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Triangulations of root polytopes

Paola Cellini

Abstract Let Φ be an irreducible crystallographic root system and P its root polytope, i.e.,
the convex hull of Φ. We provide a uniform construction, for all root types, of a triangulation of
the facets of P. We also prove that, on each orbit of facets under the action of the Weyl group,
the triangulation is unimodular with respect to a root sublattice that depends on the orbit.

1. Introduction
Let Φ be an irreducible crystallographic root system in a Euclidean space E, Φ+ a
positive system of Φ, and W the Weyl group of Φ. Then, let P be the root polytope
associated with Φ, i.e. the convex hull of all roots in Φ.

In [6], Marietti and the author have studied a natural set of representatives of
the faces of P modulo the action of W , the standard parabolic faces of P. The set
of all roots contained in a standard parabolic face is an abelian ideal of Φ+ (see
Subsection 2.3 for a definition). We call face ideals or facet ideals the abelian ideals
of Φ+ corresponding to the standard parabolic faces or facets of P.

In [4], for Φ of type An and Cn, the same authors have constructed a triangulation
of the standard parabolic facets whose simplexes have a natural interpretation in
terms of the corresponding facet ideals. The construction is formally equal for both
root types, though the proofs are distinct and based on the special combinatorics of
these two root systems and their maximal abelian ideals. Through the action of W, a
triangulation of all the standard parabolic facets can be extended to a triangulation
of the boundary of P. Such an extension corresponds to an appropriate choice of
representatives of the left cosets ofW modulo the stabilizers of the standard parabolic
facets. The triangulations of the boundary of P are also studied in [1] for all classical
root types, using the coordinate description of Φ. In [12], the triangulations of the
positive root polytope P+, i.e the convex hull of the positive roots and the origin, are
studied for Φ of type An. The triangulations of P+ are also studied in [18, 19] for An

and Cn.
In this paper, we give a uniform construction of a triangulation of the standard par-

abolic facets, for all finite irreducible crystallographic root systems. The construction
coincides with the one of [4] for the types An and Cn. We also obtain unimodularity
results similar to those obtained for An and Cn.
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We need some preliminaries for describing the results in more detail. If β1, β2,
γ1, γ2 ∈ Φ+ are such that β1 + β2 = γ1 + γ2, we say that {β1, β2} and {γ1, γ2} are
crossing pairs. We first prove that if {β1, β2}, {γ1, γ2} are crossing pairs contained in
a (common) abelian ideal, then, for all i, j in {1, 2}, the differences βi − γj are roots,
in particular βi and γj are comparable. This implies that the set {β1, β2, γ1, γ2} has
a minimum and a maximum, more precisely, one of the two crossing pairs consists of
these minimum and maximum, i.e., either β1 < γi < β2 for both i = 1 and 2, or the
analogous relation with β and γ interchanged holds. We define the relations . and ∼
on Φ+ as follows. For all β1, β2 in Φ+, we write β1 . β2 if there exist γ1, γ2 such that
β1 + β2 = γ1 + γ2 and β1 < γi < β2 for both i = 1 and 2. Moreover, we write β1 ∼ β2
if β1 . β2 or β2 . β1. Finally, we say that a subset R of Φ+ is reduced if β1 6∼ β2 for
all β1, β2 ∈ R.

The first main result in this paper is that the maximal reduced subsets in a facet
ideal provide a triangulation of the corresponding standard parabolic facet. For each
standard parabolic facet F of P, let IF be the corresponding facet ideal:

IF = F ∩ Φ,

and
TF = {Conv(R) | R ⊆ IF , R maximal reduced },

where Conv(R) is the convex hull of R. Then the following result holds.

Theorem 1.1. For each standard parabolic facet F of P, TF is a triangulation of F .

Clearly, the set of vertexes of the above triangulation is the set of all roots contained
in F .

Theorem 1.1 implies, in particular, that the maximal reduced subsets in IF are
linear bases of E. Let Π and θ be the simple system and the highest root of Φ+. Then,
{−θ}∪Π is the set of vertexes of the affine Dynkin diagram of Φ. For each α ∈ Π, let
Φα and Φ̂α be the root subsystems of Φ generated by Πr {α} and {−θ}∪ (Πr {α}),
respectively, and Φ+

α and Φ̂+
α their positive systems contained in Φ+. Clearly, Φ̂α

has the same rank as Φ. We call the Φ̂α, for all α ∈ Π, the standard equal rank
subsystems of Φ. The standard parabolic facets of P naturally correspond to the
irreducible standard equal rank root subsystems of Φ [6]. Precisely, for each α ∈ Π
such that Φ̂α is irreducible, let

Iα = Φ̂+
α r Φα.

Then Iα is a facet ideal of Φ+, and each facet ideal of Φ+ is obtained in this way (see
Subsection 2.5). We prove the following result.

Theorem 1.2. Let α ∈ Π be such that Φ̂α is irreducible. Then, each maximal reduced
subset contained in the facet ideal Iα is a Z-basis of the root lattice of Φ̂α. In particular,
all the simplexes of the triangulation TF have the same volume.

Part of the proofs require a case by case analysis. The cases to be considered can be
restricted to a special, proper subset of facet ideals. Indeed, the results of [6] imply that
the facet ideal Iα (α ∈ Π, Φ̂α irreducible), is an abelian nilradical (see Subsection 2.4)
in the root subsystem Φ̂+

α . Hence, we may reduce to the case of abelian nilradicals.
The case by case analysis is contained in the proof of Proposition 5.11. This proof

also provides an algorithm for the explicit computation of the triangulations for each
root type, which will be done in a future paper.
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2. Preliminaries
In this section we fix our main notation and recall some preliminary results. For the
basic preliminary notions, we refer to [2] and [14] for root systems, and to [3] and [13]
for Lie algebras.

2.1. Basic notation. General. We sometimes use the symbol := for emphasizing
that equality holds by definition or that we are defining the left term of equality. We
denote by E a Euclidean space, with scalar product (· , ·) and norm | · |. We identify E
with its dual space, through (· , ·). The null vector of E is denoted by 0. For any S ⊆ E,
Span(S) is the vector subspace generated by S over R (the field of real numbers), and
rk(S) := dim Span(S).

Root systems. We denote by Φ a reduced irreducible crystallographic root system
in E and by Φ+ a fixed positive system of Φ. The simple system of Φ corresponding
to Φ+ is denoted by Π, while Ω∨ is the set of fundamental co-weights of Φ, i.e., the
dual basis of Π in E. For each α ∈ Π, ω̌α is the fundamental co-weight defined by the
conditions (α, ω̌α) = 1 and (α′, ω̌α) = 0 for all α′ ∈ Πr{α}. For all α ∈ Π and β ∈ Φ,
we set cα(β) = (β, ω̌α), so that

β =
∑
α∈Π

cα(β)α.

The support of β is the set of simple roots with non-zero coefficient in the expression
of β:

Supp(β) = {α ∈ Π | cα(β) 6= 0}.
The highest root in Φ+ is denoted by θ and its coefficients with respect to Π by mα,
thus

θ =
∑
α∈Π

mαα.

We call mα the multiplicity of α in Φ+.
For all β ∈ Φ, β∨ is the corresponding coroot, i.e., β∨ = 2β

(β,β) .
For each root subsystem Ψ of Φ we set Ψ+ = Ψ ∩ Φ+. It is well known that Ψ+

is a positive system for Ψ: we call it the standard positive system of Ψ. Moreover,
we denote by L(Ψ) and L+(Ψ) the root lattice and positive root lattice of Ψ, i.e.
the Z-span of Ψ and the N-span of Ψ+, respectively, where Z and N are the sets of
integers and non-negative integers.

For any S ⊆ Φ, we denote by Φ(S) the root subsystem of Φ generated by S, i.e.,
the minimal root system containing S, and we write Φ+(S) for Φ(S)+.

A root subsystem Ψ of Φ is called parabolic if Ψ = Φ ∩ Span(Ψ). For any linear
subspace H of E, the intersection Φ ∩H is a parabolic root subsystem. Hence, Ψ is
a parabolic subsystem of Φ if and only if there exists a linear subspace H of E such
that Ψ = Φ ∩H.

Posets. As usual,6 denotes both the order of R and the partial order of E associated
to Φ+: for all x, y ∈ E, x 6 y if and only if y− x ∈ L+(Φ). We call this last order the
standard partial order. We will need only the restriction of the standard partial order
to Φ+. For any S ⊆ Φ+, we denote by MinS and MaxS, with capital M, the sets of
minimal and maximal elements of S, and by minS and maxS its possible minimum
and maximum, with respect to 6. The analogous objects with respect to any other
order relation 4, will be distinguished by adding the subscript 4. The elements in
MinS ∪MaxS are called the extremal elements of S. We say that S is saturated if
it is saturated with respect to the standard partial order, i.e., for all β1, β2 ∈ S such
that β1 6 β2, all the interval [β1, β2] := {γ ∈ Φ | β1 6 γ 6 β2} is contained in S. Any
subset S′ of S is called an initial section of S if for all β ∈ S′ and γ ∈ S, if γ 6 β,
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then γ ∈ S′. The final sections are defined similarly. Then, S′ is an initial section of
S if and only if S r S′ is a final section of S.

For any order relation 4 on Φ+ and for all β ∈ Φ+, we denote (β4) the 4-upper
cone of β, i.e.,

(β4) = {γ ∈ Φ+ | β 4 γ}.
Clearly, this is a dual order ideal, or filter, in the poset (Φ+,4).

2.2. Basic lemmas on roots.

2.2.1. General facts. We first recall some basic facts that we will use also without
explicit mention. Since we are assuming Φ irreducible and reduced, the lengths of
roots in Φ are at most 2 [2, Ch. VI, § 1.4]. We denote by Φ` the set of roots of maximal
length (long roots), and set Φs = ΦrΦ` (the set of short roots). By definition, if only
one length occurs, all roots are long. Results (1) to (4) below can be found in [2,
Ch. VI, § 1, n. 3, 4, 5].

(1) For all β, γ ∈ Φ, if (β, γ) < 0 and β 6= −γ, then β + γ ∈ Φ. Equivalently, if
(β, γ) > 0 and β 6= γ, then β − γ ∈ Φ.

(2) For all β, γ ∈ Φ, if β 6= γ and either γ ∈ Φ`, or |β| = |γ|, then
(β, γ∨) ∈ {0,±1}. If |β| > |γ|, then (β,β)

(γ,γ) ∈ {2, 3} and (β, γ∨) = (β,β)
(γ,γ) (β∨, γ) ∈

{0,±2,±3}.
(3) For all β, γ ∈ Φ, the set I = {k ∈ Z | β + kγ ∈ Φ} is a an interval of Z.
(4) For all α, α′ ∈ Π, (α, α′) 6 0.
We note that in (2), since the root lengths are at most two, we have either (β,β)

(γ,γ) = 2
and (β, γ∨) ∈ {0,±2} for all β, γ ∈ Φ such that |β| > |γ|, or (β,β)

(γ,γ) = 3 and (β, γ∨) ∈
{0,±3} for all β, γ ∈ Φ such that |β| > |γ|.

2.2.2. Summable roots. Next proposition contains a less known result. The proof re-
quires some basic notions and results from Lie theory. Let g be a complex simple Lie
algebra with root system Φ with respect to the Cartan subalgebra h (see e.g. [13,
§18]). Thus, g =

(⊕
α∈Φ gα

)
⊕ h, where gα is the root space of α, for all α ∈ Φ, and

(SpanC(Φ)) = h∗, the dual space of h.
We say that two roots are summable if their sum is a root. It is well known that if

α and β are summable roots, then [gα, gβ ] = gα+β , while if α and β are not summable
and α 6= −β, then [gα, gβ ] = {0}.

Proposition 2.1. Let β1, β2, β3 ∈ Φ be such that β1 + β2 + β3 ∈ Φ and βi 6= −βj for
all i, j ∈ {1, 2, 3}. Then at least two of the three sums βi +βj, with i, j ∈ {1, 2, 3} and
i 6= j, belong to Φ.

Proof. For all i ∈ {1, 2, 3}, we have β1 + β2 + β3 6= βi, otherwise, for {j, k} =
{1, 2, 3}r{i}, we have βj +βk = 0, contrary to the assumption. Moreover, for at least
one i ∈ {1, 2, 3} we have (β1 + β2 + β3, βi) > 0, since (β1 + β2 + β3, β1 + β2 + β3) > 0,
hence β1 +β2 +β3−βi ∈ Φ. Assume for example β1 +β2 ∈ Φ. Then, [[gβ1 , gβ2 ], gβ3 ] =
[gβ1+β2 , gβ3 ] = gβ1+β2+β3 6= {0}, hence, by the Jacobi identity, at least one of
[[gβ1 , gβ3 ], gβ2 ] and [gβ1 , [gβ2 , gβ3 ]] is non zero. It follows that at least one of β1 + β3
and β2 + β3 is a root. �

As we have recalled, if two roots have strictly negative scalar product, then they are
summable. The reverse implication holds if Φ is simply laced, but is false in general,
as we see in the following lemma, where the Cartan integers of pairs of summable
roots are classified.
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Lemma 2.2. Assume β, γ, β + γ ∈ Φ.
(1) If |β| = |γ| = |β + γ|, then (β, γ∨) = −1.
(2) If |β| = |γ| 6= |β + γ|, then either |β+γ|2

|β|2 = 2 and (β, γ∨) = 0, or |β+γ|2
|β|2 = 3

and (β, γ∨) = 1. In any case, |β| = |γ| < |β + γ|.
(3) If |β| < |γ|, then |β+γ| = |β|, (β∨, γ) = − |γ|

2

|β|2 ∈ {−2,−3}, and (β, γ∨) = −1.

