatible pairs, Li, Lee, and Zelevinsky [8] introduced the
notion of the “shadow” of a set of edges. While they only defined shadows of subsets
of vertical edges, we extend this notion to subsets of horizontal edges as well. These
notions will be used throughout our construction of the bijection between collections
of colored Dyck subpaths and compatible pairs.

Definition 5.1. For a vertical edge ν ∈ S2 with upper endpoint w, we define its local
vertical shadow, denoted sh(ν;S2), to be the set of horizontal edges in the shortest
subpath −→

tw of P(a, b) such that |tw|1 = r|−→tw ∩ S2|2. Analogously, for a horizontal
edge η ∈ S1 with left endpoint u, we define its local horizontal shadow, denoted
sh(η, S2), to be the set of vertical edges in the shortest subpath −→

ut of P(a, b) such that
|ut|2 = r|−→ut ∩ S1|1. If there is no such subpath −→

tw or −→
ut, respectively, then we define

the local vertical (resp. horizontal) shadow to be the entire set of horizontal (resp.
vertical) edges in P(a, b).

For S ⊆ Si where i ∈ {1, 2}, let sh(S;Si) =
⋃

α∈S

sh(α;Si), and write sh(Si) :=

sh(Si;Si).

Observation 5.2. It is a straightforward consequence of Definition 5.1 that
for S ⊆ S1, we have | sh(S)| = min(b, r|S|). Similarly, for S ⊆ S2, we have
| sh(S)| = min(a, r|S|)

The expansion formula for cluster variables given by Lee, Li, and Zelevinsky has
monomials corresponding to compatible pairs on Cn. Their expansion formula works
in the more general setting of elements of the greedy basis, which contains the cluster
variables. For further details on the greedy basis, see [8]. We present their formula in
the special case of cluster variables.

Theorem 5.3. [8, Theorem 1.11] For each n ⩾ 1, the cluster variable Xn in A(r, r)
is given by

Xn = x
−cn−1
1 x

−cn−2
2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 ,

where the sum is over all compatible pairs (S1, S2) in Cn.

Lin’s map from collections of colored Dyck subpaths in Dn to compatible pairs in Cn

is described in Definition 2.6. An example is shown in Figure 4. Lin conjectured that
the map Φ is a bijection between the desired sets [13, Conjecture 3], which essentially
involves showing that Φ(β) is indeed a compatible pair for every β ∈ F ′(Dn). We verify
this claim in the next subsection. Lin made partial progress toward this conjecture by
showing that it was sufficient to consider only compatible pairs satisfying a certain
irreducibility condition [13, Proposition 4.8.4, Conjecture 4]. We proceed by a different
approach than Lin, so our methods do not rely on this simplification.

In order to show the correspondence between the Lee–Schiffler and Lee–Li–
Zelevinsky expansion formulas, one needs to show not only bijectivity between the
sets summed over, but also that the resulting monomials correspond. Lin defined
a weight function for collections of colored subpaths and for compatible pairs that
keeps track of the exponents associated to these monomials.
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Figure 4. The top image depicts a collection of colored Dyck sub-
paths in F ′(D6), identical to that at the bottom of Figure 3. The bot-
tom image depicts the corresponding compatible pair (S1, S2) in C6,
obtained by applying the map Φ to the collection of colored Dyck sub-
paths. The edges that are contained in either S1 or S2 are depicted by
bold edges in the lower image. In particular, we have S1 = {η5, η15}
and S2 = {ν1, ν3, ν4, ν5, ν7, ν8}. Thus wt((S1, S2)) = X18

1 X6
2 .

Definition 5.4. We define the weight of a compatible pair (S1, S2) by

wt((S1, S2)) = X
r|S2|
1 X

r|S1|
2

and the weight of a collection of colored subpaths β ∈ F ′(Dn) by

wtn(β) = X
r|β|1
1 X

r(cn−2−|β|2)
2 .

Lin showed that Φ is a weight-preserving map from a superset of F(Dn) to F(Cn),
and conjectured that it restricted to a bijection between F(Dn) and F(Cn). We prove
this in the next subsection. We convert Lin’s map into the setting of F ′(Dn) instead of
F(Dn) in order to make easier reference to the results of the previous section, though
it is straightforward to show the equivalence between these two settings.

