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Bivariate P -polynomial association schemes

Pierre-Antoine Bernard, Nicolas Crampé, Loïc
Poulain d’Andecy, Luc Vinet & Meri Zaimi

Abstract Bivariate P -polynomial association scheme of type (α, β) are defined as a generaliza-
tion of the P -polynomial association schemes. This generalization is shown to be equivalent to
a set of conditions on the intersection parameters. A number of known higher rank association
schemes are seen to belong to this broad class. Bivariate Q-polynomial association schemes are
similarly defined.

This paper is devoted to the generalization of the notion of P -polynomial association
scheme to the case where the monovariate polynomials appearing in the definition
of the latter are replaced by bivariate polynomials. Numerous examples of bivariate
P -polynomial association schemes are provided.

Let us recall the usual definitions. The set Z = {A0, . . . , AN } is a symmetric
association scheme with N classes if the matrices Ai, called adjacency matrices, are
non-zero v × v matrices with 0 and 1 entries satisfying:

(i) A0 = I where I is the v × v identity matrix;

(ii)
N∑

i=0
Ai = J where J is the v × v matrix filled with 1;

(iii) At
i = Ai for i = 0, 1, . . . N and .t stands for the transpose;

(iv) The following relations hold

(1) AiAj = AjAi =
N∑

k=0
pk

ijAk,

where pk
ij are constants called intersection numbers.

This notion plays a role in various contexts. It appears in the theory of experimental
design for the analysis of variance [5, 1] and arises in the context of algebraic combi-
natorics and, in particular, in combinatorial designs and coding theory [2, 14]. It also
generalizes the character theory of representations of groups [1, 37]. Indeed the matri-
ces Ai of an association scheme generate a commutative algebra, called Bose–Mesner
algebra, which is related to the notion of character algebra.

Association schemes are very general structures far from being completely un-
derstood and classified. However, for a subclass of association schemes called P -
polynomial, many connections with other topics allow a deeper understanding. For
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instance, matrices of a P -polynomial association scheme are in correspondence with
distance matrices of distance-regular graphs. They also satisfy by definition,
(2) Ai = vi(A1) for i = 0, 1, . . . , N,

where vi are polynomials of degree i known to verify a three-term recurrence relation.
As such, they give by Favard’s theorem a set of orthogonal polynomials. Imposing
further that the association scheme is Q-polynomial, these polynomials vi must belong
to the Askey scheme [22, 2].

There exist many multivariate generalizations of the polynomials of the Askey
scheme (see [16, 35, 12, 13, 18, 7, 17]). Some of these polynomials appear already in
the context of association schemes, in the expression of the eigenvalues of the adja-
cency matrices [8, 24, 26, 4, 29, 21]. The goal of this paper consists in generalizing
the notion of P -polynomial association schemes to a larger subclass of association
schemes such that these multivariate polynomials appear naturally. We focus in this
paper on the case of bivariate polynomials even if we believe that the case of multivari-
ate polynomials can be treated similarly. In Section 1.1, the bivariate P -polynomial
association scheme is defined. More precisely, we give the definition of a bivariate P -
polynomial association scheme of type (α, β). The notion of type (α, β) corresponds to
a feature of the bivariate polynomials which is also defined in Section 1.1. Then, in Sec-
tion 1.2, we define the notion of (α, β)-metric association scheme imposing constraints
on the intersection numbers and show that this notion is equivalent to be a bivariate
P -polynomial association scheme of type (α, β). This implies that the bivariate poly-
nomials satisfy certain recurrence relations. Section 1.3 recalls the construction of the
idempotents. In Section 2.1, different examples are treated in detail. We show that the
direct product of association schemes, the symmetrization of association schemes, the
24-cell, the non-binary Johnson scheme and association schemes based on isotropic
or attenuated spaces are bivariate P -polynomial association schemes. In Section 3,
the definition of bivariate Q-polynomial association scheme is provided. The sym-
metrization of association schemes is shown to also provide bivariate Q-polynomial
association schemes as well. Section 4 concludes this paper with some perspectives.

1. Bivariate P -polynomial association schemes
1.1. Definition of bivariate P -polynomial association schemes. This sec-
tion provides the main definitions and, in particular, the definition of a bivariate
P -polynomial association scheme of type (α, β). Firstly, the notion of degree for a
bivariate polynomial is introduced. In the following, we use the total order deg-lex on
the monomials denoted ⩽ and defined by

(3) xmyn ⩽ xiyj ⇔


m + n < i + j

or
m + n = i + j and n ⩽ j .

The degree, associated to the total order deg-lex, of a polynomial v(x, y) in two vari-
ables x and y is the couple (i, j) such that xiyj is the greatest monomial in v(x, y).

Secondly, the polynomials playing an important role in the following have more
structure. Let us introduce the partial order on monomials

(4) xmyn ⪯(α,β) xiyj ⇔


m + αn ⩽ i + αj

and
βm + n ⩽ βi + j ,

where 0 ⩽ α ⩽ 1 and 0 ⩽ β < 1. The previous constraints on the parameters α and
β have been chosen such that if xmyn ⪯(α,β) xiyj then xmyn ⩽ xiyj . Note that we
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have obviously

(5) xmyn ⪯(α,β) xiyj ⇔ xm+1yn ⪯(α,β) xi+1yj ⇔ xmyn+1 ⪯(α,β) xiyj+1 .

We shall use the same symbol ⪯(α,β) to also order pairs in N2. Examples of subsets
of points (m, n) smaller than (i, j) are displayed in Figure 1 for different values of the
parameters α and β.
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(a) (α, β) = (0, 0) (b) (α, β) = ( 1
2 , 0) (c) (α, β) = (1, 0) (d) (α, β) = ( 1

2 , 1
2 )

Figure 1. The points in the gray zone correspond to couple of in-
tegers (m, n) smaller than (i, j) for ⪯(α,β) and for different values of
α and β.

Thirdly, this leads to the following two definitions for bivariate polynomials and
subsets of N2.

Definition 1.1. A bivariate polynomial v(x, y) is called (α, β)-compatible of degree
(i, j) if the monomial xiyj appears and all other monomials xmyn appearing are
smaller than xiyj for the order ⪯(α,β).

Definition 1.2. A subset D of N2 is called (α, β)-compatible if for any (i, j) ∈ D,
one gets

(6)
(

xmyn ⪯(α,β) xiyj
)

⇒
(

(m, n) ∈ D
)

.

In words, Definition 1.2 means that for (i, j) ∈ D, all (m, n) such that (m, n) ⪯(α,β)
(i, j) are also in D if the subset D is (α, β)-compatible, i.e. that D is a downset
of (N2, ⪯(α,β)).

Finally, we are in position to generalize the notion of P -polynomial association
scheme.

Definition 1.3. Let D ⊂ N2, 0 ⩽ α ⩽ 1, 0 ⩽ β < 1 and ⪯(α,β) be the order (4). The
association scheme Z is called bivariate P -polynomial of type (α, β) on the domain D
if these two conditions are satisfied:

(i) there exists a relabeling of the adjacency matrices:

(7) {A0, A1, . . . , AN } = {Amn | (m, n) ∈ D},

such that, for (i, j) ∈ D,

(8) Aij = vij(A10, A01) ,

where vij(x, y) is a (α, β)-compatible bivariate polynomial of degree (i, j);
(ii) D is (α, β)-compatible.
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Let us remark that the previous definition can also be given for other choices of
the orders ⩽ and ⪯(α,β). However, all the examples we found (see Section 2.1) are
in agreement with the definition given here. Let us also remark that the choice of
(α, β) is not unique. In the following, we always choose α and β as the smallest pos-
sible parameters. Finally, note that for simplicity we will sometimes omit mentioning
explicitly the domain D when discussing bivariate P -polynomial association schemes.

