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Supercharacter theories of type A unipotent

radicals and unipotent polytopes

Nathaniel Thiem

ABSTRACT Even with the introduction of supercharacter theories, the representation theory of
many unipotent groups remains mysterious. This paper constructs a family of supercharacter
theories for normal pattern groups in a way that exhibit many of the combinatorial properties of
the set partition combinatorics of the full uni-triangular groups, including combinatorial index-
ing sets, dimensions, and computable character formulas. Associated with these supercharacter
theories is also a family of polytopes whose integer lattice points give the theories geometric
underpinnings.

1. INTRODUCTION

Supercharacter theory has infused the representation theory of unipotent groups with
the combinatorics of set partitions. Specifically, set partitions index the superchar-
acters of the maximal unipotent upper-triangular subgroup UT of the finite general
linear group GL [3, 17], and similar theories exist for the maximal unipotent sub-
groups of other finite reductive groups [4, 5]. However, while there are supercharacter
theories for other unipotent groups, they do not generally exhibit this computable
and combinatorial nature. This paper seeks to define a natural family of superchar-
acter theories for the normal pattern subgroups of UT. As an added bonus, we not
only obtain a combinatorial description for these theories, but also gain geometric
underpinnings coming from a family of integral polytopes.

Diaconis—Isaacs defined a supercharacter theory of a finite group G as a direct ana-
logue of its character theory, where they replacing conjugacy classes with superclasses
and irreducible characters with supercharacters [12]. Their approach is based on An-
dré’s adaption of the Kirillov orbit method to study UT, and the underlying axioms
are calibrated to preserve as many properties of irreducible characters and conjugacy
classes as possible. For example, the supercharacters are an orthogonal (but not gen-
erally orthonormal) basis for the space of functions that are constant on superclasses.
This definition has given us new approaches to groups whose representation theories
are known to be difficult (eg. unipotent groups). Not only can these new theories be
combinatorially striking [1], but they can also be used in place of the usual character
theory [6] in applications, they give a starting point in studying difficult theories [13],
or give character theoretic foundations for number theoretic identities (eg. [8, 14]).
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The supercharacter theories of this paper are fundamentally based on André’s
original construction for UT [3] and Diaconis—Isaacs’ later generalization to algebra
groups [12]. These constructions use two-sided orbits in the dual space ut* of the cor-
responding Lie algebra ut to construct the supercharacters. In the algebra group case
the group UT acts on ut* by left and right multiplication (technically pre-composition
by left and right multiplication on ut). In this paper we modify this construction by
instead acting by parabolic subgroups of GL. The resulting theory is coarser but far
more combinatorial in nature. In particular, we obtain statistics such as dimension,
nestings and crossings that generalize the corresponding set partition statistics [10],
and in Theorem 5.7 we give a character formulas with a “factorization” analogous to
the well-known UT-cases.

For each supercharacter theory there is an associated polytope whose integer lattice
points index the supercharacters of the theory. Thus, the supercharacter theories could
in principle give a categorified version of the Ehrhart polynomials of these polytopes.
These polytopes include all transportation polytopes [11], and may be viewed as a
family of subfaces of transportation polytopes. This point of view not only gives
a geometric approach to these supercharacter theories, but it also re-interprets set
partitions as vertices of a polytope. Since I am unaware of other contexts where these
polytopes may have been studied, I will refer to them as unipotent polytopes. At
present we do not understand the significance of this geometry in the representation
theory of unipotent groups, and this seems to be a promising direction for future
work.

Section 2 reviews some of the background material on unipotent groups and su-
percharacter theories. Section 3 defines the particular unipotent groups we will focus
on. Pattern groups arise naturally in context of groups of Lie type, since they are
unipotent groups invariant under conjugation by a maximal split torus. The unipo-
tent groups we consider are effectively a block-analogue to pattern groups where we
define a notion of invariance under the action of a fixed Levi subgroup. Section 4
shows how to use this Levi subgroup to construct supercharacter theories for the
group, and shows how the supercharacters (and superclasses) are indexed by the
Z=o-lattice points of a polytope. Section 5 computes the supercharacter formulas for
these theories, and discusses some consequences of these results.

In addition to teasing out the geometric implications of the underlying polytopes,
this paper also gives a framework for studying random walks on the integer lattice
points of unipotent polytopes, and representation theoretic Hopf structures on them.
However, both these directions are beyond the scope of this paper.

2. PRELIMINARIES

This paper is primarily concerned with unipotent subgroups of the finite general linear
groups. It is standard to index the rows and columns of the corresponding matrices by
the set {1,2,..., N} in the usual total order, but recent work [2] has suggested that
it is better to instead allow an arbitrary set of size N to index the rows and columns
and fix a total order A/ on that set. However, the paper may be easily read with A/
as the total order 1 <2 < --- < N.

This section reviews the relevant unipotent groups, a combinatorial interpretation
of normality, and some of the standard supercharacter theories for these groups. The
last section gives a quick refresher of g-binomial coefficients.

2.1. SUBGROUPS OF LIE TYPE. Let A be a fixed total order of a finite set with N
elements and fix a finite field F; with ¢ elements. Let GLxs denote the finite general
linear group on matrices with rows and columns indexed by our finite set in the order
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dictated by N. If char(F,) = p, then a Sylow p-subgroup of GL is the subgroup of
unipotent upper-triangular matrices

UTx = {g€ GLx | (9 —Idw)i; # 0 implies i <pr j}.
The normalizer in GLs of UT s is the Borel subgroup
By ={ge GLx | g;5 # 0 implies i <pr j} = Nar, (UTy).

Let
qu = UTN’ — IdN

denote the corresponding nilpotent F-algebra. If n < utys is any subalgebra, then we
obtain a subgroup Idy + n € UT, called and algebra subgroup. If P is a subposet of
N on the same underlying set, then we call the algebra subgroup

UTp =Idy + utp € UTy, where utp = {z € uty | z;; # 0 implies i <p j},

a pattern subgroup of UT nr. Note that transitivity in the poset P exactly implies that
this UTp is closed under multiplication.