5.2. Proof of bijectivity. We now proceed to show that Lin’s map Φ indeed takes
every collection of colored subpaths in F ′(Dn) to a unique compatible pair on Cn. It
then follows from the work of Lee–Schiffler [10] and Lee–Li–Zelevinsky [8] that Φ is a
bijection. For 2 ⩽ w ⩽ r−1 and m ⩾ 3, we define am,w to be the quantity cm−wcm−1.
We can use the quantities am,w to define the size of images of atomic colored paths
under Φ, as well as their shadows.

Observation 5.5. It is readily deduced from the recursive definition of the sequence
cn that for w,m ⩾ 1, we have ram,w = am+1,w + am−1,w.

In order to establish that the conditions for compatibility correspond to the con-
ditions for membership in F ′(Dn) via Φ, we first show that this is true for certain
simple colored subpaths.

Definition 5.6. We call a subpath of Dn atomic if it consists of a single edge, is blue,
or is an (m,w)-brown path of the form γ(i, i+ am,w).
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Figure 5. The figure depicts the decomposition of the collection β
of subpaths from Figure 4 into its atomic components. The differ-
ence between this atomic decomposition and the original collection
β is that the (3, 2)-brown path γ(2, 5) has been decomposed into the
(3, 2)-brown path γ(2, 3) and the blue path γ(3, 5), which meet at
the vertex v3. Since these subpaths meet at a vertex, this collection
of subpaths is not in F ′(Dn).

Lemma 5.7. Any subpath of Dn of the form γ(i, k) can be written uniquely as a union
of atomic components meeting only at vertices such that

(i) every component except the last is (m,w)-brown for some choice of m and w,
and

(ii) the last component is either blue or (m,w)-brown.
Proof. If γ(i, k) is blue, then we are done. Otherwise, γ(i, k) is (m,w)-brown for some
appropriate choice of m and w. In this case, we split the path into the atomic (m,w)-
brown path γ(i, i+am,w) and the path γ(i+am,w, k). We can then repeat this process
on the remaining portion γ(i+ am,w, k) until the path is decomposed as desired. □

Note that when we decompose a path into its atomic components, adjacent com-
ponents will necessarily overlap at a vertex. Thus, after this decomposition, the set
of paths may no longer be non-overlapping, and hence not in F ′(Dn). An example is
shown in Figure 5.

We now study the structure of the (m,w)-brown paths as Christoffel words. Recall
the morphism λ = {E 7→ Er−1N,N 7→ Er−2N}.
Lemma 5.8. The Christoffel word for an atomic (m,w)-brown path is given by
λ(m−2)(Er−w−1N), where λ0 is the identity map, which has length am+1,w.
Proof. Let γ(i, k) be an atomic (m,w)-brown path, and let ρ denote the corresponding
Christoffel word. Fix i′, k′ ∈ Z such that vi = µ(wi′) and vk = µ(wk′).

First note that if wi′ is not a northwest corner, then by Observation 4.14 we have
k′ − i′ ⩽ r. Thus, we have m = 3 and ρ = λ(Er−w−1N) where r−w− 1 = k′ − i′ − 1,
which is of the desired form.

Now suppose that wi′ = vi′′ is a northwest corner. We automatically have that
wk′ = vk′′ is a northwest corner from Observation 4.14. We aim to show that γ(i′′, k′′)
is an (m− 1, w)-brown path. Thus, the statement would follow from induction, since
the Christoffel word corresponding to γ(i, k) is given by applying λ to the word
corresponding to γ(i′′, k′′).