There are direct consequences of the previous definition:
• The cardinality of D is equal to N + 1;
• A00 = I,

∑
(i,j)∈D

Aij = J;

• A10 and A01 generate the Bose–Mesner algebra;
• v00(x, y) = 1, v10(x, y) = x and v01(x, y) = y;
• all monomials xmyn with non-zero coefficient appearing in vij(x, y) are such

that (m, n) ∈ D.
The bivariate polynomials vij appearing in Definition 1.3 satisfy properties that are
summarized in the following proposition and lemma.

Proposition 1.4. Let Z be a bivariate P -polynomial association scheme of type (α, β)
on the domain D ⊂ N2. Then, for all (i, j) ∈ D, the polynomial vij(x, y) satisfying
equation (8) is unique.

Proof. From the consequences listed above, for all (i, j) ∈ D the polynomial vij(x, y)
of equation (8) is a linear combination of the monomials xmyn with (m, n) ∈ D.
Therefore, the Bose–Mesner algebra of the association scheme Z is linearly generated
by the matrices Am

10An
01 with (m, n) ∈ D. Since the cardinality of D is equal to the

dimension of the Bose–Mesner algebra, this generating set is linearly independent.
Suppose now that there is another (α, β)-compatible bivariate polynomial of degree
(i, j) v′

ij(x, y) ̸= vij(x, y) such that Aij = v′
ij(A10, A01). Since the monomials xmyn are

linearly independent, this implies that there is a linear relation between the matrices
Am

10An
01 for (m, n) ∈ D, which contradicts their linear independence. □

Lemma 1.5. Let vij(x, y) be the bivariate polynomials associated to a bivariate P -
association scheme of type (α, β) on D ⊂ N2. For (i, j) ∈ D, there exist constants
µmn

ij and νmn
ij such that

xvi−1,j(x, y) =
∑

(m,n)⪯(α,β)(i,j)

µmn
ij vmn(x, y), (i ⩾ 1)(9)

yvi,j−1(x, y) =
∑

(m,n)⪯(α,β)(i,j)

νmn
ij vmn(x, y), (j ⩾ 1).(10)

Proof. Let (i, j) ∈ D. Any couple (m, n) such that (m, n) ⪯(α,β) (i, j) is also in D
by (ii) of Definition 1.3. Then, by the fact that vmn(x, y) are (α, β)-compatible, the
only monomials appearing in all the polynomials vmn(x, y) for (m, n) ⪯(α,β) (i, j) are
xmyn for (m, n) ⪯(α,β) (i, j). Therefore, one gets

(11) span(vmn(x, y) | (m, n) ⪯(α,β) (i, j)) = span(xmyn | (m, n) ⪯(α,β) (i, j)).

Remarking that all the monomials xmyn present in xvi−1,j(x, y) satisfy the condi-
tion (m, n) ⪯(α,β) (i, j) (see relation (5)) and using (11), one gets the equality (9).
Relation (10) is proven similarly. □

1.2. (α, β)-metric association scheme. It is well-known that for an association
scheme the P -polynomial property is equivalent to the metric one, i.e. that the inter-
section numbers satisfy the following constraints:
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• pj+1
1j ̸= 0 and pj−1

1j ̸= 0,
•
(
pk

ij ̸= 0
)

⇒ (|i − j| ⩽ k ⩽ i + j).
For a bivariate P -polynomial association scheme, the intersection numbers read as
follows
(12) AijAkℓ =

∑
(m,n)∈D

pmn
ij,kℓ Amn.

This subsection aims to generalize the metric notion to bivariate P -polynomial asso-
ciation schemes.

If the polynomials vij are the bivariate polynomials associated to a bivariate P -
polynomial association scheme of type (α, β), the intersection numbers corresponding
to this association scheme are constrained as explained in the following proposition.

Proposition 1.6. Let Z = {Aij | (i, j) ∈ D} be an association scheme. The state-
ments (i) and (ii) are equivalent:

(i) Z is a bivariate P -polynomial association scheme of type (α, β) on D;
(ii) D is (α, β)-compatible and the intersection numbers satisfy, for (i, j), (i +

1, j) ∈ D,

pi+1,j
10,ij ̸= 0, pi,j

10,i+1j ̸= 0,(13)

pmn
10,ij ̸= 0

(
or pij

10,mn ̸= 0
)

⇒ (m, n) ⪯(α,β) (i + 1, j),(14)

and, for (i, j), (i, j + 1) ∈ D,

pi,j+1
01,ij ̸= 0, pi,j

01,ij+1 ̸= 0,(15)

pmn
01,ij ̸= 0

(
or pij

01,mn ̸= 0
)

⇒ (m, n) ⪯(α,β) (i, j + 1).(16)

Proof. (i) ⇒ (ii): From Lemma 1.5, relation (9) holds and replacing x and y by A10
and A01 in it, one gets, for (i, j) ∈ D:

(17) A10Ai−1j =
∑

(m,n)⪯(α,β)(i,j)

αmn
ij Amn, (i ⩾ 1).

Comparing this equation with (12) and knowing that the matrices Aij are indepen-
dent, the following constraints on pmn

ij,kℓ hold:

(18) pij
10,i−1j ̸= 0 and

(
pmn

10,i−1j ̸= 0
)

⇒
(
(m, n) ⪯(α,β) (i, j)

)
.

Since the association scheme is symmetric, the intersection numbers satisfy the fol-
lowing symmetry property: pmn

10,ij = 0 ⇔ pij
10,mn = 0. This leads to relations (13)

and (14). Relations (15) and (16) are proven similarly starting from relation (10) of
Lemma 1.5.
(ii) ⇒ (i): We use induction on ⩽ to check that Aij = vij(A10, A01) with vij being
(α, β)-compatible of degree (i, j). It is immediate for i+j = 1. Now assume that i ⩾ 1.
Then we have, using (14),

(19) A10Ai−1,j = pij
10,i−1jAij +

∑
(m,n)⪯(α,β)(i,j)

pmn
10,i−1jAmn .

Condition (13) ensures that Aij appears with a non-zero coefficient, so that this rela-
tion can be used for expressing Aij in terms of A10Ai−1,j and Amn with (m, n) ⪯(α,β)
(i, j). Since (m, n) ⪯(α,β) (i, j) implies (m, n) ⩽ (i, j), we can use the induction hy-
pothesis on those Amn and clearly also on Ai−1,j . So we have that Aij is expressed
as a polynomial vij(x, y) evaluated in A10, A01. Since xi−1yj appears with a non-zero
coefficient in vi−1,j , we have that xiyj appears with a non-zero coefficient in vij(x, y).
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The fact that vij(x, y) is indeed (α, β)-compatible follows now easily from the tran-
sitivity of ⪯(α,β) and the property (5). If i = 0, we can then assume that j ⩾ 1 and
use the same argument starting from A01Ai,j−1, using now conditions (15)-(16). □

For different choices of α and β corresponding to the ones shown in Figure 1, the
domains where pmn

10,ij and pmn
01,ij may be non-zero are displayed in Figure 2. Note that
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(a) (α, β) = (0, 0) (b) (α, β) = ( 1
2 , 0) (c) (α, β) = (1, 0) (d) (α, β) = ( 1

2 , 1
2 )

Figure 2. The coordinate (m, n) of the dots in the graphs at the
top (resp. bottom) line represent when pmn

10,ij (resp. pmn
01,ij) may be

non-zero for different values of (α, β).

by (12), the constraints on the intersection numbers given in item (ii) of Proposi-
tion 1.6 can be equivalently viewed as constraints on the terms Amn with (m, n) ∈ D
appearing in the products A10Aij and A01Aij . The expansions of these two prod-
ucts in terms of the matrices Amn correspond to the recurrence relations satisfied
by the bivariate polynomials vij . One can read the type of these recurrence relations
in Figure 2. Indeed, for example the case displayed in Figure 2b corresponds to the
recurrence relations of the form:

x vij(x, y) = pi+1j
10,ij vi+1j(x, y) + pij

10,ij vij(x, y) + pi−1j
10,ij vi−1j(x, y),(20)

y vij(x, y) = pij+1
01,ij vij+1(x, y) + pij

01,ij vij(x, y) + pij−1
01,ij vij−1(x, y)

+pi−1j+1
01,ij vi−1j+1(x, y) + pi+1j−1

01,ij vi+1j−1(x, y).(21)

This proposition leads to the following definition.