2.2. NORMAL POSETS. In general, a subposet P of a poset Q does not give a normal
subgroup UTp of UTg. However, there is a straight-forward condition on the poset
that characterizes this group theoretic condition: a subposet P < Q is normal if
j <p k implies ¢ <p k and j <p [ for all i <g 7 and k <g [. In this case, we write
P<Q.

Alternatively, if sInt(Q) is the strict interval poset on the set {(7,7) | i <g j} given
by (4, k) <sme(g) (4,1) if and only if i <g j <g k <g I, then P is normal in Q if and
only if sInt(P) is a dual order ideal of sInt(Q). In fact, in this case, sInt(P) exactly
gives the coordinates of the Ferrer’s shape F' or the coordinates allowed to be nonzero
in UTp. For example,

. (1,5)
| 7N
4 5 “1 (1,4) (2,5)
X SN N
3 5 C ‘ in interval posets is (1,3) (2,4) (3,5)
| N NN
1 1 (1,2) (2,3) (3,4) (4,5)

where the boxed entries are correspond to the subposet.

There are a number of combinatorial interpretations of normal posets of the total
order . For N € Zx, let Dy denote the Ferrer’s shape (N —1, N —2,...,1), where
we right justify the rows. For example,

L]
Ds = |

PROPOSITION 2.1. There are bijections

Dyck paths from - normal sub- - sub-Ferrers
(0,0) to (2N, —2N) posets of N shapes of Dy

d'p <« P [and Fp.

where (2i—1,2§—1) is NorthEast of dp if and only if i <p j if and only if (i,j) € Fp.
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ExaAMPLE. For example, if 2N = 10, then

1 ° ° ° °
. 4 5
2 ° ° o ><
3 [ o — 3 2 —

where the shaded region accentuates the relevant points NorthEast of the Dyck path.

2.3. SUPERCHARACTER THEORIES OF UNIPOTENT GROUPS. Supercharacter theories
for finite groups were first defined in [12], generalizing work by André studying repre-
sentations of UT s (a series of papers starting with [3]). There are numerous equivalent
formulations of a supercharacter theory, but the following seems most suitable for the
purposes of this paper.

A supercharacter theory (K, X) of a finite group G is a pair, where K is a partition
of G and X is a set of characters, such that

(SC0) The number of blocks of K is the same as the number of elements in X'.
(SC1) Each block K € K is a union of conjugacy classes.
(SC2) The set

Xc{0:G—->C|0(g) =6(h),g,he K,K € K}.
(SC3) Each irreducible character of G is the constituent of exactly one element in X.

We refer to the blocks of K as superclasses and the elements of X as supercharacters.

While we have many ways of constructing supercharacter theories, general con-
structions are not well-understood. That is, given a finite groups, it is a hard problem
to determine its supercharacter theories. Some groups have remarkably few super-
character theories, such as the symplectic group Spg(F2) with exactly 2 [9], and some
groups have surprisingly many, such as C5 x Cg with 297 distinct supercharacter the-
ories. However, for this paper we follow the basic strategy laid out by [12] for algebra
groups.

Let Idy + n € UT s be an algebra subgroup. Then Idy + n acts on both n and its
vector space dual n* by left and right multiplication, where

(a-y-b)(z) =y(a  zb™t), for a,beIdy +n, z €n, y e n*.
Fix a nontrivial homomorphism 9 : Fy — GL;(C) = C*. In this situation [12] define
a supercharacter theory given by

o AG-superclasses of Idy + n: The set partition {Idy + (Idy + n)z(Idy + n) |
xen}of Idy +n.
o AG-supercharacters of Idy + n: The set of characters

” |(Idy + n)y| *
oo — Yoz |yen*t.
{ AG |(IdN + n)y(IdN + n)‘ ze(IdN+nZ)y(IdN+ﬂ) }

REMARK 2.2. In the case where n = uty, this supercharacter theory gives a nice
combinatorial theory developed algebraically by André [3] and more combinatorially
by Yan [17]. However, in general even this supercharacter theory may be wild for
algebra subgroups. In fact, we do not even understand it for pattern subgroups.

For the purposes of our generalization, there is a slight coarsening of the AG-
supercharacter theory for UT zs called the Bjs-supercharacter theory that exists be-
cause uty and ut}, are in fact permuted by left and right multiplication by Bar.
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o Byr-superclasses of UT i The set partition {Idy + ByaxBar | € utpy} of
UTy.
e Bjyr-supercharacters of UT ar: The set of characters

{ij\/z 2 ﬁoz|yeut}“\f}.

z€BanyBar

In this case, the supercharacters and superclasses are indexed by set partitions of the
underlying set. In the following sections it is best to view set partitions as functions
At sInt(N) — {0, 1} such that for Ay =1 = \j;, we have ¢ = j if and only if k£ = [ (or
placements of non-attacking rooks on a triangular chessboard). The primary purpose
of this paper is to generalize this set-up to nice families of pattern groups.

REMARK 2.3. This version of the supercharacters is scaled slightly from the conven-
tional choice. That is, usually each character x¥, is multiplied by
[UTnyl
[UTnyUT |
This scaling removes some excessive multiplicities. However, in this paper the “best"

scaling factor for the supercharacters below is not clear, so the paper is written with
them removed entirely. This choice implies that in fact

X = D, vy

PeXy
for some set of irreducible characters X,.

2.4. ¢-BINOMIALS AND WEIGHTS. The symbol ¢ will generally be the size of a finite
field, but for this section may treat ¢ as an indeterminate. For n, k € Z>, let

[Z]_[k]'[[g]lk]' where  [n]! = [n]{n 1] [2][1] and [”]:q;—_11~

In this subsection, we review some other interpretations and results associated with
these g-binomial coefficients.
Let S, be the symmetric group on n letters. Then

[n]'= > ¢™™,  where  inv(w)=#{1<i<j<n|w()>w(j)}
weS,
In particular, it will be useful to note that since [n]! is palindromic of degree (3),
1 1
1 — = —[n]L
) T g = gl
Let B < C, where C' is a set with a total order C. Let
Wt% {AcC} — L=
A — #{(a,b) e Ax B|a<c b},

and for A, B € C, let
wth(A) = wt, (B).