In order to show that γ(i′′, k′′) is an (m − 1, w)-brown path, we study the slopes
from s(wi′ , wi′+j) for 1 ⩽ j ⩽ k′ − i′ = k − i. It readily follows from the recurrence
for the sequence cn and the formula for µ given in Lemma 4.5 that
s(wi′ , wi′+j)−s(v0, vcn) = s(µ(wi′), µ(wi′+j))−s(v0, vcn+1) = s(vi, vi+j)−s(v0, vcn+1) .
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Since s(vi, vi+j) − s(v0, vcn+1) < 0 for 1 ⩽ j ⩽ k − i and s(vi, vk) ⩾ s(v0, vcn+1), the
same holds for s(wi′ , wi′+j) − s(v0, vcn

). That is, the slope from wi′ to any vertex on
γ(i′′, k′′) does not exceed that of the diagonal, except the slope from wi′ to wk′ .

We now just need to determine k′′ − i′′, or equivalently, the number of vertical
edges in γ(i′′, k′′). Since γ(i, k) as aw,m vertical edges, then we know γ(i′′, k′′) has
aw,m total edges. Since the aw,m uniquely determine w,m, we can conclude from the
inductive hypothesis that γ(i′′, k′′) is (m−1, w)-brown. Moreover, by Observation 5.5,
we have

(r − 1)aw−1,m + r(aw,m − aw−1,m) = aw+1,m ,

so we can conclude that γ(i, k) has length aw+1,m. □

We are interested in the portion of the path spanned by the vertical shadow of the
image of an (m,w)-brown path. We determine the structure of this portion of the
path with the following result.

Corollary 5.9. The am−1,w edges preceding an (m,w)-brown path form an (m −
2, w)-brown path or, when am−1,w < r, a path corresponding to the Christoffel word
Eam−1,w−1N .

Proof. By definition, the edge preceding an (m,w)-brown path is vertical, so the latter
statement follows immediately.

We prove the first claim via induction onm. Form ⩽ 5, we note that am−1,w ⩽ r−1,
and hence the preceding path is of the form Eam−1,w−1N . Let ρ denote the Christoffel
word formed by the am−2,w edges preceding an (m − 1, w)-brown path. Then, by
Lemma 5.8, we can obtain the word corresponding to the am−1,w edges preceding an
(m,w)-brown path by applying λ to ρ. By the inductive hypothesis and Lemma 5.8,
we can conclude that λ(ρ) is an (m− 2, w)-brown path. □

Corollary 5.10. Let γ(i, k) be an (m,w)-brown path in Dn, and let (S1, S2) =
Φ ({γ(i, k)}). Then the shadow of S2 has length am+1,w + am−1,w.

Proof. By Lemma 5.8, it follows that S2 consists of am,w consecutive vertical edges.
Thus, by Observation 5.2, the shadow will contain min(ram,w, cn−1) horizontal edges.
Applying Observation 5.5, we see that ram,w = am+1,w + am−1,w. We then have by
the bounds on w and m that

ram,w = am+1,w + am−1,w ⩽ (cm+1 − 2cm) + cm−1 ⩽ cm+1 ⩽ cn−1 .

So we can conclude the length of the shadow is am+1,w + am−1,w. □

We can now establish that the image under Φ of an atomic (m,w)-brown path is
a compatible pair in Cn. As we will later see, this encodes most of the complexity of
the compatibility conditions on Cn.

Lemma 5.11. Let γ(i, k) be an atomic (m,w)-brown path in Dn and γj be one of the
am−1,w edges preceding vi. Then Φ({γ(i, k), γj}) is a compatible pair.

Proof. Let S2 = Φ2({γ(i, k)}). Let ρ′ denote the path formed by the am−1,w edges
preceding vi, and let ρ = σ(ρ′). It follows from Corollary 5.10 and Corollary 5.9 the
shadow of Φ2 spans a path of type ρλ2(ρ).

Let υ be the path composed of am,w north steps and am−1,w west steps starting
from the vertex immediately below Φ(vi), defined as follows: for i ⩾ 2, the i-th north
step of υ is (i−1)r units to the west of the (i−1)-st edge in S2. By definition, υ forms
the eastern border of the shadow of each edge of S2 except the last. Moreover, the
position of west steps in υ is determined by the occurrence of subwords Er−1N and
ErN in λ2(ρ). From the definition of λ, it follows that Christoffel word corresponding
to the 90 degree clockwise rotation of υ is precisely λ−1(λ2(ρ)) = λ(ρ).
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Figure 6. The yellow path from a1 to a3 and the black path from a3
to a5 constitute a portion of D. The thick black edges depict those
that are contained in Φ2(γ), where γ is a (6, 2)-brown path. The
shadow of Φ2(γ) contains all horizontal edges in the black and yellow
paths. The purple path from a2 to a4 shows the left endpoint of the
shadow of the thick vertical edges to its right. Note that the yellow
and purple paths overlap in one edge.