Definition 1.7. The association scheme Z = {Aij | (i, j) ∈ D} is called (α, β)-metric
on the domain D if D is (α, β)-compatible and if the associated intersection numbers
pmn

ij,kℓ satisfy the conditions (13)-(16).

With the above definition, Proposition 1.6 can be reformulated like this: an as-
sociation scheme is (α, β)-metric on D if and only if it is bivariate P -polynomial of
type (α, β) on D.
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1.3. Eigenvalues and idempotents. Let Z = {Aij | (i, j) ∈ D} be a bivariate
P -association scheme of type (α, β). Since the matrices Aij are pairwise commuting,
they can be diagonalized in the same basis. The vector space V of dimension v, on
which the adjacency matrices act, can be decomposed as follows

(22) V =
⊕

λ∈D⋆

Vλ ,

where D⋆ is a set of labels with the same cardinality as D (i.e. |D⋆| = |D|) and Vλ is
a common eigenspace for all the matrices Aij . D⋆ denotes a choice of labelling for the
common eigenspace and will mostly be a subset of N2 in the following sections. That
|D⋆| = |D| corresponds to the fact that the matrices Aij are linearly independent.
Since the sum of Aij is equal to J, the common eigenspace containing the vector
(1, 1, . . . , 1) is of dimension 1. So we can take λ0 ∈ D⋆ with Vλ0 = span(1, 1, . . . , 1).

As usual in the context of association schemes, we denote by Eλ with λ ∈ D⋆ the
projector on the corresponding eigenspace: EλV = Vλ. They satisfy

EλEλ′ = δλ,λ′Eλ ,
∑

λ∈D⋆

Eλ = I , Eλ0 = 1
vJ,(23)

Aij =
∑

λ∈D⋆

pij(λ)Eλ ,(24)

with pij(λ) the eigenvalues of Aij in the subspace Vλ. The idempotents Eλ also form
a basis of the Bose–Mesner algebra.

With θλ = p10(λ) and µλ = p01(λ) the eigenvalues of A10 and A01, respectively,
one gets

(25) A10Eλ = θλEλ , A01Eλ = µλEλ .

Since A10 and A01 generate the whole Bose–Mesner algebra, their eigenvalues char-
acterize the eigenspaces Vλ i.e. the couples (θλ, µλ), λ ∈ D⋆, are different pairwise.

Proposition 1.8. The eigenvalues pij(λ) associated to a bivariate P -polynomial as-
sociation scheme of type (α, β) satisfy

(26) pij(λ) = vij(θλ, µλ) ,

where vij(x, y) is the bivariate polynomial of Definition 1.3.
Reciprocally, if an association scheme {Aij | (i, j) ∈ D} with D (α, β)-compatible

has eigenvalues satisfying (26) where vij(x, y) is a bivariate polynomial (α, β)-
compatible of degree (i, j), this scheme is a bivariate P -polynomial association
scheme of type (α, β).

Proof. This result is a direct consequence of equation (24) and Aij = vij(A10, A01).
□

Relation (24) can be inverted and one gets

Eλ = 1
v
∑

(i,j)∈D

qλ(ij)Aij .(27)

The parameters qλ(ij) are called dual eigenvalues.

2. Examples of bivariate P -polynomial association schemes
It is obvious that all the association schemes with two classes A0, A1, A2 are bivariate
P -polynomial by setting A10 = A1 and A01 = A2. In the following subsections, a
number of examples are given.
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2.1. Direct product of P -polynomial association schemes. Let A0, . . . , AD

define an association scheme with intersection numbers pk
ij and let Ã0, . . . , Ã

D̃
provide

another association scheme with intersection numbers p̃k
ij . The direct product is the

association scheme defined by the Kronecker product of matrices:

(28) Aij = Ai ⊗ Ãj , for (i, j) ∈ {0, . . . , D} × {0, . . . , D̃} .

Its intersection numbers are pmn
ij,kl = pm

ik p̃n
jl.

Assume that both association schemes are P -polynomial, so that we have:

(29) Ai = vi(A1) and Ãj = ṽj(Ã1) ,

where vi (respectively, ṽj) is a polynomial of degree i (respectively, of degree j). We
obtain immediately that the direct product is a bivariate P -polynomial association
scheme of type (0, 0), since we have:

(30) Aij = vij(A10, A01) , where vij(x, y) = vi(x)ṽj(y).

The recurrence relations are given by

A10Aij = pi−1
1i Ai−1,j + pi

1iAij + pi+1
1i Ai+1,j ,(31)

A01Aij = p̃j−1
1j Ai,j−1 + p̃j

1jAij + p̃j+1
1j Ai,j+1 .(32)

2.2. Symmetrization of association scheme with two classes. In [8, 26], the
symmetrization of an association scheme has been defined and it has been shown that
the expressions of the eigenvalues of the associated adjacency matrices are given by
the multivariate Krawtchouk polynomials. We shall show that the symmetrization
of an association scheme with two classes is a bivariate P -polynomial association
scheme of type (1/2, 1/2). Note that any association scheme with two classes has the
property of being (monovariate) P -polynomial and is equivalent to a strongly regular
graph [15].

Let us recall the definition of the symmetrization. Let A0, A1 and A2 define a
P -polynomial association scheme whose associated matrices Li, with entries (Li)hj =
ph

ij , read as follows (see e.g. [15])

(33) L1 =

0 k 0
1 k − 1 − b b
0 c k − c

 , L2 =

0 0 bk
c

0 b bk
c − b

1 k − c bk
c − 1 − k + c

 .

The matrices Ai are v × v matrices with

(34) v = k(b + c) + c

c
.

Let us define Aij by

(35) J(x) = (A0 + x1A1 + x2A2)⊗N =
N∑

i,j=0
i+j⩽N

Aij xi
1xj

2,

where x1, x2 are abstract indeterminates. The set {Aij | i, j ⩾ 0, i + j ⩽ N}, which is
called symmetrization, defines an association scheme [8].

An explicit form for the matrix Aij is the following:

(36) Aij = 1
i!j!(N − i − j)!

∑
π∈SN

π · A⊗i
1 ⊗ A⊗j

2 ⊗ A⊗N−i−j
0 ,

where the sum is over all the place permutations, and the prefactor ensures that each
term appears only once. The sum over permutations π in SN is the symmetrizer; it
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commutes with any Aij and, in particular, with A10 and with A01. A direct compu-
tation, with careful consideration of the prefactors, leads to

A10Aij = k(N − i − j + 1)Ai−1,j +
(
i(k − 1 − b) + j(k − c)

)
Aij + (i + 1)Ai+1,j

+c(j + 1)Ai−1,j+1 + b(i + 1)Ai+1,j−1 ,(37)

A01Aij = bk

c
(N − i − j + 1)Ai,j−1 +

(
bi + j(bk

c
− 1 − k + c)

)
Aij + (j + 1)Ai,j+1

+(j + 1)(k − c)Ai−1,j+1 + (i + 1)(bk

c
− b)Ai+1,j−1 .(38)

From the previous results, we conclude that we have a bivariate P -polynomial associ-
ation scheme of type (1/2, 1/2) (see Figure 1d) and (1/2, 1/2)-compatible polynomials
vij of degree (i, j) such that
(39) Aij = vij(A10, A01) , for any i, j with i + j ⩽ N .

Remark 2.1. If c = k then two terms cancel in the second recurrence relation. In this
case, the association scheme is bivariate P -polynomial of type (0, 1/2).

Example 2.2. The scheme associated to the symmetrization of the Hamming scheme
is called the ordered Hamming scheme [4, 24]. Let us recall that the Hamming scheme
H(2, q) corresponds to

k = 2(q − 1) , b = q − 1 , c = 2 .

