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Plabic links, quivers, and skein relations

Pavel Galashin & Thomas Lam

Abstract We study relations between cluster algebra invariants and link invariants.
First, we show that several constructions of positroid links (permutation links, Richardson

links, grid diagram links, plabic graph links) give rise to isotopic links. For a subclass of permu-
tations arising from concave curves, we also provide isotopies with the corresponding Coxeter
links.

Second, we associate a point count polynomial to an arbitrary locally acyclic quiver. We
conjecture an equality between the top a-degree coefficient of the HOMFLY polynomial of a
plabic graph link and the point count polynomial of its planar dual quiver. We prove this
conjecture for leaf recurrent plabic graphs, which includes reduced plabic graphs and plabic
fences as special cases.

1. Introduction
In recent years, intriguing connections between knot theory and the theory of clus-
ter algebras have been developed. Shende–Treumann–Williams–Zaslow [54] suggested
the existence of cluster structures for certain moduli spaces of sheaves associated to
a Legendrian link, leading to many further developments; see for example [53, 7, 10].
Fomin–Pylyavskyy–Shushtin–Thurston [12] studied the relation between quiver mu-
tation and morsifications of algebraic links. Casals–Gorsky–Gorsky–Simental [9] and
Mellit [40] studied braid varieties associated to positive braid words; cluster structures
on these spaces are the subject of ongoing works [8, 21, 20]. Other connections can
be found e.g. in [25, 42, 37, 4].

The goal of this work is to compare knot invariants and cluster algebra invariants.
The starting point is our earlier work [17] on open positroid varieties

◦
Ππ [32], which

are certain distinguished subvarieties of the Grassmannian equipped with a cluster
structure [19] (see also [51, 43, 36, 52]). In [17], we associated a positroid link Lπ

to each open positroid variety
◦
Ππ, and constructed an isomorphism between the co-

homology of
◦
Ππ and the top a-degree part of the Khovanov–Rozansky triply-graded

link homology [30, 31, 29] of Lπ. In subsequent work [16], we further developed this
connection by defining positroid Catalan numbers as certain Euler characteristics of
open positroid varieties. This invariant was studied for a subclass of permutations
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(a) L4a1 (b) Lperm
π (c) Ltor

π (d) T ↪→ R3

Figure 1. The links L4a1∼= Lperm
π

∼= Ltor
π for π given by (2.1).

arising from concave curves, using a Dyck path recursion that did not require explicit
mention of the cluster structure on

◦
Ππ, or of the positroid link Lπ.

The initial motivation of this work is to explain our positroid recursion in the
broader setting of plabic (i.e. planar bicolored) graphs, making an explicit connection
to recursions for quivers and for links. Plabic graphs were introduced by Postnikov [46]
who also speculated on the relation with cluster algebras. To an arbitrary plabic graph
G one can associate a plabic graph link Lplab

G introduced in [12, 54]. On the other
hand, the set of equivalence classes of reduced plabic graphs is in bijection with open
positroid varieties, to which we associated positroid links in [17].

In the first part of this work, we establish (Theorem 2.5) that the various links asso-
ciated to

◦
Ππ are isotopic, including the positroid link Lπ and the corresponding plabic

graph link Lplab
G . In the second part of this work, we study the relation between the

point count function of a quiver Q and the HOMFLY polynomial P (L; a, z) of a link.
We introduce a class of simple plabic graphs. Our main conjecture (Conjecture 2.8)
states that for a simple plabic graph G, the point count of the planar dual quiver
QG is equal to the top a-degree part of the HOMFLY polynomial of Lplab

G . We show
(Theorem 2.9) that this conjecture holds for the class of leaf recurrent plabic graphs,
that includes reduced plabic graphs and plabic fences. We interpret and generalize the
locally acyclic(1) recursion for positroids [43] in terms of the HOMFLY skein relation.

2. Main results
Let π ∈ SN be a permutation. For simplicity (cf. Section 4.5), we assume that π has
no fixed points, i.e. π(i) ̸= i for all i ∈ [N ] := {1, 2, . . . , N}.

In [17], we described a way to associate a positroid link Lπ to such π. The number
of components of Lπ is given by the number c(π) of cycles of π. Our running example
will be

(2.1) π =
(

1 2 3 4 5 6 7 8
4 6 8 5 1 3 2 7

)
,

written in two-line notation, with different colors representing different cycles of π. We
have N = 8 and c(π) = 2. The associated positroid link Lπ is shown in Figure 1(a);
it appears under the name L4a1 in the Thistlethwaite Link Table [27].

2.1. Positroid links. Our first result relates several different representations of the
link Lπ, confirming the conjectures of [17, 16]. We start by giving a brief overview of
these descriptions; see Sections 3 and 4 for full details.

(1)We call a quiver locally acyclic if it satisfies the “Louise condition" of [43, 34]. This is stronger
than the notion of local acyclicity used in [41].
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π

Figure 2. Toric grid links; see Remark 2.2 and Section 4.3.

2.1.1. Permutation link. Draw N points labeled 1, 2, . . . , N on the circle in clockwise
order. Draw a line segment connecting i to π(i), for each i ∈ [N ] := {1, 2, . . . , N}. If
two line segments [i, π(i)], [j, π(j)] cross for some i, j ∈ [N ] such that π(i) < π(j),
then the segment [j, π(j)] is drawn above [i, π(i)]; see Figure 1(b). The union of
these segments gives rise to a link diagram. We refer to the resulting link as the
permutation link of π, denoted Lperm

π . Orienting each line segment from i to π(i)
induces an orientation on Lperm

π .

2.1.2. Toric permutation link. Let T := R2/Z2 be the torus. Consider its fundamental
domain [0, 1]2 which we view as a square subdivided into N2 boxes of size 1

N × 1
N .

We denote by bi,j , 1 ⩽ i, j ⩽ N , the box whose upper right corner has coordinates
1
N (i, j). For each i ∈ [N ], place a dot di in box bi,N+1−i. Draw an arrow (in T) in the
northeast direction from di to dπ(i) for each i ∈ [N ]. When two such arrows cross, the
arrow with the higher slope is drawn above the arrow with the lower slope. We obtain
a planar diagram of an oriented link Ltor

π drawn on the surface of T; see Figure 1(c).
Any link drawn on T may be converted into a link in R3 using the procedure shown
in Figure 1(d). Abusing notation, we denote by Ltor

π the resulting link in R3.

Remark 2.1. Viewing Ltor
π as drawn on the surface of T (resp. in a solid torus

S1 × [0, 1]2) contains more information—it gives rise to a certain elliptic Hall al-
gebra element [50, 6] (resp. to a symmetric function [57]) with deep connections to
Khovanov–Rozansky homology. We aim to pursue this direction in an upcoming pa-
per [18].

Remark 2.2. We may also view Ltor
π as coming from a grid diagram (see e.g. [45]).

The grid diagram of π is obtained by placing an X in box bi,N+1−i and an O in box
bi,N+1−π(i) for each i ∈ [N ]. We then connect the X’s and the O’s by horizontal and
vertical segments, always drawing the vertical segments above the horizontal ones.
More precisely, to a given grid diagram, we can associate two links. First, a toric grid
link L̃grid

π , drawn on the surface of T, is obtained by drawing a horizontal arrow from
O to X pointing right in each row, and a vertical arrow from X to O pointing up in
each column; see Figure 2(b). (In Figure 2, for each i ∈ [N ], we place an i instead
of an X in box bi,N+1−i.) Second, a planar grid link Lgrid

π , whose planar diagram is
drawn inside [0, 1]2, is obtained by drawing a horizontal arrow from O to X in each
row, and a vertical arrow from X to O in each column, but in this case the arrows
are not allowed to cross the boundaries of [0, 1]2; see Figure 2(c). As explained in [45,
Section 3.2], these two links are isotopic to each other. It is easy to see that the toric
grid link L̃grid

π is also isotopic to Ltor
π .

Algebraic Combinatorics, Vol. 7 #2 (2024) 433
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β(w) = σ3σ2σ1σ4σ3σ2σ5σ4σ3σ7σ6σ5σ4 β(v)−1 = σ−1
2 σ−1

6 σ−1
3

Richardson braid βv,w = β(w) · β(v)−1 Richardson link LRich
v,w

Figure 3. A Richardson braid (left) and a Richardson link (right)
defined in Section 2.1.3.

2.1.3. Richardson link. A permutation w ∈ SN is called k-Grassmannian if w(1) <

· · · < w(N − k) and w(N − k + 1) < · · · < w(N). We denote by S
(k)
N the set of

k-Grassmannian permutations. The permutation π can be uniquely decomposed as
the product π = wv−1 for some 1 ⩽ k ⩽ N − 1 and some pair (v, w) ∈ SN × S

(k)
N

such that v ⩽ w in the Bruhat order on SN ; see Corollary 3.1. For the permutation
π given by (2.1), we get that k = 4 and(2)

v =
(

1 2 3 4 5 6 7 8
1 4 2 3 5 7 6 8

)
, w =

(
1 2 3 4 5 6 7 8
4 5 6 8 1 2 3 7

)
.

Here, the colors represent the cycles of π = wv−1. Let β(v), β(w) be the positive
braid lifts of v, w to the braid group of SN . Consider the Richardson braid βv,w :=
β(w) · β(v)−1 shown in Figure 3(left). Taking the braid closure of βv,w, we obtain the
Richardson link LRich

v,w = LRich
π shown in Figure 3(right). We orient the strands of βv,w

from right to left; cf. Figure 14(left).
Remark 2.3. It is well known (cf. Section 3.3) that k-Grassmannian permutations
are in bijection with Young diagrams that fit inside a k × (N − k) rectangle. Thus,
in Figure 3(left), we arrange the crossings in β(w) into a (rotated) Young diagram.
The condition that v ⩽ w in the Bruhat order implies that a reduced word for v is a
subword of a reduced word for w, and thus we represent β(v)−1 in Figure 3(left) by
replacing some of the crossings in β(w)−1 with “elbows.”

The above recipe was used in [17] more generally for pairs v ⩽ w where w is not
necessarily k-Grassmannian.

2.1.4. Plabic link. A plabic graph is a non-empty planar graph G embedded in a disk
with vertices colored black and white; see [46]. A strand in G is a path that makes a
sharp right turn at each black vertex and a sharp left turn at each white vertex. We
assume that the graph G has N boundary vertices, all of which have degree 1 and
are labeled 1, 2, . . . , N in clockwise order. An example of a plabic graph G is shown
in Figure 4(a), and the strands in G are shown in Figure 4(b).

The following description of the plabic graph link Lplab
G , or plabic link for short, can

be deduced from [1, 54, 12] by breaking the symmetry following [26]. (See Section 3.4
for a more invariant description.) The planar diagram of Lplab

G will consist of the union
of the strands of G. To specify the overcrossings, let p be an intersection point of two
strands S1, S2 in G. The tangent vector to S1 (resp. S2) at p can be considered a
vector in the complex plane, and we let arg(S1, p) ∈ [0, 2π) (resp. arg(S2, p) ∈ [0, 2π))

(2)Our convention for multiplying permutations is right-to-left, i.e. π(j) = w(v−1(j)) for all
j ∈ [N ].
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Figure 4. Converting a plabic graph G into the plabic graph link
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p S
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S

S′ S′′

over

under

p
S = S

S′ S′′

Figure 5. For every point p on a strand S satisfying arg(S, p) = 0,
we insert a strand segment going to the boundary and back; see
Section 2.1.4.

denote the argument of this vector. We assume that 0 < arg(S1, p) ̸= arg(S2, p) < 2π.
Then S1 is drawn above S2 if arg(S2, p) > arg(S1, p), otherwise S1 is drawn below S2.

A technical extra step is required to finalize the construction of Lplab
G ; see Figure 5.

Consider a point p on a strand S such that arg(S, p) = 0, i.e. such that S is directed
to the right at p. We add an extra segment S′ to S traveling from p to the boundary
of the disk followed by a segment S′′ traveling from the boundary back to p. In the
neighborhood of p, S looks like a plot of a function. If this function is “concave up” at
p (i.e. has positive second derivative), then S′ (resp. S′′) is drawn below (resp. above)
all other strands. If S is “concave down” at p then S′ (resp. S′′) is drawn above (resp.
below) all other strands.

Finally, each boundary vertex of G is an endpoint of exactly two strands (one outgo-
ing and one incoming). We join these endpoints together and obtain a planar diagram
of a link denoted Lplab

G . See Figure 4(c), where the points p such that arg(S, p) = 0
are marked by the symbol .

The strands in G that start and end at the boundary vertices give rise to the strand
permutation πG of G. In this subsection, we will assume that G is reduced, i.e. that
G has the minimal possible number of faces among all graphs with a given strand
permutation. Importantly, in Section 2.2, we will drop this assumption. Postnikov [46]
showed that for any π ∈ SN , there exists a reduced plabic graph G with strand
permutation πG = π. For example, for π given by (2.1), one can take G to be the
graph in Figure 4(a). Up to isotopy, the resulting link Lplab

G depends only on π and
is denoted Lplab

π .

2.1.5. Coxeter link. In [16, Section 6], we studied concave permutations, defined as
follows. Choose a generic concave curve C inside a k × (N − k) rectangle connecting
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Figure 6. Converting a concave curve C into the link Ltor
πC

for some
πC ∈ SN ; see Example 2.4.

λ(C) = (2, 1, 1, 0, 0)
a(C) = (1, 0, 1, 0)

C

β(a(C)) = `12 · `03 · `14 · `05 · σ1σ2σ3σ4

Figure 7. Converting a concave curve C into the Coxeter braid
β(a(C)).

(0, 0) to (N − k, k) as in Figure 6(a). We will shift it by the vector (−ε, ε) for some
small ε > 0 as in Figure 6(b). Under the natural projection R2 → T = R2/Z2,
the curve C + (−ε, ε) projects to a curve C in the unit square [0, 1]2. For each self-
intersection of C, we draw the segment of the higher slope above the segment of
the lower slope; see Figure 6(c). The resulting link diagram is isotopic to Ltor

π for a
permutation π = πC ∈ SN which can be explicitly read off from C as follows. Label
the intersection points of C with the y = 1 − x diagonal of [0, 1]2 by d1, d2, . . . , dN ,
proceeding in the northwest direction. Thus, d1 = (1 − ε, ε) is the projection of
the starting and ending points of C + (−ε, ε). In Figure 6(c), we represent each
point di by i. Since C was generic, we assume that the points d1, d2, . . . , dN are
pairwise distinct. The permutation πC is defined so that each segment of C connects
(in the northeast direction) di to dπ(i) for some i ∈ [N ]. See Figure 6(d). We refer to
permutations that can be obtained in this way as concave permutations. They form
a subclass of the class of repetition-free permutations introduced in [16].

Let λC = (λ1, λ2, . . . , λk) be the Young diagram inside the k × (N − k) rectangle
consisting of all unit boxes strictly above C, shown in Figure 6(a). Consider a sequence
a(C) = (a2, . . . , ak) given by ai := λi−1 − λi for 2 ⩽ i ⩽ k. The Coxeter link LCox

C is
the closure of the braid

(2.2) β(a(C)) := ℓa2
2 · · · ℓak

k · σ1 · · · σk−1,

where σ1, . . . , σk−1 are the standard braid group generators of the braid group of Sk,
and ℓi = σi−1 · · · σ1 · σ1 · · · σi−1 are the Jucys–Murphy elements.

