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Ordered set partitions and
the 0-Hecke algebra

Jia Huang & Brendon Rhoades

Abstract Let the symmetric group Sn act on the polynomial ring Q[xn] = Q[x1, . . . , xn]
by variable permutation. The coinvariant algebra is the graded Sn-module Rn := Q[xn]/In,
where In is the ideal in Q[xn] generated by invariant polynomials with vanishing constant
term. Haglund, Rhoades, and Shimozono introduced a new quotient Rn,k of the polynomial
ring Q[xn] depending on two positive integers k 6 n which reduces to the classical coinvariant
algebra of the symmetric group Sn when k = n. The quotient Rn,k carries the structure of a
graded Sn-module; Haglund et. al. determine its graded isomorphism type and relate it to the
Delta Conjecture in the theory of Macdonald polynomials. We introduce and study a related
quotient Sn,k of F[xn] which carries a graded action of the 0-Hecke algebra Hn(0), where F is an
arbitrary field. We prove 0-Hecke analogs of the results of Haglund, Rhoades, and Shimozono.
In the classical case k = n, we recover earlier results of Huang concerning the 0-Hecke action
on the coinvariant algebra.

1. Introduction
The purpose of this paper is to define and study a 0-Hecke analog of a recently defined
graded module for the symmetric group [16]. Our construction has connections with
the combinatorics of ordered set partitions and the Delta Conjecture [15] in the theory
of Macdonald polynomials.

The symmetric group Sn acts on the polynomial ring Q[xn] := Q[x1, . . . , xn] by
variable permutation. The corresponding invariant subring Q[xn]Sn consists of all
f ∈ Q[xn] with w(f) = f for all w ∈ Sn, and is generated by the elementary
symmetric functions e1(xn), . . . , en(xn), where

(1) ed(xn) = ed(x1, . . . , xn) :=
∑

16i1<···<id6n
xi1 · · ·xid .

The invariant ideal In ⊆ Q[xn] is the ideal generated by those invariants Q[xn]Sn+
with vanishing constant term:

(2) In := 〈Q[xn]Sn+ 〉 = 〈e1(xn), . . . , en(xn)〉.

The coinvariant algebra Rn := Q[xn]/In is the corresponding quotient ring.
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The coinvariant algebra Rn inherits a graded action of Sn from Q[xn]. This mod-
ule is among the most important representations in algebraic and geometric combina-
torics. Its algebraic properties are closely tied to the combinatorics of permutations
in Sn; let us recall some of these properties.

• The quotient Rn has dimension n! as a Q-vector space. In fact, E. Artin [2]
used Galois theory to prove that the set of ‘sub-staircase’ monomials An :=
{xi11 · · ·xinn : 0 6 ij < j} descends to a basis for Rn.

• A different monomial basis GSn of Rn was discovered by Garsia and Stanton
[12]. Given a permutation w = w(1) . . . w(n) ∈ Sn, the corresponding GS
monomial basis element is

gsw :=
∏

w(i)>w(i+1)

xw(1) · · ·xw(i).

• Chevalley [8] proved that Rn is isomorphic as an ungraded Sn-module to the
regular representation Q[Sn].

• Lusztig (unpublished) and Stanley described the graded Sn-module structure
of Rn using the major index statistic on standard Young tableaux [25].

Let k 6 n be two positive integers. Haglund, Rhoades, and Shimozono [16, Defn.
1.1] introduced the ideal In,k ⊆ Q[xn] with generators

(3) In,k := 〈xk1 , xk2 , . . . , xkn, en(xn), en−1(xn), . . . , en−k+1(xn)〉
and studied the corresponding quotient ring Rn,k := Q[xn]/In,k. Since In,k is homoge-
neous and stable under the action of Sn, the ring Rn,k is a graded Sn-module. When
k = n, we have In,n = In, so that Rn,n = Rn and we recover the usual invariant ideal
and coinvariant algebra.

To study Rn,k one needs the notion of an ordered set partition of [n] := {1, 2, . . . , n},
which is a set partition of [n] with a total order on its blocks. For example, we have
an ordered set partition

σ = (25 | 6 | 134)
written in the ‘bar notation’. The three blocks {2, 5}, {6}, and {1, 3, 4} are ordered
from left to right, and elements of each block are increasing.