Then the recurrence relations of the ordered Hamming scheme become:
A10Aij = 2(q − 1)(N − i − j + 1)Ai−1,j + (q − 2)(i + 2j)Aij + (i + 1)Ai+1,j

+2(j + 1)Ai−1,j+1 + (q − 1)(i + 1)Ai+1,j−1 ,(40)

A01Aij = (q − 1)2(N − i − j + 1)Ai,j−1 +
(
i(q − 1) + j(q − 2)2)

)
Aij + (j + 1)Ai,j+1

+2(j + 1)(q − 2)Ai−1,j+1 + (i + 1)(q − 1)(q − 2)Ai+1,j−1 .(41)
For q = 2, the second relation becomes a three-term recurrence relation (see the
preceding remark).

We now compute the eigenvalues of Aij . For an association scheme with 2 classes,
one gets [15]

A0 = E0 + E1 + E2 ,(42)
A1 = kE0 + θE1 + τE2 ,(43)
A2 = (v − 1 − k)E0 − (θ + 1)E1 − (τ + 1)E2 ,(44)

where the eigenvalues θ and τ are related to the parameters b and c as follows

(45) b = −(θ + 1)(τ + 1), c = k + θτ, v = k(b + c) + c

c
.

Now, for (i, j) ∈ D one can consider the matrices Eij defined by

(46) Eij = 1
i!j!(N − i − j)!

∑
π∈SN

π · E⊗i
1 ⊗ E⊗j

2 ⊗ E⊗N−i−j
0 ,

and observe that they are the projectors onto the eigenspaces of A10 and A01 associ-
ated to eigenvalues θij and µij :
(47) A10Eij = θijEij , A01Eij = µijEij ,

where

(48) θij = (N − i − j)k + iθ + jτ, µij = (N − i − j)kb

c
− i(θ + 1) − j(τ + 1).
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Let us take D∗ = D and rewrite the generating function J(x) (35) using the idempo-
tents Ei

(49)

J(x)=(1+kx1+ kb

c
x2)N

(
E0 + 1 + θx1 − (θ + 1)x2

1 + kx1 + kb
c x2

E1 + 1 + τx1 − (τ + 1)x2

1 + kx1 + kb
c x2

E2

)⊗N

.

By remarking that (E0 + X1E1 + X2E2)⊗N =
∑

i+j⩽N Xi
1Xj

2Eij , one gets

(50) J(x) =
∑

i+j⩽N

(1+kx1+ kb

c
x2)N−i−j(1+θx1−(θ+1)x2)i(1+τx1−(τ +1)x2)jEij .

Using relations (24) and (26), one finds another expression for J(x):

(51) J(x) =
∑

i+j⩽N

 ∑
m+n⩽N

vmn(θij , µij) xm
1 xn

2

Eij .

Comparing both expressions of J(x), the generating functions of the polynomials vij

are obtained:∑
m+n⩽N

vmn(θij , µij) xm
1 xn

2

=(1 + kx1 + kb

c
x2)N−i−j(1 + θx1 − (θ + 1)x2)i(1 + τx1 − (τ + 1)x2)j .(52)

The right-hand side of this relation can be identified with the generating function of
the bivariate Krawtchouk polynomials (see e.g. [11]):

(53) vmn(θij , µij) =

√
N !

(N − m − n)!m!n!

(√
k
)m
(√

kb

c

)n

Pmn(i, j; N).

The functions Pmn(i, j; N) defined in [11] are proportional to the bivariate
Krawtchouk polynomials [18, 20, 19] and are defined from a matrix R of SO(3)
which reads as follows in terms of the parameters used here

(54) R =


θ
√

τ+1
(τ−θ)(k−θ)

√
(θ+1)(τθ+k)
(θ−τ)(k−θ)

√
k(τ+1)

(τ−θ)(k−θ)

−τ
√

θ+1
(τ−θ)(τ−k)

√
(τ+1)(τθ+k)
(τ−θ)(k−τ) −

√
k(θ+1)

(τ−θ)(τ−k)√
k(τθ+k)

(k−θ)(k−τ)

√
k(θ+1)(τ+1)
(θ−k)(k−τ)

√
τθ+k

(k−θ)(k−τ)

 .

Let us remark that the recurrence relations (37)-(38) of vmn(x, y) can be recovered
from the ones of Pmn(i, j; N) given in [11].

2.3. A generalized 24-cell. In [25] (see Theorem 3.6), an association scheme with
4 classes which generalizes the 24-cell is studied. It is proven that it is Q-polynomial
but not P -polynomial. We shall show that it is bivariate P -polynomial. The matrices
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Li, with entries (Li)kj = pk
ij , are given by L0 = I5,

L1 =


0 16ℓs2 0 0 0
1 2(ℓ − 1)s(4s + 1) (4s − 1)(4s + 1) 2(ℓ − 1)s(4s − 1) 0
0 8ℓs2 0 8ℓs2 0
0 2(ℓ − 1)s(4s − 1) (4s − 1)(4s + 1) 2(ℓ − 1)s(4s + 1) 1
0 0 0 16ℓs2 0

 ,(55)

L2 =


0 0 2(4s − 1)(4s + 1) 0 0
0 (4s − 1)(4s + 1) 0 (4s − 1)(4s + 1) 0
1 0 32s2 − 4 0 1
0 (4s − 1)(4s + 1) 0 (4s − 1)(4s + 1) 0
0 0 2(4s − 1)(4s + 1) 0 0

 ,(56)

L3 =


0 0 0 16ℓs2 0
0 2(ℓ − 1)s(4s − 1) (4s − 1)(4s + 1) 2(ℓ − 1)s(4s + 1) 1
0 8ℓs2 0 8ℓs2 0
1 2(ℓ − 1)s(4s + 1) (4s − 1)(4s + 1) 2(ℓ − 1)s(4s − 1) 0
0 16ℓs2 0 0 0

 ,(57)

and

L4 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .(58)

The fact that this scheme is not P -polynomial reads in the fact that L1 is not tridi-
agonal. Let us define
(59) A00 = A0 , A10 = A2 , A01 = A3 , A11 = A1 , A20 = A4 .

By direct computation (we recall that Ai and Li satisfy the same relations), these
matrices satisfy

A11 = 1
(4s − 1)(4s + 1)A01A10 − A01,(60)

A20 = 1
2(4s − 1)(4s + 1)A2

10 − 2(8s2 − 1)
(4s − 1)(4s + 1)A10 − A00.(61)

This demonstrates that it is a bivariate P -polynomial association scheme of type (0, 0)
(see Figure 1a).

2.4. Non-binary Johnson association scheme. The non-binary Johnson scheme
is a generalization of the Johnson scheme which has eigenvalues that can be expressed
in terms of bivariate polynomials formed of Krawtchouk and Hahn polynomials [9, 29].
We show here that it is a bivariate P -polynomial association scheme of type (1, 0).

We start by recalling the definition of the non-binary Johnson scheme, which can
be found in [29]. Let K = {0, 1, 2, . . . , r − 1}, where r is an integer greater than 1
(r ⩾ 2), and consider the n-fold Cartesian product Kn, where n is a positive integer.
For a vector x in Kn with components xi, the weight w(x) is defined as the number
of non-zero components of x, that is
(62) w(x) =

∣∣{i | xi ̸= 0}
∣∣.