We are now interested in the vertical distance from each horizontal edge ηi of ρ
to that of λ(ρ). This determines the maximum number M of horizontal edges to the
right of and including ηi that can be included in S1 while satisfying the compatibility
conditions. Namely, this distance is the maximum height of the shadow at ηi, i.e. rM .
Using the same inductive techniques as in Lemma 5.8, it is readily seen from the base
case ρ = EwN that this distance is r(am−1,w − i+ 1) when i > 1. Hence, it is possible
that any combination of these edges is contained in S1. When i = 1, the distance is
ram−1,w − 1. Since this is less than ram−1,w but greater than r(am−1,w − 1), it is not
possible that all edges of ρ are contained in S1, but it is possible that all but one are.
That is, the pair (S1, S2) is compatible if and only if at least one edge of ρ is not
contained in S1. □

Example 5.12. Figure 6 illustrates the construction in the proof of Lemma 5.11.
Observe that the purple path is a 90 degree counterclockwise rotation of a Dyck path.
Letting ρ = E2NEN denote the Christoffel word for the yellow path, observe that
the Christoffel word corresponding to the (90-degree clockwise rotation of the) purple
path is given by λ(ρ). Moreover, the Christoffel word corresponding to the black
path is given by λ2(ρ). The vertical distance between the purple and yellow paths is
precisely the maximum height of the shadow at each horizontal yellow edge such that
the compatibility conditions are satisfied.

Lemma 5.13. Let β consist of a single atomic path and, if β is (m,w)-brown, one of
the am−1,w edges preceding this path. Then Φ(β) is a compatible pair.

Proof. We break into three cases based on the form of β. If β consists of a single edge,
then Φ(β) has no vertical edges and hence is compatible. If β is (m,w)-brown, then
this is precisely the result of Lemma 5.11.

Thus, the only remaining case is when γ(i, k) is blue. Then it is the prefix of
an atomic (m,w)-brown path, obtained by extending γ(i, k) until its slope exceeds
that of the diagonal. Let γ(i, k′) denote this atomic (m,w)-brown path, and let β′ =
{γ(i, k′), ηj} where ηj is the (am−1)-th edge preceding vi. In the previous case, we
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have shown that Φ(β′) is compatible. Note now that Φ2(β) ⊆ Φ2(β′) and sh(Φ2(β)) ⊆
Φ1(β′). Therefore, the compatibility of Φ(β) follows directly from the compatibility
of Φ(β′). □

Now that we have handled the case of atomic paths, we show that we can determine
the compatibility of the image of many colored subpaths paths by restricting to the
compatibility conditions on each of its atomic components.

Definition 5.14. Given a pair (S1, S2) on P(a1, a2), and let (S′
1, S

′
2) be a pair on

P(a′
1, a

′
2). We define the insertion of (S′

1, S
′
2) into (S1, S2) at position (j1, j2) to be the

pair (S′′
1 , S

′′
2 ) on P(a1 + a′

1, a2 + a′
2) determined as follows:

ei ∈ S′′
k ⇐⇒


ei ∈ Sk and 1 ⩽ i ⩽ jk , or
ei−jk

∈ S′
k and jk < i ⩽ jk + a′

k , or
ei−a′

k
∈ Sk and jk + a′

k < i ⩽ ak + a′
k ,

for k ∈ {1, 2} and (j1, j2) ∈ V (P(a1, b1)). Here, each ei refers to the ith horizontal
or ith vertical edge of the corresponding path, where the orientation of the edge is
determined by the context.