Example 2.4. Let C be the curve shown in Figures 6 and 7. We have k = 5 and N = 9.

The permutation πC =
(

1 2 3 4 5 6 7 8 9
6 8 7 9 2 4 1 3 5

)
can be read off from the
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labels(3) in Figure 6(b): in cycle notation, πC is given by πC = (1 6 4 9 5 2 8 3 7 1). We
have λC = (2, 1, 1, 0, 0), a(C) = (1, 0, 1, 0), and β(a(C)) = ℓ2ℓ4σ1σ2σ3σ4; see also [16,
Figure 13].

Coxeter links and their Khovanov–Rozansky homology have previously been stud-
ied in relation to flag Hilbert schemes and generalized shuffle conjectures [44, 23, 24, 5];
see also [16, Section 7.2].

The following is our first main result.
Theorem 2.5. Let π ∈ SN be a permutation without fixed points. Then the links
Lperm

π , Ltor
π , LRich

π , and Lplab
π are all isotopic. If π = πC for some concave curve C

then each of these links is also isotopic to LCox
C .

We refer to any one of the above links as the positroid link of π.
Remark 2.6. The recent work [9] independently constructs Legendrian isotopies (a
stronger result than our smooth isotopies) between the Richardson link LRich

π and
other closely related links: closures of juggling braids, cyclic rank matrix braids, and
Le-diagram braids. We expect the Le-diagram braid in [9] to be closely related to our
plabic graph link Lplab

π , and the juggling braid to be similar to our permutation link
Lperm

π , though we believe our definition of Lperm
π is the simplest and most elementary.

Isotopies between cyclic rank matrix links and plabic graph links have also been
observed in [54].
2.2. Quiver point count and the HOMFLY polynomial. In this subsection, we
consider not necessarily reduced plabic graphs G. Throughout the paper, we assume
that the interior faces of G are simply connected, i.e. that no interior face of G contains
another connected component of G inside of it. For simplicity, we also assume that
each plabic graph G is trivalent, i.e. that each interior vertex of G has degree 3.
(Recall that the boundary vertices of G are always required to have degree 1.) This
is not a restrictive assumption: any vertex of degree 2 in G can be omitted (joining
two of its neighbors by an edge), and any vertex of degree higher than 3 in G can be
“uncontracted” into several vertices of degree 3 of the same color; see [46, Figure 12.2].

Let G be a (trivalent) plabic graph. The planar dual of G naturally contains a
directed (sub)graph denoted QG. Explicitly, place a vertex of QG inside each interior
face of G (i.e. a face not incident to the boundary of the disk). For every edge e of G
whose endpoints are of different color and such that the two faces F, F ′ incident to
e are both interior, QG contains an arrow between F and F ′. (These two faces F, F ′

may or may not be equal.) The direction of the arrow is chosen so that the white
endpoint of e is on the left as one moves along this arrow. See Figure 8.

The following definition is crucial for our analysis.
Definition 2.7. A plabic graph G is called simple if the directed graph QG is a quiver,
i.e. contains no directed cycles of length 1 and 2.

For example, the plabic graph G in Figure 8(b) is not simple since QG contains a
pair of opposite arrows. The graph G in Figure 8(d) is not simple since QG contains
a loop arrow. The graphs in Figure 8(a,c) are simple.

To every locally acyclic quiver Q (see Section 5.1), we associate a rational function
R(Q; q) called the point count rational function. It can be computed via an explicit
recurrence relation: see (5.2) and (5.11). The function R(Q; q) has the following inter-
pretation in terms of cluster algebras [14]; see Section 5.1 for the relevant definitions.
Let Q be a quiver with n vertices. Consider an ice quiver Q̃ with m frozen vertices and

(3)The labels in Figure 6(b) are chosen in such a way that when we project C to the unit square,
they become ordered along the diagonal y = 1 − x; see Figure 6(c).

Algebraic Combinatorics, Vol. 7 #2 (2024) 437
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(a) simple (b) not simple (c) simple (d) not simple

Figure 8. Examples of simple and non-simple plabic graphs G
(black) and the associated quivers QG (red).

mutable part Q, and assume that the rows of the (n + m) × n exchange matrix B̃(Q̃)
of Q̃ span Zn over Z. Then the cluster algebra A(Q̃) gives rise to a cluster variety
X (Q̃), and its point count over a finite field Fq with q elements (for q a prime power)
is given by

#X (Q̃)(Fq) = (q − 1)m · R(Q; q);
see Proposition 5.7.

A typical example of this phenomenon occurs when G is a reduced plabic graph:
then, by [19], A(Q̃G) is the coordinate ring of the associated open positroid variety
Π◦

G inside the Grassmannian [46, 32]. In particular, (q −1)N−c(G)R(QG; q) counts the
number of points in Π◦

G(Fq), where N is the number of boundary vertices of G and
c(G) is the number of connected components of G.

Given an (oriented) link L, one can define a Laurent polynomial P (L) = P (L; a, z)
called the HOMFLY polynomial [15, 47] of L. It is defined by the skein relation

(2.3) aP (L+) − a−1P (L−) = zP (L0) and P ( ) = 1.

Here, denotes the unknot and L+, L−, L0 are any three links whose planar dia-
grams locally differ as follows.

L+ L− L0

For a (not necessarily reduced) plabic graph G we let Lplab
G be the correspond-

ing plabic graph link, defined as in Section 2.1. Following [17], we let P top(L; q)
be obtained from the top a-degree term of P (L; a, z) by substituting a := q− 1

2

and z := q
1
2 − q− 1

2 . The following conjecture generalizes [17, Theorem 1.11] (see
also [55, 54]).

Conjecture 2.8. Let G be a simple plabic graph with c(G) connected components.
Then we have

(2.4) R(QG; q) = (q − 1)c(G)−1P top(Lplab
G ; q).

For examples, see Figure 9, Example 5.12, and Section 9.
When the plabic graph G is reduced, Conjecture 2.8 becomes [17, Theorem 1.11].

We present a different proof in Section 7.2 by giving a plabic graph interpretation of
the HOMFLY skein relation (2.3). More generally, in Section 7.1, we introduce a class
of leaf recurrent plabic graphs and prove Conjecture 2.8 for them.

Theorem 2.9. Conjecture 2.8 holds for leaf recurrent plabic graphs.
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QG = empty quiver R(QG) = 1

Lplab
G = unknot P (Lplab

G ) = 1

QG = empty quiver R(QG) = 1

Lplab
G = 2-component unlink P (Lplab

G ) = az−1 − z−1

a

over

under

QG = A1 = single vertex R(QG) =
q2−q+1
q−1

Lplab
G = Hopf link P (Lplab

G ) = z+z−1

a − z−1

a3

QG = A2 R(QG) = 1 + q2

Lplab
G = Trefoil knot P (Lplab

G ) = z2+2
a2 − 1

a4

Figure 9. Small plabic graph quivers QG, links Lplab
G , point counts

R(QG; q), and HOMFLY polynomials P (Lplab; a, z) illustrating Con-
jecture 2.8.

Figure 10. A plabic fence.

The fact that reduced plabic graphs are leaf recurrent was shown in [43, Re-
mark 4.7]. Another natural subclass of leaf recurrent plabic graphs are the plabic
fences of [12, Section 12]. A plabic fence is a plabic graph obtained by drawing k
horizontal strands and inserting an arbitrary number of black-white and white-black
bridges between them; see Figure 10 for an example and Section 7.3 for a precise
definition.

Proposition 2.10. Reduced plabic graphs and plabic fences are leaf recurrent. In par-
ticular, Conjecture 2.8 holds for these classes of plabic graphs.

This result gives a new proof of [17, Theorem 1.11].
A primary difficulty in showing Conjecture 2.8 in full generality comes from the

examples described in Sections 9.1 and 9.2. Section 9.1 explains that the simple plabic
graph G in Figure 8(a) is not leaf recurrent. The quiver QG is locally acyclic (in fact,
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it is mutation equivalent to an acyclic quiver), and thus the point count polynomial
R(QG; q) can be easily checked to coincide with P top(Lplab

G ; q). Section 9.2 describes
a simple plabic graph G such that QG is not locally acyclic, in which case the task of
computing R(QG; q) becomes much harder.

Both sides of (2.4) are rational functions in q which are specializations of rational
functions in (q, t) arising from the cohomology of cluster varieties on the one hand and
Khovanov–Rozansky link homology on the other hand. Thus, one can make a stronger
conjecture where both sides of (2.4) become polynomials in (q, t). We discuss this in
more detail in Section 8.3.
Remark 2.11. In special cases, the cluster point count rational function R(Q; q) has
an explicit combinatorial description as a positive sum of terms of the form (q−1)aqb.
This holds, for example, when Q is acyclic [35] (see Proposition 5.8), or when the
cluster variety is a Richardson variety [11], see also [17, Section 9]. We remark that
such formulae should be compared to ruling polynomials of links [49], though we do
not know such a formula for general plabic graph quivers QG.

3. Positroid combinatorics
In this section, we review some background on the combinatorics of plabic graphs and
the associated objects.

3.1. Bounded affine permutations. A (k, N)-bounded affine permutation [32] is
a bijection f : Z → Z such that

• f is N -periodic: f(i + N) = f(i) + N for all i ∈ Z,
• i ⩽ f(i) ⩽ i + N for all i ∈ Z, and
•

∑N
i=1(f(i) − i) = kN .

The set of (k, N)-bounded affine permutations is denoted Bound(k, N). Each f ∈
Bound(k, N) gives rise to a unique permutation f̄ ∈ SN defined by f̄(i) ≡ f(i)
(mod N) for each i ∈ [N ]. Given f ∈ Bound(k, N), an integer i ∈ Z is called a loop
(resp. a coloop) of f if f(i) = i (resp. f(i) = i + N). Thus, f̄ has no fixed points if
and only if f has no loops and no coloops. In this case, f is uniquely determined by
f̄ , and the integer k is recovered from f̄ as follows:

k = k(f̄) := #{i ∈ [N ] | f̄(i) < i}.

We define τk,N ∈ Bound(k, N) by

τk,N (i) =
{

i, if 1 ⩽ i ⩽ N − k,
i + N, if N − k + 1 ⩽ i ⩽ N ,

and extend it to a function τk,N : Z → Z by N -periodicity.
Let Qk,N := {(v, w) ∈ SN × S

(k)
N | v ⩽ w}, where ⩽ denotes the Bruhat order on

SN . Given a permutation u ∈ SN , we can extend it to an N -periodic map ũ : Z → Z
defined by ũ(i) = u(i) for i ∈ [N ]. For (v, w) ∈ Qk,N , let fv,w := w̃τk,N ṽ−1. By [32,
Proposition 3.15], the map (v, w) 7→ fv,w gives a bijection Qk,N

∼−→ Bound(k, N).
Taking the inverse of this map, we obtain the following result, justifying the definition
of a Richardson link in Section 2.1.3.
Corollary 3.1. If π ∈ SN has no fixed points then it can be uniquely factored as a
product π = wv−1, where (v, w) ∈ Qk,N and k = k(π).

The open positroid stratification [32] of the Grassmannian contains a unique open
dense stratum. It is labeled by the bounded affine permutation fk,N ∈ Bound(k, N)
sending i 7→ i+k for all i ∈ Z. We let πk,N ∈ SN be the permutation sending i 7→ i+k
modulo N for all i ∈ [N ].
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(a)

(b)

(c)

Figure 11. Local moves for plabic graphs: (a) contraction-
uncontraction move; (b) square move; (c) tail addition/removal.

3.2. Plabic graphs. Let G be a plabic graph. Recall from Section 2.1.4 that G must
be nonempty, that the boundary vertices of G are labeled by 1, 2, . . . , N in clockwise
order, and that the strand permutation πG : [N ] → [N ] sends i 7→ j whenever the
strand starting at i terminates at j. We always assume that our plabic graphs G are
such that πG has no fixed points, although most of our constructions can be easily
extended to this case; see Section 4.5.

Definition 3.2 ([46]). We say that G is reduced if it has the minimal number of faces
among all plabic graphs with strand permutation πG.

Alternatively [46, Theorem 13.2], a plabic graph G is reduced if and only if G
has no closed strands, no self-intersecting strands, and no pairs of strands forming
a bad double crossing shown in Figure 17(right). Good double crossings shown in
Figure 17(left) are allowed.

We consider several types of local moves on plabic graphs, shown in Figure 11.
It was shown in [46] that every permutation π ∈ SN is the strand permutation of
some reduced plabic graph G, and that moreover, any two reduced plabic graphs
with the same strand permutation are related by a sequence of the moves (a) and
(b) in Figure 11. Below we review one construction of plabic graphs which will be
particularly useful to us.

3.3. Le-diagrams. Let λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λk ⩾ 0) be a partition, which we
identify with its Young diagram. We assume that this Young diagram fits inside a
k × (N − k) rectangle, i.e. satisfies λ1 ⩽ N − k. We draw Young diagrams using
English (or matrix) notation. We use matrix coordinates for the boxes of λ, thus, row
i contains boxes with coordinates (i, j) for 1 ⩽ j ⩽ λi, and box (1, 1) is the top left
box.

A Le-diagram Γ of shape λ is a way of placing a dot in some of the boxes of λ so that
every box that is below a dot in the same column and to the right of a dot in the same
row must also contain a dot. An example of a Le-diagram of shape λ = (3, 3, 3, 1) is
shown in Figure 15(left). Le-diagrams whose shape fits inside a k × (N − k) rectangle
are in bijection with the elements of Qk,N and Bound(k, N); see [46, Section 19]. Given
a Le-diagram Γ of shape λ, one can read off the corresponding pair (v, w) ∈ Qk,N

as follows. First, w ∈ S
(k)
N is the k-Grassmannian permutation corresponding to λ.

Specifically, let us label the unit steps in the southeast boundary of λ by 1, 2, . . . , N
in increasing order from the northeast to the southwest corner. Then the labels of
the vertical steps form a k-element subset of [N ], and this set is precisely {w(N −
k + 1), . . . , w(N)}. This determines w uniquely. Alternatively, we can label each box
(i, j) of λ with the simple transposition sk+j−i, and then a reduced word for w is
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Γ:

G = G(Γ):

Lplab
G :

Figure 12. Converting a Le-diagram (top row) into a plabic graph
(middle row) and into a link (bottom row).

obtained by reading these simple transpositions in the northwest direction. Thus, any
reduced word for w ends with sk which labels the box (1, 1). To obtain a reduced
word for v, we read these simple transpositions but ignore the ones labeled by dots in
Γ. Conversely, given (v, w) ∈ Qk,N , the shape λ of Γ is reconstructed from w, and the
empty boxes of Γ correspond to the rightmost subexpression for v inside the (unique
up to commutation) reduced word for w.

Example 3.3. For the Le-diagram in Figure 15(left), we have

w = s7s3s4s5s6s2s3s4s5s1s2s3s4 and v = s6s3s2.

A Le-diagram Γ can be converted into a plabic graph G(Γ) using the local rules
shown in the first two rows of Figure 12. This plabic graph is always reduced and has
strand permutation π = wv−1, where (v, w) ∈ Qk,N are recovered from Γ using the
above procedure.