Proof. (1) and (2). Since |β| = |γ|, we have |β+γ|2
|γ|2 = (β,β)+2(β,γ)+(γ,γ)

(γ,γ) = 2 + 2(β,γ)
(γ,γ) =

2 + (β, γ∨). Moreover, in case (1) we have |β+γ|2
|γ|2 = 1, while in case (2) we have

|β+γ|2
|γ|2 = |β+γ|2

|β|2 ∈ {2, 3}. In all cases, the claim follows directly.
(3) If |β+γ| = |γ|, we get 1 = |β+γ|2

|γ|2 = (β,β)
(γ,γ) +(β, γ∨)+1, hence (β,β)

(γ,γ) = −(β, γ∨) ∈
Z, contrary to the assumption. Hence, |β+γ| = |β|, and 1 = |β+γ|2

|β|2 = 1+(β∨, γ)+ |γ|
2

|β|2 .
Hence, (β∨, γ) = − |γ|

2

|β|2 ∈ {−2,−3}. Finally, since (β, γ∨) = |β|2
|γ|2 (β∨, γ), we have

(β, γ∨) = −1 �

The assumptions of parts (1), (2), and (3) of Lemma 2.2 are mutually exclusive
and cover all possibilities for the relations among |β|, |γ|, and |β + γ|. In particular,
if β and γ have nonnegative scalar product, then, by parts (1) and (3), we obtain
that the assumptions of part (2) holds. Similarly, if γ is long, then the assumptions
of parts (1) or (3) hold. Hence, we obtain the following proposition.

Proposition 2.3. For all β, γ ∈ Φ, the following results holds.
(1) If β and γ are summable, then we have (β, γ) > 0 if and only if |β| = |γ| <
|β + γ|.

(2) If γ ∈ Φ`, then β and γ are summable if and only if (β, γ∨) = −1.

2.3. Ad-nilpotent and abelian ideals. Let g be as in Subsection 2.2, b be the
standard Borel subalgebra of g associated to Φ+, and n its nilpotent radical, i.e.,
b =

(⊕
α∈Φ+ gα

)
⊕ h and n =

⊕
α∈Φ+ gα.

An ad-nilpotent ideal of b is a (nilpotent) ideal of b contained in n. Being h-stable,
such an ideal is a sum of root spaces. For any I ⊆ Φ+, the sum of root spaces

⊕
α∈I gα

is an ad-nilpotent ideal of b if and only if, for all α, β ∈ Φ+, if α ∈ I and α 6 β,
then β ∈ I. A subset I of Φ+ with this property is called an ad-nilpotent ideal of
Φ+. Thus, an ad-nilpotent ideal of Φ+ is a filter in (Φ+,6), i.e. a dual order ideal. It
is easy to see that an abelian ideal of b must be ad-nilpotent. For any I ⊆ Φ+, the
subspace

⊕
α∈I gα is an abelian ideal of b if and only if I is an ad-nilpotent ideal of

Φ+ with the further property that, for all α, β ∈ I, α + β 6∈ Φ. Such an I is called
an abelian ideal of Φ+. The abelian ideals of Φ+ are studied in several papers, both
for their implications in representation theory and for their algebraic-combinatorial
interest. The main representation theoretic motivations can be found in [16, 17] (see
also [7]); the basic algebraic-combinatorial results can be found in [8, 9, 20, 21].

2.4. Abelian nilradicals. An ad-nilpotent ideal of Φ+ is called principal if it has
a minimum, i.e. if the corresponding b-ideal is principal. For all β ∈ Φ+, the upper
6-cone of β, (β6) = {γ ∈ Φ+ | β 6 γ}, is also called the principal ad-nilpotent ideal
generated by β. It is clear that if β ∈ Φ+ is such that cα(β) > mα

2 for some α ∈ Π,
then (β6) is abelian. In particular, this happens if β is a simple root of multiplicity
1 in Φ+. Indeed, the following well known result holds. For completeness, we include
a proof.
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Proposition 2.4. Let S ⊆ Π and I = Φ+ r Φ(S). Then I is an ad-nilpotent ideal.
Moreover, I is abelian if and only if either S = Π, or S = Π r {α} for a simple root
α such that mα = 1. In this case, I is equal to (α6) and is a maximal abelian ideal.

Proof. It is immediate that I is an ad-nilpotent ideal. If S = Π, then I is the empty
root ideal, hence it is abelian. Let S = Π r {α} with α ∈ Π and mα = 1. Then, by
definition we have I = (α6), which is abelian since mα = 1. We prove that (α6) is
maximal abelian. If S = ∅, i.e. Π = {α}, then I = Φ+ and the claim is obvious. Let
S 6= ∅ and let J be an ad-nilpotent ideal that strictly contains (α6). We have to
prove that J is not abelian. By definition, there exists β ∈ J such that α 6∈ Supp(β).
Let Ψ1, . . . ,Ψk be the irreducible components of Φ(Π r {α}). Assume, for example,
β ∈ Ψ1. Then, if θ1 is the highest root of Ψ1, we obtain θ1 ∈ J . Let S1 = Ψ1∩(Πr{α}).
It is easily seen that, since Φ is irreducible, α cannot be orthogonal to the whole S1.
Hence, since (α, α′) 6 0 for all α′ ∈ S1, there exists α′ ∈ S1 such that (α′, α) < 0.
But Supp(θ1) = S1, hence (θ1, α) 6 (α′, α) < 0. It follows that θ1 +α ∈ Φ, and hence
J is not abelian.

It remains to prove the “only if” part. For all β ∈ Φ, let htΠrS(β) =
∑

α∈ΠrS
cα(β).

We have S = Π if and only if max {htΠrS(β) | β ∈ Φ} = 0. Similarly, we have
S = Π r {α} and mα = 1 if and only if max {htΠrS(β) | β ∈ Φ} = 1. In order to
conclude the proof, we assume max{htΠrS(β) | β ∈ Φ} > 1 and prove that in this
case I is not abelian. By definition, we have β ∈ I if and only if htΠrS(β) > 0. Let
β∗ ∈ Min{β ∈ Φ | htΠrS(β) > 1}. Since (β∗, β∗) > 0, there exists α ∈ Supp(β∗)
such that (β∗, α) > 0, hence β∗ − α ∈ Φ, by 2.2.1(1). Such an α cannot belong to
S, otherwise htΠrS(β∗ − α) = htΠrS(β∗), contrary to minimality of β∗. It follows
α ∈ ΠrS, hence α ∈ I. Now, β∗−α ∈ I, too, since htΠrS(β∗−α) = ht(β∗)− 1 > 0,
hence we obtain that I is not abelian since α and β∗ − α are summable. �

For each S ⊆ Π, the ideal
⊕

α∈Φ+rΦ(S)
gα is the nilradical (the largest nilpotent ideal)

of the standard parabolic subalgebra associated to S (see [3, Ch. VIII, § 3.4]). Hence,
we call the maximal abelian ideals (α6) with mα = 1, together with the empty root
ideal, the abelian nilradicals.

2.5. The faces of the root polytope. We recall some ideas and results from [6].
For all α ∈ Π and all nonempty S ⊆ Π, let

Hα,mα = {x ∈ E | (x, ω̌α) = mα}, Fα = Hα,mα ∩ P, FS =
⋂
α∈S

Fα.

By definition of mα, we have (β, ω̌α) 6 mα for all β ∈ Φ and, therefore, (x, ω̌α) 6
mα for all x ∈ P. Hence, the affine hyperplanes Hα,mα are supporting hyperplanes of
P, and the Fα and FS are faces of P. We call them the standard parabolic faces. In
fact, the set of all standard parabolic faces is a set of representatives of the orbits of
the action of the Weyl group W on the set of proper faces of P [6] .

For each standard parabolic face F , let
IF = F ∩ Φ.

By definition, for each nonempty S ⊆ Π, IFS is the set of all roots β such that
cα(β) = mα, for all α ∈ S. It is easy to see that P is the convex hull of the long roots
(see e.g. [5]), hence the long roots in IFS are the vertexes of the face FS .

We recall that the extended Dynkin graph of Φ is obtained from the usual Dynkin
graph by extending the vertex set Π with −θ and completing the edge set according
to the scalar products and the relative lengths between −θ and the roots in Π, with
the same rules used of the usual Dynkin graph. For our purposes, it is convenient to
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consider the extended Dynkin graph on the opposite vertex set, i.e., {θ} ∪ −Π. This
does not change the edges. We call the resulting graph the opposite extended Dynkin
graph.

For each Σ ⊆ Π, we set
Σe = {θ} ∪ −Σ.

Let Φ(Σe) be the root subsystem of Φ generated by Σe. For studying the face FS , we
need considering Φ(Σe) with Σ = Π r S. In this case, Σ $ Π, since S is assumed to
be nonempty. (We point out that, contrary to what is done in [6], we are not making
use of the affine root system associated to Φ and all root subsystems we are defining
are inside Φ.)

It is well known that, if Σ $ Π, then Σe is a simple system for Φ(Σe) [11,
Ch. II, § 5].

In general, Φ(Σe) is not irreducible. Let Σe
θ be the subset of Σe defined by the

condition that Φ(Σe
θ) is the irreducible component of Φ(Σe) that contains θ. Finally,

let Σθ = Σe
θ r {θ}. We denote by Γ(Σe) and Γ(Σe

θ) the subgraphs induced by Σe and
Σe
θ in the opposite Dynkin graph oh Φ. Then for Σ $ Π, we have that Γ(Σe) is the

Dynkin graph of Φ(Σe), and Γ(Σe
θ) is the connected component of θ in Γ(Σe).

The following proposition contains the preliminary results on the standard para-
bolic faces that we need. We note that the proposition also precises that the face FS
does not determine S. In fact, by parts (1) or (2), for all S, S′ ⊆ Π, we have FS = FS′
if and only if Φ+((Π r S)e

θ) = Φ+((Π r S′)e
θ), i.e., FS is uniquely determined by the

irreducible component Φ+((ΠrS)e
θ). In particular, the standard parabolic faces, and

therefore the W -orbits of faces, are in bijection with the proper connected subgraphs
of the opposite extended Dynkin graph that contains the vertex θ [22].

Proposition 2.5 ([6]). Let S ⊆ Π, S 6= ∅.
(1) IFS = Φ+((Π r S)e) r Φ(Π r S) = Φ+((Π r S)e

θ) r Φ((Π r S)θ).
(2) Let µS be the highest root of Φ((Π r S)e

θ), with respect to the simple system
(Π r S)e

θ. Then, IFS is the principal abelian ideal of Φ+ generated by µS.
(3) dim(FS) = |(Π r S)θ|.

By definition of IFS , part (2) says that µS is the unique minimal root such that
cα(µS) = mα for all α ∈ S. Both (1) and (2) implies that we have cα(µS) < mα if
and only if α ∈ (Π r S)θ. Hence, for all β ∈ Φ+, the condition cα(β) = mα for all
α ∈ S implies cα(β) = mα also for all α ∈ Π r (Π r S)θ, which in general is greater
than S.

Definition 2.6. We call the ideals IFS , for all nonempty S ⊆ Π, face ideals. The face
ideals corresponding to the facets are also called facet ideals.

Definition 2.7. We denote by Φ̃+((ΠrS)e) the positive system of Φ((ΠrS)e) relative
to the simple system (ΠrS)e. Similarly, we denote by Φ̃+((ΠrS)e

θ) the positive system
of Φ((Π r S)e

θ) relative to the simple system (Π r S)e
θ.

Remark 2.8. For each S 6= ∅, the positive system Φ̃+((Π r S)e) is different from
Φ+((Π r S)e), which is the intersection Φ(Π r S) ∩ Φ+, by definition. However, we
have Φ+((ΠrS)e)rΦ(ΠrS) = Φ̃+((ΠrS)e)rΦ(ΠrS). The same considerations
hold for (Π r S)θ in place of Π r S. Therefore, in Proposition 2.5(1) we may replace
Φ+ with Φ̃+.

By the above remark, Proposition 2.5(1) is equivalent to the following corollary.

Corollary 2.9. The set IFS is the principal ideal generated by θ in the positive
system Φ̃+((Π r S)e

θ) of the irreducible root system Φ((Π r S)e
θ).
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2.6. The order involution of face ideals. For all w ∈W , let

N(w) = {β ∈ Φ+ | w(β) 6 0}.

For all Σ ⊆ Π, let w0,Σ be the longest element in the standard parabolic subgroup
of W generated by {sα | α ∈ Σ}. It is well known that w0,Σ is an involution and is
determined by the condition N(w0,Σ) = Φ+(Σ).

Proposition 2.10. Let ∅ 6= S ⊆ Π and w∗S = w0,(ΠrS). Then, the restriction of w∗S
to IFS is an anti-isomorphism of the poset (IFS ,6). In particular, w∗S exchange θ and
µS.

Proof. We observe that, by definition, IFS = (θ+L(Φ(ΠrS)))∩Φ. For all α ∈ ΠrS,
we have sα(θ) ∈ θ + L(Φ(Π r S)), hence we easily obtain sα(IFS ) = IFS . It follows
w∗S(IFS ) = IFS .

It remains to prove that w∗S reverses the standard partial order on IFS . Let β, β′ ∈
IFS and β < β′. Then β′−β ∈ L+(Φ(ΠrS)), and since w∗S(α) < 0 for all α ∈ (ΠrS),
w∗S(β′)−w∗S(β) = w∗S(β−β′) ∈ −L+(Φ(ΠrS)), i.e. w∗S(β′) < w∗S(β), as claimed. �

We note that, by Proposition 2.5(1), the above proposition holds also with
w0,(ΠrS)θ in place of w∗S . In particular, the restrictions of w0,(ΠrS)θ and of w∗S on
IFS coincide.