Definition 5.15. We say that a compatible pair (S1, S2) on P(a1, a2) has non-
spanning shadows if

|xwa+b|2 ⩾ r|xwa+b ∩ S1| and |w0x|1 ⩾ r|w0x ∩ S2|
for all choices of vertices x in P(a1, a2).

Lemma 5.16. Let (S1, S2) and (S′
1, S

′
2) be compatible pairs on the paths P(a1, a2)

and P(a′
1, a

′
2), respectively, where (S′

1, S
′
2) has non-spanning shadows. Then for any

(j1, j2) ∈ V (P(a1, a2)), the insertion (S′′
1 , S

′′
2 ) of (S′

1, S
′
2) into (S1, S2) at position

(j1, j2) is a compatible pair on P(a1 + a′
1, a2 + a′

2).

Proof. Since (S′
1, S

′
2) is a compatible pair on P(a′

1, a
′
2) with non-spanning shadows,

we have rS′
1 ⩽ a′

2 and rS′
2 ⩽ a′

1.
We can then see that for ei ∈ S′′

1 with 1 ⩽ i ⩽ j1, we have
| sh(ei;S′′

1 )| ⩽ | sh(ei;S1)| + | sh(e1, S
′′
1 )| < | sh(ei;S1)| + a′

2 .

Similarly, for j2 + a′
2 < i ⩽ a2 + a′

2, we have
| sh(ei;S′′

2 )| ⩽ | sh(ei−a′
2
;S2)| + | sh(ea′

2
, S′′

2 )| ⩽ | sh(ei;S2)| + a′
1 .

The lengths of the shadows at the other edges, with the corresponding shift in indices,
is the same as in the original paths. Thus, the horizontal and vertical shadows will
never intersect, so the pair is indeed compatible. □

This allows us to combine our results on atomic paths in order to handle any
collection of subpaths in F ′(Dn)

Theorem 5.17. If β ∈ F ′(Dn), then Φ(β) is a compatible pair.

Proof. Let (S1, S2) = Φ(β). We proceed by induction on the number of atomic com-
ponents in β, which we denote by t. Note that if t = 0, then S2 is empty and so
(S1, S2) is compatible.

If β has one atomic component, the compatibility follows directly from Lemma 5.13.
If we add a singular edge to β, then the resulting pair is a subset of the original,

and hence compatible. Otherwise, suppose we add an atomic component to β that
appears to the left of all other atomic components. Then we can view the resulting
path as the insertion of the atomic path (along with the portion to the left of it) into
the previous compatible pair. It is straightforward to check for the atomic components
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that the corresponding compatible pair has non-spanning shadows. Since both paths
involved in the insertion are compatible, we can conclude using Lemma 5.16 that Φ(β)
is compatible. □

Lemma 5.18. Every compatible pair in Cn is the image of some β ∈ F ′(Dn).

Proof. We know from Theorem 5.17 that Φ(β) for β ∈ F ′(Dn) is a compatible pair in
Cn. Moreover, we know from Theorem 4.2 and Theorem 5.3 that F ′(Dn) and the set of
compatible pairs in Cn are equinumerous, since both are the result of the substitution
X1 = X2 = 1. Lastly, we know from the work of Lin [13, Proposition 4.7.3] that Φ is
injective. Thus Φ is also surjective. □

Combining the results proven above along with work of Lee–Schiffler and Lee–Li–
Zelevinsky, we can prove the bijectivity of the map Φ.

Proof of Theorem 2.8. By Theorem 5.17 and Lemma 5.18, we can see that Φ is a
bijection from F ′(Dn) onto the set of compatible pairs in Cn. Using the work of Lin
[13, Proposition 4.7.3], we additionally see that Φ is weight-preserving. □

6. Quantization of colored Dyck subpaths
In Lee and Schiffler’s work on expanding rank-2 cluster variables, they showed that the
coefficients of the Laurent expansion could be obtained by taking sums over certain
collections of colored Dyck subpaths. Each such collection was taken to have weight 1.
In order to quantize this construction, we instead weight each collection by a power of
a formal variable q. We then show that an analogous formula holds for rank-2 quantum
cluster variables with an appropriate choice of q-weights, where setting q = 1 recovers
Lee and Schiffler’s formula.