3.4. Properties of plabic graph links. Let G be a reduced plabic graph with
strand permutation π = πG. Recall the description of the plabic graph link Lplab

π =
Lplab

G from Section 2.1.4. It may appear from this description that Lplab
G depends on

the precise way of drawing the strands in G as smooth curves, or that Lplab
G changes if

one rotates the graph G (since the over/under-crossings information depends on the
complex arguments of the strands). However, it turns out that the link Lplab

G is in fact
independent of these choices, as explained in [1, 54, 12]. Let us give a more invariant
description of Lplab

G .
Recall that G is embedded in a disk D := {x ∈ C : |x| ⩽ 1}. Consider the solid

torus D × S1, and consider an equivalence relation ∼ on it defined as follows: for
(x, y), (x′, y′) ∈ D × S1, write (x, y) ∼ (x′, y′) if x, x′ ∈ ∂D belong to the boundary of
the disk and x = x′. In other words, we collapse each fiber x × S1, where x ∈ ∂D, to
a point. The resulting quotient space D × S1/ ∼ is homeomorphic to a 3-dimensional
sphere S3.

An oriented divide is a smooth immersion of a union of oriented circles (called
branches) into D. Divides are required to satisfy certain genericity conditions, e.g.
that any intersections between the branches must be transversal and belong to the
interior of D, and that there have to be no triple intersections; see [12, Definitions 2.1
and 8.1] for a complete list.

Given a branch γ of an oriented divide ∆, we lift each point of γ to D × S1 by
letting the S1 coordinate be the complex argument of the tangent vector of γ at this
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Figure 13. Local moves for divides [12, Figures 28–30].

point. By the genericity assumptions, we obtain an embedding of a union of oriented
circles into S3, i.e. a link, denoted L∆.

The link L∆ is invariant under applying the local moves shown in Figure 13 to
∆; see [12, Proposition 8.4]. We thank the anonymous referee for pointing out that
the map ∆ 7→ L∆ coincides with the map reconstructing a Legendrian curve from its
front projection. Thus, the invariance under local moves may be deduced from e.g. [3].

Take the strands in our reduced plabic graph G. Each of the N boundary vertices
of G has one incoming strand and one outgoing strand. Identifying their endpoints, we
obtain an oriented divide ∆(G). It was shown in [26] that the associated link L∆(G) is
isotopic to the link Lplab

G described in Section 2.1.4. This shows that the link Lplab
G is

indeed invariant under rotation of G and under small perturbations of the branches
of ∆(G), since this is clearly the case for L∆(G).

Remark 3.4. In what follows, it will be convenient to us to use rotational invariance
of Lplab

G . In our figures, we will fix some angle α ∈ [0, 2π), and assume that the link
Lplab

G is obtained by first rotating G by the angle −α, then applying the description
from Section 2.1.4, and then rotating the picture back by α. In other words, if two
strands S1, S2 in G intersect at some point p, we consider their complex arguments
of tangent vectors in a different interval: arg(S1, p), arg(S2, p) ∈ [α, α + 2π). Then
we draw S1 above S2 if and only if arg(S2, p) > arg(S1, p). And then for all points
p where some strand S satisfies arg(S, p) = α, we insert line segments going to the
boundary and back. In the figures, the direction α is indicated by the “over/under
circle”

ov
er

un
de
r

α

and each point p on a strand S satisfying arg(S, p) = α is marked by as in Figure 5.

4. Positroid link isotopies
The goal of this section is to prove Theorem 2.5. We first discuss some properties of
plabic graph links, and then we construct a sequence of isotopies, for any permutation
π ∈ SN without fixed points, of the links

LRich
π

∼= Lplab
π

∼= Lperm
π

∼= Ltor
π ,

in that order. When π = πC for some concave curve C, we will also show that
Ltor

π
∼= LCox

π ,

completing the proof.
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β(w) β(v)−1

close the book

135◦

LRich
v,w L′v,w

Figure 14. Converting the link LRich
v,w into L′

v,w; see Section 4.1.

1

2

3

7
456

8

Γ L′
v,w

Figure 15. Converting a Le-diagram Γ into a link L′
v,w.

Throughout this section, we fix a permutation π ∈ SN without fixed points, and
let (v, w) ∈ Qk,N be the corresponding pair satisfying π = wv−1, Γ the corresponding
Le-diagram of shape λ, and G the corresponding plabic graph, obtained from Γ using
the recipe in the first two rows of Figure 12.

4.1. From Richardson links to plabic graph links. Our goal is to construct
an isotopy between the Richardson link LRich

v,w (Figure 3(right)) and the plabic graph
link Lplab

G (Figure 4(c)).
Recall from Remark 2.3 that we are drawing the Richardson braid βv,w = β(w) ·

β(v)−1 in a particular way, so that the crossings of β(w) form a shape obtained by
rotating λ clockwise by 135◦, and the crossings of β(v)−1 are drawn in some boxes of
a shape obtained from the 135◦-rotation of λ by reflecting it along the vertical axis;
see Figure 3(left). Moreover, the crossings of β(v)−1 are located precisely in the boxes
of λ which do not contain a dot in Γ.

Our first goal is to draw the link LRich
v,w entirely within λ. To do that, we take

β(v)−1, reflect it along the vertical axis (flipping the over/under-crossings), and place
the resulting braid on top of β(w). We rotate the result counterclockwise by 135◦.
Every line segment in the boundary of λ contains an endpoint of a strand in β(v)−1

and an endpoint of a strand in β(w). We join these strand endpoints, obtaining a link
diagram drawn inside of λ. This link L′

v,w, shown in Figure 14, is clearly isotopic to
Lv,w. Intuitively, the transformation LRich

v,w → L′
v,w can be described as follows: open a

book, and place the left (resp. right) half of Figure 3(right) onto the left (resp. right)
page of the book. Then close the book with your right hand, so that the front cover of
the book is at the bottom. The page containing (the reflection of) β(v)−1 will be on
top of the page containing β(w). Finally, rotate the closed book 135◦ counterclockwise.

An alternative description of the link L′
v,w can be obtained directly from the Le-

diagram Γ by replacing each box containing a dot as shown in Figure 15(middle top)
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bj bj

∼= =
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L′
v,w L′′

v,w Lplab
G

Figure 16. An isotopy from L′
v,w to Lplab

G .

good double crossing bad double crossing

Figure 17. Good and bad double crossings of strands in plabic
graphs.

and each box not containing a dot as shown in Figure 15(middle bottom). For example,
the Le-diagram in Figure 15(left) gets converted into the link L′

v,w in Figure 15(right);
this is the same link as in Figure 14(right). Since π has no fixed points, each row and
each column of Γ contains at least one dot. Consider some column j of Γ and let bj be
the highest box in it which contains a dot. The part of L′

v,w above bj contains a strand
going vertically to the top boundary and then back, passing between all the horizontal
strands that it encounters along the way. We may therefore contract this piece of the
strand to be fully contained inside bj , as shown in Figure 16(far left). Repeating this
procedure for each column j = 1, 2, . . . , λ1, we obtain a link L′′

v,w isotopic to L′
v,w; see

Figure 16(middle).
Finally, we claim that the link L′′

v,w is isotopic to the plabic graph link Lplab
G . To

see this, we choose the angle α from Remark 3.4 to be 80◦. Then combining the rules
from Figure 12 for converting the Le-diagram Γ into the plabic graph G with the
description of Lplab

G given in Section 3.4, we see that a planar diagram of Lplab
G is

obtained from Γ via the rules shown in the last two rows of Figure 12. Replacing
each square (where arg(S, p) = α) by a horizontal segment going to the left boundary
above all other strands and back below all other strands, we see that Lplab

G = L′′
v,w;

see Figure 16(far right). To summarize, we have constructed explicit isotopies

LRich
π = LRich

v,w
∼= L′

v,w
∼= L′′

v,w = Lplab
G .

4.2. From plabic graph links to permutation links. Our goal is to find an
isotopy Lplab

π
∼= Lperm

π . Let G be a reduced plabic graph with strand permutation
π. Let ∆ = ∆(G) be the oriented divide obtained from G as in Section 3.4. Let
1, 2, . . . , N be the boundary vertices of G. Since G is reduced, it contains no bad
double crossings shown in Figure 17(right). Thus, it is clear that applying the moves
from Figure 13, one can transform ∆ into an oriented divide ∆′ obtained by drawing
a straight arrow i → π(i) for each i ∈ [N ]. The moves from Figure 13 give rise to link
isotopies, so L∆ ∼= L∆′ . Let us move the boundary vertices 1, 2, . . . , N smoothly to
the points 1′, 2′, . . . , N ′ which are located clockwise on the left semicircle of ∂D, i.e.
on the subset of ∂D with negative real part. Let ∆′′ be the oriented divide obtained
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by drawing a straight arrow i′ → π(i)′ for each i ∈ [N ]. It follows that L∆′ ∼= L∆′′ . Let
i, j ∈ [N ] be such that the corresponding arrows Si := (i′ → π(i)′) and Sj := (j′ →
π(j)′) of ∆′′ cross at some point p. Consider the arguments of the tangent vectors
0 ⩽ arg(Si, p) ̸= arg(Sj , p) < 2π. Then it is easy to check that arg(Si, p) > arg(Sj , p)
if and only if π(i) < π(j). Comparing to the description in Section 2.1.1, we get that
L∆′′ ∼= Lperm

π .

4.3. From permutation links to toric permutation links. Our goal is to find
an isotopy Lperm

π
∼= Ltor

π . Recall from Remark 2.2 that Ltor
π is isotopic to the planar

grid link denoted Lgrid
π ; see Figure 2(a–c). In L̃grid

π and Lgrid
π , the vertical arrows are

drawn above the horizontal arrows.
The main diagonal y = 1 − x of the square [0, 1]2 divides Lgrid

π into the lower-
triangular and the upper-triangular parts. In the lower-triangular part, all vertical
arrows point down and all horizontal arrows point right, while in the upper-triangular
part, all vertical arrows point up and all horizontal arrows point left. Let us take the
lower-triangular part and reflect it around the main diagonal, placing it below the
upper-triangular part; see Figure 2(c–d). We obtain a planar diagram of a link which
we denote L′

π. Clearly, L′
π

∼= Lgrid
π . The diagram of L′

π contains arrows pointing, up,
left, down, and right. It follows that the over/under-crossings rule in L′

π is given by the
following total order on the arrow directions: up > left > down > right. In particular,
L′

π is a divide link for the angle α = 45◦ from Remark 3.4 (where the main diagonal
is treated as part of the boundary of the disk), and we get that L′

π
∼= Lperm

π .

4.4. From toric permutation links to Coxeter links. First, we introduce
a more general class of links, associated to arbitrary monotone curves inside the
k × (N − k) rectangle.

We say that Cg is a monotone curve if it is the plot of a strictly monotone increasing
function g(x) : [0, N − k] → [0, k] satisfying g(0) = 0, g(N − k) = k, and g(j) /∈ Z
for all j = 1, 2, . . . , N − k − 1. Thus, the curve Cg passes through the points (0, 0)
and (N − k, k), but through no other lattice points. To any monotone curve Cg we
associate a link Lg drawn on the surface of T. The planar diagram of Lg is obtained
from the projection Cg of Cg to T via the following rule: whenever two points (x, g(x)),
(x′, g(x′)) on Cg (with x < x′) project to the same point of Cg, we draw the projection
of (x, g(x)) above the projection of (x′, g(x′)).

The link diagram of Lg is drawn on the torus T, and therefore it is natural to
think of Lg itself as a link inside the thickened torus T × [0, 1]. Given a point p =
(x, g(x)) ∈ Cg, we denote by p ∈ T the projection of p to T, and we let

(
p, 1 − x

N−k

)
be the corresponding point in T × [0, 1]. This yields an embedding of Cg into T ×
[0, 1]. Under this embedding, the points (0, 0) and (N − k, k) map to ((0, 0), 1) and
((0, 0), 0), respectively. Adding a line segment connecting ((0, 0), 1) to ((0, 0), 0), we
obtain a representation of the link Lg inside T× [0, 1]. An obvious consequence of this
construction is that the link Lg only depends on the set of lattice points below the
plot of g.

Corollary 4.1. Let Cg, Ch be two monotone curves, and assume that for each j =
1, 2, . . . , N − k − 1, we have ⌊g(j)⌋ = ⌊h(j)⌋. Then the links Lg and Lh are isotopic.

Suppose now that π = πC for a concave curve C. Our goal is to find an isotopy
Ltor

π
∼= LCox

C . Comparing the above description to the one in Section 2.1.5, we see that
when g is the concave down function satisfying C = Cg, we have Ltor

π
∼= Lg. Our goal

is to choose a monotone curve Ch such that Lg
∼= Lh by Corollary 4.1, and such that

Lh
∼= LCox

C .
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C

p0

p1

p2

p3

p4

p5

Ch

1 2 3 4 5

2 3 4 51

1 2 3 4 5

2 3 4 51

5 4 3 2 1

4 3 2 15

(a) C = Cg (b) Ch (c) Lh (d) βh (e) β = β(a(C))

Figure 18. Converting a concave curve C into the Coxeter link
β(a(C)); see Section 4.4.

Let λ = λC = (λ1 ⩾ λ2 ⩾ · · · ⩾ λk = 0) be the Young diagram above C.
For r = 0, 1, . . . , k − 1, let pr :=

(
λk−r + r

k , r
)
. Thus, p0 = (0, 0). Let pk := (N −

k, k). Let h be the piecewise-linear function whose plot passes through the points
p0, p1, . . . , pk, and let Ch be the corresponding monotone curve; see Figure 18(b).
Indeed, by Corollary 4.1, we have Lg

∼= Lh. It remains to establish the isotopy Lh
∼=

LCox
C .
Let β = β(a(C)) be the Coxeter braid associated to C, defined in (2.2). It is a braid

on k strands. For i = 1, 2, . . . , k, let Si(β) be the strand of β whose left endpoint is
labeled by i. Thus, the right endpoint of Si(β) is labeled by i + 1 for i < k and by 1
for i = k. On the other hand, the link diagram of Lh in T intersects the line y = 0 in
exactly k points with horizontal coordinates r

k for r = 0, 1, . . . , k − 1. We would like
to view Lh as the closure of a k-strand braid βh in the solid torus; see Figure 18(c–d).
The braid βh is obtained from Lh via the following procedure: whenever a strand of Lh

passes through some point (1, y) ∈ [0, 1]2 and continues from the point (0, y) ∈ [0, 1]2,
we connect the points (0, y) and (1, y) by a horizontal line segment that is drawn
below all strands of Lh. The result is a drawing of a braid connecting k points at the
bottom of [0, 1]2 to k points at the top of [0, 1]2.

For i = 1, 2, . . . , k − 1, let Si(βh) be the piece of βh connecting the point ( i−1
k , 0)

to the point ( i
k , 1). For i = k, let Sk(βh) be the remaining piece of βh, connecting

( k−1
k , 0) to (0, 1). See Figure 18(d–e).
We claim that the braids βh and β are isotopic. We compare them strand-by-

strand, identifying Si(β) with Sk+1−i(βh) for i = 1, 2, . . . , k, in that order. (This
correspondence is indicated via colors in Figure 18(d–e).) For convenience, we rotate
the drawing of β by 90◦ counterclockwise. The strand S1(β) moves straight up during
the ℓa2

2 · · · ℓak

k part, and then it moves left under all other strands. We apply an isotopy
to make Sk(βh) move straight up towards the top boundary of [0, 1]2, and then move
left under all other strands. Recall that we have a sequence a(C) = (a2, . . . , ak) given
by ai = λi−1 −λi for i = 2, . . . , k. Thus, the strand S2(β) wraps around S1(β) exactly
a2 times. On the other hand, Sk−1(βh) is the projection to T of the line segment of Ch

connecting pk−1 to pk. This projection intersects the vertical boundary of T exactly
a2 times. Therefore Sk−1(βh) wraps around Sk(βh) exactly a2 times. Continuing in
this fashion, we see that for i = 3, . . . , k, the strand Si(β) wraps around the union
S1(β)∪S2(β)∪· · ·∪Si−1(β) exactly ai times. On the other hand, the strand Sk+1−i(βh)
wraps around the union Sk(βh) ∪ Sk−1(β) ∪ · · · ∪ Sk+2−i exactly ai times. This shows
that the braids β and βh are isotopic, and therefore we get an isotopy LCox

C
∼= Lh

between their closures.
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Remark 4.2. The above construction is extended to links with multiple components
(resp. to monotone curves passing through some lattice points in the interior of the
rectangle) in [18, Section 7.3].