Definition 2.11. We call w∗S the face involution of FS and the restriction of w∗S to
IFS the order involution of IFS .

3. Face ideals and abelian nilradicals
In this section we prove that the abelian nilradicals of Φ+ are facet ideals and that
all face ideals are abelian nilradicals in some irreducible subsystem of Φ.

By Proposition 2.5, the standard parabolic facets of P are the faces of type Fα
with α ∈ Π such that Φ((Π r {α})e) is irreducible. Equivalently, Fα is a facet if and
only if α does not disconnect the extended Dynkin diagram, when removed. For type
An, Φ((Πr{α})e) is irreducible for all α ∈ Π. For all other root types, Φ((Πr{α})e)
is irreducible if and only if α is a leaf of the extended Dynkin diagram.

In the next proposition we see that if mα = 1, then Φ((Π r {α})e) is irreducible,
hence IFα is a facet ideal. We note that in this case IFα = (α6).

Proposition 3.1. Each nonempty abelian nilradical of Φ+ is a facet ideal.

Proof. It is well known that if α is any simple root such that mα = 1, then the
subgraph of the extended Dynkin graph obtained by removing α is isomorphic to the
(ordinary) Dynkin graph of Φ [15]. In particular, Φ((Π r {α})e) is irreducible, hence
(Π r {α})e

θ = (Π r {α})e and (Π r {α})θ = Π r {α}. By Proposition 2.5(3), we have
dim(Fα) = |Π r {α}| = n− 1, i.e., Fα is a facet. �

If mα = 1, then α is the minimum of IFα , hence, the order involution w0,Πr{α}
maps α onto θ. Since it also maps Π r {α} onto −(Π r {α}), it maps Π onto the
nodes of the opposite extended Dynkin graph minus the node −α. Hence, the fact
that Φ((Π r {α})e) is isomorphic to Φ for all α with mα = 1, is a consequence of
Proposition 2.10.

By a direct check, we can see that, for the root types An, Cn, Dn, and E6, we have
that Φ((Π r {α})e) is irreducible if and only if mα = 1. For the other root types,
there exists at least a leaf α ∈ Π of the extended Dynkin diagram such that mα > 1.
Then, Fα is a facet, but IFα is not an abelian nilradical in Φ. Thus, the converse of
Proposition 3.1 is not true. However, the following result holds.
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Proposition 3.2. Each face ideal in Φ+ is an abelian nilradical of some irreducible
root subsystem of Φ.

Proof. By Corollary 2.9, any face ideal IFS (∅ 6= S ⊆ Π) is the principal ideal
generated by θ in the positive system Φ̃+((Π r S)e

θ).
By Definition 2.7, the simple system of Φ̃+((ΠrS)e

θ) is (ΠrS)e
θ, and (ΠrS)e

θ =
{θ} ∪ (Π r S)θ, where (Π r S)θ is a certain subset of −(Π r S). Hence, for all
β ∈ Φ̃+((Π r S)e)θ, we have β = cθθ −

∑
α∈ΠrS

cαα, for some nonnegative cθ, cα. This

implies that, for all α ∈ S, cα(β) = cθmα and, hence, cθ 6 1. In other words, the
multiplicity of θ, as a simple root in the positive system Φ̃+((Π r S)e), is 1. Hence,
the principal ideal generated by θ in Φ̃+((Π r S)e) is an abelian nilradical. �

Remark 3.3. Let α ∈ Π be such that Fα is a facet. By Proposition 2.5, IFα is also
equal to (µ6

{α}), where µ{α} is the unique root in Φ such that cα(µ{α}) = mα and
cα′(µ{α}) < mα′ for all α′ ∈ Π r {α}. By Proposition 2.10, the face involution w∗{α}
maps (Π r {α})e onto {µ{α}} ∪ (Π r {α}), therefore, this last set is a simple system
for Φ((Π r {α})e). In fact, {µ{α}} ∪ (Π r {α}) is the simple system of the positive
system Φ+((Π r {α})e).

Since w∗{α}(θ) = µ{α}, by the proof of Proposition 3.2 we obtain that the multi-
plicity of µ{α}, as a simple root in Φ+((Π r {α})e), is 1. Hence, IFα is the abelian
nilradical generated by µ{α} in the positive system Φ+((Π r {α})e).

The definition of ad-nilpotent and abelian ideals makes sense also in the reducible
case. Let Ψ be any finite crystallographic root system, Ψ1, . . . ,Ψk be its irreducible
components, Ψ+

i a positive system for Ψi, for i = 1, . . . , k, and Ψ+ = Ψ+
1 ∪ · · · ∪Ψ+

k .
Then, by definition, I is an ad-nilpotent, or abelian, ideal of Ψ+ if and only if I ∩Ψ+

i

is an ad-nilpotent, or abelian, ideal of Ψ+
i for all i ∈ {1, . . . , k}. Moreover, I is an

abelian nilradical of Ψ+ if and only if I ∩ Ψ+
i is an abelian nilradical of Ψ+

i for all
i ∈ {1, . . . , k}. This means that I ∩Ψ+

i is either empty or a principal ideal generated
by a simple root with multiplicity 1.

Proposition 3.4. Let I be an abelian nilradical of Φ+ and Ψ a root subsystem of Φ.
Then I ∩Ψ is an abelian nilradical of Ψ+.

Proof. Let Ψ1 . . . ,Ψk, for i = 1, . . . , k, be the irreducible components of Ψ. We have
to prove that I ∩ Ψi is an abelian nilradical of Ψ+

i for i = 1, . . . , k, hence we may
directly assume that Ψ is irreducible.

Let I = (α6), with α ∈ Π and mα = 1. Let ΠΨ be the simple system of Ψ+, and
θΨ =

∑
β∈ΠΨ

m′ββ be the highest root in Ψ.
If I ∩Ψ = ∅ we are done.
If there exists some β in I ∩Ψ, then β 6 θΨ and hence θΨ ∈ I, i.e., cα(θΨ) = 1. Let

ΠΨ(α) = I ∩ΠΨ. By definition, we have cα(β) = 1 for all β ∈ ΠΨ(α). Moreover, since
ΠΨ ⊆ Φ+, we have cα(β) = 0 for all β ∈ ΠΨ r I. Hence, 1 = cα(θΨ) =

∑
β∈ΠΨ(α)m

′
β .

Since all coefficients m′β are strictly positive, we obtain that there exists a unique root
β∗ such that ΠΨ(α) = {β∗}. Moreover, we have m′β∗ = 1, i.e., by definition, β∗ has
multiplicity 1 as a simple root of Ψ. Finally, for all γ ∈ Ψ, let γ =

∑
β∈ΠΨ

c′β(γ)β be
the decomposition of γ with respect to the basis ΠΨ. Then, cα(γ) = c′β∗(γ), hence,
γ ∈ I∩Ψ if and only if c′β∗(γ) = 1. It follows that I∩Ψ is the principal ideal generated
by β∗ in Ψ+, and hence it is an abelian nilradical of Ψ+. �

From the above proof, we obtain also the following refinement of Proposition 3.4.
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Proposition 3.5. Let I be an abelian nilradical of Φ+, Ψ an irreducible root subsystem
of Φ, and ΠΨ be the simple system of Ψ+. Then:

(1) I ∩Ψ 6= ∅ if and only if I ∩ΠΨ 6= ∅;
(2) if I ∩ΠΨ 6= ∅, then I ∩ΠΨ consists of a single element;
(3) if I∩ΠΨ = {β∗}, then β∗, as a simple root of Ψ+, has multiplicity 1, and I∩Ψ

is the abelian nilradical generated by β∗ in Ψ+, i.e. I∩Ψ = Ψ+rΦ(ΠΨr{β∗}).

4. Crossing pairs
In this section we analyze the properties of crossing pairs contained in abelian ideals.
In the simply laced case, many of the results that we are proving could be proved in
a very simpler way.

Definition 4.1. Let βi, γi ∈ Φ, i = 1, 2, with βi 6= γj for all i, j ∈ {1, 2}. We say that
{β1, β2} and {γ1, γ2} are crossing pairs if β1 + β2 = γ1 + γ2. In this case we call the
equality β1 + β2 = γ1 + γ2 a crossing relation. We do not assume that β1 6= β2 and
γ1 6= γ2, hence (at most) one of the pairs {β1, β2} and {γ1, γ2} may be a multiset of
a single root with multiplicity 2.

Lemma 4.2. Let I be an abelian ideal in Φ+, and β, γ ∈ I.
(1) If β ∈ Φs, x ∈ Φ, and β + x ∈ I, then x ∈ Φs.
(2) If β − γ ∈ Φ, then (β, γ) > 0.

Proof. (1) We prove that |β| > |x|, which yields the claim. By contradiction, let |β| <
|x|. Then, by Lemma 2.2(3), (x, β∨) ∈ {−2,−3}. It follows sβ(x) = x − (x, β∨)β >
x + 2β, hence x + 2β ∈ Φ, which is contrary to the fact that I is abelian, since
x+ 2β = β + (x+ β) and β, x+ β ∈ I.

(2) By Proposition 2.3(1), applied to the summable roots β and −γ, we have
(β,−γ) > 0 if and only if β, γ ∈ Φs and β − γ ∈ Φ`. By part (1) this cannot happen.
Indeed, since γ + (β − γ) ∈ I, if γ ∈ Φs, we must have β − γ ∈ Φs. Therefore,
(β,−γ) < 0, which gives the claim. �

Proposition 4.3. Let I be an abelian ideal in Φ+ and {β1, β2}, {γ1, γ2} be crossing
pairs contained in I such that β1 6= β2. Then:

(1) for all i, j ∈ {1, 2} we have (βi, γj) > 0, in particular βi − γj is a root;
(2) either {β1, β2}, or {γ1, γ2} is the pair of the minimum and maximum of
{βi, γi | i = 1, 2};

(3) (β1, β2) = 0 unless both of β1, β2 are short and γ1, γ2 have different lengths.

Proof. (1) If {i, i′} = {1, 2}, we have β1 + β2 − γi = γi′ ∈ Φ. Moreover, since I is
abelian, β1 + β2 6∈ Φ. By Proposition 2.1, applied to the summable triad β1, β2,−γi,
we obtain βj − γi ∈ Φ for j ∈ {1, 2}. By Lemma 4.2(2), it follows (βj , γi) > 0 for
i, j ∈ {1, 2}.

(2) We set x = γ1 − β1 = β2 − γ2 and y = γ2 − β1 = β2 − γ1. By part (1), x and
y are roots. If x and y are both positive or both negative, we directly obtain that
{β1, β2} is the set of the minimum and maximum of {βi, γi | i = 1, 2}. Similarly, if
one of x, y is positive and the other is negative, {γ1, γ2} is the set of the minimum and
maximum {βi, γ1 | i = 1, 2}. (In the picture below we illustrate the Hasse diagram of
the quadruple {β1, β2, γ1, γ2} in the cases x, y > 0 and x > 0, y < 0.)
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(3) We keep the notation of part (2). First, we assume that at least one of β1, β2,
is long and prove that then (β1, β2) = 0. Let β1 be long. Then, by Proposition 2.3 (2),
applied to the two pairs of summable roots β1,−γ2 and β1, x, we have −(β∨1 , γ2) =
(β∨1 , x) = −1. Hence, (β∨1 , β2) = (β∨1 , γ2 +x) = 0, which yields the claim. The case β2
long is similar.

Now, we assume β1, β2 ∈ Φs and (β1, β2) 6= 0, and we prove that |γ1| 6= |γ2|. Since
I is abelian, β1 and β2 are not summable, hence cannot have negative scalar product.
Therefore (β1, β2) > 0, and since |β1| = |β2|, by 2.2.1(2) we have (β∨1 , β2) = 1. By
definition, we have β2 = γ1 + y = β1 + x + y, hence 1 = (β∨1 , β2) = (β∨1 , β1) +
(β∨1 , x) + (β∨1 , y) = 2 + (β∨1 , x) + (β∨1 , y). It follows (β∨1 , x) + (β∨1 , y) = −1. But, by
Lemma 4.2(1), x and y are short, hence (β∨1 , x), (β∨1 , y) ∈ {0,±1} (by 2.2.1(2), again).
Therefore {(β∨1 , x), (β∨1 , y)} = {0,−1}. We may assume (β∨1 , x) = 0 and (β∨1 , y) = −1,
without loss of generality. Then, by Proposition 2.3(1), applied to the two summable
pairs of short roots β1, x and β1, y, we obtain |β1| = |x| < |β1 + x| = |γ1|, and
|β1| = |y| > |β1 + y| = |γ2|. Hence, γ1 is long and γ2 is short. �

Notation 4.4. We write β1 < {γ1, γ2} < β2 for β1 < γi < β2 for both i ∈ {1, 2}.

Let {β1, β2} and {γ1, γ2} be crossing pairs. Up to exchange β1 and β2, we may
assume β2 6< β1. Similarly, without loss of generality, we may assume γ2 6< γ1. Then,
by Proposition 4.3(2), either β1 < {γ1, γ2} < β2, or γ1 < {β1, β2} < γ2.

Definition 4.5. We define the relations . and ∼ on Φ+ as follows:
β1 . β2 if and only if there exists γ1, γ2 ∈ Φ+ such that {β1, β2} and {γ1, γ2} are

crossing pairs with β1 < {γ1, γ2} < β2;
β1 ∼ β2 if and only if either β1 . β2 or β2 . β1.
If {β1, β2} and {γ1, γ2} are crossing pairs with β1 < {γ1, γ2} < β2, we also say

that {γ1, γ2} is a middle pair between β1 and β2 and that {β1, β2} is a raising pair
through γ1 and γ2.