For two vectors x, y ∈ Kn, the number of equal non-zero components e(x, y) and the
number of common non-zeros c(x, y) are also defined:

e(x, y) =
∣∣{i | xi = yi ̸= 0}

∣∣, c(x, y) =
∣∣{i | xi ̸= 0, yi ̸= 0}

∣∣.(63)
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Consider a fixed weight number k. Note that we must have 0 ⩽ k ⩽ n by defini-
tion (62). The set
(64) X = {x ∈ Kn | w(x) = k} ,

together with all the non-empty relations(1)

(65) Rij = {(x, y) ∈ X2 | e(x, y) = k − i − j, c(x, y) = k − j} ,

define a symmetric association scheme called the non-binary Johnson scheme and
denoted Jr(k, n), following the notation of [29]. From this definition, one can construct
the adjacency matrices Aij of the non-binary Johnson scheme. These are |X| × |X|
matrices whose entries, labeled by the couples (x, y) ∈ X2, take the value one if
(x, y) ∈ Rij and zero otherwise. In particular, for i = j = 0, the adjacency matrix
A00 is the identity matrix since (x, y) ∈ R00 if and only if x = y. More generally,
one can observe from the definitions (63) and (65) that two vectors x, y such that
(x, y) ∈ Rij have:

(i) e(x, y) = k − i − j equal non-zero components;
(ii) c(x, y) − e(x, y) = i unequal common non-zero components;
(iii) k − c(x, y) = j uncommon non-zero components;
(iv) j uncommon zero components;
(v) n − k − j common zero components.

It is therefore seen that the non-empty relations Rij are such that
(66) 0 ⩽ i ⩽ k − j, 0 ⩽ j ⩽ min{k, n − k}.

When r = 2, it is seen that J2(k, n) is the Johnson scheme J(n, k) (see e.g. [2]).
Indeed, in this case the alphabet K is binary and we must have e(x, y) = c(x, y),
which implies that only the relations Rij with i = 0 and 0 ⩽ j ⩽ min{k, n − k} are
non-empty. Moreover, the couples (x, y) ∈ R0j are such that the Hamming distance
of the vectors x and y (i.e. the number of unequal components) is the constant 2j. In
what follows, we will suppose r ⩾ 3.

Using the properties (i)–(v), it is possible to compute the following relations for
the adjacency matrices:

A10Aij = (k − i − j + 1)(r − 2)Ai−1,j + (i(r − 3) + j(r − 2)) Aij + (i + 1)Ai+1,j ,

(67)

A01Aij = (k − i − j + 1)(r − 2)jAi−1,j + (k − i − j + 1)(n − k − j + 1)(r − 1)Ai,j−1

+ (i + 1)jAi+1,j + (j + 1)2Ai,j+1 + (i + 1)(n − k − j + 1)(r − 1)Ai+1,j−1

+ (j + 1)2(r − 2)Ai−1,j+1 + j (k − i − j + (r − 2)i + (n − k − j)(r − 1)) Ai,j .(68)
As an example, the coefficient before the matrix Ai−1,j in (67) is computed as follows.
For two vectors x and y such that (x, y) ∈ Ri−1,j , one needs to count the number of
vectors z such that (x, z) ∈ R10 and (z, y) ∈ Rij . Using the properties (i)–(v), one
finds that such vectors z must have all components equal to those of x except for one
component zs at some coordinate s which must be such that zs ̸= 0 and zs ̸= xs = ys.
There are k − (i − 1) − j possibilities for the coordinate s because of (i), and r − 2
possibilities for the value of zs ∈ K. One then takes the product of these possibilities
to obtain the total number of vectors z, which gives the coefficient written in (67).
The other coefficients are found similarly.

From the relations (67) and (68), we can deduce using Proposition 1.6 that the
non-binary Johnson scheme is a bivariate P -polynomial association scheme of type
(1, 0) (see Figure 2c). Note that if k ⩽ n − k, then the domain D ⊆ N2 of the couples

(1)The relations Rij of [29] have been relabeled as follows: i 7→ i + j and j 7→ j.
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(i, j) for the adjacency matrices Aij is the triangle i + j ⩽ k, whether if n − k < k,
the domain is the same triangle truncated horizontally at j = n − k. In both cases,
the domain D is (1, 0)-compatible (see Figure 1c).

In [29], the eigenvalues of the non-binary Johnson scheme Jr(k, n) are labeled
by couples of integers (x, y) ∈ D∗ = D and given explicitly in terms of bivariate
polynomials(2):
(69) pij(x, y) = (r − 1)jKi(x, k − j, r − 1)Ej(y, n − x, k − x),
where (i, j), (x, y) ∈ D and for i = 0, 1, . . . , N ,

Ki(x, N, p) =
i∑

ℓ=0
(−1)ℓ(p − 1)i−ℓ

(
x

ℓ

)(
N − x

i − ℓ

)
,(70)

Ei(x, N, p) =
i∑

ℓ=0
(−1)ℓ

(
x

ℓ

)(
p − x

i − ℓ

)(
N − p − x

i − ℓ

)
.(71)

Expression (70) is the Krawtchouk polynomial while (71) is the Eberlein polynomial.
The latter can be expressed in terms of the (dual) Hahn polynomial and is known to
provide the eigenvalues of Johnson scheme. As a byproduct of our approach in this
paper, we have obtained recurrence relations for the polynomial (69). Indeed, because
of Proposition 1.8, we must have
(72) pij(x, y) = vij(p10(x, y), p01(x, y)),
where vij(x, y) is the (unique) bivariate polynomial such that Aij = vij(A10, A01)
for the non-binary Johnson scheme (see Definition 1.3). Therefore, the recurrence
relations (67) and (68) for the adjacency matrices imply the same recurrence relations
for the polynomials pij(x, y) given in (69), with the replacements Aij 7→ pij(x, y).

Remark 2.3. There is a connection between the non-binary Johnson scheme and the
ordered Hamming scheme, which we recall is the symmetrization of the Hamming
scheme H(2, q) (see example 2.2 above). Indeed, consider the case q = 2, and let
{Aij | i, j ⩾ 0, i + j ⩽ N} be the set of adjacency matrices of the ordered Hamming
scheme, as in Section 2.2. These matrices act on a vector space V of dimension 4N with
basis vectors ei for i = 1, . . . , 4N . Consider now the set Wk = {ei | et

1AN−k,0 ei ̸= 0}
for k any integer such that 0 ⩽ k ⩽ N/2, and denote by Aij the restriction of
the matrices Aij on Wk. Then, using (36), one can show that the set of matrices
{A2s,j | 0 ⩽ s ⩽ k, 0 ⩽ j ⩽ N − k − s} is a symmetric association scheme cor-
responding to the non-binary Johnson scheme J3(N, N − k) (up to a relabeling of
indices). Put differently, J3(N, N − k) can be viewed as a particular projection of the
ordered Hamming scheme. This connection between these two bivariate P -polynomial
association schemes is analogous to the embedding of the Johnson scheme J(n, k) in
the Hamming scheme H(n, 2) that was described algebraically in terms of projection
matrices in [3].

2.5. Association schemes based on isotropic spaces. Association schemes
based on dual polar spaces are well-known examples of P - and Q-polynomial
schemes [6, 28]. They are obtained by considering vector spaces of dimension D
defined over finite fields Fq and equipped with a non-degenerate form B.

For such scheme, the set of vertices X (i.e. the labels of the columns and rows of its
adjacency matrices Ai) is composed of the maximal isotropic subspaces of FD

q . These

(2)The following change of variables has been applied to the eigenvalues given in [29] in order to
fit with our conventions: i 7→ i + j, x 7→ x + y, y 7→ x. The definitions of the polynomials have been
also changed: Ki(N, p, x) 7→ Ki(x, N, p) and Ei(N, p, x) 7→ Ei(x, N, p).
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are the largest subspaces V ⊂ FD
q such that the evaluation of the form B(v1, v2)

vanishes for any two vectors v1, v2 ∈ V . By Witt’s theorem, they all have the same
dimension N ⩾ D/2. The relations {Ri}0⩽i⩽N giving the non-zero entries of the
adjacency matrices Ai are given by
(73) Ri = {(V, V ′) ∈ X × X | dim(V ∩ V ′) = N − i} .

A generalization was introduced in [27] by dropping the maximality condition on
the subspaces. Indeed, it was shown that a set of vertices composed of the isotropic
d-subspaces of FD

q equipped with a non-degenerate form B still gives a symmetric
association scheme if the following relations are introduced:
(74) Rij = {(V, V ′) ∈ X × X | dim(V ∩ V ′) = d − i − j, dim(V ⊥ ∩ V ′) = d − i} ,

where d ⩽ N and V ⊥ is the subspace composed of vectors v1 ∈ FD
q verifying

B(v1, v2) = 0 for any vector v2 ∈ V . Note that this scheme has for domain,
(75) D = {(i, j) | 0 ⩽ i ⩽ d, 0 ⩽ j ⩽ N − d, 0 ⩽ i + j ⩽ d} .