Then
o [ 5 e g b
k‘ q Ac{1,..., n} Acii, o
|Al=k e
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3. A PARABOLIC GENERALIZATION OF PATTERN SUBGROUPS

In this section, we build a family of pattern subgroups of UT sr; they will all be normal,
and each will have a family of supercharacter theories, defined in Section 4. The choice
of a subgroup with an associated supercharacter theory will determine a polytope,
giving the theory a geometric foundation.

3.1. PARABOLIC POSETS AND UTg. We begin by defining a family of unipotent
groups that appear naturally in the theory of reductive groups, the unipotent radi-
cals of parabolic subgroups. It turns out that for GLxs, these unipotent groups are
pattern groups and their associated posets are easy to characterize. In the Section 4,
each unipotent radical UTg will determine a family of supercharacter theories.

A subposet Q is parabolic in N if there exists a set composition (Q1, Qa, ..., Qp)
of the underlying set such that a <g b if and only if a € Q; and b € Q; with 7 < j.
These subposets are necessarily normal, where the corresponding Dyck path always
returns down to the diagonal before moving right again. We will write Q <i,, M. For
example, if N is 1 < 2 < 3 < 4, then the parabolic subposets (with associated set
compositions) are

4

3 Z\l /4\ 3\ /4 4 2.3 4

[ > 30 2 3 2 1IN, NI 01 2 3 4
% 1/ \2 \1/ \1 12 3 1

({13:{21,3%.{4}) ({1,21,{3},{4) ({1},{2,3},{4}) ({1},{2},{3,4}) ({1.2,3},{4}) ({1},{2,3.4}) ({1,2:3.4})

Since given a total order A the sizes of the blocks of the set composition completely
determines Q, we deduce the following proposition.

PROPOSITION 3.1. There is a bijection

by - Parabolic sub- . integer com-
posets of N positions of N

= (|Q1|37|Q/|)
For an integer composition 8 = N and an underlying total order N, define
UTQ = UdeI‘yfl(B)

(note that bdry!(f) makes no sense without \).
Every parabolic subposet Q in A” with 3 = bdry(Q) has a corresponding Levi
subgroup

GLg,| O |---] O
Sl oo
0 -+ | 0 |GLg,

such that UTjs is the unipotent radical of the parabolic subgroup
Pp = Lg x UTs = NaLy(q)(UTp).

REMARK 3.2. The Lie theoretic language of parabolics, Levis and unipotent radicals
is merely given for context. The reader is welcome to ignore the terminology and focus
on the definitions.
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3.2. LEVI COMPATIBLE POSETS AND UT g py. This section defines a family of sub-
groups of UT 3 in a way that gives a “block" analogue to pattern groups. In the ensuing
sections we will primarily be interested in the subgroups of this nature that are in
fact normal in UTg.

A Levi compatible subposet P of Q <, NV is a subposet such that

Lidry(@) € NaLy (g (UTp).
In this case, we write P <. Q.

PROPOSITION 3.3. If Q is parabolic with set composition (Q1,Qa,...,Qp) and § =
bdry(Q), then there is a bijection

fatn - Subposets of N Levi compatible
Wi l1<2<-.. <0 subposets of Q
— fatg(P).
where

a <taty(P) b if and only if a€ Q;, be Q; withi <p j.
For fat(P) Sje bdry ™ *(8), let
UTg,p) = UThats(P),
so that UTg = UT g ») where L is the usual total order on {1,2,...,¢}.

EXAMPLES.

(E1) All subposets are Levi compatible with the total order A. This notion there-
fore gives a generalization of “pattern subgroups" to arbitrary unipotent radicals of
parabolics.

(E2) If Nis 1 <2 < 3 <4, then

s 234
1 - 4 1723’ 17
and
A
2 3 4 4 2 3
N2 w , /N S N
1 4 1 2 3 1 2 3 1

where the shaded elements are treated as a single element.

3.3. UNIPOTENT POLYTOPES. Fix an integer composition g = (f1,...,0¢) = N and
let P be a normal subposet of 1 < 2 < --- < £ with corresponding Ferrer’s shape F'.
F

The unipotent polytope (3,P) is the convex polytope in the positive quadrant R2
determined by the inequalities

{Z Tij < By, Z Tik < Bj

1<pjJ j<pk

1<j<£}

REMARK 3.4. If F is the Ferrer’s shape corresponding to P, then one may view the
unipotent polytope as possible fillings of the boxes of F' by non-negative real numbers
such that the row and column sums are bounded by . Thus, the dimension of the
polytope is the number of boxes in F'.
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EXAMPLES.
(E1) If 8 =(2,3,1,1,5), and

then the equations 15 < 2,295 < 3,235 < 1,215 + 225 + 235 < 5 give the polytope

4 Z15

x35
(E2) In general, the unipotent polytopes (8,P) where the corresponding Ferrer’s
shape F' is a rectangle have transportation polytopes as distinguished faces (points
where row and column sums all equal their bound). They are a subfamily correspond-

ing to abelian unipotent groups. In this case, the bounds on the row sums and and
the bounds on the column sums are independent.

Unipotent polytopes match up with Levi compatible sub-posets in the following
way.

PROPOSITION 3.5. Let N be a total order on a set with N elements and let 3 = N.
Then the following are equivalent:

(P1) (B,P) is a unipotent polytope,
(P2) fats(P) <. bdry *(8),
(P3) Pﬁ < NGLN(q) (UT(ﬁ’p)).

Proof. Let @ = bdry ™~ '(f), and let £ be the usual total order on {1,...,4(5)}.

If (8, P) is a unipotent polytope, then by definition P<1 L. But then by Proposition
3.3, fatg(P) Sy fatg(L) = Q, and fatg preserves normality.