Let OPn,k denote the collection of ordered set partitions of [n] with k blocks. We
have
(4) |OPn,k| = k! · Stir(n, k),
where Stir(n, k) is the (signless) Stirling number of the second kind counting k-block
set partitions of [n]. The symmetric group Sn acts on OPn,k by permuting the letters
1, . . . , n. For example, the permutation w = 241365, written in one-line notation, sends
(25 | 6 | 134) to (46 | 5 | 123).

Just as the structure of the classical coinvariant module Rn is controlled by per-
mutations in Sn, the structure of Rn,k is governed by the collection OPn,k of ordered
set partitions of [n] with k blocks [16].

• The dimension of Rn,k is |OPn,k| = k! · Stir(n, k) [16, Thm. 4.11]. We have a
generalization An,k of the Artin monomial basis to Rn,k [16, Thm. 4.13].

• There is a generalization GSn,k of the Garsia-Stanton monomial basis to Rn,k
[16, Thm. 5.3].

• The module Rn,k is isomorphic as an ungraded Sn-representation to OPn,k
[16, Thm. 4.11].

• There are explicit descriptions of the graded Sn-module structure of Rn,k
which generalize the work of Lusztig–Stanley [16, Thm 6.11, Cor. 6.12, Cor.
6.13, Thm. 6.14].
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Now let F be an arbitrary field and let n be a positive integer. The (type A) 0-Hecke
algebra Hn(0) is the unital associative F-algebra with generators π1, π2, . . . , πn−1 and
relations

(5)


π2
i = πi 1 6 i 6 n− 1,
πiπj = πjπi |i− j| > 1,
πiπi+1πi = πi+1πiπi+1 1 6 i 6 n− 2.

Recall that the symmetric group Sn has Coxeter generators {s1, s2, . . . , sn−1}, where
si is the adjacent transposition si = (i, i+1). These generators satisfy similar relations
as (5) except that s2

i = 1 for all i. If w ∈ Sn is a permutation and w = si1 · · · si`
is a reduced (i.e., as short as possible) expression for w in the Coxeter generators
{s1, . . . , sn−1}, we define the 0-Hecke algebra element πw := πi1 · · ·πi` ∈ Hn(0). It
can be shown that the set {πw : w ∈ Sn} forms a basis for Hn(0) as an F-vector
space, and in particular Hn(0) has dimension n!. In contrast to the situation with the
symmetric group, the representation theory of the 0-Hecke algebra is insensitive to
the choice of ground field, which motivates our generalization from Q to F.

The algebraHn(0) is a deformation of the symmetric group algebra F[Sn]. Roughly
speaking, whereas in a typical F[Sn]-module the generator si acts by ‘swapping’ the
letters i and i + 1, in a typical Hn(0)-module the generator πi acts by ‘sorting’ the
letters i and i+ 1. Indeed, the relations satisfied by the πi are precisely the relations
satisfied by bubble sorting operators acting on a length n list of entries x1 . . . xn from
a totally ordered alphabet:

(6) πi.(x1 . . . xixi+1 . . . xn) :=
{
x1 . . . xi+1xi . . . xn xi > xi+1

x1 . . . xixi+1 . . . xn xi 6 xi+1.

Proving 0-Hecke analogs of module theoretic results concerning the symmetric
group has received a great deal of recent study in algebraic combinatorics [4, 17, 18,
26]; let us recall the 0-Hecke analog of the variable permutation action of Sn on a
polynomial ring.

Let F[xn] := F[x1, . . . , xn] be the polynomial ring in n variables over the field F.
The algebra Hn(0) acts on F[xn] by the isobaric Demazure operators:

(7) πi(f) := xif − xi+1(si(f))
xi − xi+1

, 1 6 i 6 n− 1.

If f ∈ F[xn] is symmetric in the variables xi and xi+1, then si(f) = f and thus πi(f) =
f . The isobaric Demazure operators give a 0-Hecke analog of variable permutation.

We also have a 0-Hecke analog of the permutation action of Sn on OPn,k. It is
well-known that the 0-Hecke algebra Hn(0) has another generating set {π1, . . . , πn−1}
subject to the relations

(8)


π2
i = −πi 1 6 i 6 n− 1,
πiπj = πjπi |i− j| > 1,
πiπi+1πi = πi+1πiπi+1 1 6 i 6 n− 2.