4.5. Fixed points. We briefly sketch how the above link constructions may be nat-
urally extended to the case when π has some fixed points. In this case, the con-
struction will depend not on π but on the bounded affine permutation f such that
f̄ = π. Let f ∈ Bound(k, N) be such that f̄(i) = i. Then either f(i) = i or
f(i) = i + n, corresponding to the cases of i being a loop or a coloop, respectively.
Let f ′ ∈ Bound(k′, n − 1) be the bounded affine permutation obtained by restricting
f to the set Z′ := Z ∖ {i + md | m ∈ Z} (and applying an order-preserving bijection
Z′ → Z). Here k′ = k if f(i) = i and k′ = k − 1 if f(i) = i + n. We will show that
each of the links Lperm

f , Lplab
f , Ltor

f , LRich
f is obtained from the corresponding link for

f ′ by adding an unknotted component disjoint from the rest of the link.
For the link Lperm

f , we draw a small arrow from i to f̄(i) = i, and thus the result is
trivially true. Next, let G be a reduced plabic graph with bounded affine permutation
f . It is known that the boundary vertex i in G is incident to a unique leaf edge. The
other endpoint of that edge is either black or white, depending on whether f(i) = i or
f(i) = i+n. In either case, the links Lplab

f and Lplab
f ′ differ by adding an unknot. Next,

in the link Ltor
f , we draw an arrow from di to di + (1, 0) (horizontally) if f(i) = i and

to di + (0, 1) (vertically) if f(i) = i + n, where di is as in Section 2.1.2. The horizontal
(resp. vertical) arrow will be drawn below (resp. above) all other arrows. Thus, after
embedding T into R3 and applying an isotopy, the extra component of the link can
be pulled away from the rest of Ltor

f ′ .
Finally, consider the link LRich

f . Recall from Section 3.1 that we can find a unique
pair (v, w) ∈ Qk,N such that f = fv,w. Let Γ be the Le-diagram corresponding to
(v, w). If f(i) = i (resp. f(i) = i+n) then the i-th unit step at the southeast boundary
of Γ is horizontal (resp. vertical), and Γ contains no dots in the column above (resp.
in the row to the left of) this step. The link LRich

f is still defined as the braid closure of
βv,w = β(w)·β(v)−1, and it can still be obtained from Γ by the procedure described in
Section 4.1. Explicitly, the extra component passing through i will either go around all
other link components passing through its row if f(i) = i+n, or it may be contracted
by pulling it between all horizontal strands passing through its column as shown in
Figure 16(far left) if f(i) = i. In either case, LRich

f differs from LRich
f ′ by adding an

extra unknotted component.

5. Quivers
In this section, we introduce the point count polynomial R(Q; q) of a locally acyclic
quiver, and study its basic properties. We use this polynomial to define the Q-Catalan
number of Q, an integer that we conjecture to be nonnegative in Conjecture 5.10. We
refer the reader to [13] for an excellent introduction to quivers and cluster algebras.

5.1. Quiver mutation. Recall that a quiver is a directed graph without directed
cycles of length 1 and 2.

Given a quiver Q and a vertex j ∈ V (Q), one can define another quiver Q′ = µj(Q)
called the mutation of Q at j. This operation preserves the set of vertices: V (Q′) =
V (Q), and changes the set of arrows as follows:

• for every length 2 directed path i → j → k in Q, add an arrow i → k to Q′;
• reverse all arrows in Q incident to j;
• remove pairs of opposite arrows (i.e. directed 2-cycles) in the resulting directed

graph, one pair at a time, until no such pairs are present.
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An ice quiver is a quiver Q̃ whose vertex set Ṽ = V (Q̃) is partitioned into frozen
and mutable vertices: Ṽ = Vfro ⊔ Vmut. We automatically omit all arrows in Q̃ both
of whose endpoints are frozen. For an ice quiver Q̃, its mutable part is the induced
subquiver of Q̃ with vertex set Vmut. For a set S ⊂ Vmut, let Q̃[S] denote the ice quiver
obtained from Q̃ by further declaring all vertices in S to be frozen. We write Q̃ − S

for the ice quiver obtained from Q̃ by removing the vertices in S. For a simply-laced
Dynkin diagram D, we say that Q or Q̃ has type D, or is a D-quiver, if the underlying
graph of Q is isomorphic to D.

Let Q̃ be an ice quiver with Ṽ = [n + m], Vmut = [n], and Vfro = [n + 1, n +
m] := {n + 1, n + 2, . . . , n + m}. We represent it by an (n + m) × n exchange matrix
B̃(Q̃) = (bij), defined by

bij = #{arrows i → j in Q̃} − #{arrows j → i in Q̃}.

The top n×n submatrix B(Q) of B̃(Q̃) is skew-symmetric, and is called the principal
part of B̃(Q̃).

Let B̃ be an (n + m) × n matrix. We denote corank(B̃) := n − rank(B̃). Follow-
ing [34], we say that an (n + m) × n matrix B̃ is really full rank if the rows of B̃

span Zn over Z. We say that Q̃ is really full rank if B̃(Q̃) is really full rank, and
write corank(Q̃) := corank(B̃(Q̃)). We say that Q̃ is torsion-free if the abelian group
Zn+m/B̃(Q̃)Zn is torsion-free, equivalently, if Zn/B̃(Q̃)TZn+m is torsion-free. Thus,
Q̃ is really full rank if and only if it is both full rank and torsion-free.

Definition 5.1. Given a quiver Q, we say that an ice quiver Q̃ with mutable part Q

is a minimal extension of Q if Q̃ has m = corank(Q) frozen vertices and is really full
rank.

Lemma 5.2. If Q is torsion-free then it admits a minimal extension.

Proof. If Q is torsion-free, we can find vectors d1, . . . , dm ∈ Zn that form a basis of
Zn/B(Q)TZn. Define Q̃ with m frozen vertices so that the bottom m rows of the
exchange matrix B̃ are equal to d1, . . . , dm. □

Example 5.3. The exchange matrices of the two quivers Q, Q′ in Figure 19(c) are
given by

B(Q) =

 0 2 −2
−2 0 2
2 −2 0

 and B(Q′) =


0 −1 −1 2
1 0 1 −1
1 −1 0 −1

−2 1 1 0

 .

Thus, corank(Q) = 1, corank(Q′) = 0, and neither quiver is torsion-free.

We say that an ice quiver Q̃ is isolated if it has no arrows. For example, the quiver
in Figure 8(c) is isolated.

We call an ice quiver Q̃ acyclic if it has no directed cycles, and mutation acyclic if
it is mutation equivalent to an acyclic ice quiver. For example, any quiver of Dynkin
type is acyclic, as is the quiver in Figure 19(a). The quiver in Figure 8(a) and the
left quiver in Figure 19(b) are not acyclic, but they are both mutation acyclic, since
mutating a single vertex in each of these quivers makes them acyclic.

An edge u → v in a quiver Q is called a separating edge [41] if it does not belong
to a bi-infinite walk in Q. Here, a bi-infinite walk is a sequence (wj)j∈Z of vertices in
Q such that for each j ∈ Z, Q contains an arrow wj → wj+1.

We define the class of locally acyclic quivers, called “Louise" in [43, 34], as follows.
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(a) An acyclic quiver (b) Two locally acyclic quivers. (c) Two quivers that are not locally acyclic.

Figure 19. Acyclic, locally acyclic and non-locally acyclic quivers.

• Any isolated quiver Q is locally acyclic.
• Any quiver that is mutation equivalent to a locally acyclic quiver is locally

acyclic.
• Suppose that a quiver Q has a separating edge u → v, and that all three

quivers Q − {u}, Q − {v}, Q − {u, v} are locally acyclic. Then Q is locally
acyclic.

We say that an ice quiver Q̃ is locally acyclic if its mutable part Q is locally acyclic.
See Figure 19.

5.2. Cluster algebras. Let Q̃ be an ice quiver with Ṽ = [n + m], Vmut = [n], and
Vfro = [n + 1, n + m]. We associate to Q̃ the initial seed (x1, x2, . . . , xn+m) of cluster
variables, considered as elements in the function field F = Q(x1, x2, . . . , xn+m). The
variables xn+1, . . . , xn+m are called frozen variables. For a mutation Q′ = µj(Q), we
associate the seed (x′

1, x′
2, . . . , x′

n+m), where x′
i = xi if i ̸= j and one has the new

cluster variable

x′
j =

∏
r→j xr +

∏
j→s xs

xj
∈ F .

By repeatedly mutating, we generate (possibly infinitely) many seeds and cluster
variables. We denote by A(Q̃) = A(B̃(Q̃)) the cluster algebra associated to Q̃. This
is the Z-subalgebra of Q(x1, x2, . . . , xn+m) generated by all cluster variables and the
inverses of frozen variables.

The cluster variety X (Q̃) = X (B̃(Q̃)) is defined to be the scheme

X (Q̃) := Spec(A(Q̃)).

We say that A(Q̃) (resp. X (Q̃)) is a cluster algebra (resp. cluster variety) of type Q,
where Q is the mutable part of Q̃. We say that A(Q̃) is isolated, acyclic, (really) full
rank, if Q̃ is isolated, mutation acyclic, (really) full rank, respectively. If Q̃ is a locally
acyclic quiver, then A(Q̃) is locally acyclic in the sense of Muller [41].

Proposition 5.4 ([41, Theorem 7.7], [34, Theorem 10.1]). Suppose that Q̃ is locally
acyclic and really full rank. Then X (Q̃)C is a smooth complex algebraic variety and
X (Q̃)F̄q

is smooth for any prime power q.

Proposition 5.5 ([41, Corollary 5.4]). Let i → j be a separating edge in Q̃. Then the
open sets {xi ̸= 0} and {xj ̸= 0} cover X (Q̃).

Proposition 5.6 ([41, Proposition 3.1, Lemma 3.4, Theorem 4.1]). Suppose that i ∈
V (Q̃) is a mutable vertex such that Q − {i} is locally acyclic. Then A(Q̃)[x−1

i ] ≃
A(Q̃[i]).

5.3. Quiver point count. For a mutable quiver Q, we define the function R(Q; q)
as follows. Choose a really full rank ice quiver Q̃ with mutable part Q and m frozen

Algebraic Combinatorics, Vol. 7 #2 (2024) 450



Plabic links, quivers, and skein relations

vertices. Then for q a prime power, we set

(5.1) R(Q; q) := #X (Q̃)(Fq)
(q − 1)m

.

For a rational function R(q) = P (q)/Q(q), we let the degree deg(R) be the difference
deg(P ) − deg(Q).

Proposition 5.7 ([34, Proposition 5.11 and Theorem 10.5]). Let Q be a quiver with
n vertices.

(1) The function R(Q; q) defined in (5.1) does not depend on the choice of Q̃.
(2) Suppose Q is locally acyclic. Then R(Q; q) is a rational function in q of degree

n.

If u → v is a separating edge in Q and Q − {u}, Q − {v}, Q − {u, v} are locally
acyclic, then we have the recurrence
(5.2) R(Q; q) = (q −1)R(Q−{u}; q)+(q −1)R(Q−{v}; q)−(q −1)2R(Q−{u, v}; q),
which follows from Propositions 5.5 and 5.6.

Proposition 5.8 ([35, Proposition 3.9]). Let Q be an acyclic quiver with n vertices.
Then

R(Q; q) =
∑
k⩾0

ak(q − 1)n−2kqk,

where ak is the number of independent sets of size k in the underlying undirected
graph of Q.

When Q itself is really full rank, R(Q; q) is a polynomial in q. However, R(Q; q) is
in general a genuine rational function whose denominator is a power of (q − 1). For
example, for Q a single isolated vertex (we denote this quiver by A1; it has corank
1), we have

(5.3) R(A1; q) = q2 − q + 1
q − 1 .

For an ice quiver Q̃ with mutable part Q and m frozen vertices, we set
R(Q̃; q) := (q − 1)mR(Q; q).

Thus, when Q̃ is really full rank and locally acyclic, R(Q̃; q) is a polynomial in q of
degree n + m satisfying #X (Q̃)(Fq) = R(Q̃; q) for all prime powers q.

Definition 5.9. Let Q be a torsion-free quiver, and Q̃ be a minimal extension as in
Lemma 5.2. If R(Q̃; q) is a polynomial in q, define

χQ := R(Q̃; 1).

By Proposition 5.7, χQ does not depend on the choice of Q̃.

We call χQ the Catalan number of the quiver Q, or simply the Q-Catalan number.

Conjecture 5.10. Suppose that Q is a locally acyclic quiver. Then χQ ⩾ 0.

We note that χQ can be zero. For example, let Q be an acyclic orientation of the
three-cycle, and let Q̃ be a minimal extension. Thus, Q̃ is a really full rank quiver
with corank(Q) = 1 frozen vertices. Then by Proposition 5.8, we have R(Q; q) =
(q − 1)3 + 3(q − 1)q, and thus R(Q̃; q) = (q − 1)4 + 3(q − 1)2q and χQ = 0. For another
example, the quiver Q in Figure 19(a) satisfies corank(Q) = 0 and χQ = 0.

Consider a polynomial R(q) of degree n with integer coefficients that is palindromic
(i.e. satisfies qnR(1/q) = R(q)). One can show by induction that it can be written as
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∑⌊n/2⌋
k=0 ak(q − 1)n−2kqk for unique coefficients a0, a1, . . . , a⌊n/2⌋ ∈ Z. It follows from

the curious Lefschetz property shown in [34] that the point count polynomial of any
locally acyclic really full rank quiver is palindromic. We thank the anonymous referee
for suggesting the first part of the following strengthening of Conjecture 5.10.

Conjecture 5.11. Let Q be a locally acyclic quiver, and let Q̃ be a really full rank
quiver with n vertices and mutable part Q. Then we have

R(Q̃; q) =
⌊n/2⌋∑
k=0

ak(q − 1)n−2kqk, where each ak ⩾ 0.

Moreover, the cluster variety X (Q̃) over a field F may be represented as a disjoint
union over 0 ⩽ k ⩽ ⌊n/2⌋ of ak copies of (F∗)n−2k × Fk.

Example 5.12. In Table 1, which can be computed using Proposition 5.8 or Corol-
lary 5.16, we take Q to be any orientation of a Dynkin diagram and Q̃ to be any
minimal extension of Q. Note that R(Q; q) = R(Q̃; q)/(q−1)m, where m = corank(Q)
is given in Table 1.