If fat@(P) <c Q, then UT(B,P) < UTﬂ and ng < NGLN(q) (UT(B’P))' Thus,

Pﬁg = Lﬁg X UTﬁ c NGLN(q)(UT(,B,P))'

If Ps < NGLN(q) (UT(B,']))>7 then UT(ﬁ,»p) < UTg, so fatg('P) < Q = fatﬁ(ﬂ) and
since fatg preserves normality, P < L. O

REMARK 3.6. For a fixed total order A/ with NV elements, the function

unipotent polytopes N normal sub-
(B,P) with |3] = N groups of UT s

(B,P) — UT 5,7
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is not injective, since, for example,
10 =
UT 3 4 = 0 1 o .
@as,[xp | 0010 (22),])
ro2 0001
On the other hand, for a fixed 8 = N
unipotent poly- N normal sub-
topes (3, P) groups of UT s
B.P) - UT 5,7
is injective. Note that UT s has many normal subgroups that are not pattern sub-

groups, so this function is not surjective; for example, any proper nontrivial subgroup
of the center (= F/) is not a pattern subgroup.

4. FAMILIES OF PARABOLIC SUPERCHARACTER THEORIES

The data in a unipotent polytope (8, P) also gives a natural supercharacter theory
to a corresponding unipotent group UT g py. This section describes this theory, and
shows that the supercharacters/superclasses are indexed by the integer lattice points
contained in the polytope (8, P).

4.1. SUPERCHARACTER THEORY DEFINITION. Let (8,P) be a unipotent polytope
with g &= N. Then

ut,p) = UT(s,p) —ldy
is an IFy-vector space with basis

{eij | 1 <taty(P) I} where  (esj)k1 = 0(i 5, (k1)
The dual space
ut(y py = Homp, (ut(s p), Fy)
has dual basis
{e;"j Jutgpy — Fy

x — Xij

{ <fat5(77) j} .
The group Ps acts on both utgp) and utZ"B P by left and right multiplication,
where
(a-y-b)(z) =y(atwb™t), forze ut(g py, Y € utz"ﬁp), a,be Pg.
These actions give a natural supercharacter theory for UT g p).
o Pg-superclasses of UT g p): The set partition {PsxPs + Idy | 2 € ut(gp)} of

UTg,7)-
e Pg-supercharacters of UT g p): The characters
(3) {x% | PsyPs € Ps\ut(s p)/Ps}, where xj = Z Yoz

ZEPByPg

PROPOSITION 4.1. If (8,P) is a unipotent polytope, then the Pg-superclasses and the
Pg-supercharacters form a supercharacter theory of UT g py.

Proof. The following conditions are straight-forward to check:

(SCO) The fact that the number of G orbits on a vectors space V is the same as the
number of G-orbits on V* shows that there are an equal number of super-
classes and supercharacters (see [12, Lemma 4.1] for an analogous argument).

(SC1) The superclasses are unions of conjugacy classes.

(SC2) The supercharacters are constant on superclasses.
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It therefore suffices to show that Pg-supercharacters are in fact orthogonal characters
(rather than just class functions) that collectively have the irreducibles of UT g py as
constituents. By definition,

xp= ), dez

zePﬁ yP[g

UT (5,72 UT (5,7 €P5(UT (3,2 yUT (5,7)) Ps " 2€UT (5,72 UT(5,7)
!
UT0) 2 UT )] o
, AG-
[UT (5,2

(4)

UT(s,7)2'UT (5,7)€Ps(UT(5,7)yUT (5,7)) P

Thus, Xzé is a Zxsp-linear combination of characters and so is also a character. Fur-
thermore, since each AG-supercharacter appears in a unique Pg-supercharacter, the
Pgs-supercharacters are orthogonal and collectively have all the irreducibles as con-
stituents. g

REMARKS 4.2.
(R1) The unipotent polytope ((1V), N') recovers the Bjr-supercharacter theory of
UT from Section 2.3 (also studied in [7]).
R2) Since By = P~y € P3, we can coarsen (4) to get
() B

5) W= N iy

P(lN)Z/P(1N>§P/3yP5

This formula will be more useful below since the Xfi N) have nicer character formulas.
(R3) In practice, one often scales the supercharacters by some factor that divides
the multiplicities of the irreducible constituents. In this case, there does not seem to
be an obvious choice, so we have omitted the scaling factor. However, (4) implies that
one may divide by
[UT5,7)yUT (5.7
[UT 5,7yl

and still have characters.

(R4) An advantage of our definition of the supercharacters (without any scaling)
is that it is easy to construct the corresponding modules. For y € u‘cz“ﬁﬂy)7 define the
UT 3,p)-module MY by a C-basis

{ | z e Pﬂypﬁ}

with an action

u-[z]="Yoz(u ' —=Id)[uz]  forue UT(gpy, z € PsyPs.

(R5) The paper [16] observes that when a pattern subgroup UTp is normal in
UT s, then it is in fact a union of AG-superclasses (in some sense “supernormal). In
this sense, the Pg-supercharacter theory makes UT g p) a supernormal subgroup of
UTsg.

4.2. THE COMBINATORICS OF THE INDEXING SETS. For a unipotent polytope (53, P)
with Fp as in Proposition 2.1, let

s _ [N Fp — 2o
=

RS Aijsﬂj,lsjgz}
k i
(. k)eFp (i.9)eFp

be the set of Zs-lattice points contained in or on (3, P).
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EXAMPLES.
(E1) The set

(41,2) 4 [o] 4 4 [o] 4 4
T/s\ = 1|0} 1[0} 11} 11} 1ol
1 2 2 2 2 2 2

where the entries shaded in gray give the bounds for each row and column.
(E2) If 8 = (1™,n) with m < n and

AN

then ’Tg is the set of vertices of the m-dimensional hypercube.
(E3) If N =2m, and

m+1 m+2 N
1 2 m

N
then T7§1 ) is the usual basis for the rook monoid.
N
(E4) If \V is a total order of a set A, then the set Tj\(fl ) is in bijection with the set

N
of set partitions of A. Specifically, \ € ’TA(/l ) we have Aab € {0,1} for all coordinates
a < b; the corresponding set partition is obtained the transitive closure of the relation
placing a,b € A in the same block whenever A\, = 1.

N
REMARK 4.3. Given a unipotent polytope (5,P), we may in fact identify ’7;;1[3()73)

with subsets of ut(1n) fat,(p)) and utz“( In particular, fix injections

1), fatg(P))"

T(lN) — utqn~ T(lN) — ut®
fatz (P) ((1N) fatg(P)) d fatg (P) ((1N),fat s (P))
B e = Y e at A

i<pjJ i<pj

—~
(e
=

k Lok
— ey = Z Aij€is-

The following theorem establishes the connection between Ps-supercharacter the-
ories and Zx-lattice points in unipotent polytopes.