The spherical functions associated to the lattice of isotropic d-subpaces and thus the
eigenvalues pij(mn) of the scheme were computed in [28]. This set of subspaces also has
a combinatorial design interpretation as the dth fiber of the uniform poset consisting
of all the isotropic subspaces [30]. One naturally recovers the dual polar schemes for
d = N , but the P - and Q-polynomial properties are lost in general for d ̸= N . Our
claim is that the bivariate P -polynomial property holds for all d ∈ {1, 2, . . . ⌊N/2⌋}.

While computing all the coefficients pmn
ij,kℓ of these schemes remains an open prob-

lem, general observations can be made regarding vanishing intersection parameters.
For any two isotropic d-subspaces V and V ′ in relation R01 or R10, one has that
dim(V ∩ V ′) = d − 1 and thus
(76) V = V ∩ V ′ ⊕ span{v1} and V ′ = V ∩ V ′ ⊕ span{v2} ,

where v1,v2 ∈ FD
q . For any third isotropic d-subspaces U , it follows that

(77) |dim(V ∩ U) − dim(V ′ ∩ U)| ⩽ 1, and |dim(V ∩ U⊥) − dim(V ′ ∩ U⊥)| ⩽ 1 .

These inequalities and the definition of the relations Rij then imply that

(78) |i + j − k − ℓ| ⩾ 2 or |i − k| ⩾ 2 ⇒ pij
10,kℓ = pij

01,kℓ = 0 .

Other vanishing intersection parameters can also be identified for the case pij
10,kℓ.

Then, one is interested in the possible relations Rij between U , V and V ′ given that
(V, V ′) ∈ R10. In addition to (76), we get that B(v1, v2) ̸= 0 and thus
(79) dim(V ∩ U) − dim(V ′ ∩ U) = 1 ⇒ ∃ v3 = v1 + r ∈ V ∩ U, with r ∈ V ∩ V ′ .

In particular, v3 is in V ⊥ but not in V ′⊥. To have dim(V ′⊥ ∩ U) ⩾ dim(V ⊥ ∩ U), one
would therefore require the existence of at least one vector v′ contained in V ′⊥ ∩ U
but not in V ⊥ ∩ U . By construction, it would verify B(v′, v1) ̸= 0 and B(v′, r) = 0
such that B(v′, v3) ̸= 0. Since U has to be isotropic and v3 ∈ U , such vector v′ cannot
exist and one finds
(80) |i + j − k − ℓ| = 1 ⇒ ℓ = j .

In terms of conditions on intersection parameters, it reads
(81) |i + j − k − ℓ| = 1, ℓ ̸= j ⇒ pkℓ

10,ij = 0 .

From these observations and the fact that D is (1, 1/2)-compatible for d ⩽ N/2,
we get from Proposition 1.6 that the isotropic d-subspaces with the set of relations
Rij yields a bivariate P -association schemes of type (1, 1/2). To illustrate this result,
let us consider the case where B is a symplectic form, d = 2 and D ⩾ 6. The domain
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D is then small enough to allow the direct computation of all intersection coefficients
pkℓ

10,ij and pkℓ
10,ij explicitly through simple combinatorial arguments. The matrices L10

and L01, of entries (L10)kℓ,ij = pkℓ
10,ij and (L01)kℓ,ij = pkℓ

01,ij , are given by

L10 =

00 10 01 11 20 02


0 (q + 1)qD−3 0 0 0 0 00
1 (q − 1)qD−4 (qD−4 − 1) 0 qD−2 0 10
0 (q − 1)qD−4 qD−4 qD−2 0 0 01
0 0 q (2q2 − 1)qD−5 (q − 1)qD−3 q(qD−6 − 1) 11
0 (q + 1) 0 (q + 1)(qD−4 − 1) (q2 − 1)qD−4 0 20
0 0 0 (q2 − 1)(q + 1)qD−5 0 (q + 1)qD−5 02

L01 =

00 10 01 11 20 02



0 0 (q+1)(qD−3−q)
(q−1) 0 0 0 00

0 qD−4 − 1 qD−4−1
q−1 q2 qD−4−1

q−1 0 0 10
1 qD−4 qD−4−1

(q−1) + q2 − 2 qD−3 0 q3 qD−6−1
(q−1) 01

0 q 1 (2q2−1)(qD−5−1)
(q−1) qD−3 q(qD−6−1)

(q−1) 11
0 0 0 (q+1)(qD−4−1)

(q−1) (q + 1)(qD−4 − 1) 0 20
0 0 (q + 1)2 (q + 1)2qD−5 0 (q + 1)

(
qD−5−q2−q+1

q−1

)
02

Since the entries of these matrices give the coefficients in relations of the Bose–
Mesner algebra, they allow to express A10, A01 and A11 as the following polynomials
of A10 and A01,

A11 = q−1A10A01 − qD−5A01 − q−1(qD−4 − 1)A10 ,(82)

A20 = 1
q + 1A2

10 − (q − 1)qD−4

(q + 1) A10 − (q − 1)qD−4

(q + 1) A01 − qD−3A00 ,(83)

and

A02 = 1
(q + 1)2 A2

01 − 1
q(q + 1)2 A10A01 +

(
qD−5

(q + 1)2 − qD−4 − 1
(q2 − 1)(q + 1) − q2 − 2

(q + 1)2

)
A01

(84)

+
(

(qD−4 − 1)
q(q + 1)2 − qD−4 − 1

(q2 − 1)(q + 1)

)
A10 − qD−3 − q

q2 − 1 A00 ,

which highlights the bivariate P -polynomial nature of the scheme.

2.6. Association schemes based on attenuated spaces. To explore another
family of association schemes, let us consider a vector space of dimension D + L
over the finite field Fq and one of its subspaces W of dimension L. For a subspace
V ⊆ FD+L

q , the quotient of V by W is denoted V/W . The set X of subspaces V of
dimension d with intersection V ∩ W = ∅ is the dth fiber of a uniform poset and
defines what is called an attenuated space [30, 23]. Let us focus on the case L ⩾ d (see
Remark 2.5 below). It was observed in [36] that such a set equipped with relations Rij

given by

(85) Rij = {(V, V ′) ∈ X ×X | dim(V ∩V ′) = d− i−j, dim(V/W ∩V ′/W ) = d−j} ,

defines a symmetric association scheme of domain

(86) D = {(i, j) ∈ N2 | j ⩽ min(d, D − d), i + j ⩽ d} .

This domain D is (1, 0)-compatible. A formula for all its intersection parameters
pmn

ij,kℓ was also provided in [36]. In the case of p10
ij,kℓ and p01

ij,kℓ, the expressions simplify
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greatly and can be obtained through simple combinatorial arguments. This yields the
following relations between the adjacency matrices,

A01Aij = q2j+i+L−1[d − i − j + 1]q[D − d − j + 1]qAij−1 + [j + 1]2qqiAij+1

+ [d − i − j + 1]q[j]q(qL − qi−1)qi+jAi−1j + [i + 1]q[j]qqi+j+1Ai+1j

+ [j + 1]2q(qL − qi−1)Ai−1j+1 + [i + 1]q[D − d − j + 1]qq2j+L−1Ai+1j−1

+ [j]q
(
[D − d − j]qqL+1+j+ [d − i − j]qqj+2i+1+ [i]q(qL − qi−1)qj+1+ [j]q(q − 1)qL

)
Aij ,

(87)

and
A10Aij = (qL − qi−1)[d − i − j + 1]qqi+j−1Ai−1j + [i + 1]qqi+jAi+1j

+
(
(qL − 1)[i + j]q − [i]qqi+j−1 + (q − 1)qi+j [d − i − j]q[i]q

)
Aij ,

(88)

where [n]q = (qn − 1)/(q − 1) are q-numbers. From (87) and (88), one can check that
the scheme verifies conditions (13)-(16) with respect to the partial order ⪯(1,0). Since
the domain D is also (1, 0)-compatible, Proposition 1.6 implies that this scheme is
bivariate P -polynomial of type (1, 0).