The corresponding HOMFLY polynomials are computed via the following obser-
vation, which amounts to a single application of (2.3). Let G be a connected simple
plabic graph such that Q := QG is an orientation of a tree, and let Q′ (resp. Q′′) be
obtained from Q by adjoining a path of length 1 (resp. of length 2) to some vertex
of Q. Each of Q′ and Q′′ is the planar dual of some simple plabic graph, and by
Lemma 7.6, the HOMFLY polynomials of the associated links are related by

(5.4) P (L′′) = z

a
P (L′) + 1

a2 P (L).

For example, we can take (Q′′, Q′, Q) to be one of (An, An−1, An−2), (Dn, Dn−1, Dn−2),
(E6, D5, A4), (E7, E6, D5), or (E8, E7, E6). Writing P (Q) in place of P (L) where L is
the link corresponding to Q, we find:

P (A0) = 1, P (A1) = z + z−1

a
− z−1

a3 , P (An) = z

a
P (An−1) + 1

a2 P (An−2) for n ⩾ 2.

Here A0 denotes the empty quiver whose associated link is the unknot; the links
corresponding to A1 and A2 are the Hopf link and the trefoil knot, respectively; see
Figure 9. The above recurrence can be solved explicitly: for each n ⩾ 1, we have

P (An) = Tn+1(z)
an−1 − Tn−1(z)

an+1 , where Tn(z) :=
⌊n/2⌋∑
k=0

(
n − k

k

)
zn−2k−1.

Similarly, we find

P (D2) =
(

z + z−1

a
− z−1

a3

)2

, P (D3) = P (A3) = z3 + 3z + z−1

a3 − z + z−1

a5 ,

P (Dn) = z

a
P (Dn−1) + 1

a2 P (Dn−2) for n ⩾ 4.

Here D2 denotes the quiver consisting of two isolated vertices(4) and the associated
link is by definition the connected sum of two Hopf links; cf. Proposition 6.6 and (6.3).

(4)One can check that the values for D2 and D3 are correct by computing the HOMFLY poly-
nomial directly from the plabic graph links for D4 and D5 and then running the recurrence (5.4)
backwards.
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Dynkin type m R(Q̃; q) χQ

An, n even 0 1 + q2 + q4 + · · · + qn n/2 + 1
An, n odd 1 1 − q + q2 − q3 + q4 − · · · + qn+1 1

Dn, n ⩾ 4 even 2 (1−q+q2 −q3 +q4 −· · ·+qn+2)+
(−q + q2 + qn − qn+1)

1

Dn, n ⩾ 5 odd 1 (1+q2 +q4 +· · ·+qn+1)−(q+qn) (n − 1)/2
E6 0 1 + q2 + q3 + q4 + q6 5
E7 1 1 − q + q2 + q6 − q7 + q8 2
E8 0 1 + q2 + q3 + q4 + q5 + q6 + q8 7

Table 1. Point counts of Dynkin quivers.

We also set D3 := A3. Finally, having computed P (A4) and P (D5), we find

P (E6) = z6 + 6z4 + 10z2 + 5
a6 − z4 + 5z2 + 5

a8 + 1
a10 ;

P (E7) = z7 + 7z5 + 15z3 + 11z + 2z−1

a7 − z5 + 6z3 + 9z + 3z−1

a9 + z + z−1

a11 ;

P (E8) = z8 + 8z6 + 21z4 + 21z2 + 7
a8 − z6 + 7z4 + 14z2 + 8

a10 + z2 + 2
a12 .

Substituting a := q− 1
2 and z := q

1
2 − q− 1

2 into the top a-degree term in the above
formulas, one recovers the point count formulas in Table 1, in agreement with Theo-
rem 2.9.

Remark 5.13. Let G be a reduced plabic graph with N boundary vertices such
that πG = πk,N is the “top cell” permutation defined in Section 3.1. For (k, N) =
(2, N), (3, 6), (3, 7), (3, 8), we get the quivers QG = AN−3, D4, E6, E8 respectively. If
gcd(k, N) = 1, then it is shown in [17] that m = 0 and χQG

= 1
N

(
N
k

)
is the (k, N − k)

rational Catalan number. Compare with Table 1.

5.4. Leaf recurrence. Let i ∈ V (Q) be a leaf vertex of a quiver Q, connected to
some other vertex j ∈ V (Q). We call i a recurrent leaf if both quivers Q − {i} and
Q−{i, j} are locally acyclic. This automatically implies that Q itself is locally acyclic.

Proposition 5.14. Fix a field F, and consider cluster varieties over F. Let Q̃ be a
really full rank ice quiver with m frozen vertices and mutable part Q. Let i ∈ V (Q)
be a recurrent leaf in Q connected to j ∈ V (Q). Then the subvariety of X (Q̃) given
by xi = 0 is isomorphic to F × X (Q̃′), where Q̃′ is a really full rank quiver with m
frozen vertices and mutable part Q′ := Q − {i, j}.

Proof. Our goal is to construct a quiver Q̃′ satisfying the above assumptions and an
isomorphism
(5.5) {x ∈ X (Q̃) | xi = 0} ∼= F × X (Q′).

By Proposition 5.5, the subvariety of X (Q̃) given by xi = 0 is contained inside
the subvariety of X (Q̃) given by xj ̸= 0. The quiver Q − {j} is the disjoint union of
Q′ and a single isolated vertex. By assumption, Q′ is locally acyclic and thus so is
Q − {j}. By Proposition 5.6, we have A(Q̃)[x−1

j ] ∼= A(Q̃[j]). We therefore find

(5.6) {x ∈ X (Q̃) | xi = 0} ∼= {x ∈ X (Q̃[j]) | xi = 0}.

Let A = A(Q̃[j] − {i})[x±1
i ] be obtained from the cluster algebra A(Q̃[j] − {i})

by adjoining xi and its inverse. The cluster algebra A(Q̃[j]) is isomorphic to the
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subalgebra of A generated by A(Q̃[j] − {i}), the cluster variable xi and the mutation
x′

i, which is of the form f/xi where f ∈ A(Q̃[j] − {i}).
Let X ′ := X (Q̃[j] − {i}). It follows that

(5.7) X (Q̃[j]) ∼= {((xi, x′
i), x′) ∈ F2 × X ′ | xix

′
i = M + xjM ′},

where M, M ′ are monomials in the frozen variables of Q̃[j] − {i}. We therefore see
that the right-hand side of (5.6) is given by
(5.8)
{x ∈ X (Q̃[j]) | xi = 0} ∼= {((xi, x′

i), x′) ∈ F2 × X ′ | xi = 0 and xix
′
i = M + xjM ′}.

We see that the variable x′
i is free, and thus the right-hand side of (5.8) is isomorphic

to the direct product of F and

(5.9)
{

x′ ∈ X ′
∣∣∣∣ xjM ′

M
= −1

}
.

It remains to show that the locus (5.9) is isomorphic to X (Q̃′) for some quiver Q̃′

satisfying the conditions in Proposition 5.14. By assumption, B̃ := B̃(Q̃) is really full
rank. Thus, there exist integers (αk)k∈[n+m] such that∑

k

αkB̃k = ei,

where B̃k denotes the k-th row of B̃ and ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th standard
basis vector in Zn.

Since i is a leaf, the row B̃i has a single nonzero entry in the j-th column. Let B̃(1)

be obtained from B̃ by removing the i-th row and the j-th column.(5) Then we have∑
k ̸=i

αkB̃
(1)
k = ēi,

where ēi is the i-th standard basis vector in Zn−1. Moreover, the matrix B̃(1) is still
really full rank.

Let Vfro := [n + 1, n + m] be the set of frozen vertices of Q̃. Then the set of frozen
vertices of Q̃[j]−{i} is Vfro⊔{j}. We have gcd(αk | k ∈ Vfro⊔{j}) = 1 since all the rows
with a nonzero entry in column i of B̃ belong to Vfro⊔{j}. By [34, Section 5], replacing
a frozen row by its negative, or adding a frozen row to another frozen row produces an
isomorphic cluster variety. After applying a series of such transformations, we obtain
a really full rank (n + m − 1) × (n − 1) exchange matrix B̃(2) and a family of integers
(α(2)

k )k ̸=i satisfying

(5.10)
∑
k ̸=i

α
(2)
k B̃

(2)
k = ēi,

such that moreover for some ℓ ∈ Vfro ⊔ {j} we have α
(2)
ℓ = 1.

Now, let B̃(3) be the (n + m − 1) × (n − 2) matrix obtained from B̃(2) by further
removing the i-th column. Thus, A(B̃(3)) ∼= A(Q̃[j] − {i}), and by construction,∑

k ̸=i α
(2)
k B̃

(3)
k = 0 is the zero vector in Zn−2. Thus, by [34, Proposition 5.1], the

numbers (α(2)
k )k ̸=i describe a one-parameter subgroup F∗ of the cluster automorphism

torus T = Aut(A(B̃(3))) (see [34, Section 5]), with z ∈ F∗ acting by xk 7→ zα
(2)
k xk.

(5)When removing rows and columns from matrices, we preserve the labels of the remaining rows
and columns. For instance, removing row 1 from B̃ produces a matrix with rows labeled 2, . . . , n+m.

Algebraic Combinatorics, Vol. 7 #2 (2024) 454



Plabic links, quivers, and skein relations

Equation (5.10) implies that z acts on the monomial xjM ′

M by z±1. Thus, every F∗-
orbit contains a unique point in the locus (5.9). In other words, the locus (5.9) is
isomorphic to the quotient X (B̃(3))/F∗. Since we assumed that α

(2)
ℓ = 1, the quotient

X (B̃(3))/F∗ can be obtained by setting xℓ = 1. Let B̃′ be the (n + m − 2) × (n − 2)
matrix obtained from B̃(3) by removing the ℓ-th row. Let Q̃′ be the associated quiver,
with m frozen vertices corresponding to the rows (Vfro ⊔ {j})∖ {ℓ} and mutable part
Q − {i, j}. Clearly, Q̃′ is still really full rank. We find that indeed the locus (5.9) is
isomorphic to X (Q̃′). □

Remark 5.15. Proposition 5.14 generalizes to the case of i being either a source or a
sink in Q.

The following result will be later compared to the HOMFLY skein relation (2.3).

Corollary 5.16. Let Q be really full rank, and let i ∈ V (Q) be a recurrent leaf in Q
connected to j ∈ V (Q). Let Q′ := Q − {i} and Q′′ := Q − {i, j}. Then
(5.11) R(Q; q) = (q − 1)R(Q′; q) + qR(Q′′; q).

Proof. Let Q̃ be really full rank with mutable quiver Q, and X := X (Q̃). Let U :=
{xi ̸= 0} and Z := {xi = 0} be two subvarieties of X . Then U is a really full rank
cluster variety of type Q′ and Z is described in Proposition 5.14. The result follows
since

#X (Fq) = #U(Fq) + #Z(Fq). □

6. Quivers, links, and plabic graphs
In this section, we study some basic relations between the properties of plabic graphs
and the associated quivers and links.

6.1. Plabic graph quivers. Recall the background on plabic graphs from Sec-
tions 2.1.4 and 3.2. We continue to assume that each plabic graph G is trivalent, and
that each interior face of G is simply connected.

We say that two plabic graphs are move equivalent if they are connected by a
sequence of moves in Figure 11. For the square move in Figure 11(b), we require
that the four faces A, B, C, D adjacent to the square face in clockwise order satisfy
A ̸= B ̸= C ̸= D ̸= A. (Having A = C or B = D is allowed.) Cf. [12, Restriction 6.3];
this restriction is needed in order for natural statements such as Proposition 6.2 to
hold.

Proposition 6.1. Let G be a connected plabic graph. Then G can be transformed
using only tail removal (Figure 11(c)) into:

• the graph in Figure 20(a) if G has no interior faces;
• the graph in Figure 20(b) or Figure 20(c) if G has one interior face;
• a plabic graph with no boundary vertices, if G has two or more interior faces.

We call this graph the tail reduction of G.

Proof. Let G be a connected plabic graph. By repeatedly applying tail removal to G
(without changing connectedness or the number of interior faces), we may assume no
more tail removals are possible. If G has no boundary vertices then G must have two
or more interior faces. If G has a boundary vertex b connected to an interior vertex
v, then v must be incident to a loop edge, for otherwise we may apply a tail removal
to b. In this case, G has one interior face. Finally, if G has no interior vertices, then
G consists of a single edge connecting two boundary vertices, and has no interior
faces. □
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(a) no interior faces (b) one interior face (c) one interior face

Figure 20. Tail reductions that have boundary vertices.

Figure 21. The behavior of the link Lplab
G at interior leaves.

Proposition 6.2.
• Suppose that two simple plabic graphs G and G′ are move equivalent. Then

QG and QG′ are mutation equivalent.
• Any plabic graph G′ move equivalent to a simple plabic graph G is also simple.

Proof. Direct check. □

Recall from Section 2.2 that each plabic graph gives rise to a link Lplab
G and that our

main conjecture (Conjecture 2.8) yields a relation between the polynomials R(QG; q)
and P (Lplab

G ; a, z). For a rational function R(q) = P (q)/Q(q), the leading coefficient
of R(q) is defined as the ratio of the coefficient of qdeg P in P (q) and the coefficient
of qdeg Q in Q(q). While Conjecture 2.8 applies only to simple plabic graphs (cf.
Section 9.3), the following more basic statement appears to hold for arbitrary plabic
graphs. In particular, we allow plabic graphs with interior leaves, though we still insist
that interior faces are simply connected. The link Lplab

G is defined as before, and the
behavior of the strands at an interior leaf is shown in Figure 21.

Conjecture 6.3. Let G be a plabic graph with c(G) connected components and n

interior faces. Then the top a-degree of P (Lplab
G ; a, z) equals

(6.1) degtop
a (P (Lplab

G )) = c(G) − n − 1.

The degree of P top(L; q) (as a rational function in q) is given by
(6.2) deg(P top(L; q)) = n,

and the leading coefficient of P top(L; q) is equal to 1.

Cluster varieties X (Q̃) are irreducible, with dimension equal to the number of
vertices in Q̃. Thus, when R(Q; q) is a rational function, it has leading coefficient 1
and degree equal to the number of vertices of Q. So Conjecture 2.8 implies (6.2) for
simple plabic graphs.

6.2. Empty quivers.

Proposition 6.4. Let G be a connected plabic graph. The following are equivalent:
(1) QG is empty.
(2) G is a tree.
(3) The tail reduction of G is a graph with no interior vertices.
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Proof. The mutable quiver QG is empty if and only if G has no interior faces, which is
equivalent to G being a tree, since G is assumed to be connected. By Proposition 6.1,
this is also equivalent to (3). □

6.3. Disconnected graphs. For two plabic graphs G′, G′′, we let G′ ⊔ G′′ denote
the disconnected plabic graph obtained by taking the disjoint union of G′ and G′′.
We denote by the same symbol the disjoint union of two quivers and of two links.

Proposition 6.5. Suppose G = G′ ⊔ G′′ is a disconnected plabic graph. Then QG =
QG′ ⊔ QG′′ and Lplab

G = Lplab
G′ ⊔ Lplab

G′′ .