THEOREM 4.4. For (8,P) a unipotent polytope,

{ Pg —superclasses} T, { Pg —superchamcters}
of UT(s,p) F of UT(s,p)

Proof. The number of Pg-supercharacters and Pg-superclasses is the same, so this
proof focuses on the left bijection.

Let AV be the underlying total order and let Q = bdry™* (8) with corresponding set
composition (Q1, ..., Q). Since By = Pisiy © Ps, every Pgs-superclass is a union of
Byr-superclasses (which are indexed by set partitions, as described in the last remark

N
of Section 2.3). That is, for each u € UT 4 p), there exists a subset A, < 7;&5()77),
such that
Py(u—1dy)Ps = | | ByeaBuy.
€AY

If  is a matrix with row/column set S, then let Resg(x) denote the submatrix

obtained by using only the rows and columns in the subset R € S. The remainder of
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the proof shows that

_ | Pg-superclasses 8
rk'{ of UT(s,p) } 7

(7) . dorp tka, : Fp — Zo
u— — .
5( N)Ps (1,4) — rank(ReSQiqu(e,]))

gives a well-defined (does not depend on the choice of i € A,,), bijective function.
To see well-defined, suppose fi,7 € A,. Since UTg < UT s, we have that e; = aezb
for some a,be Lg = GLg, x GLg, x --- x GLg,. Thus,

rank (ResQWQ]_ (eﬁ)) = rank (ResQNQj (ae;b))
= rank (RGSQiUQi (a)Resg, g, (er)Resg, Lo, (b))
= rank (ResQiqu (e;,)).

M)

To see injectivity, fix € ’7;(;8(7;), and let pu € 7;5 be given by

ij = rank (ResQNQJ. (ef,)).
Define e, € ut(g py by

0- IdBi_Zi<jgk/”j 0|0 0 0
0 0|0|wy,, 0
(8) Reso, Lo, (e,) = 0 0|0 0 0
0 0|0| 0 0
0 0|0] 0 |0- Idﬁk—Z,-gKk e
where ~
0 1
Wy, = e GL,,.
1 0 ]
Then

rank (ResQiuQ]. (e”)) = rank (ReSgiqu (69))

for all i <p j.
Since each set Q; of rows and Q) of columns has the same number of ones for e,
and ey, there exist permutation matrices Iy, 7, € GLg, (F,) such that

l1 0 T1 0
€ = €y

0 ly 0 Ty

Thus, e; and e, are in fact in the same superclass, and each superclass has a distin-
guished element e,,. O

REMARKS 4.5.

R1) The construction (8) gives us a superclass representative e, € ut for each
W (8,P)
N
superclass. If i € A, < 7};15()7,)
element A, minimal first with respect to

Z ik fij1

i<nNI<NE<nl

is the element such that e, = e, then ji is the unique
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and then with respect to
#{i <nv J <w k| fur = 1}.

(R2) By Theorem 4.4, the set ’7;5 also indexes the Pg-supercharacters of UT p g).

Thus, if y € utz“ﬁ py 18 in the orbit corresponding to A € 7% then we will write

X3 = Xp-
For the purpose of this paper it will not be necessary to fix a specific representative
ey e utz“ﬂ P) of the orbit corresponding to A.

ExAMPLE. For 8 = (3,2,1,4) and

3 4
3 |02
P= M the superclass label 211
1 2 -

corresponds to the superclass

Ids| 0 | B| D
0 |Ide| A | C _ B1_ _ B D1_
070 T 0 rank(A) = L,rank [ 7] = 1,rank [ACc | = 2,rank [ 2] =4
0|00 |Idg
with representative
Tds| 0] 0 [0%60
010000
0 [1d2] 6 |0060%
0|0 |Id;| O
010|0]| Idg

5. SUPERCHARACTER FORMULAS

This section works out character formulas for all the supercharacter theories described
above. Fundamentally, it involves weaving together two basic families of examples:

(E1) Bpr-supercharacter theories of UTp for P < N.

(E2) The case where the unipotent polytope (8,P) is a line segment (or where
has exactly two parts).

We first introduce some combinatorial statistics that will appear throughout the
formulas, and then prove a result that shows how to compare Pg-supercharacter the-
ories between different group (but for the same (). Then we show how to compute
supercharacter values for examples (E1) and (E2). The main result then follows fairly
quickly.

5.1. REPRESENTATION THEORETIC STATISTICS. Fix § = (f1,...,8¢) and note that
fautg1 o bdry~!(B) gives the usual order 1 < 2 < --- < £ on {1,...,£}. There are
a number of statistics that arise naturally in the Pg-supercharacter theories. They
naturally generalize their set partition analogues in the P(;~)-supercharacter theory
of UT s (see [10] for a more general algebraic framework for these statistics).
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For \ € Tg , there are a number of ways to measure the “size” of a A. For example,
A= D] Ay
i<pj
measures the lattice distance to the origin of the lattice point in the unipotent poly-

tope. However, geometric interpretations of the other statistics are unknown (at least
to me). Having more to do with the dimension of the corresponding modules,

dimL()\) = Z )\mﬁj and dlmR()\) = Z )\ikﬁj
i<pj<k i<j<pk
give the left and right dimensions of A (respectively). Note that if P = Q, then

dimpg(A) = dimp, (A\). To account for over-counting, we also require the crossing num-
ber

crs(A) = Z AikAji

i<j<pk<l

of A\. Lastly, if u € 75 the nestings of p in A are
nstl); = Z /\il,ujk.

i<73j<77k<pl

ExamPLE. if 8= (3,6,3,4,5,1),

v 3 [2]o]t]o and M=3 of1]o
6lofof1]1 6[1|0]2
3/of1]o0 3[1]2]o0
4 4
5 5
1 1
then
Al=6-0+4-1+1-2
1-3+4) +1-34+4) + 14 +1-(3+4+5)
2fo1]o 2|o]1]o0 2]o0|1]0 2|of1]o0
. _|ofof1]1 ofof1]1 ojo|1]1 ofo|1|1]
dlmL()\)_solo 3lof1]o of1]o 3lof1]o0
4 4 4 4
5
dimp(A\)=2-6+1-(6+3)+1-3+1-3
sty =1-14+3-1-1+2-1
2-1 4+ 21 + 1-1
CI“S()\)*OlO [2]o]|1]0 2|of1]o
~ ofofa] 1 ofola1] fofofi(i]
of1]o of1]o of1]o

The following lemma gives an algebraic foundation for most of these statistics. If
one uses the standard representatives coming from the Bjs-supercharacter theory the
proof is relatively straight-forward, and the details are left to the reader.