In the next corollary we study the order relations among different raising pairs
through a common middle pair and different middle pairs between a common raising
pair.

Corollary 4.6. Let I be an abelian ideal, {β1, β2} and {γ1, γ2} be crossing pairs in
I with β1 < {γ1, γ2} < β2.

(1) If {β′1, β′2} is any other raising pair through {γ1, γ2}, with β′1 < β′2, then either
β1 < β′1 < β′2 < β2, or β′1 < β1 < β2 < β′2. Moreover, βi − β′i ∈ Φ for both
i = 1, 2.

(2) If {γ′1, γ′2} is any other middle pair between {β1, β2}, then γi − γ′j ∈ Φ for all
i, j ∈ {1, 2}. Moreover, one of the following four cases occur: γ′i < {γ1, γ2} <
γ′j, γi < {γ′1, γ′2} < γj (with {i, j} = {1, 2}). In particular, there exists at
most one incomparable middle pair between β1 and β2.

Proof. Under the assumption of (1), we have β′1+β′2 = γ1+γ2 = β1+β2, hence {β′1, β′2}
and {β1, β2} are crossing pairs. Similarly, under the assumption of (2), {γ′1, γ′2} and
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{γ1, γ2} are crossing pairs. Hence, the claim follows directly from Proposition 4.3(2).
�

In the next lemma, we see that the possible lengths of roots and root differences
in a crossing pair are very limited.

Lemma 4.7. Let I be an abelian ideal in Φ+, {β1, β2}, {γ1, γ2} be crossing pairs con-
tained in I, β1 < {γ1, γ2} < β2, x = β2 − γ2 = γ1 − β1, and y = β2 − γ1 = γ2 − β1.

(1) If either one of x, y is long, then x, y, β1, β2, γ1, γ2 are all long.
(2) If any one of x, y, β1, β2, γ1, γ2 is short, then x and y are short and at most

one of β1, β2, γ1, γ2 is long, except when γ1 = γ2, in which case γ1 is short
and β1, β2 are long.

Proof. We first prove that:
(a) if any one of β1, β2, γ1, γ2 is short, then x and y are short.
We provide the details for the case γ2 ∈ Φs. The other cases are similar. We have

γ2 + x = β2, in particular γ2 + x ∈ I, hence by Lemma 4.2(1), we obtain x ∈ Φs.
Similarly, since γ2 + (−y) = β1 ∈ I we obtain −y ∈ Φs, hence the claim.

Now we prove that:
(b) x and y are either both short, or both long.
It suffices to prove that if either one of x, y is short, then the other one is short,

too. Assume, for example, x ∈ Φs. By (a), it suffices to prove that at least one among
βi, γi (i = 1, 2), is short. If β1 ∈ Φs, we are done. Then, let β1 ∈ Φ`. By Lemma 2.2(3),
the sum of two roots of different lengths is always short, hence γ1 = β1 + x is short
and we are done. The case y ∈ Φs is similar, hence (b) is proved.

Now we conclude the proof of part (1). If either one of x, y is long, then, by (a), βi
and γi are long, for i = 1, 2. Moreover, by (b), both of x and y are long.

It remains to conclude the proof of part (2). So, we assume {x, y, β1, β2, γ1, γ2} 6⊆
Φ`. Then, by part (1), x, y ∈ Φs. We distinguish the two cases γ1 6= γ2 and γ1 = γ2.

Let γ1 6= γ2. We have to prove that if any root in {β1, β2, γ1, γ2} is long, then the
three remaining roots are short.

Let β1 ∈ Φ`. By Lemma 2.2(3) the sum of a long and a short root is short, hence
we obtain γ1, γ2 ∈ Φs, since γ1 = β1 +x and γ2 = β1 + y. Then, we have γ1,−x ∈ Φs,
while γ1 + (−x) = β1 ∈ Φ`. By Proposition 2.3(1), this implies (γ1,−x) > 0.

If β2 ∈ Φ`, arguing in a similar way, we obtain γ1, γ2 ∈ Φs. Moreover, (γ1, y) > 0.
Now, if both β1, β2 ∈ Φ`, we deduce (γ∨1 , γ2) = (γ∨1 , γ1 − x + y) > (γ∨1 , γ1) = 2.

Since |γ1| = |γ2|, by 2.2.1(2) this implies γ1 = γ2, contrary to the assumption.
By a similar argument, taking into account that β1 6= β2, we obtain that if one of

γ1, γ2 is long, the three remaining roots in the crossing pairs are short, as claimed.
Now, let γ1 = γ2. We have to prove that γ1 ∈ Φs and {β1, β2} ⊆ Φ`. Indeed,

we have β1 + β2 = 2γ1, hence (β1 + β2, γ
∨
1 ) = 4. By 2.2.1(2), it follows that either

(β1, γ
∨
1 ) = (β2, γ

∨
1 ) = 2, or (β1, γ

∨
1 ) = 1 and (β2, γ

∨
1 ) = 3. In the first case we obtain

γ1 ∈ Φs and β1, β2 ∈ Φ`, as claimed. The latter case cannot happen, otherwise we
obtain sγ1(−β2) = −β2 + 3γ1 ∈ Φ, and −β2 + 3γ1 = (−β2 + 2γ1) + γ1 = β1 + γ1,
contrary to abelianity of I. �

In the next proposition, we prove that, for any pair of comparable roots β1 and β2
in an abelian ideal I, if β1 − β2 is not a root, then β1 ∼ β2. Moreover, we analyze
when the reverse implication holds. We need the following well known result.

Lemma 4.8 ([2, Ch. VI, § 1.9, Proposition 19]). Let γ1, . . . , γm ∈ Φ+. If γ1+· · ·+γm ∈
Φ+, there exists a permutation (γ′1, . . . , γ′m) of (γ1, . . . , γm) such that γ′1 + · · ·+γ′h ∈ Φ
for all h ∈ {1, . . . ,m}.
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Proposition 4.9. Let I be an abelian ideal in Φ+ and β1, β2 ∈ I.
(1) If β1 < β2 and β2 − β1 6∈ Φ, then β1 . β2.
(2) If β1 . β2, {β1, β2} ⊆ Φs and there exists a middle pair {γ1, γ2} between

β1, β2 such that γ1 ∈ Φs and γ2 ∈ Φ`, then β2 − β1 ∈ Φs.
(3) If β1 . β2, then β2−β1 6∈ Φ if and only if either one of the following conditions

is satisfied:
(a) at least one of β1, β2 is long,
(b) {β1, β2} ⊆ Φs and there exists a middle pair {γ1, γ2} ⊆ Φs between

β1, β2.

Proof. (1) Let β1 < β2 and β2 − β1 6∈ Φ. By definition, β2 − β1 is a sum of positive
roots. Let

k = min{h ∈ N | ∃ η1, . . . , ηh ∈ Φ+ such that β2 − β1 = η1 + · · ·+ ηh},

and η1, . . . , ηk ∈ Φ+ be such that β2 = β1 + η1 + · · · + ηk. By assumption, k > 2.
Moreover, by minimality of k, no partial sum

∑h
j=1 ηij with 1 6 ij 6 k and h > 1 is

a root.
By Lemma 4.8, we may find a permutation (γ′1, . . . , γ′m) of the sequence (β1, η1, . . . ,

ηn) such that all partial sums γ′1 + · · ·+γ′h are roots. By the above discussion, β1 must
be either γ′1, or γ′2. In both cases, we easily obtain that there exists a permutation
(η′1, . . . , η′k) of (η1, . . . , ηk) such that β1 +

∑
16j6h

η′j ∈ Φ for all h ∈ {0, . . . , k}.

Now, we prove that also β2 − η′1 = β1 +
∑

26j6k
η′j ∈ Φ. This yields the crossing

relation β1 + β2 = (β1 + η′1) + (β2 − η′1), which concludes the proof of (1).
Let γh = β1 +

∑
16j6h

η′j , so that γk = β2. We prove, by induction on h, that

γh − η1 ∈ Φ for all h ∈ {1, . . . , k}. For h = 1, the claim is clear, since γ1 = β1 + η′1,
by definition. Assume 1 6 h < k and γh − η′1 ∈ Φ. We have

γh+1 = γh + η′h+1 = (γh − η′1) + η′1 + η′h+1.

By our assumption, η′1+η′h+1 6∈ Φ, hence, by Proposition 2.1, applied to the summable
triad (γh−η′1), η′1, η′h+1, we obtain that (γh−η′1)+η′h+1 is a root (and also (γh−η′1)+η′1
is a root). Since (γh − η′1) + η′h+1 = γ′h+1 − η′1, we get the claim.

(2) Let β1 + β2 = γ1 + γ2, β1 < {γ1, γ2} < β2, β1, β2, γ1 ∈ Φs, and γ2 ∈ Φ`.
We have to prove that β2 − β1 ∈ Φs. First, we see that the condition (β2, β

∨
1 ) > 0

implies the claim. Indeed, by 2.2.1(1) if (β2, β
∨
1 ) > 0, then β2 − β1 ∈ Φ. Moreover,

β2 − β1 6∈ Φ`, otherwise, by Proposition 2.3 (1), we should have (β2,−β∨1 ) > 0.
Thus, we prove that (β2, β

∨
1 ) > 0. Let x = β2 − γ2 = γ1 − β1. We recall that x is

short, by Lemma 4.7 (1). Then, (β2, β
∨
1 ) = (γ2, β

∨
1 ) + (x, β∨1 ), and our assumptions

on lengths imply (x, β∨1 ) ∈ {0,±1} and (γ2, β
∨
1 ) ∈ {0,±2,±3}, by 2.2.1(2). Moreover,

(γ2, β
∨
1 ) is positive, by Proposition 4.3(1), hence, (γ2, β

∨
1 ) > 2 and (β2, β

∨
1 ) > 2−1 = 1,

as claimed.
(3) For proving the “if” part, it suffices to prove that if neither (a), nor (b) hold, then

the assumption of (2) holds. First, we assume that (a) does not hold, i.e., β1, β2 ∈ Φs.
Then, by Lemma 4.7 (2), for all middle pairs {γ1, γ2} between β1, β2, at most one of
γ1, γ2 is long. It follows that either (b) holds, or all middle pairs {γ1, γ2} satisfies the
assumption in (2).

It remains to prove the “only if” part. Let γ1, γ2 ∈ Φ be such that β1 +β2 = γ1 +γ2
and β1 < {γ1, γ2} < β2.

(a) Assume β2 ∈ Φ` and, as before, let x = γ1 − β1 = β2 − γ2 and y = γ2 − β1 =
β2− γ1. Since the pairs of β2,−x and β2,−y are summable, by Proposition 2.3(2) we
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obtain (x, β∨2 ) = (y, β∨2 ) = 1. Hence,

(∗) 2 = (β2, β
∨
2 ) = (β1 + x+ y, β∨2 ) = (β1, β

∨
2 ) + 2.

It follows (β1, β
∨
2 ) = 0 and, by Proposition 2.3(2), β2 − β1 6∈ Φ. If β1 ∈ Φ`, we may

argue in a similar way and find again β2 − β1 6∈ Φ.
(b) Let β1, β2 ∈ Φs. By Proposition 4.7 (1), we have x, y ∈ Φs, hence, by applying

Lemma 2.2 (1) to the summable pairs β2,−x and β2,−y, we obtain that equalities
(∗) still hold. Hence, also in this case we have β2 − β1 6∈ Φ. �

The following corollary follows directly from parts (1) and (3) of Proposition 4.9.

Corollary 4.10. Let I be an abelian ideal in Φ+, and β1, β2 ∈ I. If either one of β1,
β2 is long, then β1 . β2 if and only if β1 < β2 and β2 − β1 6∈ Φ.

If we combine parts (2) and (3) of Proposition 4.9, we obtain that the root lengths
of all middle pairs between two fixed short roots β1, β2 are uniquely determined by
β1, β2.

Corollary 4.11. Let I be an abelian ideal in Φ+, β1, β2 ∈ I ∩ Φs, and β1 . β2.
Then either γ1, γ2 ∈ Φs for all middle pairs {γ1, γ2} between β1, β2, or γ1 and γ2 have
different lengths for all middle pairs {γ1, γ2} between β1, β2.

Proof. Let {γ1, γ2} and {γ′1, γ′2} be middle pairs between β1, β2. By Proposition 4.7(2),
at least one of γ1, γ2 and at least one of γ′1, γ′2 are short. If {γ1, γ2} 6⊆ Φs then, by part
(2) of Proposition 4.9, we have β2− β1 ∈ Φs, while if {γ′1, γ′2} ⊆ Φs, then, by part (3)
we have β2 − β1 6∈ Φ. Hence the two possibilities mutually exclude each other. �

Definition 4.12. For any S ⊆ Φ+, we say that S is reduced if, for all β, β′ ∈ S,
β 6∼ β′.

For all β ∈ Φ+ we set

Red(β) = {β′ ∈ Φ+ | β 6= β′ and β 6∼ β′}.

Remark 4.13. By Proposition 4.9(1) and Lemma 4.2(2), if I is an abelian ideal,
β ∈ I, and I(β≶) = {γ ∈ I | γ is comparable with β}, then

(1) Red(β) ∩ I(β≶) ⊆ {γ ∈ I | γ − β ∈ Φ+} = {γ ∈ I r {β} | (γ, β) > 0}.

If β ∈ Φ`, in particular in the simply laced case, the inclusion is an equality, by
Corollary 4.10. Moreover, if β ∈ Φ`, we have (γ, β∨) ∈ {0,±1} for all γ ∈ Φ r {β},
hence

(2) Red(β) ∩ I(β≶) = {γ ∈ I | (γ, β∨) = 1}.