Proof. Follows directly from the definitions. □

6.4. Isolated plabic graph quivers. Recall that the connected sum of two ori-
ented knots K, K ′ is defined as follows. Find planar projections of the two knots that
are disjoint. Then find a (topological) rectangle R in the plane, with oriented bound-
ary consisting of sides S1, S2, S3, S4 in order, such that S1 (resp. S3) is an oriented
arc along K (resp. K ′), and S2, S4 are disjoint from K and K ′. The oriented con-
nected sum knot K#K ′ is obtained by deleting S1, S3 and adding S2, S4. To construct
the connected sum of two links L, L′, we choose components K ⊂ L and K ′ ⊂ L′

and perform the above surgery. We call any link produced in this way the connected
sum of L and L′, denoted L#L′. The following result is well known; see e.g. [38,
Proposition 16.2].

Proposition 6.6. Let L and L′ be two oriented links. Then P (L ⊔ L′) =(
a−a−1

z

)
P (L)P (L′) and P (L#L′) = P (L)P (L′).

In particular, the r-component unlink has HOMFLY polynomial
(

a−a−1

z

)r−1
.

Let LHopf := denote the positively oriented Hopf link. Then we have

(6.3) P (LHopf ; a, z) = z + z−1

a
− z−1

a3 .

Recall that a quiver Q is isolated if it has no arrows.

Proposition 6.7. Let G be a simple plabic graph with n interior faces and c(G)
connected components. Suppose that QG is isolated. Then Lplab

G is a disjoint union
of c(G) links, each of which is a connected sum of some number (possibly zero) of
positively oriented Hopf links.

Proof. By Proposition 6.5, we may assume that G is connected. Replace G by its tail
reduction (Proposition 6.1). Then the result holds when n = 0: the link Lplab

G is an
unknot. The result also holds when n = 1: the link Lplab

G is the Hopf link. So suppose
that n > 1. In particular, we are assuming that G has no boundary vertices.

For the remainder of the proof it is convenient to replace G by its bipartite reduction,
obtained by contracting all interior edges whose endpoints have the same color. In
particular, interior vertices are allowed to have degree higher than three. Suppose first
that G contains an interior face F which is bounded by a loop e whose sole endpoint
is v ∈ V (G). We show that v must be adjacent to a boundary face of G. Without
loss of generality, we may assume that the edge e is not fully contained inside any
other loop edge incident to v. Let F ′ be the face on the other side of e to F . If F ′ is a
boundary face then we are done. Otherwise, we assume that F ′ is an interior face. Let
e′ be any non-loop edge incident to v that is on the boundary of F ′. By our bipartite
assumption, e′ connects v to a vertex of opposite color. The assumptions that G is
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F
F ′

e

v

F
F ′

Figure 22. A loop edge in G whose sole vertex is adjacent to a
boundary face results in having the Hopf link as a connected sum-
mand of Lplab

G ; see the proof of Proposition 6.7.

Figure 23. A “tree” of interior faces (without boundary vertices)
must have a loop.

simple and QG is isolated then imply that e′ separates F ′ from a boundary face. It
follows that v is adjacent to a boundary face of G. Letting L′ := Lplab

G−e, we see from
Figure 22 that G is a connected sum of L′ and LHopf . Since G − e has fewer interior
faces, the result follows by induction.

Suppose now that G, still assumed to be bipartite, has no interior faces that are
bounded by loop edges. Let F be an interior face of G. Since G is simple, the perimeter
of F does not contain both sides of any edge. Moreover, since QG is isolated, every
edge adjacent to F is adjacent to a boundary face on the other side. Thus, G consists
of a number of interior faces connected in a tree-like manner as in Figure 23. The
interior faces at the leaves of this tree must be bounded by loop edges, contradicting
our assumption. □

6.5. Torsion. By definition, for G a (possibly not simple) plabic graph, the quiver
Q−

G is obtained from the directed graph QG (Section 2.2) by removing all 1-cycles,
and canceling out directed 2-cycles one by one. This agrees with the procedure in [12],
and the mutation class of Q−

G is again invariant under the moves in Figure 11. Note
that G is simple if and only if QG = Q−

G.

Proposition 6.8. Let G be a plabic graph. Then Q−
G is torsion-free.

Proof. We prove the result by induction on the number of vertices of Q−
G. In the

following, we index rows of the B(Q−
G) by interior faces F of G.

We may suppose that G is connected. If G has fewer than two interior faces, then
checking the graphs in Figure 20, we see that the result holds. So suppose that G
has at least two interior faces. Applying tail removal, we may suppose that G is not
reduced. Then by [46], one of the following holds: (a) G has an interior leaf, or (b)
the bipartite reduction (see the proof of Proposition 6.7) has a loop, or (c) G is move
equivalent to a plabic graph with a two parallel edges between vertices of opposite
color.

In case (a), removing the leaf vertex does not change Q−
G. We may thus assume

that all interior leaves have been removed. In case (b), deleting the loop edge removes
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a zero row and a zero column from B(Q−
G), so the result holds by induction. We may

thus assume that G is leafless and loopless and we are in situation (c), that is, G has
a double edge: a pair e′, e′′ of edges between vertices u, v of opposite colors. Let F be
the interior face between e′ and e′′, and let F ′, F ′′ be the faces on the other side of e′

and e′′ to F ; see Figure 24. Let G′ be obtained from G by removing both edges e′, e′′.
Let B := B(Q−

G), C := B(Q−
G′), and n := |V (Q−

G)|. If F ′, F ′′ are both boundary faces,
then Q−

G′ is obtained from Q−
G by removing an isolated vertex, so the result holds by

induction.
Suppose that one of the faces F ′, F ′′ is boundary and one, say F ′, is interior.

Then Q−
G′ is obtained from Q−

G by removing the vertices F and F ′. Let ZV ∼= Zn

denote the free Z-module with basis vectors {eH}H∈V indexed by the vertex set
V = V (Q−

G) = {interior faces H of G} and Zn−2 ∼= ZV ′ ⊂ ZV the submodule spanned
by basis elements other than eF , eF ′ . The rows of B belong to ZV and the rows of C
belong to ZV ′ ⊂ ZV . By induction, C is torsion-free, so ZV ′

/CTZV ′ has a basis given
by some vectors d1, d2, . . . , dr ∈ ZV ′ . Furthermore, we have

bF = ±eF ′ , bF ′ ± eF ∈ ZV ′
, bH − cH ∈ ZeF ′ ,

where H is any interior face other than F, F ′, and bH and cH denote the rows of B
and C, respectively. It is clear that ZV /BTZV has a basis given by {d1, . . . , dr}. So
B is torsion-free.

Now suppose that F ′, F ′′ are both interior faces. If F ′ = F ′′, then one of u, v, say
v, must be a cut vertex of G. Thus, G contains a non-trivial induced subgraph H
containing v and connected to G − H only via e′, e′′. The subgraph H is contained
“inside" F ′ = F ′′; we may consider H to be a plabic graph, necessarily not reduced,
with a single boundary vertex incident to v. Replacing G by H and repeating the
argument, we are reduced the situation where F ′ ̸= F ′′.

With F ′ ̸= F ′′ both interior, Q−
G′ is obtained from Q−

G by removing the vertex F

and identifying the vertices F ′ and F ′′ to give a new vertex F̃ of Q−
G′ . The rows of

B belong to ZV ∼= Zn and the rows of C belong to ZV ′ ∼= Zn−2, where V ′ = V (Q−
G′).

Define the inclusion ι : ZV ′
↪→ ZV by sending eF̃ to eF ′ , and mapping the other basis

vectors in the obvious way. By induction, C is torsion-free, so ZV ′
/CTZV ′ has a basis

given by some vectors d1, d2, . . . , dr ∈ ZV ′ . We have that

bF = ±(eF ′ − eF ′′), bF ′ + bF ′′ = ι(cF̃ ), bH − ι(cH) ∈ Z(eF ′ − eF ′′),

where H is an interior face other than F, F ′, F ′′. Let W ⊂ ZV −{F } be the span of the
vectors bF , bF ′ + bF ′′ and bH , H /∈ {F, F ′, F ′′}. Then {ι(d1), . . . , ι(dr)} form a basis of
ZV −{F }/W . But bF ′ ±eF ∈ ZV −{F }, so ZV /BTZV has basis {ι(d1), . . . , ι(dr)}. Thus,
B is torsion-free. □

Combining Proposition 6.8 with Lemma 5.2, we obtain the following result.

Corollary 6.9. Let G be a simple plabic graph. Then QG admits a minimal exten-
sion.

7. Skein relations
In this section, we introduce leaf recurrent plabic graphs. This class of plabic graphs
includes the well-studied reduced plabic graphs and plabic fences. We show that the
leaf recurrence for plabic graphs corresponds to the skein relation for the associated
links, thus establishing Conjecture 2.8 for leaf recurrent plabic graphs.
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e

e′

F

F ′

u v

e

e′

F

F ′

F ′′

u
v

Figure 24. A boundary leaf face F (left) and an interior double
edge (right).

∼= ∼=

L+ = Lplab
G L− ∼= Lplab

G′′ L0
∼= Lplab

G′

Figure 25. Leaf recurrence for plabic graphs corresponds to the
HOMFLY skein relation; see Lemma 7.6.

7.1. Leaf recurrent plabic graphs. In this section, we assume that all plabic
graphs satisfy the assumptions of Section 6.1.

Definition 7.1. Let G be a plabic graph. An interior face F of G is a boundary leaf
face if, in the tail reduction of G, the face F has the form shown in Figure 24, i.e. F
is bounded by two edges e, e′ with endpoints u, v of distinct color, with e separating F
from a boundary face and e′ separating F from an interior face F ′.

Lemma 7.2. Let G be a simple plabic graph and F a boundary leaf face. Let u, v ∈ V (G)
be the vertices adjacent to F . Then the plabic graphs G′ := G−e and G′′ := G−{u, v}
are both simple.

Proof. The directed graph QG′ is obtained from QG by removing the vertex corre-
sponding to F . Similarly, QG′′ is obtained from QG by removing the vertices corre-
sponding to F and F ′. Both directed graphs are clearly quivers, and thus G′, G′′ are
simple. □

Definition 7.3. The class of leaf recurrent plabic graphs is defined as follows.
(a) Every leaf recurrent plabic graph is simple.
(b) If QG is isolated then G is leaf recurrent.
(c) If G is move equivalent to a leaf recurrent plabic graph then G is leaf recurrent.
(d) Suppose G has a boundary leaf face F as in Lemma 7.2. If the plabic graphs

G′ and G′′ are leaf recurrent then G is leaf recurrent.

Remark 7.4. It is immediate that if G is leaf recurrent then QG is locally acyclic.

Theorem 7.5 ([43, Remark 4.7]). Any reduced plabic graph G is leaf recurrent.

7.2. The skein relation.

Lemma 7.6. Suppose that G is a plabic graph with a boundary leaf face F . Let
L+ := Lplab

G , L0 := Lplab
G′ , and L− := Lplab

G′′ , where G, G′, G′′ are the three graphs in
Lemma 7.2. Then the HOMFLY polynomials of (L+, L0, L−) are related by (2.3).
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1

2

3

4

w = 1 −2 3 1 2 −1 2 −1 −3

Figure 26. The plabic fence G(w) for a double braid word w.

Proof. See Figure 25. □

Theorem 7.7. Suppose G is a leaf recurrent plabic graph. Then Conjectures 2.8
and 6.3 hold for G.

Proof. Suppose G has a boundary leaf face F such that the graphs G′, G′′ from
Lemma 7.2 are both leaf recurrent. Denote Q := QG, Q′ := QG′ , Q′′ := QG′′ , L+ :=
Lplab

G , L0 := Lplab
G′ , and L− := Lplab

G′′ , and note that G, G′, G′′ all have the same
number of connected components.

By Lemma 7.6, the HOMFLY polynomials of (L+, L0, L−) are related by (2.3). By
Remark 7.4, the quivers Q, Q′, Q′′ are locally acyclic. By Corollary 5.16, their point
counts are related by (5.11). Comparing (2.3) and (5.11), we see that (2.4) holds for
Q if it holds for both Q′ and Q′′.

Now suppose that QG is isolated with n vertices. If G is the disjoint union of G1
and G2 then by Proposition 6.6, we have P (Lplab

G ) = ((a − a−1)/z)P (Lplab
G1

)P (Lplab
G2

),
so P top(Lplab

G ; q) = (q − 1)−1P top(Lplab
G1

; q)P top(Lplab
G2

; q). Since R(QG; q) =
R(QG1 ; q)R(QG2 ; q), the result follows. We may now assume that G is connected. By
Proposition 6.7, Lplab

G must be the connected sum of n Hopf links. By Proposition 6.6,
(6.3) and (5.3) we have

P top(Lplab
G ; q) =

(
q2 − q + 1

q − 1

)n

= R(QG; q).

Thus, the result holds when QG is isolated.
Since the validity of (2.4) is unchanged under moves on G, it follows that (2.4)

holds for all leaf recurrent plabic graphs G. The equality (6.1) also follows from the
same argument. □

7.3. Plabic fences. Following [12, Section 12], we consider the following class of
plabic graphs. Let N ⩾ 2 and let I := [N − 1] = {1, 2, . . . , N − 1}. A double braid
word is a word w = (i1, i2, . . . , im) in the alphabet

±I := {−1, −2, . . . , −(N − 1)} ⊔ {1, 2, . . . , N − 1}.

We denote the set of double braid words of length m by (±I)m.
To a double braid word w ∈ (±I)m we associate a plabic graph G(w) with 2N

boundary vertices. First, draw N horizontal strands, with both endpoints of each
strand on the boundary of the disk. Then for each j = 1, 2, . . . , m, let h := |ij | and
consider the strands at height h and h + 1. If ij > 0, add a black at h, white at h + 1
bridge between these two strands, and if ij < 0, add a white at h, black at h + 1
bridge between these two strands. The bridges are added one by one proceeding from
left to right. See Figure 26 for an example.
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Proposition 7.8. For any w ∈ (±I)m, the plabic graph G(w) is simple.

Proof. This is clear from construction. □

Let us say that two braid words w, w′ are double braid move equivalent if they are
related by a sequence of the following moves:

(B1) (. . . , i, j, i, . . . ) ↔ (. . . , j, i, j, . . . ) if i, j ∈ ±I have the same sign and |i−j| =
1;

(B2) (. . . , i, j, . . . ) ↔ (. . . , j, i, . . . ) if i, j ∈ ±I have the same sign and |i−j| > 1;
(B3) (. . . , i, j, . . . ) ↔ (. . . , j, i, . . . ) if i, j ∈ ±I have different signs;
(B4) (−i, . . . ) ↔ (i, . . . ) for i ∈ ±I;
(B5) (. . . , −i) ↔ (. . . , i) for i ∈ ±I.
It is clear that if w, w′ ∈ (±I)m are double braid move equivalent then the plabic

graphs G(w), G(w′) are move equivalent.

Proposition 7.9. Plabic fences are leaf recurrent. That is, for any double braid word
w ∈ (±I)m, G(w) is a leaf recurrent plabic graph.

Proof. Proceed by induction on m. The base case m = 0 is clear.
Applying moves (B3)–(B4), we may assume that w has no negative indices. We

say that a word w = (i1, i2, . . . , im) ∈ Im is reduced if the associated permutation
π(w) := si1si2 · · · sim

has precisely m inversions. If w is not reduced then we may
apply moves (B1)–(B2) to transform w into a word of the form (w1, i, i, w2) for some
i ∈ I and some words w1 ∈ Im1 , w2 ∈ Im2 . Let − rev(w1) ∈ (−I)m1 denote the word
obtained from w1 by negating all indices and reversing their order. One can transform
w1 into − rev(w1) by applying moves (B3)–(B4). Thus, applying moves (B3)–(B4),
we transform

(w1, i, i, w2) → (− rev(w1), i, i, w2) → (i, i, w2, − rev(w1)) → (i, i, w2, w1).