LEMMA 5.1. Let \ € 7;5 with \ € ’7;§1N) such that e’;\ € ut?ﬁ,?) 1s in the A-orbit. Then

|A] = rank(es), gt = [UTges|
qdimR()\) _ |6§UTﬁ| and qcrs(x\) = |UT;—3€§ N eiUTM.
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5.2. COMPARING Pg-SUPERCHARACTER THEORIES. Fix a unipotent polytope (5, P)

and let Q = bdry™*(3). Then we have an injective function Ext% : 7'75 — 7'5 given
by

Nij if i < '
9y, _ SN fats(P) J>
Ext(A)i; {0 otherwise.

This gives a way to compare supercharacter values between the two theories. The
following proposition shows that the representation theory mirrors the combinatorics
as well as can be expected.

PROPOSITION 5.2. Let (3, P) be a unipotent polytope with Q = bdry™*(B). For X e ’7;5,

uT Ext2()\)
Xg _ ReSUTfB,P) (XB ")
Xg(l) Xgth(A)(l)

Proof. Fix 6?\ € utz“ﬁyp) in the orbit corresponding to A. Then since utz"ﬁp) is invariant

under left and right multiplication by Pg, we also have eif\ € uth is in the orbit

corresponding to Ext3()\). Let u — Id)5) € ut(gp) < utg. Then by definition (3) and
the invariance of utz"ﬁ py under Pg,

UT Ext2(})
Resyrg, (kg 7 )W) 1 T ock(u—1d) - x5 (u)
Ext2 (A - * 4 A ’
Xﬁ »( )(1) \Pﬁe/\P3| e?ePﬁe’;Pﬁ Xﬂ(l)
as desired. 0

5.3. EXAMPLE: By -SUPERCHARACTER THEORIES. In the case that Q = A/, then all
normal pattern subgroups are also normal Levi compatible subgroups. Here the Br-
supercharacter formula for UT g py are obtained by restricting the Bjr-supercharacter
formulas for UT /.

Up to scaling, the following character formula appears in [7], but does not have an

explicit published proof. For A\, i € T/\(}N), let A\npe T/\(/lN) be given by
(A v )ij = Nijpuig-
(1)
PROPOSITION 5.3. For A\, e Ty 7,

qdimL(/\)+dimR()\)(q71)|M 1 Zf /\iklféij = /\ikﬂjk =0
gers(™) qnstﬁ(l_q)p\m“‘ fori<nj<wnk,

XE\lN () =
0 otherwise.
From Proposition 5.2 we get the following corollary.

COROLLARY 5.4. For P<a N and \, p € 7?,§1N),

gAML ) +dimg (M) (g_q)3] 1 if Nikthi; = Nikttje =0
PEEeY) Y . . k
¢ (1—g)1Annl fori<nj<nk,

X?1N) (uu) =
0 otherwise.

Proof. By Proposition 5.3,

dimL(Extf;/(x))erimR(Extg(A))(q _ 1)\>\|

Exty (\) _q
(1N7)> (1) qcrs(Ext:";[()\))
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be in the A-orbit. Then by (3),

Let €3 € “tzk(w),@)

X(ivy(1) = [ByexByl
= (¢ - DM[UTne{UTn|
gy 0Tl ULy
[UTprel nexUT |
dimL()\)erimR()\)
— (g 1)MY
(q 1) qcrs(k)

3

where the last equality follows from Lemma 5.1. Apply Proposition 5.2 to Proposition
O

5.3 to obtain the formula.

5.4. THE BASIC BUILDING BLOCK: THE LINE. Let
Tern

m+1 m+2 m+n .

8= (mn), Q=bdry'(8)= M where N =,
e 2

1 2 m i
1

For P = {1 < 2},
= (FS)m™".

Id,,| A
UT(B,P) = {[T‘m] ’ Ae men(Fq)}

In this case, the indexing set for the supercharacters and superclasses is given by

7™ = 40,1, min{m,n}}

where the superclass of [I%m 1214 ] is labelled by rank(A).

THEOREM 5.5. If 0 < j,1 < min{m,n} and u(;y = Idpin + ey € UT (5122, then

) mi |n # m X n matrices
X(m,n)(u(o)) = |GLI(FQ)| |: I :|q|:l:|q = Of rank 1 )
and
! a bit(]J b
Xy (1)) = 2, (=1)"¢7* () [a] Xy (@)
q

(a,b)El
REMARK 5.6. Note that in the sum not all compositions (a, b) of I give nonzero terms.
We use the convention that |GL(Fg)| = 1.