In general, the inclusion in (1) is proper. As an example, for Φ of type Cn, if we
number the simple roots as in [2] and take I = (α6

n ), β1 = αn + αn−1, β2 = αn +
2αn−1 +αn−2, γ1 = αn +αn−1 +αn−2, γ2 = αn + 2αn−1, we have: β1 + β2 = γ1 + γ2,
hence β1 . β2, but β2 − β1 = αn−1 + αn−2 ∈ Φs. This is an example of case (2) of
Proposition 4.9.

5. Triangulation orders
In this section we define some special orderings of abelian ideals, which we call trian-
gulation orders, and prove that all facet ideals have a triangulation order. Throughout
the section, let I be an abelian ideal of Φ+ such that rk(I) = n. By “hyperplane”, we
mean “linear hyperplane”.
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Definition 5.1. Let J ⊆ I. We say that J is bipartite if it has an initial section Ji,
and a final section Jf such that

(1) J = Ji ∪ Jf ;
(2) for all β1 ∈ Ji r Jf and β2 ∈ Jf r Ji, we have β1 . β2;
(3) there exists a hyperplane H in E such that Ji∩Jf ⊆ H and H strictly separates

Ji r Jf from Ji r Jf .
If the above conditions hold, we say that {Ji, Jf} is a bipartition of J . If, moreover,
both Ji and Jf are proper subsets of J , we say that {Ji, Jf} is a proper bipartition. A
hyperplane H as in (3) is called a separating hyperplane, for the bipartition {Ji, Jf}
of J .

Note that, by definition, if J has a proper bipartition, then it has at least two
elements. If J is also saturated, then it contains two crossing pairs and these provide
at least three elements in J . The definition also implies that, if {Ji, Jf} is a bipartition
of J , then Ji r Jf and Jf r Ji are an initial and a final section of J , respectively, since
the complement of an initial section is a final section, and vice-versa, and we have
J = (Ji r Jf) t Jf = Ji t (Jf r Ji), where by t we denote disjoint union. Finally, we
note that if J is saturated, also all the subsets Ji, Jf , Ji r Jf , Jf r Ji, and Ji ∩ Jf are
saturated.

Definition 5.2. For each subset S of Φ+, we define the restricted relations .S and
∼S on S as follows. For all β1, β2 ∈ S we set: (1) β1 .S β2 if there exists a middle
pair {γ1, γ2} between β1 and β2 contained in S; (2) β1 ∼S β2 if either β1 .S β2,
or β2 .S β1. We say that S is ∼closed if, for all β1, β2 ∈ S ∩ Φ+, β1 . β2 implies
β1 .S β2.

Obviously, for any S ⊆ Φ+ and β1, β2 ∈ S, the relation β1 .S β2 implies β1 . β2.
Hence, if S is ∼closed, then, for all β1, β2 ∈ S, we have β1 ∼ β2 if and only if β1 ∼S β2.

The first of following lemmas is clear, hence we omit the proof.

Lemma 5.3. Let S ⊆ Φ+. If S is saturated, then S is ∼closed.

Lemma 5.4. Let I be an abelian ideal in Φ, Ψ a root subsystem of Φ, and Ψ1, . . . ,Ψk

be the irreducible components of Ψ. Moreover, let J be a ∼closed subset of Φ such that
J ⊆ I ∩ Ψ, and let R ⊆ J . Then, R is reduced in Φ if and only if R ∩ Ψi is reduced
in Ψi for all i ∈ {i, . . . , k}.

Proof. The “only if” part is obviuos. Conversely, we assume that R∩Ψi is reduced in
Ψi for all i ∈ {i, . . . , k} and prove that R is reduced in Φ. By contradiction, let β1 . β2
for some β1, β2 ∈ R. Then, since J is ∼closed, there exists a middle pair {γ1, γ2},
between β1 and β2, contained in J , hence in Ψ. By Proposition 4.3(1), (βj , γj′) > 0
for all j, j′ ∈ {1, 2}, hence, there exists i ∈ {1, . . . , k} such that βj , γj ∈ Ψi, for all
j ∈ {1, 2}. Thus, we have β1 .Ψi β2, contrary to the assumption. �

Lemma 5.5. Let I be an abelian nilradical of Φ+, Ψ a parabolic root subsystem of Φ,
and ΠΨ the simple system of Ψ+. Assume that the following conditions hold:

(a) ΠΨ r I ⊆ Π;
(b) if Ψ′, Ψ′′ are distinct irreducible components of Ψ, then I ∩Ψ′ and I ∩Ψ′′ are

element-wise incomparable.
Then I ∩Ψ is saturated, hence ∼closed.

Proof. Let γ1, γ2 ∈ I ∩Ψ with γ1 < γ2. Then γ2 − γ1 is a linear combination of roots
in Π with non-negative, integral, coefficients.
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Let Ψ1, . . . ,Ψk be the irreducible components of Ψ and ΠΨi the simple system
of Ψi, for i = 1, . . . , k. By assumption (b), there exists i ∈ {1, . . . , k} such that
γ1, γ2 ∈ Ψi.

By Proposition 3.5, I ∩Ψi 6= ∅ if and only if there exists β∗i ∈ I ∩ΠΨi . Moreover,
in such a case, we have I ∩ΠΨi = {β∗i }, and I ∩Ψi = Ψ+

i rΦ(ΠΨi r {β∗i }). It follows
that γ2 − γ1 is a Z-linear combination of roots in ΠΨi r β∗i .

By assumption (a), ΠΨi r β∗i ⊆ Π, hence, being Π a linear basis of E, γ2 − γ1 is a
linear combination of roots in ΠΨi r β∗i with non-negative integral coefficients. Since
Ψ, and hence Ψi, is parabolic, we obtain that all γ ∈ Φ such that γ1 6 γ 6 γ2 belong
to Ψi, hence to I ∩Ψi.

This proves that I ∩Ψ is saturated and hence, by Lemma 5.3, also ∼closed. �

We recall that we have defined the set Red(β), for β ∈ Φ+, in Definition 4.12.

Definition 5.6. Let J ⊆ I, and β ∈ J . We say that β is a detachable element in J if
the following conditions hold:

(1) β is an extremal element of J (with respect to the standard partial order);
(2) there exists a hyperplane H such that:

(a) J ∩Red(β) = J ∩H and H strictly separates β from J r ({β}∪Red(β));

(b) I ∩H is ∼closed.
We call such a hyperplane H a detaching hyperplane for β in J .

Lemma 5.7. Let I be a facet ideal, β ∈ I ∩Φ`, and I(β≶) = {γ ∈ I | γ 6 β or β 6 γ}.
Then, there exists a hyperplane H such that I ∩H is ∼closed and I(β≶) ∩Red(β) =
I ∩H.

Moreover, if J is such that J ⊆ I(β≶), and β is an extremal element of J , then H
is a detaching hyperplane for β in J .

Proof. By Remark 4.13, I(β≶) ∩ Red(β) = {γ ∈ I | (γ, β∨) = 1}. Let αI be the
(unique) simple root such that I = {γ ∈ Φ | cαI (γ) = mαI}. Recall that ω̌αI is the
fundamental coweight such that (αI , ω̌αI ) = 1 and (α, ω̌αI ) = 0 for all α ∈ Π r {αI}.
We set ν = mαIβ

∨ − ω̌αI and H = ν⊥. Then, for all γ ∈ I, we have (ν, γ) = 0 if
and only if (β∨, γ) = 1, hence I ∩H = I(β≶) ∩ Red(β).

Now, we prove that I ∩H is ∼closed. Let β1, β2 ∈ Φ+ ∩H, β1 ∼ β2, and {γ1, γ2}
be a middle pair between β1 and β2. Then (γ1 + γ2, β

∨) = (β1 + β2, β
∨) = 2. Since β

is long, this forces (γ1, β
∨) = (γ2, β

∨) = 1, hence {γ1, γ2} ⊆ I ∩H, which implies the
claim.

It remains to prove the second assertion. Let J ⊆ I(β≶) and β be an extremal
element in J . Then, by the previous part, J ∩Red(β) = J ∩H. In order to prove that
H is a detaching hyperplane for β in J , it remains to prove that H strictly separates
β from Jr ({β}∪H). We prove that H strictly separates β from Ir ({β}∪H), which
implies the claim. Since I is abelian, we have (β∨, γ) > 0 for all γ ∈ I. Moreover, we
have (β∨, γ) ∈ {0,±1}, since β ∈ Φ`. Therefore, for all γ ∈ IrH, we have (β∨, γ) = 0,
hence (ν, γ) = −mαI . Moreover, we have (β, ν) = mαI , hence the claim is proved. �

Definition 5.8. Let 4 be a total order relation on I, and
SI,4 = {β ∈ I | rk(β4) = n}.

We say that 4 is a triangulation order if the following conditions hold:
(1) I r SI,4 is saturated;
(2) for each β ∈ SI,4, (β4) is saturated and either one of the following conditions

holds:
(a) β is detachable in (β4),
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(b) (β4) has a bipartition {Ji, Jf} such that, for both J = Ji and J = Jf , β
is detachable in J .

Remark 5.9.
(1) The definition directly implies that, for any total ordering 4 on I, the subset

SI,4 is an initial section of the ordered set (I,4). Moreover, we have rk(I r
SI,4) < n.

(2) The set I r SI,4 may be properly contained in I ∩ Span(I r SI,4). For the
triangulation orders that we will construct, this happens exactly in one case,
namely for type E7.

(3) The above definition does not contain any condition on the restriction of 4
to I r SI,4. Hence, if 4 is a triangulation order, any other total order 4′
such that SI,4′ = SI,4, and 4 and 4′ coincide on the initial section SI,4, is
a triangulation order, too.

We will prove the existence of triangulation orders for all facet ideals. The proof
requires a case by case analysis. By Proposition 3.2, we may restrict the analysis to
the abelian nilradicals.
Definition 5.10. We say that the facet ideal I of Φ+ is an abelian nilradical of type
Xn,k, and we write I ∼= Xn,k, if there exists an irreducible root subsystem Ψ of Φ and
a positive system Ψ̃+ of Ψ such that:

(1) I is an abelian nilradical of Ψ̃+;
(2) Ψ is of type Xn;
(3) if {α′1, . . . , α′n} is a simple system of Ψ̃+, numbered according to Bourbaki’s

conventions [2], then I is the principal ideal generated by α′k in Ψ̃+.
It is implicit in the definition that the above α′k has multiplicity 1 in Ψ.
We note that the type of a facet ideal may be not unique, if the root system Ψ has

nontrivial Dynkin diagram automorphisms. We identify the types Xn,k and Xn,k′ if
there exists a diagram automorphism that maps αk into αk′ . By a direct inspection
of the highest root in all root types, we see that the possible abelian nilradicals types,
in an irreducible root system of rank n, are the following:
An,k for k = 1, . . . , n, Bn,1, Cn,n, Dn,k for k = 1, n− 1, n, E6,1, E6,6, E7,7.

Among them, we have the identifications: An,k = An,k′ for k + k′ = n+ 1; Dn,n−1 =
Dn,n for all n > 4 and D4,1 = D4,3 = D4,4; E6,1 = E6,6.

By Proposition 3.2, the facet ideals that are not abelian nilradicals of Φ+ are in
any case abelian nilradicals of some type. Their type Xn,k is explicitly obtained as
follows.

If the type of Φ is An, all the facet ideals are nilradicals of Φ+, hence we may
assume that the extended Dynkin graph of Φ is a tree. Then, IFαi is a facet ideal of
Φ+ if and only if αi is a leaf in the extended Dynkin graph. By Corollary 2.9, the
Dynkin graph obtained by removing αi from the extended Dynkin graph of Φ, gives
the root type Xn. Moreover, the position of −θ in the new Dynkin graph gives the
index k of the abelian nilradical type Xn,k. Below, we write the resulting type for the
facet ideals that are not abelian nilradicals of Φ+ itself. If the root type of Φ is Yn,
we write IF (Yn, αi) in place of IFαi .

IF (Bn, αn) ∼= Dn,n, IF (F4, α4) ∼= B4,1, IF (E7, α2) ∼= A7,1,

IF (E8, α1) ∼= D8,1, IF (E8, α2) ∼= A8,1.

In proving the next proposition, we will consider, case by case, the seven possible
distinct sporadic or classes of abelian nilradical types. The main points of the proof
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are illustrated in Figures 1–9. We first give some explanation of these figures. We may
arrange the roots of any facet ideal I in a matrix (βi,j), in such a way that adjacent
entries differ by a simple root. The label i on a certain edge means that the difference
between its vertexes is the simple root αi. We choose the matrix arrangement of roots
so that the standard partial order is compatible with the reverse lexicographic order
of row and column indexes, starting from β1,1 = θ. In this way, the matrix yields a
Hasse diagram of I in which the order ascends toward northwest. We note that this
condition does not determine a unique possibility. The figures illustrate the proof on
such Hasse diagrams for all the abelian nilradicals.

Proposition 5.11. Each facet ideal has a triangulation order.

Proof. By the above discussion, we may assume that I is an abelian nilradical of Φ+.
By Remark 5.9, it suffices to define a subset SI,4 of I and a partial order 4 on

I that is total on SI,4 and has SI,4 as an initial section, in such a way that all
conditions of Definition 5.8 are satisfied. (In figures 1-9, the circled nodes correspond
to the elements in SI,4.)

Henceforward, we write SI in place of SI,4 and we intend that SI is an initial
section of 4. We will define the restriction (SI ,4) as a sequence (β1, . . . , βk) (so
that (β4

i ) = {βi, . . . , βk} ∪ (I r SI)). Then, we will find a hyperplane HI such that
Span(I r SI) = HI and βk 6∈ HI : this ensures that SI is well defined, i.e. SI = {β ∈
I | rk(β4) = n}. Moreover, we will prove that I r SI is saturated (condition (1) of
Definition 5.8).