The double bridge in G(i, i, w2, w1) corresponding to (i, i, . . . ) gives rise to a boundary
leaf face. Applying the induction hypothesis to the words w′ := (i, w2, w1) and w′′ :=
(w2, w1), we see that the plabic graphs G(w′) and G(w′′) are leaf recurrent. Thus,
by Definition 7.3, G(w) is also a leaf recurrent plabic graph.

Finally, suppose that the word w = (i1, i2, . . . , im) ∈ Im is reduced. Then G(w)
is a reduced plabic graph and therefore we are done by Theorem 7.5. Alternatively,
applying moves (B3)–(B4), we may transform w as follows:

(i1, i2, . . . , im) → (−i1, i2, . . . , im) → (i2, . . . , im, −i1) → (i2, . . . , im, i1).

We refer to this transformation as a conjugation move. Applying conjugation and
braid moves repeatedly, we either arrive at a non-reduced word and proceed by in-
duction, or we find that π(w) ∈ SN is a minimal length representative in its conjugacy
class; see [22, Theorem 1.1]. Recall that conjugacy classes in the symmetric group SN

correspond to cycle types, and π(w) has minimal length if and only if it is a product
of cycles of the form (a, a + 1, . . . , b) on disjoint intervals [a, b] ⊂ [N ]. The resulting
plabic fence G(w) has no interior faces and therefore is leaf recurrent. □

8. Invariants of quivers and links
In this section, we investigate the relation between some other invariants of the quiver
QG and invariants of the link Lplab

G .
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8.1. Corank. Recall that we set corank(Q) := corank(B(Q)) = n − rank(B(Q)) for
a quiver Q with n vertices.

Proposition 8.1. Let G be a plabic graph. Then

c(G) + corank(QG) = c(Lplab
G ).

Proof. We prove the result using the same induction as in the proof of Proposition 6.8.
The result can be checked directly for the graphs in Figure 20. We now suppose that
G has one of the following: (a) an interior leaf, or (b) a loop edge, or (c) two parallel
edges between vertices of opposite color.

In case (a), removing the leaf vertex preserves c(G), c(Lplab
G ), and corank(QG). In

case (b), removing the loop edge reduces c(Lplab
G ) by 1 and corank(QG) by 1. In case

(c), we use the same notation as in the proof of Proposition 6.8; see Figure 24. Let G′

be obtained from G by removing both edges e′, e′′. This operation preserves c(Lplab
G ). If

F ′, F ′′ are boundary faces, then c(G′) = c(G) + 1 and corank(QG) = corank(QG) − 1.
If one of the faces F ′, F ′′ is boundary and one is interior, then c(G′) = c(G) and
corank(QG′) = corank(QG), as shown in the proof of Proposition 6.8. If F ′, F ′′ are
both interior, we may assume they are distinct. Thus, c(G′) = c(G) and as shown
in the proof of Proposition 6.8, we have corank(QG′) = corank(QG). Thus, c(QG) +
corank(QG) = c(Lplab

G ) follows from the same equation for G′. □

Remark 8.2. For algebraic links, Proposition 8.1 should be compared to [12, Propo-
sition 4.7].

8.2. Catalan numbers. Recall that for a quiver Q, we defined the Q-Catalan num-
ber in Definition 5.9.

Definition 8.3. Let L be a link and let P̃ (L; q) := (q − 1)c(L)−1P top(L; q). If P̃ (L; q)
is a polynomial in q, define

χL := P̃ (L; 1).
We call χL the Catalan number of the link L, or simply the L-Catalan number.

See Table 2 for some examples.

Proposition 8.4. Suppose that Conjecture 2.8 holds for a simple plabic graph G.
Then χQG

= χLplab
G

.

Proof. Let Q̃ be a minimal extension of QG (cf. Corollary 6.9), and set m =
corank(QG). Then

R(Q̃; q) = (q − 1)mR(QG; q) = (q − 1)m+c(G)−1P top(Lplab
G ; q)

= (q − 1)c(Lplab
G

)−1P top(Lplab
G ; q)

by Conjecture 2.8 and Proposition 8.1. Thus, χQ = χLplab
G

. □

Problem 8.5.
• For which links is χL defined?
• For which links is χL nonnegative, or positive?

Example 8.6. Even when χL is defined, it may be negative. The smallest knot K for
which this happens is listed as 12n199 in [39]. It has HOMFLY polynomial

P (K; q) = − 1
a4 + z6 + 6 z4 + 11 z2 + 6

a6 − z4 + 4 z2 + 4
a8 ,

and therefore P̃ (K; q) = P top(K; q) = −q2, with χK = −1.
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8.3. Cluster cohomology versus link homology. Let Q be a locally acyclic
and torsion-free quiver. Let Q̃ be a minimal extension of Q and set m = corank(B(Q)).
Let T = T (Q̃) be the cluster automorphism torus of Q̃ defined in [34, Section 5]. The
torus T acts on A(Q̃) sending every cluster variable to a nonzero multiple of itself,
and the character lattice of T is naturally identified with Zn+m/B̃(Q̃)Zn.

We may associate to Q the cohomology and the compactly-supported T -equivariant
cohomology of the cluster variety X (Q̃). Both cohomologies are equipped with mixed
Hodge structures

H∗(X (Q̃)) =
⊕

k,p,q

Hk,(p,q)(X (Q̃);C) and H∗
T,c(X (Q̃)) =

⊕
k,p,q

H
k,(p,q)
T,c (X (Q̃);C).

Proposition 8.7. The cohomology H∗(Q) := H∗(X (Q̃)) is of mixed Tate type, that
is,

H∗(X (Q̃)) =
⊕
k,p

Hk,(p,p)(X (Q̃);C).

Moreover, it does not depend on the choice of Q̃.

Proof. The first statement is part of [34, Theorem 8.3]. Let Q̃ and Q̃′ be two really
full rank ice quivers with mutable part Q and the same number m of frozen variables.
In [34, Proposition 5.11], it is shown that we have an isomorphism of mixed Hodge
structures H∗(X (Q̃)) = H∗(X (Q̃′)). □

The results of [34] are only established in the case of ordinary cohomology. In the
following, we assume that the results there extend to equivariant cohomology. That
is, we have

H∗
T,c(Q) := H∗

T,c(X (Q̃)) =
⊕
k,p

H
k,(p,p)
T,c (X (Q̃);C)

and it does not depend on the choice of Q̃. We expect to return to equivariant coho-
mology of cluster varieties in future work.

Let L be an oriented link. Let HHH(L) denote the Khovanov–Rozansky triply-
graded homology [30, 31, 29] of L, and HHH0(L) the Hochschild degree 0 part of
HHH(L). Similarly, let HHHC denoted the variant of Khovanov–Rozansky homology
defined in [17, Section 3], and let HHH0

C denote the Hochschild degree 0 part. We
assume these homology groups have been normalized so they become link invariants;
cf. [17, Equations (3.11) and (3.15)].

Conjecture 8.8. Let G be a connected simple plabic graph. Then we have bigraded
isomorphisms

H∗(QG) ∼= HHH0
C(Lplab

G ) and H∗
T,c(QG) ∼= HHH0(Lplab

G ).

We refer the reader to [17] for the precise correspondence between the bigradings.
Here are some comments on Conjecture 8.8:

(1) The torus T has dimension m = corank(B(Q)), which by Proposition 8.1
equals to c(Lplab

G ) − 1, where c(Lplab
G ) is the number of connected components

of Lplab
G .

(2) The Khovanov–Rozansky homology HHH(Lplab
G ) has an action of a polynomial

ring with c(Lplab
G )−1 generators. This action should correspond to the action

of H∗
T (pt) on H∗

T,c(QG).
(3) The Euler characteristic of HHH(L) recovers the HOMFLY polynomial P (L);

see [17, (3.13)]. Thus, taking the Euler characteristic of Conjecture 8.8 pro-
duces Conjecture 2.8.
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(4) When m = corank(B(G)) = 0, the torus T is the trivial group. In this case
H∗

T,c(X (Q̃)) = H∗
c (X (Q̃)), so H∗(QG) and H∗

T,c(QG) are related by Poincare
duality. Thus, Conjecture 8.8 predicts that the ordinary cohomology H∗(QG)
is identified with the degree 0 part HHH0(Lplab

G ) of the Khovanov–Rozansky
homology.

(5) When G is a reduced plabic graph with N boundary vertices, Conjecture 8.8
is proven in [17]. Let Q̃G be the ice quiver associated to G, with frozen vertices
corresponding all but one of the boundary faces; see [19]. Then Q̃G is a really
full rank quiver, and X (Q̃G) is isomorphic to an open positroid variety Π◦

f

sitting inside a Grassmannian Gr(k, n).
In [17], we considered the action of the (N − 1)-dimensional torus T ′ ⊂

PGLN acting on Π◦
f . When G is connected, the positroid M associated to Π◦

f

is connected as a matroid and the action of T ′ on Π◦
f is faithful, for example

by [2, Lemma 3.1]. It is straightforward to verify that T ′ acts on Π◦
f by cluster

automorphisms. In this case, Q̃G has (N − 1) frozen vertices and T (Q̃G) is
also (N − 1)-dimensional. It follows that we have an inclusion T ′ ↪→ T (Q̃G)
where T (Q̃G)/T ′ is a finite group. This finite group can be shown to be trivial,
for example with the same argument as the proof of [2, Lemma 4.6]. If G is
not connected, the torus T ′ does not act faithfully on Π◦

f . Instead, we have a
decomposition T ′ ∼= T ′′ × T (Q̃G) where T ′′ acts trivially.

Finally, we remark that the number of frozen vertices in Q̃G may not equal
to corank(QG); nevertheless, the computation of H∗

T,c(X (Q̃G)) and H∗
T,c(QG)

are essentially equivalent.
(6) When G is a plabic fence, the cluster variety is, up to a torus factor, a dou-

ble Bott–Samelson variety in the sense of Shen–Weng [53]. By combining the
cluster structure results of [53] with results on the cohomology of braid vari-
eties [56] (see [9, Remark 4.12]), one can deduce a version of Conjecture 8.8
for plabic fences. The point count of these cluster varieties is also discussed
in [53, Corollary 6.7].

9. Conjectures and examples
9.1. Example: a simple plabic graph that is not leaf recurrent. Consider
the plabic graph G in Figure 8(a). The associated quiver QG is mutation equivalent
to an acyclic triangle quiver, with a single edge between each vertex of the triangle. In
particular, QG is locally acyclic. However, it is easy to check that G is not a leaf recur-
rent plabic graph. Nevertheless, Conjecture 2.8 still holds for G. By Proposition 5.8,
we have

R(QG; q) = (q − 1)3 + 3q(q − 1) = q3 − 1.

On the other hand, the plabic graph link Lplab
G is listed as L9n19 in [27]. Its HOMFLY

polynomial is given by

P (Lplab
G ; a, z) = z3 + 3z

a3 + z + z−1

a7 − z−1

a9 .

This agrees with Conjectures 2.8 and 6.3.

9.2. Example: a simple plabic graph quiver that is not locally acyclic.
Consider the plabic graph G and the associated quiver QG in Figure 27(b). This
quiver comes from a cluster algebra associated with a 4-punctured sphere; see [41,
Section 11.5].
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over

under

(a) G′ (b) G (c) Lplab
G

Figure 27. Two connected simple plabic graphs G, G′ which are
move equivalent. The associated quivers QG, QG′ are not locally
acyclic.

Muller defines a cluster variety to be locally acyclic if it can be covered by cluster
localizations that are acyclic.

Proposition 9.1 ([41, Section 11.5]). The quiver QG is not locally acyclic. The as-
sociated cluster algebra A(QG) is not locally acyclic.

Proof. If QG is locally acyclic then A(QG) would be locally acyclic, so it is enough
to establish the second statement. The proof in [41] that A(QG) is not locally acyclic
has the following gap: in [41, Theorem 8.3], it is assumed that it is enough to check
the cluster exchange relations to produce a point of a cluster variety. However, the
ideal of relations between cluster variables is in general larger than the ideal generated
by the exchange relations. G. Muller has supplied us with the following alternative
argument.

The cluster algebra A(QG) includes into the tagged skein algebra Sq=1 at q = 1
of the 4-punctured sphere. This is the algebra generated by immersed curves in the
surface with taggings at each puncture, modulo certain relations [42]. The two algebras
A(QG) and Sq=1 may or may not be equal. One can define a point p0 in Spec(Sq=1)
by giving every arc the value 0, and giving every loop the value 2(−1)i, where i is
the number of punctures in the interior of the loop. The point p0 defines a point in
Spec(A(QG)), and since every arc takes value 0 on p0, so does every cluster variable.
Since every cluster variable vanishes on p0, it cannot be contained in any proper
cluster localization (see [41, Definition 3.3]). Therefore, p0 cannot be contained in any
locally acyclic cover of Spec(A(QG)). □

We do not know the point count function R(Q; q) of this quiver, or even whether it
is a polynomial. On the other hand, the HOMFLY polynomial of the link Lplab

G (see
Figure 27(c)) is given by

P (Lplab
G ; a, z) = z6 + 6z4 + 11z2 + 12 + 6z−2 + z−4

a6

− 2z4 + 14z2 + 27 + 19z−2 + 4z−4

a8 +
3
(
z2 + 6 + 7z−2 + 2z−4)

a10

− 3 + 9z−2 + 4z−4

a12 + z−2 + z−4

a14 .

Thus, according to Conjecture 2.8, the prediction for the point count R(Q; q) is
q10 − 4q9 + 8q8 − 6q7 − 3q6 + 9q5 − 3q4 − 6q3 + 8q2 − 4q + 1

(q − 1)4 .
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Figure 28. Two plabic graphs G (left) and G′ (right) with the same
quiver QG = QG′ .

9.3. Example: conjectures fail when the plabic graph is not simple. The
plabic graph G in Figure 8(d) is not simple as the directed graph QG has a loop
arrow. If we remove this loop, we obtain the quiver Q := Q−

G = A1 ⊔ A1 consisting of
two isolated vertices. The quiver point count is

(9.1) R(Q; q) =
(

q2 − q + 1
q − 1

)2

.

On the other hand, the link Lplab
G is listed as L10n94 in [27]. Its HOMFLY polynomial

is
P (Lplab

G ; a, z) = z2 + 2
a2 − z2 + 2z−2 + 3

a6 + z−2

a4 + 1 + z−2

a8 .

Thus, Conjecture 2.8 predicts that the point count R(Q; q) should be equal to q2 + 1,
which does not match (9.1).

The plabic graph G in Figure 8(b) is not simple as the directed graph QG has
a directed 2-cycle. If we cancel out the arrows in this 2-cycle, we obtain a quiver
Q := Q−

G that is a directed 4-cycle, which is mutation equivalent to the quiver of
type D4. Using Proposition 5.8, we obtain that the quiver point count is R(D4; q) =
(q6 − 2q5 + 2q4 − q3 + 2q2 − 2q + 1)/(q − 1)2; see Table 1. On the other hand, the
HOMFLY polynomial of Lplab

G is

P (Lplab
G ; a, z) = z4 + 4z2 + 2

a4 − z2 + 3 + 2z−2

a10 + z−2

a8 + 1 + z−2

a12 .