Proof. Fix ez“l) € utf, in the orbit corresponding to [, and let

0 1
1a, |29
u) = "w; 0 where wj = e GL;,
0 |Id, 1 0
be the usual representative (as in (8)). By (5),
0} _ ex _ v
X(m,n)(u(j)) = Z X(1N)(u(j)) = Z X(1v) (ug))-
BNe;fBNePer‘L)PB UGTSM
Jvl=1

38
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Let

A={(m—j+im+j+1—i)|1<i<j}
B={1,...m—j}x{m+j+1,...,m+n}

or visually, the coordinates

i B--- B
Idy—;1 O 0 o
B---B
0 A
0 |Id;| - 0
A 0
0 |0| Idy 0
| 0 |0 0 Id,

Note that XE/1N)(“(J‘)) = 0 unless
vy, #0  implies (i,k) € AU B.
(™) a™ ;
ForveTy 7, let va,vg € Ty  be given by

(V.A)i,j = {l/ij if (Zv]) € -A7 (VB)ij _ {Vij if (’L,]) S 87

0 otherwise, 0 otherwise.
Then by Corollary 5.4,

9)

® -

Z qdimL(V)erimR(u)(qi 1)l 1 < 1 >VA

) qCFS(VB) qnst:““ +lvsli \1—gq
u:uA+uBeTQ

lv|=1

=@-0" )]

N
a,weT(l )

qdimL(’y)-&-dimR(’y) qdinlL(a)+dimR(a) 1 la|
gers(+yls gt (1 — q)
apg=a,yg=",laty|=l

~a-0' Y (1) X

qdimL (v)+dimpg () qdimL (a)+dimpg ()

_ crs(7) +bj nsts
(a,b)El 1 q Ny q g4
a<j a,veT,
bsm—j ap=a,YB=",

la|=a,|y[=b

Note that choice of v with 45 = 7 and |y| = b is determined by a triple (R,C,w)
where R x C € B with |[R| = |C| = band w : R — C is a bijection (then ~;; = 1 if and
only if i € R and k = w(i)). For such a triple (R,C, w) corresponding to v we have

dim () 1 i .
g = gVt m i PRI 1 ()40 and crs(y) = inv(w o wy).
q
A choice of o with a4 = « and |a] = a is completely determined by D < {m +
1,...,m+ j} with |D| = a. In this case,
dim(a)
q = — th%m+1‘7n+j](’D)_
qnstA
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For fixed a, b, C and R we can sum over choices of w, D independently. Then (1) and
(2) give

Xoon oy (i) =(g = 1)

. a

Z q(g) |:]:| <1> Z q [1 m—j] (R)+Wt [m+ji+1, m+n](c)+b‘7 [ 1

(a,b)FL alq l—gq RxCcB q\2
a<J IR|=|C|=b

b<m-—j

Finally, sum over C and R independently and apply (2) to get

et =@ B O] () e ][]

(a,b<))‘=l q(z
bg;zj—j
T m— i1 T — i
= % o @ e 1]
(a,b)k=l q q q
as desired. O

5.5. GENERAL SUPERCHARACTER FORMULA. Let (8, P) be a unipotent polytope with
sInt(P) as in Section 2.2. For A\, € ’7;,6, let

locf; : sInt(P) — Zo X Lo
(4,1) = (53‘* Z Mk — Z Xjms B — Z il — Z /\u)-
j<pk<l l<pm j<k<pl i<pjJ

For example, if 8 = (3,6,3,4,5,1),

2(0|1]0 olt1fo]f1

A= and W=
ojof1]1 1|o 0
1]0 1{2]o0

[

\ of[1]of1 2(o|1]o0 o[1fo]1 2(of1]o0
IOC#(275)=<52—1020_001755— 00_001>
0 1

= (6-
= (

-
[\
~—

THEOREM 5.7. For A\, € Tg and u, =1+ ey,,

dimL(A)-J—dimR()\
Xg(uﬂ) - qqnstﬁw H Xl(jcj/l\(] I (Uu)-
j<pl
REMARK 5.8. The following proof is designed to directly construct the above “fac-
torization.” Alternatively, it is perhaps more straightforward (though with even more
tedious book-keeping) to follow the proof of Theorem 5.5, and then to retroactively
observe the desired factorization.

Proof. Let XA = Ext)¥ (A). Then by (5),
Xé(uu) = Z X(ﬁlN)(uu)~

N
DET_‘(: )
* *
ez GPB 65\ PB
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Let Q = bdry () with associated set composition (Q1, ..., Q). By a dual analogue

to Theorem 4.4, ef € Pge¥ Py with 7 € 7;;1:()7)) if and only if

rank (ReSQiUQj (65)) = rank(ResQwQ]_ (e;\)) = \ij for all i <p j.

Let e, = ey for fi € 7};1:()7,). By Corollary 5.4,

dimL(D)+dimR(D)
A — v 4 _1\l#niil(, _ 1) IPl=170dl
Xﬁ(uu>_ Z 6;1 qcrs(f/)JrnstZ ( 1) L(q 1) )
N
967éiﬁgp)

(ra“k(Ret‘Qiqu (EF/))):A

where
6; = H 6l~’ik/1ij70517ikﬂjkso
i<j<k
keeps track of which terms are zero (from Corollary 5.4).
Note that for each set of choices of made for the blocks,

(i e 7};1:(%:) | 1<j <pl<lResgxo, (1) = 0w nYie rank(ve) = Aji},
such that no two -y; have 1’s in the same row or column, then
Z RS 7&:()79)-
j=<pl
Given a total order < on the coordinates in Fp, we can iteratively construct an element
ve ’T(lN) by choosing each Q; x Q; according to <. We will use the Fp-total order

fatg (P)
induced by the Fo-total order

(L) < (1,-1)< (2,0) < (1,£—=2) < --- < (L—=1,0) or

Then we obtain a sequence
~ (4 1N . ~(j
P e T oy 17 <p 1}, where 200 =5+ 31
(4,k)<(3,1)
At each step there will be limits on what rows and columns ;; can have nonzero
entries to be compatible with the previous choices, but we will obtain all possible ¥

in this way. If we only choose & such that x”(uj) # 0, then the nonzero entries of 7;;
can only be in rows and columns such that

(a) there are no nonzero entries in 70! — ;1 in that column or row,
(b) there is no nonzero entry of ji strictly below in that column or strictly to the
left in that row.