In all cases, the sequence (β1, . . . , βk) will be such that, for i = 1, . . . , k, βi is
extremal in (β4

i ), with respect to the standard partial order. Since IrSI is saturated,
this implies that (β4

k ) is saturated and, by induction on k− i, that (β4
i ) is saturated,

for i = 1, . . . , k. Therefore, in order to prove condition (2) of Definition 5.8, it will
remain to prove that either condition (a), or (b), holds for all βi.

If βi is long and βi = min(β4
i ), or βi = max(β4

i ) (with respect to the standard
partial order), then βi is detachable in (β4

i ) by Lemma 5.7 applied with J = (β4
i ),

and we have nothing to prove. In the remaining cases, we will directly prove that
conditions (a) or (b) of Definition 5.8(2) hold.

Finally, since βi is extremal in (β4
i ), in order to prove that βi is detachable in (β4

i ),
or in a subset of its, it will suffice to check that condition (2) of Definition 5.6 holds.

Now we can give the details of the proof for each abelian nilradical. Throughout
the rest of the proof, we use the following notation: for h, k ∈ Z, [h, k] is the interval
{i ∈ Z | h 6 i 6 k}. For all h ∈ [1, n] and S ⊆ [1, n], ω̌h = ω̌αh and αS =

∑
i∈S

αi.

A. I ∼= An,k,
[
n
2
]
< k 6 n. We recall that Φ+ = {α[i,j] | 1 6 i 6 j 6 n}, whence

I = {α[i,j] | 1 6 i 6 k 6 j 6 n}.
We define (SI ,4) =

(
α[k,j]|j = k, . . . , n

)
. Then, I r SI is the principal ideal

(α[k−1,k]
6) of Φ+, in particular is saturated. Let HI = (ω̌k r ω̌k−1)⊥. It is easily

seen that Span(I r SI) = HI and α[k,n] 6∈ HI , hence SI is well defined.
It remains to prove that β is detachable in (β4), for all β ∈ SI .
Let β = α[k,j] (j ∈ [k, n]) and H = (ω̌k − ω̌k−1 − ω̌j+1)⊥ (where ω̌n+1 = 0). It is

easy to check that β is minimal in (β4). We prove that H is a detaching hyperplane
for β in (β4). Let Π1 =

{
α1, . . . , αk−2, α[k−1,k], αk+1 . . . , αj

}
and, if j < n, Π2 ={

α[k,j+1], αj+2 . . . , αn
}
, while, if j = n, Π2 = ∅. Then, Π1tΠ2 is the simple system of

(Φ∩H)+, and Φ∩H = Φ(Π1)tΦ(Π2) is a decomposition into irreducible components
(both of type A). We have that I ∩Φ(Π1) is the principal ideal generated by α[k−1,k]
in Φ(Π1). Similarly, for j < n, I ∩ Φ(Π2) is the principal ideal generated by α[k,j+1]
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in Φ(Π2). It follows easily that I ∩Φ(Π1) and I ∩Φ(Π2) are pair-wise imcomparable.
Hence, we may apply Lemma 5.5 (with Ψ = Φ∩H) and obtain that I ∩H is ∼closed.

It remains to check that condition (2a) of Definition 5.6 holds. Let γ ∈ (β4).
Looking at Π1 and Π2, we see that, if γ ∈ H, then either γ and β are incomparable
for the standard partial order, or γ − β ∈ Φ+. If γ 6∈ H, then γ = α[i,i′] with i < k
and i′ < j, hence γ > β and γ − β 6∈ Φ. By Corollary 4.10, we obtain that γ ∼ β if
and only if γ 6∈ H, which is the claim.
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Figure 1. I ∼= A9,6, β = α[6,7]. The gray boxes cover the roots in
H = (ω̌6 − ω̌5 − ω̌8)⊥.

C. I ∼= Cn,n. We recall that Φ+ = {α[i,j], α[i,n] + α[j,n−1] | 1 6 i 6 j 6 n}, hence
I = {α[i,n] + α[j,n−1] | 1 6 i 6 j 6 n} (with α[n,n−1] = 0).

We define (SI ,4) = (α[i,n]|i = n, n− 1, . . . , 1). Then, I r SI is the principal ideal
(αn + 2αn−1

6) of Φ+, in particular it is saturated. Let HI = (2ω̌n − ω̌n−1)⊥. It is
easily seen that Span(I r SI) = HI and α[1,n] 6∈ HI , hence SI is well defined.

Now, we prove that β is detachable in (β4), for all β ∈ SI .
Let β = α[j,n], with j ∈ [1, n], H = (2ω̌n − ω̌n−1 − ω̌j−1)⊥. It is easy to check

that β is minimal in (β4). We prove that H is a detaching hyperplane. Let Π1 =
{αn + 2αn−1}∪{αi | j 6 i 6 n− 2}, if j 6 n− 1, and Π1 = ∅ if j = n. Moreover, let
Π2 = {α[j−1,n]}∪{αi | 1 6 i 6 j−2}, if j 6 2, and Π2 = ∅ for i = 1. Then, Π1tΠ2 is
a simple system for Φ∩H. Moreover, Φ∩H = Φ(Π1)∪Φ(Π2) is a decomposition into
irreducible components (of type C and A, respectively). It is easily seen that I∩Φ(Π1)
and I ∩ Φ(Π2) are element-wise incomparable, hence, the conditions of Lemma 5.5
are satisfied, with Ψ = Φ ∩H. It follows that I ∩H is ∼closed.

If γ ∈ I, then γ = α[h,n] + α[k,n−1] for some 1 6 h 6 k 6 n. Hence, γ ∈ H if
and only if either h 6 j − 1 and k = n, or j 6 h 6 k 6 n − 1. In these cases, either
γ and β are incomparable for the standard partial order, or γ − β ∈ Φ+. Moreover,
if γ − β ∈ Φ+, then all γ′ such that γ < γ′ < β are short roots. Hence, in any
case, γ 6∼ β, by Proposition 4.9(3). If γ ∈ (β4) r H, we have γ = α[h,n] + α[k,n−1]
with h 6 j − 1 6 k 6 n − 1. Then, β + α[k,n−1] ∈ Φ and we obtain the crossing
relation β + γ = (β + α[k,n−1]) + α[h,n]. It follows that H satisfies the conditions of
Definition 5.6, hence β is detachable in (β4) (see Figure 2).

B1 and D1. I ∼= Bn,1, or I ∼= Dn,1. In case Bn,1, we have
I = {α[1,i] | 1 6 i 6 n} ∪ {α[1,n] + α[j,n] | 2 6 j 6 n}.

In case Dn,1, we have
I = {α[1,i] | 1 6 i 6 n} ∪ {α̂[1,n]} ∪ {α[1,n] + α[j,n] | 2 6 j 6 n− 2},
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Figure 2. I ∼= C7,7, β = α[4,7]. The gray boxes cover the roots in
H = (2ω̌7 − ω̌3 − ω̌6)⊥.

where α̂[1,n] = α[1,n] − αn−1.
We define (SI ,4) = (α1, θ). Let HI = (ω̌2 − ω̌1)⊥. Then Span(I r SI) = HI and

θ 6∈ HI , hence SI is well defined. Since SI consists of the minimum and the maximum
of I, we have that I r SI is saturated.

Finally, for each β ∈ SI , β is either the minimum, or the maximum of (β4), with
respect to the standard partial order, hence β is detachable in (β4) by Lemma 5.7.

2 3 4 5 6 23456 α1
θs

θ

2 3 4 5

2345

6 6

α1

θ

Figure 3. I ∼= B6,1 and I ∼= D6,1. In both cases, SI = {α1, θ}. The
gray boxes cover the roots in I rSI = I ∩H, with H = (ω̌1− ω̌2)⊥.

Dn. I ∼= Dn,n. Let α̂[j,n] = α[j,n] − αn−1, for 1 6 j 6 n− 1. Then,

I = {α̂[j,n] | 1 6 j 6 n− 1} ∪ {α[j,n] | 1 6 j 6 n− 2}∪
{α[i,n] + α[j,n−2] | 1 6 i < j 6 n− 2}.
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We define (SI ,4) = (α̂[j,n]|j = n, n − 2, . . . , 1) and take HI = (ω̌n r ω̌n−1)⊥. Then,
I r SI is the principal ideal (α[n−2,n]

6) of Φ+, hence it is saturated. Moreover, we
have Span(I r SI) = HI and α̂[1,n] 6∈ HI , hence SI is well defined.

It remains to prove that, for all β ∈ SI , either one or the other of conditions (a)
and (b) of Definition 5.8 (2) is satisfied. If β = αn or β = αn + αn−2, then β is the
minimum of (β4), hence it is detachable in (β4) by Lemma 5.7. Then, let β = α̂[j,n],
with j ∈ {1, . . . , n − 3}. Let Jf = (β6). For j > 1, let θj−i = α[j−1,n] + α[j,n−2],
and Ji = (β4) r (θ6j−1) (see Figure 4). For j = 1, let Ji = (β4): in this case Jf ⊆
Ji. We prove that, for j > 1, (β4) = Ji ∪ Jf is a proper bipartition. Indeed, we
have: (β4) = {γ ∈ I | cαj (γ) > 1 or cαn−1(γ) > 1}, Ji r Jf = {γ ∈ I | cαj (γ) =
0 and cαn−1(γ) = 1}, and Jf r Ji = {γ ∈ I | cαj (γ) = 2} (note that cαj (γ) = 2 forces
cαn−1(γ) = 1). Hence, if we set H = (ω̌n − ω̌j)⊥, H strictly separates Ji r Jf from
Jf r Ji, and Ji ∩ Jf = I ∩H. Moreover, for any γ1 ∈ Ji r Jf and γ2 ∈ Jf r Ji we have
cαj (γ2 − γ1) = 2 and cαn−1(γ2 − γ1) = 0. This implies γ2 − γ1 6∈ Φ, hence γ1 . γ2 by
Proposition 4.9(1).

By definition, we have β = min Jf hence we may apply Lemma 5.7 with J = Jf
and obtain that β is detachable in Jf .

The proof that β is also detachable in Ji is very similar to the proofs of cases An and
Cn. We takeH i = (ω̌n−ω̌n−1−ω̌j−1)⊥, with ω̌0 = 0. Then, for each γ ∈ (β4), if γ /∈ H i

and γ 6= β, we have γ > β and (γ, β) = 0. If γ ∈ H i, then either γ is incomparable
with β, or γ−β ∈ Φ. Hence, by Corollary 4.10, γ ∼ β if and only if γ 6∈ H i. It remains
to prove that I ∩ H i is ∼closed. Indeed, let Π1 = {α[n−1,n]} ∪ {αi | j 6 i 6 n − 2}
and Π2 = {α̂[j−1,n]} ∪ {αi | 1 6 i 6 j − 2} (Π2 = ∅ for j = 1). Then, Π1 ∪ Π2 is
a simple system for Φ ∩ H i, and Φ ∩ H i = Φ(Π1) ∪ Φ(Π2) is a decomposition into
irreducible components (of types D and A, respectively, for j > 1. For j = 1 we have
only the component Φ(Π1), which is irreducible of type Dn−1). It is easy to see that
I ∩Φ(Π1) and I ∩Φ(Π2) are pairwise incomparable, hence we may apply Lemma 5.5
with Ψ = Φ ∩H i and obtain that I ∩Ψ = I ∩H i is ∼closed.

1 1 1 1 1 1

2 2 2 2 2

3 3 3 3

4 4 4

5 5

6
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3

3

4

4

4

5

5

5

5

6

6

6

6

6

7

7

7

7

7

7

α8

θ

θ3

β

Jf r Ji

Ji r Jf

Ji ∩ Jf

Figure 4. I ∼= D8,8, β = α̂4,8. The gray boxes cover (β4), parti-
tioned according to the bipartition described in the proof.
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7θ

βJi and H i

Figure 5. I ∼= D8,8, β = α̂4,8. The diagram represents (β4). The
big rectangle contains the roots in Ji and the gray parts cover the
roots in H i = (ω̌8 − ω̌7 − ω̌3)⊥.

E6. I ∼= E6,6. We choose

(SI ,4) =
(
α6, θ, α{5,6}, θ − α2, α{4,5,6}, θ − α{2,4}, α{2,4,5,6}, θ − α{2,4,5}

)
.

The roots in (SI ,4) are all the γ ∈ I with cα3(γ) = 0, alternated with their symmetric
roots with respect to the order involution, which are all the γ ∈ I with cα3(γ) = 2.
Hence I r SI is saturated.

Let HI = (ω̌6 − ω̌3)⊥. Then, Span(I r SI) = HI and θ − α{2,4,5} 6∈ HI , hence SI
is well defined.

Let Π′ = {α[3,6]}∪Πr{α3, α6}. Then Φ(Π′) is irreducible, of type A5, and IrSI is
the abelian nilradical generated by α[3,6] in Φ(Π′), of type A5,2. Hence, I∩Span(IrSI)
is ∼closed by Lemma 5.5 applied with Ψ = Φ(Π′).