Here πi := πi − 1 for all i. We will often use the relation πiπi = πiπi = 0. One can
define πw := πi1 · · ·πi` for any w ∈ Sn with a reduced expression w = si1 · · · si` and
show that the set {πw : w ∈ Sn} is a basis for Hn(0). Let F[OPn,k] be the F-vector
space with basis given by OPn,k. Then Hn(0) acts on F[OPn,k] by the rule

(9) πi.σ :=


−σ, if i+ 1 appears in a block to the left of i in σ,
si(σ), if i+ 1 appears in a block to the right of i in σ,
0, if i+ 1 appears in the same block as i in σ,

Algebraic Combinatorics, Vol. 1 #1 (2018) 49



Jia Huang & Brendon Rhoades

For example, we have
π1(25 | 6 | 134) = −(25 | 6 | 134),
π2(25 | 6 | 134) = (35 | 6 | 124),
π3(25 | 6 | 134) = 0.

It is straightforward to check that these operators satisfy the relations (8) and so
define an Hn(0)-action on F[OPn,k]. In fact, this is a special case of an Hn(0)-action
on generalized ribbon tableaux introduced in [18]. See also the proof of Lemma 5.2.

The coinvariant algebra Rn can be viewed as a 0-Hecke module. Indeed, the “Leib-
niz rule”
(10) πi(fg) = πi(f)g + si(f)πi(g)
implies that the ideal In ⊆ F[xn] generated by e1(xn), . . . , en(xn) ∈ F[xn] is stable
under the action of Hn(0) on F[xn]. Therefore, the quotient Rn = F[xn]/In inherits
a 0-Hecke action. Huang gave explicit formulas for its degree-graded and length-
degree-bigraded quasisymmetric 0-Hecke characteristic [17, Cor. 4.9]. The bivariant
characteristic Chq,t(Rn) turns out to be a generating function for the pair of Mahonian
statistics (inv, maj) on permutations in Sn, weighted by the Gessel fundamental
quasisymmetric function FiDes(w) corresponding to the inverse descent set iDes(w) of
w ∈ Sn [17, Cor. 4.9 (i)].

We will study a 0-Hecke analog of the rings Rn,k of Haglund, Rhoades, and Shimo-
zono [16]. For k < n the ideal In,k is not usually stable under the action of Hn(0) on
F[xn], so that the quotient ring Rn,k = F[xn]/In,k does not have the structure of an
Hn(0)-module. To remedy this situation, we introduce the following modified family
of ideals. Let
(11) hd(x1, . . . , xi) :=

∑
16j16···6jd6i

xj1 · · ·xjd

be the complete homogeneous symmetric function of degree d in the variables
x1, x2, . . . , xi.

Definition 1.1. For two positive integers k 6 n, we define a quotient ring
Sn,k := F[xn]/Jn,k

where Jn,k ⊆ F[xn] is the ideal with generators
Jn,k := 〈hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn), en(xn), en−1(xn), . . . , en−k+1(xn)〉.

The ideal Jn,k is homogeneous. We claim that Jn,k is stable under the action of
Hn(0). Since ed(xn) ∈ F[xn]Sn and hk(x1, . . . , xi) is symmetric in xj and xj+1 for
j 6= i, thanks to Equation (10) this reduces to the observation that
(12) πi(hk(x1, . . . , xi)) = hk(x1, . . . , xi, xi+1).
Equation (12) is clear when i = 1 and can be obtained from the following identity
when i > 2:

(13) hk(x1, . . . , xi) =
∑

06j6k
xjihk−j(x1, . . . , xi−1).

Thus the quotient Sn,k has the structure of a graded Hn(0)-module.
It can be shown that Jn,n = In, so that Sn,n = Rn is the classical coinvariant

module. At the other extreme, we have Jn,1 = 〈x1, x2, . . . , xn〉, so that Sn,1 ∼= F is
the trivial Hn(0)-module in degree 0.

Let us remark on an analogy between the generating sets of In,k and Jn,k which may
rationalize the more complicated generating set of Jn,k. The defining representation
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of Sn on [n] is (of course) given by si(i) = i+1, si(i+1) = i, and si(j) = j otherwise.
The generators of In,k come in two flavors:

(1) high degree elementary invariants en(xn), en−1(xn), . . . , en−k+1(xn), and
(2) a homogeneous system of parameters {xk1 , xk2 , . . . , xkn} of degree k whose lin-

ear span is stable under the action of Sn and isomorphic to the defining
representation.