As discussed by Lee–Li–Rupel–Zelevinsky [7, Section 3], the combinatorial formula
for greedy basis elements of a rank-2 cluster algebra cannot be extended to the quan-
tum setting by merely weighting compatible pairs by a power of q, since positivity
of these elements can fail in general. However, Dylan Rupel [16, Corollary 5.4] estab-
lished that the classical rank-2 formula for the quantum cluster variables, which are a
proper subset of the greedy basis, given by Lee–Li–Zelevinsky [8] could be extended
in this way. We proceed by applying the bijection established in the previous section
to Rupel’s expansion formula over weighted compatible pairs associated to quantum
cluster variables.

An advantage of Theorem 2.11 is that it requires fewer computations compared
to Rupel’s formula in [16, Corollary 5.4]. Our formula requires O(|β|2) computa-
tions, where |β| is the number of subpaths in β ∈ F ′(Dn). Rupel’s formula requires(

cn−1+cn−2
2

)
computations, which is generally much larger. Moreover, without knowl-

edge of the bijection between collections of colored subpaths and compatible pairs, it
is unclear how to generate all compatible pairs. Naïvely, one must consider all collec-
tions of edges of Cn and check that the compatibility condition holds for each pair of
edges. It thus seems more efficient to generate all collections in F ′(Dn) and compute
their quantum weights using Definition 2.9 than to generate all compatible pairs on
Cn and compute quantum weights using [16, Corollary 5.4].

In our proof of Theorem 2.11, we translate each compatible pair into a finite word
so that we can refer to the language of combinatorics on words. We will work over
the alphabet A = {h, v,H, V }, with A∗ denoting the set of finite words on A. For the
purposes of this section, we represent a compatible pair by a word in A∗. The letters
h and H (resp. v and V ) represent horizontal (resp. vertical) edges, with the capital
letter denoting those edges in S1 (resp. S2).
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Figure 7. The top path depicts the compatible pair on C6 obtained
by applying Φ to β∅ on D6, which has S1 = {η1, η2, . . . , η21} and
S2 = ∅. The bottom path depicts the compatible pair obtained by
applying Φ to the collection of colored Dyck subpaths shown in Fig-
ure 4.

Example 6.1. The word in A∗ corresponding to the top compatible pair in Figure 7
is

H3vH3vH2vH3vH3vH2vH3vH2v .

The word in A∗ corresponding to the bottom compatible pair in Figure 7 is

h3V hHhvh2V h3V h3V Hhvh3V h2V .

We define a morphism f : ZA∗ → Z, where ZA∗ is the group of formal Z-sums of
words in A∗. The function wq is defined on words of length 2 in A∗ as follows:

wq(hv) = wq(Hv) = wq(hV ) = 1 , wq(Hh) = wq(vV ) = r , wq(V H) = r2 − 1 ,

and for x, y ∈ A, wq(xy) = −wq(yx). Note that in particular, this implies that
wq(hh) = wq(HH) = wq(vv) = wq(V V ) = 0. The function wq naturally extends to
formal Z-sums of words of length 2 on A. It is then extended to words of larger length
by taking the formal sum over all length 2 (not necessarily contiguous) subwords
with multiplicity, and again extended naturally to formal Z-sums of any words on A.
We sometimes apply wq to a compatible pair; in this case, we interpret wq as being
applied to the corresponding word on A. We refer to wq as the quantum weight of
a word or compatible pair. Computing the value of wq on the word associated to a
compatible pair in this way is essentially calculating Rupel’s weighting on compatible
pairs associated to quantum cluster variables [16].