Thus, Conjecture 2.8 predicts that the point count R(Q; q) should be given by q4 + 1,
which does not agree with R(D4; q).

9.4. Connected sum and disjoint union. Consider the graphs G and G′ in Fig-
ure 28. The quiver Q = QG = QG′ satisfies

R(Q; q) =
(

q2 − q + 1
q − 1

)2

.

However, the links Lplab
G and Lplab

G′ are not isotopic: Lplab
G is a disjoint union of two

Hopf links while Lplab
G′ is a connected sum of two Hopf links. The HOMFLY polyno-

mials are given by

P (Lplab
G ; a, z) =

(
a − a−1

z

) (
z + z−1

a
− z−1

a3

)2

;

P (Lplab
G′ ; a, z) =

(
z + z−1

a
− z−1

a3

)2

.

We see that the HOMFLY polynomials of these two links are different, however, their
top a-degree terms satisfy

(q − 1)P top(Lplab
G ; q) = P top(Lplab

G′ ; q) = R(Q; q),
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Figure 29. The switch operation for links; see Conjecture 9.6.

in agreement with Conjecture 2.8. We conjecture that when one restricts to the class
of connected plabic graphs, the full HOMFLY polynomial becomes an invariant of the
quiver.

Conjecture 9.2. Let G, G′ be two connected simple plabic graphs. Assume that the
quivers QG and QG′ are mutation equivalent. Then

P (Lplab
G ; a, z) = P (Lplab

G′ ; a, z).

Remark 9.3. A stronger cohomological version of Conjecture 9.2 is the statement
that HHHC(Lplab

G ) ∼= HHHC(Lplab
G′ ) and HHH(Lplab

G ) ∼= HHH(Lplab
G′ ); see Section 8.3.

Remark 9.4. Let G be a reduced plabic graph with strand permutation π = πG. The
top a-degree coefficient P top(Lplab

G ; q) of P (Lplab
G ; a, z) can be extracted from the open

positroid variety Π◦
π by computing the point count. However, observe that the first

two rows in Figure 9 correspond to isomorphic open positroid varieties. Thus, neither
the link Lplab

G nor the full HOMFLY polynomial P (Lplab
G ; a, z) are determined by Π◦

π.
Conjecture 9.2 implies that when G is connected, P (Lplab

G ; a, z) is fully determined by
Π◦

π. It would be interesting to find a geometric interpretation of the lower a-degree
coefficients in this case.

Remark 9.5. According to M. Shapiro’s conjecture [12, Conjecture 6.17], if the quivers
QG and QG′ are mutation equivalent then the graphs G and G′ are move-and-switch
equivalent. When two plabic graphs G, G′ differ by a switch (see [12, Figure 25]), the
corresponding links Lplab

G , Lplab
G′ need not be isotopic. Nevertheless, by [12, Proposi-

tion 6.16], Conjecture 9.2 implies P (Lplab
G ; a, z) = P (Lplab

G′ ; a, z). The switch operation
can be defined more generally for oriented links, and we expect that this operation
still preserves the HOMFLY polynomial.

Conjecture 9.6 (Switch preserves HOMFLY). Suppose that the planar diagram of a
link L intersects the vertical line x = 0 at four points (0, −b), (0, −a), (0, a), (0, b) for
0 < a < b. Suppose that L is directed to the right at (0, ±b) and to the left at (0, ±a).
The switch of L is a new link L′ obtained by taking the x > 0 part of L and reflecting
it along the x axis, flipping all crossings. Then

P (L; a, z) = P (L′; a, z).

See Figure 29 for an example of a switch.

9.5. Small knots. It is natural to ask which knots and links can potentially be
associated to a quiver. Assuming Conjecture 2.8, a necessary condition for a link L to
come from a locally acyclic quiver would be that up to a power of (q − 1), P top(L; q)
is a polynomial in q.

First, let K be the trefoil knot (Figure 9), with P (K; q) = z2+2
a2 − 1

a4 . Let K∗ be
the mirror image of K. Taking the mirror image results in replacing a with −a−1;
cf. (2.3). Thus, P (K∗; q) = −a4 +

(
z2 + 2

)
a2 and P top(K∗; q) = −q−2, which is not a
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K χK P top(K; q)
31 2 q2 + 1
51 3 q4 + q2 + 1
52 1 q2 − q + 1
71 4 q6 + q4 + q2 + 1
72 1 q2 − q + 1
73 1 q4 − q3 + q2 − q + 1
74 0 q2 − 2 q + 1
75 2 q4 − q3 + 2 q2 − q + 1
815 1 q4 − 2 q3 + 3 q2 − 2 q + 1
819 5 q6 + q4 + q3 + q2 + 1
821 3 2 q2 − q + 2
91 5 q8 + q6 + q4 + q2 + 1
92 1 q2 − q + 1
93 1 q6 − q5 + q4 − q3 + q2 − q + 1
94 1 q4 − q3 + q2 − q + 1
95 0 q2 − 2 q + 1
96 3 q6 − q5 + 2 q4 − q3 + 2 q2 − q + 1
97 2 q4 − q3 + 2 q2 − q + 1
99 2 q6 − q5 + 2 q4 − 2 q3 + 2 q2 − q + 1
910 0 q4 − 2 q3 + 2 q2 − 2 q + 1
913 0 q4 − 2 q3 + 2 q2 − 2 q + 1
916 4 q6 − q5 + 3 q4 − 2 q3 + 3 q2 − q + 1
918 1 q4 − 2 q3 + 3 q2 − 2 q + 1
923 1 q4 − 2 q3 + 3 q2 − 2 q + 1
935 0 q2 − 2 q + 1
938 0 q4 − 3 q3 + 4 q2 − 3 q + 1
945 2 2 q2 − 2 q + 2
946 2 2
949 0 q4 − 2 q3 + 2 q2 − 2 q + 1

Table 2. “Point counts” of small knots and the associated Catalan
numbers.

polynomial. Next, let E be the figure-eight knot. It coincides with its mirror image:
E ∼= E∗. We have P (E; q) = a2 − (z2 + 1) + 1

a2 and P top(E; q) = −q−1, which is
again not a polynomial. We therefore do not expect K∗ and E to be associated to
locally acyclic quivers. (By [17, Theorem 1.11], it follows that neither K∗ nor E is a
Richardson knot.)

In Table 2, we give a list of all knots K with up to 9 crossings such that P top(K; q)
is a polynomial in q. The knot numbering is taken from [48, 28], and the knots are
considered up to taking the mirror image. We see that for K = 821, the leading
coefficient of P top(K; q) is 2, which violates Conjecture 6.3; thus, we do not expect
821 to be associated to a quiver.

9.6. Affine plabic fences. While reduced plabic graphs were classified by Post-
nikov [46], the problem of classifying simple plabic graphs appears much harder. We
consider an affine version of plabic fences, which contains a large subclass of simple
plabic graphs that can be parametrized; see Proposition 9.7.
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G(π)

π = (4, 3, 2, 1)
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G(w, π)

w = −2 1 3 2
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G(w, π)

w = 4 −2 1 3 2

Figure 30. A reduced plabic graph G(π) and two affine plabic
fences.

Fix N ⩾ 2. Let Ĩ := I ⊔ {N} = {1, 2, . . . , N − 1, N}. A double affine braid word is
a word w = (i1, i2, . . . , im) in the alphabet

±Ĩ := {−1, −2, . . . , −N} ⊔ {1, 2, . . . , N}.

Recall from [46] that for any (k, N)-bounded affine permutation f ∈ Bound(k, N),
we have a reduced plabic graph G(f), satisfying the conditions of Section 2.2. For
each fixed point i ∈ [N ] of π := f̄ ∈ SN , the boundary vertex i of G(f) is adjacent
to an interior leaf, called a lollipop. This lollipop is white if f(i) = i + N and black
if f(i) = i. In particular, if π has no fixed points then G(f) has no interior leaves.
Recall from Section 3.1 that in this case, f can be recovered from π, and we denote
G(π) := G(f).

Given a double affine braid word w = (i1, i2, . . . , im), and f ∈ Bound(k, N), we
define the affine plabic fence G(w, f) as follows. Begin with the plabic graph G(f).
For each j = m, m − 1, . . . , 1, let h := |ij | and consider the two boundary vertices h
and h + 1, considered modulo N . If ij > 0, add a black at h, white at h + 1 bridge
between these two boundary vertices, and if ij < 0, add a white at h, black at h + 1
bridge between these two boundary vertices. When π := f̄ has no fixed points, we
denote G(w, π) := G(w, f). See Figure 30 for an example.

Proposition 9.7. For any w ∈ (±Ĩ)m and any permutation π ∈ SN without fixed
points, the plabic graph G(w, π) is simple.

Proof. It is clear from the construction that every time we add a bridge to an affine
plabic fence, the faces F and F ′ on the two sides of the bridge are distinct. Thus,
the quiver of G(w, π) cannot have 1-cycles. Let F, F ′ be two adjacent (interior or
boundary) faces of G(w, π). If F and F ′ are both adjacent to the bridge e, then e
must be the only edge separating F and F ′ since this is the case if e is the bridge
added to G(f).

In G(f), any two faces have at most one edge in common. So if F and F ′ do not
have a bridge edge in common in G(w, π), then their common boundary must belong
to a single edge e′ of G(f). The edge e′ is divided into a number of segments by the
vertices of G(w, π) that lie on e′. By considering what happens when a single bridge
is added, we see that two distinct such segments cannot belong to the boundary of
the same two faces of G(w, π). It follows that the quiver of G(w, π) has no directed
2-cycles. □

Not all simple affine plabic fences are leaf recurrent: for instance, the non-leaf recur-
rent example in Section 9.1 is move equivalent to the example in Figure 30(middle). It
would be interesting to find a criterion for an affine plabic fence to be leaf recurrent.

We say that two indices i, j ∈ Ĩ are adjacent if either |i − j| = 1 or {i, j} = {1, N}.
Similarly, i, j ∈ −Ĩ are adjacent if |i| and |j| are adjacent. Consider the following
moves on double affine braid words:
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(B̃1) (. . . , i, j, i, . . . ) ↔ (. . . , j, i, j, . . . ) if i, j ∈ ±Ĩ have the same sign and are
adjacent;

(B̃2) (. . . , i, j, . . . ) ↔ (. . . , j, i, . . . ) if i, j ∈ ±Ĩ have the same sign and are non-
adjacent;

(B̃3) (. . . , i, j, . . . ) ↔ (. . . , j, i, . . . ) if i, j ∈ ±Ĩ have different signs;
(B̃4) (−i, . . . ) ↔ (i, . . . ) for i ∈ ±Ĩ;

If w, w′ are equivalent using (B̃1)–(B̃4), then G(w, f) and G(w′, f) are move equiv-
alent. If w, w′ are equivalent using (B̃1)–(B̃3), then G(w, f) and G(w′, f) are move
equivalent without using tail addition/removal, in which case we say that they are
restricted move equivalent. In particular, the number of boundary vertices is fixed
under restricted move equivalence. We now consider the question of the classification
of affine plabic fences, up to restricted move equivalence. This is analogous to the
classification of equivalence classes of reduced plabic graphs by Postnikov [46].

Remark 9.8. For the rest of this subsection, we consider arbitrary bounded affine
permutations f ∈ Bound(k, N), with no restrictions on fixed points. Consequently,
we allow our plabic graphs to have interior vertices of degree 1, 2, or 3. Vertices of
degree 2 can be freely placed on the edges and removed from them. If an interior leaf
is connected to an interior vertex of the same color (as in the right two pictures in
Figure 21), the edge connecting them may be contracted. Conversely, we can place a
degree two vertex on any edge and attach a leaf of the same color to it. These extra
moves are included in the notion of restricted move equivalence.

We say that f ∈ Bound(k, N) has a left descent at i ∈ Z if i+1 ⩽ f(i) < f(i+1) ⩽
i+n. In this case, we let sif : Z → Z be the N -periodic bijection sending i 7→ f(i+1),
i+1 7→ f(i), and j 7→ f(j) for j ̸≡ i, i+1 modulo N . Then we have sif ∈ Bound(k, N),
and the plabic graph G(f) is obtained from G(sif) by adding a bridge that is white
at i and black at i + 1. Similarly, f ∈ Bound(k, N) has a right descent at i ∈ Z if
i − n ⩽ f−1(i) ⩽ f−1(i + 1) ⩽ i. In this case, we define fsi : Z → Z to be the
N -periodic bijection sending f−1(i) 7→ i + 1, f−1(i + 1) 7→ i, and f−1(j) 7→ j for
j ̸≡ i, i + 1 modulo N . We have fsi ∈ Bound(k, N) and the plabic graph G(f) is
obtained from G(fsi) by adding a bridge that is black at i and white at i+1. See [33,
Section 7.4]. Note that the graphs G(sif) and G(fsi) may contain lollipops even when
G(f) does not.

We introduce two new moves for affine plabic fences:
(B̃5) G(w, f) ↔ G((w, −i), sif) if f has a left descent at i;
(B̃6) G(w, f) ↔ G((w, i), fsi) if f has a right descent at i.

Note that these moves respect restricted move equivalence as they can be obtained
from the extra plabic graph moves listed in Remark 9.8.

Conjecture 9.9. Two affine plabic fences G(w, f) and G(w′, f ′) are restricted move
equivalent if and only if they can be related by moves (B̃1)–(B̃3) and (B̃5)–(B̃6).

Remark 9.10. A strengthening of Conjecture 9.9 can be given when f = fk,N is the
“top cell” bounded affine permutation (Section 3.1). Consider the affine braid group
with generators β±1

i for i ∈ I, lifting the Coxeter generators si, together with the shift
braids that lift the affine permutations i 7→ i + k. For a word w ∈ (±I)m, consider an
affine braid w1 fk,N w2, where w1 (resp. w2) is the positive braid lift of the subword
of w consisting of the letters from Ĩ (resp. positive braid lift of the reverse of the
subword of w consisting of letters from −Ĩ). We conjecture that for w, w′ ∈ (±I)m,
the affine plabic fences G(w, fk,N ) and G(w′, fk,N ) are restricted move equivalent
if and only if the affine braids w1 fk,N w2 and w′

1 fk,N w′
2 are braid equivalent, or

equivalently, the affine braids w1(w2 +k) and w′
1(w′

2 +k) are braid equivalent, where
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(w2 + k) is the positive braid word obtained by adding k (modulo N) to each letter
in w2.

9.7. Trees and acyclic quivers.

Definition 9.11. A link L is called acyclic (resp. tree-like) if there is a simple plabic
graph G such that L = Lplab

G , and QG is mutation acyclic (resp. mutation equivalent
to a tree).

Problem 9.12.
• Which acyclic quivers Q can occur as QG for a simple plabic graph G?
• Can we characterize acyclic, or tree-like links?

It is clear that any tree T can occur as QG for some simple plabic graph G. In fact,
Lam and Speyer (unpublished) have shown that one can choose such a plabic graph
to be reduced.

We expect that acyclic links have particularly simple link invariants, including link
homology groups. Proposition 5.8 gives a closed formula for the top a-degree part of
the HOMFLY polynomial of an acyclic link. It would be interesting to obtain a closed
formula for the entire HOMFLY polynomial.

In [35, Theorem 1.3], it is shown that the mixed Hodge numbers of an acyclic really
full rank cluster variety satisfy a strong vanishing condition. It would be interesting
to interpret this vanishing via the link homology groups of acyclic links.
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