The first six β in (SI ,4) are detachable in their (β4) by Lemma 5.7, being either the
minimum, or the maximum of (β4). Hence, it remains to prove that the last two roots,
β = α{2,4,5,6} and β′ = θ−α{2,4,5} are detachable in their 4-cone. We will prove that,
in both cases, HI is a detaching hyperplane. We have (β4) = {β}∪(IrSI)∪{β′}. It is
easy to check that, for all γ ∈ I rSI , either β is incomparable with γ, or γ−β ∈ Φ+.
Hence, by Corollary 4.10, β 6∼ γ for all γ ∈ I r SI . For β′, we have β 6 β′ and
β′ − β 6∈ Φ, hence β . β′. Now, HI strictly separates β from β′ since cα3(β) = 0
and cα3(β′) = 2. Morever, we have already seen that I r SI is equal to I ∩ HI and
is saturated, hence ∼closed. It follows that β is detached in (β4), with detaching
hyperplane HI . For β′, the proof is similar (see Figure 6).

E7. I ∼= E7,7. We recall that θ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 +α7. The order
involution maps α2 and α4 onto their opposite roots, α7 onto θ, and the sequence
(α1, α3, α5, α6) onto (−α6,−α5,−α3,−α1).
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θ

α6

β

β′

Figure 6. I ∼= E6,6, β = α{2,4,5,6}, and β′ = θ − α{2,4,5}. The gray
rectangle covers the roots in HI = (ω̌6 − ω̌3)⊥.

For any γ ∈ I, we denote by γ′ the symmetric of γ with respect to the order
involution and we define
(SI ,4) = (α7, α

′
7, α{6,7}, α

′
{6,7}, α{5,6,7}, α

′
{5,6,7}, α{4,5,6,7}, α

′
{4,5,6,7}, α{2,4,5,6,7},

α′{2,4,5,6,7}, α{3,4,5,6,7}, α
′
{3,4,5,6,7}, α{1,3,4,5,6,7}, α

′
{1,3,4,5,6,7}).

By definition, (SI ,4) consists of all β in I such that cα2(β) + cα3(β) 6 1, together
with their symmetric roots (see Figure 7). Then, we have min(I r SI) = α[2,7], hence
max(I r SI) = α′[2,7]. In particular, I r SI is a root interval, hence it is saturated.

Let HI = (ω̌7 − ω̌2)⊥ and let β = α{2,4,5,6,7}. We can directly check that HI ∩ I =
(I r SI) ∪ {β, β′}. We have β, β′ ∈ SI , nevertheless, Span(I r SI) = HI . Moreover,
max4 SI = α′{1,3,4,5,6,7} = θ−α{1,3,4,5,6} 6∈ HI . Hence, SI is well defined (see Figure 7).

All roots in SI , except β = α{2,4,5,6,7}, η = α{1,3,4,5,6,7} and their symmetric roots,
are either the minimum, or the maximum of their 4-upper cone, with respect to the
standard partial order, so they are detachable in it by Lemma 5.7. It remains to
consider β, β′, η, η′.

First, we find a bipartition of (β4) that satisfies the requirements of Defini-
tion 5.8(2). Let Jf = (β4) ∩ (β6) = {γ ∈ (β4) | cα2(γ) > 1} and Ji = {γ ∈ (β4) |
cα2(γ) 6 1}. It is easily seen that Ji ∩ Jf = I ∩ HI and that HI strictly separates
Ji r Jf from Jf r Ji. Moreover, we can directly check that, for all γ1 ∈ Ji r Jf and
γ2 ∈ Jf r Ji, we have γ2 − γ1 ∈ L+(Φ) r Φ+, hence γ1 . γ2. It remains to check that
β is detachable in Ji and Jf . For Jf this follows from Lemma 5.7, since β = min6 Jf .
For Ji, we prove that the hyperplane H i = (ω̌7 − ω̌3)⊥ is a detaching hyperplane.
Indeed, (Φ ∩ H i) is an irreducible root subsystem of type A6, with simple system
{α[3,7]} ∪Π r {α7, α3}. Hence, we may apply Lemma 5.5, with Ψ = Φ ∩H i, and find
that I ∩H i is ∼closed (see also Figure 8). Moreover, we can directly check that, for
all γ ∈ Ji∩H i, either γ and β are incomparable, or γ−β ∈ Φ+, hence γ 6∼ β. Finally,
for all γ ∈ Ji rH i, we have γ > β and γ − β 6∈ Φ, hence, by Corollary 4.10, γ ∼ β.
Hence H i is a detaching hyperplane for β in Ji (see Figure 8).

The case of β′ is similar to the previous one, by symmetry.
It remains to deal with η and η′. In this case, HI is a detaching hyperplane for η

in (η4) as well as for η′ in (η′4) (see Figure 9). Indeed, it is easily checked that for
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Figure 7. I ∼= E7,7, β = α{2,4,5,6,7,}. The gray rectangles illustrate
the bipartition of (β4). For the symmetric root β′ = θ − α[1,4], the
bipartition of (β′4) is similar.
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Figure 8. I ∼= E7,7, β = α{2,4,5,6,7,}. The diagram represents (β4).
The big rectangle contains the roots in Ji and the gray part covers
the roots in H i = (ω̌7 − ω̌3)⊥.
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all γ ∈ (η4)∩HI , either γ is incomparable with η and η′, or γ− η, γ− η′ ∈ Φ. Hence
γ 6∼ η, η′. Moreover, (η4)rHI = {η, η′}, HI separates η from η′, and η ∼ η′. Finally,
(η′4) rHI = {η′}. This concludes the proof. �

6 6 6 6
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4

4
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η

η′

Figure 9. I ∼= E7,7, γ = α{1,3,4,5,6,7,}. The diagram represents (η4).
The gray square covers the roots contained in HI = (ω̌7 − ω̌2)⊥.

6. Triangulations of standard parabolic facets
In this section we prove Theorems 1.1 and 1.2.

Let I be a face ideal of Φ+ and FI = Conv(I) be the corresponding standard
parabolic face. For all J ⊆ I, let

RJ = {R ⊆ J | R reduced}.

Then, let
TI = {Conv(R) | R ∈ RI , R maximal in RI}.

We will prove that TI is a triangulation of FI .
By Propositions 3.1 and 3.2, it suffices to prove the claim when I is an abelian

nilradical of Φ+. Henceforward, we make this assumption. So, there exists a unique
simple root αI ∈ Π such that mαI = 1 and I = (α6

I ). In particular, I is a facet ideal
and FI is a facet of P.

The proof is by induction on rk(Φ) and is based on the existence of triangulation
orders for all facet ideals. We start with two key lemmas.

For each J ⊆ I let Cone(J) be the positive cone generated by J , i.e. the set of
linear combinations of elements in J with nonnegative real coefficients. Moreover, let
[J ] be the saturation of J , i.e.

[J ] = {x ∈ I | ∃ y, z ∈ J y 6 x 6 z}.
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Lemma 6.1. Let J be a saturated subset of I, and {Ji, Jf} be a bipartition of J . Then
Cone(J) = Cone(Ji) ∪ Cone(Jf).
Proof. The claim is obvious if the bipartition is not proper, in particular if |J | 6 2.
The inclusion Cone(Ji)∪Cone(Jf) ⊆ Cone(J) is clear in all cases. We prove the reverse
inclusion by induction on |J |. It is easily seen that, for any K ⊆ J , {K ∩ Ji,K ∩ Jf}
is a bipartition of K. Therefore, it suffices to prove that if the bipartition {Ji, Jf} of
J is proper, there exists a proper saturated subset K of J such that x ∈ Cone(K).

So, let Ji, Jf $ J , x ∈ Cone(J), and x =
∑
β∈J

cββ, with cβ nonnegative real co-

efficients, be a fixed expression of x. If {β ∈ J | cβ > 0} is included in Ji or Jf
we are done. Also if the saturation [{β ∈ J | cβ > 0}] is properly included in J
we are done. Hence, we assume J = [{β ∈ J | cβ > 0}]. This means that, for all
β ∈ Min J ∪ Max J , cβ > 0. Since Ji r Jf and Jf r Ji are an initial and a final
section of J , we have Min(Ji r Jf) ⊆ Min J and Max(Jf r Ji) ⊆ Max J . We fix
β1 ∈ Min(Ji r Jf) and β2 ∈ Max(Jf r Ji). By Definition 5.1, and since J is satu-
rated, there exist γ1, γ2 ∈ J such that β1 + β2 = γ1 + γ2 and β1 < {γ1, γ2} < β2.
Hence, cβ1β1 + cβ2β2 = (cβ1 − cβ2)β1 + cβ2(γ1 + γ2) = (cβ2 − cβ1)β2 + cβ1(γ1 + γ2).
We obtain that, if cβ1 > cβ2 , then x ∈ Cone(J r {β2}), while, if cβ2 > cβ1 , then
x ∈ Cone(J r {β1}). Since β1 and β2 are extremal elements in J , J r {β1} and
J r {β2} are saturated, hence the claim is proved. �

Lemma 6.2. Let J be a saturated subset of I, β∗ ∈ J , β∗ detachable in J , and Jβ∗ =
{β∗} ∪ (Red(β∗) ∩ J). Then, Cone(J) = Cone(Jβ∗) ∪ Cone(J r {β∗}).
Proof. Let J ′ = J r Red(β∗). Then, Cone(J) = Cone(J ′) + Cone(Red(β∗) ∩ J) ⊆
Cone(J ′) + Cone(Jβ∗). Hence, it suffices to prove that Cone(J ′) ⊆ Cone(Jβ∗) ∪
Cone(J r {β∗}).

Let x ∈ Cone(J ′), K = {K ⊆ J ′ | x ∈ Cone(K)}, and d = min{|[K]| | K ∈ K},
where [K] is the saturation of K and |[K]| its cardinality. Then, fix a K ∈ K with
|[K]| = d and let x =

∑
β∈K

cββ, with cβ > 0, be a fixed expression of x.

If β∗ 6∈ K, K ⊆ J r {β∗} and we are done. Hence, let β∗ ∈ K. We will prove
that then K = {β∗}, which yields the claim, since {β∗} ⊆ Jβ∗ . By assumption, β∗ is
extremal in J hence in K. By symmetry, we may assume, without loss of generality,
that β∗ is minimal in K. Then, let β be a maximal element in K. If β 6= β∗, then, by
definition of J ′, we have β∗ . β, hence there exists a middle pair {γ1, γ2} between β∗
and β. If cβ∗ > cβ , we have cβ∗β∗+ cββ = (cβ∗ − cβ)β∗+ cβ(β∗+β) = (cβ∗ − cβ)β∗+
cβ(γ1 + γ2), hence x ∈ Cone([K] r {β}). This contradicts the minimality of |[K]|,
since [K] r {β} = [K r {β}]. Similarly, if cβ∗ < cβ , we obtain x ∈ Cone([K] r {β∗}),
contrary to the minimality of |[K]|. �

Proposition 6.3. For all J ⊆ I, if J is saturated, then
Cone(J) =

⋃
{Cone(R) | R ⊆ J, R reduced}.

Proof. The claim is obvious if rk(Φ) = 1. We assume rk(Φ) > 2 and the claim holds
for any abelian nilradical in any irreducible root system of rank strictly lower than
rk(Φ).

Let J ⊆ I be saturated. The inclusion “⊇” is clear, so it suffices to prove the reverse
one. We assume x ∈ Cone(J) and prove that there exists a reduced subset R of J
such that x ∈ Cone(R).

Let 4 be a triangulation order on I. We distinguish two cases.
(a) First, we consider the case J ⊆ I r SI,4. Let {cβ | β ∈ J} be a fixed set of

nonnegative real coefficients such that x =
∑
β∈J

cββ. Let Ψ = Φ ∩ Span(I r SI,4),
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Ψ1, . . . ,Ψk be the irreducible components of Ψ, Ii = I ∩ Ψi, Ji = J ∩ Ψi. Let xi =∑
β∈Ji

cββ, for i = 1, . . . , k. Then, for all i ∈ {1, . . . , k}, Ii is an abelian nilradical of Ψ+
i

and Ji is saturated in Ψi. Hence, by the induction assumption, there exists a subset
Ri of Ji, reduced relatively to Ψi, such that xi ∈ Cone(Ri). Let R = R1 ∪ · · · ∪ Rk.
Now, R ⊆ J and J is ∼closed, being saturated, hence, by Lemma 5.4, R is reduced
in Φ. Since x ∈ Cone(R), we are done.

(b) Now, we consider the case J 6⊆ I ∩ SI,4. Let

β0 = max4{β ∈ J | x ∈ Cone(J ∩ (β4))}.

If β0 6∈ SI,4, then x ∈ Cone(J ∩ (I r SI,4)). Since J ∩ (I r SI,4) is saturated, being
the intersection of two saturated sets, we are reduced to case (a).

Then, we assume β0 ∈ SI,4. In this case, (β0
4) is saturated (by Definition 5.8 (2)),

hence, J ∩ (β0
4) is saturated. It suffices to prove that there exists a reduced subset R

contained in J ∩ (β0
4) such that x ∈ Cone(R). By definition of triangulation order,

either β0 is detachable in (β0
4), or (β0

4) has a bipartition {Bi, Bf} such that β0 is a
detachable element in both of Bi and Bf . In the first case, we set B = (β0)4. In the
latter case, {J ∩Bi, J ∩Bf} is a bipartition of J ∩ (β0

4) and, by Lemma 6.1, we may
choose a B ∈ {Bi, Bf} such that x ∈ Cone(J ∩B).

In both cases, we set J ′ = J∩B. Then J ′ is saturated, since J and B are. Moreover,
β0 = min4 J

′, hence, by definition of β0, in any expression of x as a nonnegative
linear combination of elements of J ′, the coefficient of β0 is strictly positive. Since
β0 is detachable in B, there exists a detaching hyperplane H for β0 in B. Then,
such an H is a detaching hyperplane also for β0 in J ′. By Lemma 6.2, we obtain
Cone(J ′) = Cone({β0}∪(J ′∩H))∪Cone(J ′r{β0}), hence x ∈ Cone({β0}∪(J ′∩H)).