There thus exist polynomials vij verifying Aij = vij(A10, A01). These are solu-
tions of (87) and (88) interpreted as recurrence relations. Alternatively, they can be
obtained using (26) and the spectrum pij(m, n) of the adjacency matrices Aij . An
expression for the latter can be found in [10, 21] and is given by, for (i, j) ∈ D,

(89) pij(m, n) = qjLKi(d − j, L; q; n)Qj(D − n, d − n; q; m) ,

where (m, n) ∈ D∗ = D labels the eigenspaces of the matrices Aij and Ki, Qj are
respectively q-Krawtchouk polynomials and q-Hahn polynomials,

(90) Ki(j, L; q; n) =
i∑

k=0
(−1)i−kqkL+(i−k

2 )
[
j − k
j − i

]
q

[
j − n

k

]
q

,

(91) Qi(k, j; q; m) =
i∑

ℓ=0
(−1)i−ℓqℓm+(i−ℓ

2 )
[
j − ℓ
j − i

]
q

[
j − m

ℓ

]
q

[
k − j + ℓ − m

ℓ

]
q

,

and [ a
b ]q is the q-binomial coefficient. Therefore, the polynomials vij are obtained

from the relation

(92) vij(θmn, µmn) = qjLKi(d − j, L; q; n)Qj(D − n, d − n; q; m) ,

where

(93) µmn = qL
(
qm[d − m − n]q[D − d + 1 − m]q − [d − n]q

)
,

and

(94) θmn = −[d]q + qL[d − n]q .

Remark 2.4. This scheme was constructed as a generalization of the Grassmann
scheme Jq(D, d) and bilinear scheme Hq(D, L). The former is recovered by taking
L = 0 and the latter by imposing d = D. Similarities in the spectrum of the adjacency
matrices and in the relations (67)-(68) and (87)-(88) also suggest that schemes based
on attenuated spaces offer q-deformations of non-binary Johnson schemes J2(D, d).

Remark 2.5. For L < d, relations Rij given by (85) still define an association scheme
with adjacency matrices verifying (87)-(88) and with a spectrum given by (89). How-
ever the domain becomes

(95) D = {(i, j) ∈ N2 | j ⩽ min(d, D − d), i ⩽ min(d − j, L)} .
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This domain is not (1, 0)-compatible. Therefore in this case, it is not any more a
bivariate P -polynomial association scheme. There still exists a family of polynomials
vij for which Aij = vij(A10, A01), but their recurrence relations and those of the
adjacency matrices lose their correspondence. A similar situation arises for association
schemes based on isotropic spaces with d > N/2.

3. Bivariate Q-polynomial association scheme
3.1. Definition. The notion of Q-polynomial association scheme is developed in [8]
(see also [6]) and is dual to the P -polynomial one. In this section, we provide a gener-
alization of this notion to the case of bivariate polynomials and dual to Definition 1.3.

Definition 3.1. Let D⋆ ⊂ N2, 0 ⩽ α ⩽ 1, 0 ⩽ β < 1 and ⪯(α,β) be the order (4). The
association scheme with idempotents E0, E1, . . . EN is called bivariate Q-polynomial
of type (α, β) on the domain D⋆ if these two conditions are satisfied:

(i) there exists a relabeling of the idempotents:

(96) {E0, E1, . . . EN } = {Emn | (m, n) ∈ D⋆} ,

such that, for (m, n) ∈ D⋆,

(97) v Emn = v⋆
mn(v E10, v E01) (under the Hadamard product),

where v⋆
mn(x, y) is a (α, β)-compatible bivariate polynomial of degree (m, n);

(ii) D⋆ is (α, β)-compatible.

By analogy with Section 1.3, the adjacency matrices of the association scheme will
here be denoted by Aλ with λ ∈ D, where D is a set of labels not required to be
a subset of N2. Moreover, the dual eigenvalues defined by (27) are here written as
qij(λ), where (i, j) ∈ D⋆ with the same D⋆ as in Definition 3.1, and λ ∈ D. This
highlights the fact that bivariate Q-polynomial association schemes of type (α, β) do
not necessitate the existence of a bivariate P -polynomial structure.

Let us recall that the idempotents Eij of an association scheme satisfy a relation
dual to (12) given by

(98) Eij ◦ Ekℓ = 1
v

∑
(m,n)∈D⋆

qmn
ij,kℓEmn ,

where ◦ is the Hadamard product (or entrywise product). The numbers qmn
ij,kℓ are called

Krein parameters. The generalization of the notion of Q-polynomial given above leads
to the following proposition constraining the Krein parameters.

Proposition 3.2. Let Z be a symmetric association scheme with idempotents Eij,
for (i, j) ∈ D⋆. The following items are equivalent:

(i) Z is a bivariate Q-polynomial association scheme of type (α, β) on D⋆;
(ii) D⋆ is (α, β)-compatible and the Krein parameters satisfy, for (i, j), (i+1, j) ∈

D⋆,

qi+1,j
10,ij ̸= 0, qi,j

10,i+1j ̸= 0 ,(99)

qmn
10,ij ̸= 0

(
or qij

10,mn ̸= 0
)

⇒ (m, n) ⪯(α,β) (i + 1, j) ,(100)

and, for (i, j), (i, j + 1) ∈ D⋆,

qi,j+1
01,ij ̸= 0, qi,j

01,ij+1 ̸= 0 ,(101)

qmn
01,ij ̸= 0

(
or qij

01,mn ̸= 0
)

⇒ (m, n) ⪯(α,β) (i, j + 1) ;(102)
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(iii) D⋆ is (α, β)-compatible and the dual eigenvalues qij(λ) defined by (27) satisfy

(103) qij(λ) = v⋆
ij(θ⋆

λ, µ⋆
λ) ,

where θ⋆
λ = q10(λ) and µ⋆

λ = q01(λ), and v⋆
ij(x, y) is a (α, β)-compatible bi-

variate polynomial of degree (i, j).

Proof. The proof follows the same lines as the proofs of Propositions 1.6 and 1.8. □

This proposition leads to a generalization of the cometric property. An association
scheme is called (α, β)-cometric on the domain D⋆ if D⋆ is (α, β)-compatible and if
the Krein parameters qmn

ij,kℓ satisfy the constraints (99)-(102).
From now on, let Z = {Aij | (i, j) ∈ D} be bivariate P -and Q-polynomial, with

D, D∗ ⊂ N2. As usual, one defines renormalized polynomials as follows

(104) uij(x, y) = vij(x, y)
kij

, u⋆
ij(x, y) =

v⋆
ij(x, y)
mij

,

where

(105) kij = pij(00), mmn = qmn(00) ,

are the valency and the multiplicity, respectively. Now recall that the eigenvalues
pij(mn) and dual eigenvalues qmn(ij) of any symmetric association scheme are related
as follows (see for example [2, Theorem 3.5]),

(106) qmn(ij)
mmn

= pij(mn)
kij

.

Relation (106) implies the Wilson symmetry of the polynomials uij and u∗
ij (see [8]

for the monovariate case), i.e. one gets for (m, n) ∈ D and (i, j) ∈ D⋆

(107) umn(θij , µij) = u⋆
ij(θ⋆

mn, µ⋆
mn).

Therefore, the polynomials umn(x, y) satisfy recurrence relations but also difference
equations (obtained from the recurrence relations of u⋆

ij). They are solutions of a
bispectral problem. Moreover, both polynomials uij and u⋆

ij satisfy an orthogonality
relation:

(108)
∑

(r,s)∈D⋆

mrsuij(θrs, µrs)umn(θrs, µrs) = v
kij

δij,mn ,

and

(109)
∑

(r,s)∈D

krsu⋆
ij(θ⋆

rs, µ⋆
rs)u⋆

mn(θ⋆
rs, µ⋆

rs) = v
mij

δij,mn .