Example 6.2. Let t1 (resp. t2) denote the word in A∗ corresponding to the top (resp.
bottom) compatible pair in Figure 7, computed in Example 6.1. Note that here we
have r = 3. Looking at all the length-2 subwords of t1, we can see that t1 has 98
instances of the subword Hv and 70 instances of the subword vH. The only other
length-2 subwords of t1 are HH and vv, and we have wq(HH) = wq(vv) = 0. Thus,
we can compute

wq(t1) = 98wq(Hv) + 70wq(vH) = 98 · 1 + 70 · (−1) = 28 .
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Via a similar computation, we have

wq(t2) = 69wq(hV ) + 45wq(V h) + 21wq(Hh) + 17wq(hH) + 7wq(vV ) + 5wq(V v)
+ 5wq(V H) + 7wq(HV ) + 19wq(hv) + 19(vh) + 3wq(Hv) + wq(vH)

= 69 − 45 + 21 · 3 − 17 · 3 + 7 · 3 − 5 · 3 + 5 · 8 − 7 · 8 + 19 − 19 + 3 − 1
= 28

As we will show, there are more efficient methods for computing these weights than
looking at all length-2 subwords.

For a word u ∈ A∗ and a letter x ∈ A, let (u)x denote the number of instances of x
in u. In order to find a compact formula for the weights corresponding to collections
of subpaths

Lemma 6.3. Let β∅ ∈ F ′(Dn) be the empty collection of colored Dyck subpaths on Dn.
For all n ⩾ 3, we have

wq (Φn(β∅)) = cn−1 + cn−2 − 1 .

Proof. We proceed by induction on n. For the base case n = 3, we have

wq (Φ3(β∅)) = wq(Hrv) = rwq(Hv) +
(
r

2

)
wq(HH) = r = c3 + c2 − 1 .

We now proceed to the inductive step. Let ψ be the morphism {H 7→ Hv, v 7→ v}.
Observe that for a word u ∈ {H, v}∗ that starts with H, ends with v, and has no
consecutive instances of v, we have

wq(ψ(u)) = wq(u) + (u)H .

Let uj be the word associated to Φj(β∅). Then, by Remark 3.3 and Lemma 4.5, un+1
can be obtained by applying the morphism χ = {H 7→ Hrv, v 7→ Hr−1v} to ψ−1(un).
We can readily calculate

wq(χ(HH)) = wq(HrvHrv) = 2r = wq(HH) + 2wq(χ(H)) ,
wq(χ(vv)) = wq(Hr−1vHrv) = 2r − 2 = wq(vv) + 2wq(χ(v)) ,
wq(χ(Hv)) = wq(HrvHr−1v) = 2r = wq(Hv) + wq(Hrv) + wq(Hr−1v) ,
wq(χ(vH)) = wq(Hr−1vHrv) = 2r − 2 = wq(vH) + wq(Hr−1v) + wq(Hrv) .

Moreover, ψ−1(un) has cn−1 −cn−2 instances of H and cn−2 instances of v. Therefore,
we have

wq(Φn+1(β∅) = wq(χ(ψ−1(un)
= wq(ψ−1(un)) + (cn−1 − cn−2)wq(χ(H)) + cn−2wq(χ(v))
= (ψ(un) − cn−2) + r(cn−1 − cn−2) + (r − 1)cn−2

= (cn−1 + cn−2 − 1 − cn−2) + cn

= cn + cn−1 + 1 . □

Having calculated the weight of the empty collection of paths in F ′(Dn), we wish
to calculate the quantum weight when we add in colored subpaths. Note that for
the word corresponding to the compatible pair, this involves swapping out certain
instances of H for h and v for V . We now calculate how such a substitution affects
the quantum weight of the word.
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Lemma 6.4. Let t1, u1, t2, u2, . . . , tm, um be words corresponding to compatible pairs.
Furthermore, suppose that ti, ui ∈ {H, v}. Let σ be the morphism {H 7→ h, v 7→ V }.
Then we have

wq

(
s∏

i=1
tiσ(ui)

)
= wq

(
s∏

i=1
tiui

)

+
s∑

i=1

s∑
j=1

(−1)1i<j

(
r(tj)(ui)h +

(
r(tj)v − r2(tj)H

)
(ui)V

)
.

Proof. Since wq(hV ) = wq(Hv), we have wq(ui) = wq (σ(ui)) for all i. Hence, we need
only to calculate the change in its value under wq after applying σ to the length-2
subwords with one letter from a ui and the other from a tj .