Thus, there exists a positive real c0 such that x − c0β0 ∈ Cone(J ′ ∩ H). Now,
J ′ ∩ H is contained in the abelian nilradical I ∩ H of (Φ ∩ H)+. Let Ψ1, . . . ,Ψk be
the irreducible components of Φ∩H. Arguing as in case (a), we find R1, . . . , Rk such
that Ri ⊆ J ′ ∩Ψi, Ri is reduced relatively to Ψi, and x− c0β0 ∈ Cone(R1 ∪ · · · ∪Rk).
Let R′ = R1∪ · · ·∪Rk. Then, since R′ ⊆ I ∩H and I ∩H is ∼closed, we have that R′
is reduced in Φ, by Lemma 5.4. Moreover, by definition of β0, we have R′ ⊆ (β0

4),
hence R′ ⊆ (β0

4)∩H. By Definition 5.6, (β0
4)∩H ⊆ Red(β0), hence R = {β0} ∪R′

is reduced. This proves the claim, since x ∈ Cone(R). �

Remark 6.4. For each face Fα and J ⊆ IFα , we have Cone(J)∩Fα = Conv(J), since
(
∑
β∈J

cββ, ω̌α) =
∑
β∈J

cβ(β, ω̌αI ) =
∑
β∈J

cβmα = mα if and only if
∑
β∈J

cβ = 1.

Corollary 6.5. Let

T ′I = {Conv(R) | R ∈ RI , rk(R) = n}.

Then T ′I is a covering of FI .

Proof. By Proposition 6.3 and the above remark, the set of all Conv(R), with R ⊆ I
and R reduced, is a covering of FI . By standard topological arguments, we obtain
that also T ′I is a covering of FI . �

Our next step is to prove that the set T ′I defined in Corollary 6.5 is a triangulation
of the standard parabolic facet FI . For this, it remains to prove that each T ∈ T ′I is a
simplex, and that the intersection of any two T1, T2 ∈ TI is a common face of T1 and
T2. This is proved in next two propositions.

Proposition 6.6. Let R be a reduced subset of I. Then R is linearly independent.
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Proof. We prove the claim by induction on rk(Φ). The case rk(Φ) = 1 is obvious. We
assume rk(Φ) > 1 and the claim true for irreducible root systems of rank less than
rk(Φ). Let 4 be a triangulation order on I and β = min4R.

First, we consider the case rk(β4) = n and β detachable in (β4). Let H be a
detaching hyperplane for β in (β4), Ψ1, . . . ,Ψk be the irreducible components of
Φ∩H, and Ri = (Rr{β})∩Ψi, for i = 1, . . . , k. Then, Ri is contained in the abelian
nilradical I ∩Ψi of Ψ+

i and is reduced, relatively to Ψi. By the induction assumption,
Ri is linearly independent, for i = 1, . . . , k. Since Rr{β} = R1∪ · · ·∪Rk and β 6∈ H,
we obtain that Rr {β} and R are linearly independent, too.

If rk(β4) = n and β is not detachable in (β4), there exists a bipartition {Ji, Jf}
of (β4) such that β is a detachable element both in Ji, and in Jf . By Definition 5.1,
either R ⊆ Ji, or R ⊆ Jf , hence we can argue as in the previous case.

If rk(β4) < n, then R is contained in the abelian nilradical I ∩ Span(I r SI,4), in
Φ ∩ Span(I r SI,4) and we may argue by induction as above. �

Proposition 6.7. Let R1, R2 be reduced subsets in I. Then, Conv(R1)∩Conv(R2) =
Conv(R1 ∩ R2). In particular, Conv(R1) ∩ Conv(R2) is a common face of Conv(R1)
and Conv(R2).
Proof. By Proposition 6.6, Conv(Ri) is the simplex with set of vertexes Ri, for i = 1, 2,
hence Conv(R1 ∩ R2) is common face of Conv(R1) and Conv(R2). Hence, it suffices
to prove the first statement. The inclusion Conv(R1)∩Conv(R2) ⊇ Conv(R1 ∩R2) is
clear. We prove the reverse one, by induction on rk(Φ).

If Cone(R1) ∩ Cone(R2) ⊆ Cone(R1 ∩ R2), then, by Remark 6.4, the analogous
relation for the convex hulls holds. So we work with cones.

For rk(Φ) = 1 the claim is obvious. Let rk(Φ) > 1, 4 be a fixed triangulation order
on I, and β = min4(R1 ∪R2). We may assume β ∈ R1.

(a) If rk(β4) < n, then R1, R2 ⊆ I r SI,4. Let Ψ1, . . . ,Ψk be the connected
components of Φ ∩ Span(I r SI,4), and Rj,i = Rj ∩Ψi, for j = 1, 2 and i = 1, . . . , k.
Each Rj,i is a reduced subset in the abelian nilradical I ∩ Ψi of Ψ+

i , hence by the
induction assumption Cone(R1,i) ∩ Cone(R2,i) ⊆ Cone(R1,i ∩ R2,i), for each i in
{1, . . . , k}. This easily implies the inclusion Cone(R1) ∩ Cone(R2) ⊆ Cone(R1 ∩R2).

(b) Next, let rk(β4) = n, β be detachable in (β4), H be a detaching hyperplane,
and Ri = Ri ∩H for i = 1, 2. Let H+ and H+, H− and H− be the open and closed
half spaces determined by H in E. By Definition 5.6, β belong either to H+, or to
H−. We may assume β ∈ H+, without loss of generality. Then (β4) r {β} ⊆ H−

and, if γ ∈ (β4) ∩ H−, then β ∼ γ. It follows that, for a fixed i ∈ {1, 2}, either
Ri ⊆ H+, or Ri ⊆ H−. This implies Cone(Ri) ∩ H = Cone(Ri). Moreover, since
we are assuming β ∈ R1, we have then R1 ⊆ H+, and R1 r {β} = R1. Now, we
distinguish two subcases.

(b1) Let β = min4R1 ≺ min4R2. Then, R2 ⊆ H−, hence R1 and R2 are weakly
separated by H. It follows easily that R1∩R2 = R1∩R2 and Cone(R1)∩Cone(R2) =
Cone(R1)∩Cone(R2). Arguing as in case (a), with Φ∩H in place of Φ∩Span(IrSI,4)
and Ri in place of Ri, by the induction assumption we obtain Cone(R1)∩Cone(R2) ⊆
Cone(R1 ∩R2), and hence the claim.

(b2) Let β = min4R1 = min4R2. Then both R1 and R2 are contained in H+,
and, for all x ∈ Cone(R1)∩Cone(R2), there exist ci ∈ R and xi ∈ Cone(Ri) (i = 1, 2)
such that x = c1β+x1 = c2β+x2. Since x1, x2 ∈ H and β 6∈ H, we must have c1 = c2
and hence x1 = x2. It follows x1 ∈ Cone(R1 ∩R2) and hence x ∈ Cone(R1 ∩R2).

(c) Finally, let rk(β4) = n, β not be detachable in (β4), and {Ji, Jf} be a biparti-
tion of (β4). By definition, each of R1 and R2 is contained in exactly one of Ji and Jf . If
both are contained in Ji, or both in Jf , we are reduced to case (b). Otherwise, we may
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assume R1 ⊆ Ji, R2 ⊆ Jf , R1∩(JirJf) 6= ∅, and R2∩(JfrJi) 6= ∅. LetH be a separat-
ing hyperplane for the bipartition {Ji, Jf}, and Ri = Ri∩H, for i = 1, 2. For a fixed i in
{1, 2}, Conv(Ri) is contained in one of the half-spaces determined by H in E, hence
H ∩ Cone(Ri) = Cone(Ri). Moreover, Cone(R1) and Cone(R2) belong to opposite
half-spaces with respect to H, hence, Cone(R1)∩Cone(R2) = Cone(R1)∩Cone(R2).
Moreover, R1 ∩ R2 = R1 ∩ R2. Arguing by induction as in case (b1), we obtain
Cone(R1) ∩ Cone(R2) ⊆ Cone(R1 ∩R2), hence the claim. �

Corollary 6.5 and Propositions 6.6 and 6.7 imply directly the following theorem,
which is Theorem 1.1.

Theorem 6.8. Let F be a facet of P, IF be the corresponding facet ideal, and

T ′IF = {Conv(R) | R ∈ RIF , rk(R) = n}.

Then T ′IF is a triangulation of F.

Corollary 6.9. Each reduced subset in I is contained in a maximal reduced subset.
Moreover, each maximal reduced subset in I is a linear basis of E.

Proof. Let R0 be a reduced subset in I such that rk(R0) < n. Let x =
∑
β∈R0

cββ
with cβ > 0 for all β ∈ R0. By Corollary 6.5, there exists a reduced subset R in I such
that rk(R) = n and x ∈ Conv(R). Then, by Proposition 6.7, x ∈ Conv(R0 ∩ R). By
assumption, for each proper subset R′ of R0, x 6∈ Conv(R′), hence R0 ∩ R = R0. It
follows R0 $ R. Thus, a maximal reduced subset in I has rank n. By Proposition 6.6,
it is also linearly independent, hence, it is a linear basis of E. �

We can finally prove the following result, which is equivalent to Theorem 1.2. The
proof refers to the case by case analysis of Proposition 5.11.

Theorem 6.10. Let F be a facet of P, IF be the corresponding facet ideal, and R be a
maximal reduced subset in IF . Then R is a Z-basis of the sub-lattice of L(Φ) generated
by (Π r {αF }) ∪ {mαFαF }, where αF is the simple root such that F = FαF .

Proof. Let I = IF . By Proposition 3.2 and Remark 3.3, it suffices to prove the claim
in case I is an abelian nilradical of Φ+, i.e. mαF = 1. Thus we have αF = αI and
I = (α6

I ), as before. Under this assumption, we have to prove that R is a Z-basis
of L(Φ).

Let 4 be a triangulation order of I and β = min4R. If β is detachable in (β4), let
J = (β4) r {β}. If β is not detachable in (β4), let {Ji, Jf} be a bipartition of (β4)
such that β belongs to Ji and Jf and is detachable in them. In this case, R is contained
in exactly one of Ji and Jf : we define J = Ji if R ⊆ Ji, and J = Jf otherwise. In
any case, let H be a detaching hyperplane for β in J . Then, Red(β) ∩ J = H ∩ J ,
hence Rr {β} is a reduced subset in the abelian nilradical I ∩H of (Φ ∩H)+. Since
rk(R r {β}) = n − 1, also rk(I ∩H) = rk(Φ ∩H) = n − 1. In particular I ∩H has
nontrivial intersection with each irreducible component of Φ∩H. By Lemma 3.4, each
of these intersections is a nontrivial abelian nilradical in its irreducible component,
hence, by induction on the dimension, Rr {β} is a Z-basis of L(Φ ∩H).

Now, we first consider the case in which β is long and is equal to min J or max J
with respect to standard partial order. In this case, as seen in the proof of Lemma 5.7,
we may take H = (β∨− ω̌αI )⊥. It follows directly that all simple roots different from
αI and perpendicular to β belong to H. For all other simple roots α 6= αI , either
(α, β∨) = 1 and β − α ∈ H, or (α, β∨) = −1 and β + α ∈ H. By the induction
assumption, we obtain that, for all α ∈ Π r {αI}, either α, or one of β ± α, is
an integral linear combination of R r {β}. It follows that the Z-span of R contains

Algebraic Combinatorics, Vol. 1 #1 (2018) 143



Paola Cellini

(Π r αI). Since β ∈ R and cαI (β) = 1, it follows that the Z-span of R contains Π,
which yields the claim.

Looking at the proof of Proposition 5.11, we can check that also in the remaining
cases we may take H so as to satisfy the following condition: for all α ∈ Π r {αI},
either α ∈ H, or one of β ± α ∈ H. Arguing as in the previous case, we obtain that
R is a Z-basis of L(Φ). �

7. Concluding remarks
We may transfer a triangulation TF of a standard parabolic facet F to all facets in
its orbit, by the action of the Weyl group W . If w ∈ W and Stab(F ) = {w ∈ W |
wF = F}, then, for all v ∈ w Stab(F ) we have that vTF is a triangulation of wF .
Thus, a set of representatives of the left cosets inW/Stab(F ) determines an extension
of TF to the whole orbit WF . We can prove that, by a suitable choice of the coset
representatives for all standard parabolic facets, we may obtain a triangulation of
the whole boundary ∂P of the root polytope P. Let T be a triangulation of ∂P
obtained by extending, through the action of W , the triangulations of the standard
parabolic facets provided in Section 6. If we set T0 = Conv(T ∪ {0}), for or each
T ∈ T , then T0 := {T0 | T ∈ T } is a triangulation of P. Theorem 6.10 allows
to compute the volumes Vol(T0), which are constant on each facet orbit. Thus, the
explicit enumeration of the maximal reduced subsets of facet ideals, together with the
results in [6] on face orbits, would allow to compute the volume of P. For the root
types A and C, this is done in [4]. The proof of Proposition 5.11 gives an explicit
procedure for enumerating the maximal reduced subsets, hence provides an effective
way for making a similar computation for the remaining root types.

In [4] it is also proved that, for the root types A and C, the triangulation T0 of P
restricts to a triangulation of the positive root polytope P+ = Conv(Φ+ ∪ {0}). In
fact, this is a proof that, for these root types, the intersection of P with the cone on
Φ+ is equal to P+. This is one of the special properties of the root polytope that hold
only for the types A and C (see also [5]). Indeed, it is easy to see that, for all other
root types, P+ is properly contained in P∩Cone(Φ+) [10]. Hence, in these cases, from
a triangulation of the standard parabolic facets, we cannot obtain a triangulation of
the positive root polytope in a natural way.
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