Indeed, these are obtained by combining equations (24) and (27) in two different ways,
and by using (26), (103) and (107).

Following the proof of Section 2.1, it is straightforward to show that the direct
product of Q-polynomial associations is a bivariate Q-polynomial association scheme.
We treat in Section 3.3 another example in detail.

3.2. Subconstituent algebra. As mentioned previously the matrices Aij form a
commutative algebra, known as the Bose–Mesner algebra. For any association scheme
it is useful to introduce a more general algebra called the subconstituent algebra (or
Terwilliger algebra) [31, 32, 33].

To do that, fix 1 ⩽ i0 ⩽ v and define the diagonal matrices A⋆
mn as follows,

for 1 ⩽ i, j ⩽ v,

(A⋆
mn)i,j = vδi,j(Emn)i0,j .(110)
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These matrices satisfy

(111) A⋆
ijA⋆

kℓ =
∑

(m,n)∈D⋆

qmn
ij,kℓA

⋆
mn.

The commutative algebra realized by these A⋆
ij is called the dual Bose–Mesner algebra.

For a bivariate Q-polynomial association scheme, one gets
(112) A⋆

mn = v⋆
mn(A⋆

10, A⋆
01).

The algebra formed by Aij and A⋆
ij is called the subconstituent algebra and is

usually non-commutative. In the case of a bivariate P - and Q-polynomial association
scheme, this algebra is generated by the four elements: A10, A01, A⋆

10 and A⋆
01.

3.3. Example: the symmetrization of an association scheme with two
classes revisited. Let L⋆

i be the matrices with entries (L⋆
i )jk = qj

ik. For an as-
sociation scheme with 2 classes as studied in Section 2.2, one gets

L⋆
1 =

0 k⋆ 0
1 k⋆ − 1 − b⋆ b⋆

0 c⋆ k⋆ − c⋆

 ,(113)

L⋆
2 =

0 0 b⋆k⋆

c⋆

0 b⋆ b⋆k⋆

c⋆ − b⋆

1 k⋆ − c⋆ b⋆k⋆

c⋆ − 1 − k⋆ + c⋆

 ,(114)

with k⋆ = k(τ+1)(k−τ)
(τθ+k)(τ−θ) , b⋆ = − τ(θ+1)(k−θ)2

(τ−θ)2(τθ+k) , and c⋆ = τ(τ+1)(k−τ)(k−θ)
(τ−θ)2(τθ+k) .

In this case, we can naturally parametrize the pairs of eigenvalues for A10, A01 by
the same subset D⋆ = D = {(i, j) | i + j ⩽ N}. Indeed, we recall that the elements
Eij are defined by the following formula:

(115) (E0 + X1E1 + X2E2)⊗N =
∑

i+j⩽N

Xi
1Xj

2Eij .

It is immediate that Eij are the idempotents associated to the common eigenspaces
of the matrices Aij . From the formulas defining the idempotents Eij , we have at once
for the dual matrices A⋆

ij that:

(116) (A⋆
0 + X1A⋆

1 + X2A⋆
2)⊗N =

∑
i+j⩽N

Xi
1Xj

2A⋆
ij .

In other words, the matrices A⋆
ij are obtained by applying the symmetrization process

to the matrices A⋆
0, A⋆

1, A⋆
2. The recurrence relations and thus the Q-polynomiality of

the scheme, follow exactly as in the previous section (one simply has to replace the
parameters k, b, c by the dual ones k⋆, b⋆, c⋆).

One thus finds that A⋆
ij = v⋆

ij(A⋆
10, A⋆

01) where the dual polynomials v⋆
ij satisfy the

following recurrence relations:
xv⋆

ij = k⋆(N − i − j + 1)v⋆
i−1,j +

(
i(k⋆ − 1 − b⋆) + j(k⋆ − c⋆)

)
v⋆

ij + (i + 1)v⋆
i+1,j

+c⋆(j + 1)v⋆
i−1,j+1 + b⋆(i + 1)v⋆

i+1,j−1 ,(117)

yv⋆
ij = b⋆k⋆

c⋆
(N − i − j + 1)v⋆

i,j−1 +
(
b⋆i + j(b⋆k⋆

c⋆
− 1 − k⋆ + c⋆)

)
v⋆

ij + (j + 1)v⋆
i,j+1

+(j + 1)(k⋆ − c⋆)v⋆
i−1,j+1 + (i + 1)(b⋆k⋆

c⋆
− b⋆)v⋆

i+1,j−1 .(118)

Recall that the eigenvalues (θij , µij) of A10, A01, are given by

(119) θij = (N − i − j)k + iθ + jτ, µij = (N − i − j)kb

c
− i(θ + 1) − j(τ + 1) .
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Similarly those of A⋆
10, A⋆

01 read

(120) θ⋆
ij = (N −i−j)k⋆ +iθ⋆ +jτ⋆, µij = (N −i−j)k⋆b⋆

c⋆
−i(θ⋆ +1)−j(τ⋆ +1) .

Let us also remark that the relation
J(x)E00 = [(A0 + x1A1 + x2A2)E0]⊗N(121)

=
∑

i+j⩽N

N !
i!j!(N − i − j)! (kx1)i

(
bk

c
x2

)j

E00 ,(122)

implies that

(123) pij(0, 0) = N !
i!j!(N − i − j)!k

i

(
bk

c

)j

.

Similarly qij(0, 0) is obtained by replacing k, τ, θ by k⋆, τ⋆, θ⋆ in the previous relation.
The Wilson symmetry reads in this case

(124) i!j!(N − i − j)!
ki(bk/c)j

vij(θmn, µmn) = m!n!(N − m − n)!
(k⋆)m(b⋆k⋆/c⋆)n

v⋆
mn(θ⋆

ij , µ⋆
ij) .

This makes explicit that this scheme obtained by symmetrization is bivariate P - and
Q-polynomial.

4. Outlook
All the notions introduced in this paper should be generalizable to more than two vari-
ables. This would lead to the definition of a multivariate P -polynomial association
scheme but would require a generalization of the definition 1.1 about the compati-
bility of a multivariate polynomial. The direct product of n different P -polynomial
association schemes or the symmetrization of a P -polynomial association scheme with
n classes would be examples of n-variate P -polynomial association schemes. It would
also be interesting to find more examples of association schemes with the bivariate
(or more generally, multivariate) Q-polynomial property. A first step could be to in-
vestigate if this property is present in all the examples presented in Section 2.1. For
the non-binary Johnson scheme, the dual eigenvalues are given in [9, 29], and for the
association schemes based on attenuated spaces, in [21]. These results may allow us
to prove that these schemes are bivariate Q-polynomial using Proposition 3.2.

In the monovariate case, it is well-known that P -polynomial association schemes
correspond to distance-regular graphs [2]. A bivariate generalization of the concept
of distance-regular graph that would be equivalent to the notion of bivariate P -
polynomial association scheme could be explored.

The subconstituent algebra of a P - and Q-polynomial association scheme has
been characterized. Indeed, in this case, the generators of the subconstituent alge-
bra are (A1, A⋆

1) and they satisfy the tridiagonal relations [33]. This has also led
to the definition and study of Leonard pairs and their relation with the Askey–
Wilson relations [34]. It would be quite interesting to extend this for bivariate P -
and Q-polynomial association schemes. Indeed, as explained in Section 3.2, the sub-
constituent algebra is generated by four elements and it would be enlightening to find
the relations between them. Those relations might depend on the parameters α and
β defining the type of bivariate association scheme. Such an algebraic approach holds
hopes of a classification of the bivariate P - and Q-polynomial association schemes.

The generalization of Leonard pairs would also be natural in this context (see the
conclusion of [20] where a definition is already proposed). One could then speak of
higher rank Leonard pairs. The classification of these pairs would be very interesting
in the context of the bispectral multivariate polynomials.
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