Let Ui denote the value under wq of the sum over all length-2 subwords of∏s
i=1 tiσ(ui) with one letter in σ(ui) and the other from some tj . We then have

Ui =
s∑

j=1
(−1)1i<j

(
(tj)H(ui)h (wq(Hh) − wq(HH))

+ (tj)H(ui)V (wq(HV ) − wq(Hv))
+ (tj)v(ui)h (wq(vh) − wq(vH))

+ (tj)v(ui)V (wq(vV ) − wq(vv))
)

=
s∑

j=1
(−1)1i<j

(
r
(
(tj)H(ui)h + (tj)v(ui)V

)
− r2(tj)H(ui)V

)
. □

Applying the previous general result about compatible pairs to the specific case of
Cn and using the connection between F ′(Dn) and compatible pairs on Cn, we can now
prove the quantum cluster variable expansion formula.

Proof of Theorem 2.11. Adding a path to β ∈ F ′(Dn) corresponds to applying the
morphism σ from Lemma 6.4 to the appropriate portion of the associated compatible
word. Note that |βi|2 = (βi)h and |βi|1 = (βi)V . Similarly, |βj |2 = (βj)H and |βj |1 =
(βj)v. It follows from Lemma 6.4, Lemma 6.3, and the definition of wq for words
in A∗ that wq(β) = γω + βω, where the terms on the right-hand side are those in
[16, Corollary 5.4]. Thus, the expansion formula can be deduced directly from [16,
Corollary 5.4]. □

Example 6.5. Let β = {β1, . . . , β6} ∈ F ′(D6) be the collection of colored Dyck
subpaths shown in Figure 4. Then we have β0 = β1 = β6 = ∅, β2 = {α4}, β3 = {v2},
β4 = {α14}, and β5 = {v6}. Applying Theorem 2.11, we have

wq(β) = (c5 + c4 − 1) + 3(15 − 4) − 9(5 − 1) + 3(5 − 1) + 3(6 − 13)
− 9(2 − 4) + 3(2 − 4)

= 28 .
which confirms the second calculation in Example 6.2.

7. Further directions
Many of our methods rely on the highly structured nature of the maximal Dyck paths
Cn and Dn. We use this to better understand the conditions for a set of edges to form
a compatible pair on Cn, in particular deriving a criterion for compatibility in terms of
the sequences of consecutive vertical edges. While Cn is the relevant choice of maximal
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Dyck path for the cluster variables, compatible pairs over arbitrary maximal Dyck
paths were studied by Lee, Li, and Zelevinsky [8] in their work on the greedy basis.
One way to study compatibility is in terms of forbidden edge sets, i.e. the minimal
subsets of edges which violate the compatibility condition for compatible pairs. It
is easy to verify that for the staircase Dyck path P(a, a) and r = 2, a set of edges
is compatible if and only if it does not contain a horizontal edge and the vertical
edge immediately following it. From the proof of the bijectivity of Φ, it follows that
on Cn the forbidden edge sets are the images under Φ of an (m,w)-brown path and
the cm−1 − wcm−2 edges preceding it. It could be interesting to study whether the
criterion for compatibility can also be reduced for other families of maximal Dyck
paths.

Having established that Lin’s map Φ is a bijection, we now have an explicit connec-
tion between the combinatorial objects in two of the manifestly positive formulas for
rank-two cluster variables. A third manifestly positive formula was given by Cheung–
Gross–Muller–Musiker–Rupel–Stella–Williams [3] and sums over broken lines in a
rank-two scattering diagram. In order to complete the unification of these known
rank-two objects, it would be interesting to find a bijection between compatible pairs
and broken lines, as suggested by the authors of [3]. This problem is still open even in
the cluster variable case, but could be considered more generally for the entire greedy
basis.

While positivity fails in general for the quantum greedy basis [7, Section 3], it would
be interesting to know under what conditions positivity holds. Rupel’s formula [16,
Corollary 5.4] establishes the positivity property for the quantum cluster variables,
but perhaps this is a special case of a more general phenomenon. If so, these elements
may also admit a quantum weighting of the associated compatible pairs, similar to
that given by Rupel.
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