That is, we have

B — Z ik — Z Ajm rOows and [ — Z Wil — Z Ai;  columns

J<pk<l I<pm Jj<k<pl i<pjJ
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to choose from for the nonzero entries of vj;. Let rsp(vy;;) S Q; be the rows in v
with nonzero entries, and csp(vy;;) S Q; be the columns with nonzero entries. Let

jl € T’B be given by (5( l)) = 0k, (j,) N1, and let AGD e 'TB label the orbit
contalmng exin € uty. Then we have recursions,
dimz (799) + dimg(#U) = dimp (799 — v;)) + dimp (79" — ;) + dimy, (67")
+ dimp(65") + wtly (1sp(v;1)) + wth, (esp(71))
and
(b

~(j 5@ _ 56D
nstf,” = Stﬁ] st i < f < K <] € Q) (yerii = 1)+

+#{ < <K <U]j ¢ QK €Q,(vjr)ivijw =1}
ers(P9D) = ers(PUD — ;1) + ers(AID) — ers(AUD — §(Jl)) + crs(;1)
1 |
W (50)n 0, —rsp(yge) PPOVI) + Wiy 560 01 —espygey (SSP(V1)-
Iterating these recursions gives

dimp (7) + dimp(7) = dimz (V) + dimp(A) + Y wth, (rsp(y;1)) + wtgy, (esp(y31)

Jj=<pl
and
HStZ IHSti\L + Z <#{Zl < jl < k/ < l/ |_]/ € Qj) (’le)i/l/ﬂj/k/ = 1}
j=<pl
< <K < U] J ¢ Q5 € QL (v = 1))
crs(v) = crs(A) + Z (crs(’yﬂ) + thT'Sp(D(jl))mQj—rsp('yjl)(I‘Sp(’yﬂ))
Jj=<pl
!
Wl (06)  Qu—csp () (CSp(W)))'
Let

Rj=Q; —{i' € Qj | (i)sw # 0, for some I' € Qi, k <1} — (rsp(#Y) — ;1) N Q)
Cii =9 —{k' € Q| ()jw #0, for some j' € Qp, k > j} — (csp(v Ul)—’yl)mQZ)

denote the rows and columns in which ; may have nonzero entries. Let fij; =
Resg; xg, (1) and v = vju — vt 0 fiji- Then since crs(v;;) = ers(v5;) for S0 #0,

\ gdime (V) +dimr () (q— I)AquWt;le(rSp(’le))JrWtév (esp(;1))
Bw) = e 11 2
crs +nst NJL Ay ol
1 J<pl Vil V(Jl)eT(lN) (1 - q)"YJlﬁHJllq (’Y )JrnSt +"}/J'lH‘u'Jl‘
x99 (%0

qdimL( )+dimpg (X)

= crs(A)+nst ) H Xloc* (5,0) u(/‘jl))’
q j<'pl

where the second equality comes by letting v4 = v;iNfi;i and v = 75, and comparing
with (9). O
We also easily obtain a number of consequences (some of which no doubt have

more direct proofs).

COROLLARY 5.9. For v e 7'6 with corresponding e} € ut},

dimp, (A)+dimpg () o N ¥ Y
|PB€§P@| = q— | | |GL/\ . 3 Zl<pm jm B Zz<7>] il '
Crb ' Ajl q )\]l q

j=<pl
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Proof. By (3) and Theorem 5.7,
dimz (\)+dimg ()

v q
|Pge; Psl = x5(1) B [ IGLx, (Fy)]
j<pl
% [BJ - Zl<7,m )‘jm] [ﬂl - Zi<pj Azl]
Aji q Al q’
as desired. O

Recall that the C-vector space of functions {(G) = {¢) : G — C} of a group G has
a canonical inner product given by

.0y = —

@ Z ¥(9)0(9);

geG
with respect to this inner product, the irreducible characters are an orthonormal basis
for the subspace of class functions. While supercharacters are still orthogonal, they
are generally no longer orthonormal. In our case, using a similar argument to [12],
XXy = Buux4(1) for v, pe T,
so we may deduce the following result.

COROLLARY 5.10. For v, p € 7;5,
dimL(/\)erimR()\)

<XEaXZ> = 5WW n ‘GL)\jl(IFq”
q j<7>l
% |:ﬁ3 - Zl<73m )‘jm] |:Bl - Zi<7>j /\il:| .
/\jl q >\jl q

Recall, that if ({conjugacy classes}, Irr(G)) is the usual character theory of G, then

{Normal sub-

ol e} = (A | AS (@), where Ka= {9 Gl x(s) = x(1)

XEA

It is therefore natural to ask which normal subgroups are obtained from a given
supercharacter theory; I believe this has been largely unexplored. However, for the
case of UTg, the answer to this question is particularly pleasing.

COROLLARY 5.11. Fiz an integer composition 8 = (p1,...,Be¢) and let L the usual
total order 1 <2 < --- </,

{Kal AT} = {UT(ﬂ,m ‘ 7’<56}

where K4 = ﬂA{g e UT(s,p) | Xg(g) = Xg(l)}
uE

Proof. Let A < T;ﬁ , and let P4 be the subposet of Ls given by
j <pa k ifand only if i< j <k <[ implies \;; =0 for all A € A.
To check that P4 is a poset it suffices to check transitivity. Suppose j <pa k <pa [.
Then A\j;, =0foralli<j<k<mandi<k<l<m,soalsoforalli<j<l<m.
Thus, j <pa [.
Next we prove that Ky = UT g pa). Let p € T;ﬁ. By Theorem 5.7,
X’ﬁ\(u#) = Xg(l) forall Ae A,

if and only if ¢ < j < k < [ implies p;r # 0 only if Ay = 0 for all A € A. Thus,
u, € K4 if and only if u, € UT(@pA).
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Let (8,P) be a unipotent polytope. Let M be the set of elements maximal in
sInt(L£3) — sInt(P). Then let Ap = {A\} < ’7;35’3 be given by

W [LiEGR) e,
7k 7 0 otherwise.

Then UT g p) = UT 5 pap) and by the previous argument UT 5 papy = Ka,. Note
that while the functions A — P4 and P — Ap do not invert one-another the cor-
responding group maps K4 — UT3p,) and UT(3p) — Ka, do invert one an-
other. 0

REMARK 5.12.

(R1) Inthe case of 3 = (1VV), this result says that the normal pattern subgroups are
exactly the normal subgroups identified by the Bas-supercharacter theory (perhaps
justifying their existence from a slightly different point of view).

(R2) Marberg explored this notion in the case of algebra groups and showed that a
normal subgroups is an intersection of kernels if and only if it is a union of superclasses
[15, Proposition 2.1]. From this point of view, the UT g p) are the only subgroups of
UTps that are unions of superclasses.
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