1 oo s1 // 2 oo s2 // · · · oo
sn−1

// n

xk1 oo
s1 // xk2 oo

s2 // · · · oo
sn−1

// xkn

The defining representation of Hn(0) on [n] is given by πi(i) = i+ 1 and πi(j) = j
otherwise (whereas si acts by swapping at i, πi acts by shifting at i). The generators
of Jn,k come in two analogous flavors:

(1) high degree elementary invariants en(xn), en−1(xn), . . . , en−k+1(xn), and
(2) a homogeneous system of parameters {hk(x1), . . . , hk(x1, x2, . . . , xn)} of de-

gree k whose linear span is stable under the action of Hn(0) and isomorphic
to the defining representation (see (12)).

1 π1 // 2 π2 // · · ·
πn−1

// n

hk(x1) π1 // hk(x1, x2) π2 // · · ·
πn−1

// hk(x1, . . . , xn)

Deferring various definitions to Section 2, let us state our main results on Sn,k.
• The module Sn,k has dimension |OPn,k| = k! · Stir(n, k) as an F-vector space
(Theorem 3.8). There is a basis Cn,k for Sn,k, generalizing the Artin monomial
basis of Rn. (Theorem 3.5, Corollary 3.6).

• There is a generalization GSn,k of the the Garsia-Stanton monomial basis to
Sn,k (Corollary 4.3).

• As an ungraded Hn(0)-module, the quotient Sn,k is isomorphic to F[OPn,k]
(Theorem 5.9).

• As a graded Hn(0)-module, we have explicit formulas for the degree-graded
characteristics Cht(Sn,k) and cht(Sn,k) and the length-degree-bigraded char-
acteristic Chq,t(Sn,k) of Sn,k (Theorem 6.2, Corollary 6.4). The degree-graded
quasisymmetric characteristic Cht(Sn,k) is symmetric and coincides with the
graded Frobenius character of the Sn-module Rn,k (over Q).

The remainder of the paper is structured as follows. In Section 2 we give background
and definitions related to compositions, ordered set partitions, Gröbner theory, and
the representation theory of 0-Hecke algebras. In Section 3 we will prove that the
quotient Sn,k has dimension |OPn,k| as an F-vector space. We will derive a formula
for the Hilbert series of Sn,k and give a generalization of the Artin monomial basis to
Sn,k. In Section 4 we will introduce a family of bases of Sn,k which are related to the
classical Garsia-Stanton basis in a unitriangular way when k = n. In Section 5 we will
use one particular basis from this family to prove that the ungraded 0-Hecke structure
of Sn,k coincides with F[OPn,k]. In Section 6 we derive formulas for the degree-
graded quasisymmetric and noncommutative symmetric characteristics Cht(Sn,k) and
cht(Sn,k), and the length-degree-bigraded quasisymmetric characteristics Chq,t(Sn,k)
of Sn,k. In Section 7 we make closing remarks.
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2. Background
2.1. Compositions. Let n be a nonnegative integer. A (strong) composition α of n
is a sequence α = (α1, . . . , α`) of positive integers with α1 + · · · + α` = n. We call
α1, . . . , α` the parts of α. We write α |= n to mean that α is a composition of n. We
also write |α| = n for the size of α and `(α) = ` for the number of parts of α.

The descent set Des(α) of a composition α = (α1, . . . , α`) |= n is the subset of
[n− 1] given by
(14) Des(α) := {α1, α1 + α2, . . . , α1 + α2 + · · ·+ α`−1}.

The map α 7→ Des(α) gives a bijection from the set of compositions of n to the
collection of subsets of [n− 1]. The major index of α = (α1, . . . , α`) is

(15) maj(α) :=
∑

i∈Des(α)

i = (`− 1) · α1 + · · ·+ 1 · α`−1 + 0 · α`.

Given two compositions α, β |= n, we write α � β if Des(α) ⊆ Des(β). Equivalently,
we have α � β if the composition α can be formed by merging adjacent parts of the
composition β. If α |= n, the complement αc |= n of α is the unique composition of n
which satisfies Des(αc) = [n− 1] r Des(α).

As an example of these concepts, let α = (2, 3, 1, 2) |= 8. We have `(α) = 4. The
descent set of α is Des(α) = {2, 5, 6}. The major index is maj(α) = 2 + 5 + 6 =
3 · 2 + 2 · 3 + 1 · 1 + 0 · 2 = 13. The complement of α is αc = (1, 2, 1, 3, 1) |= 8 with
descent set Des(αc) = {1, 3, 4, 7} = [7] r {2, 5, 6}.

If i = (i1, . . . , in) is any sequence of integers, the descent set Des(i) is given by
(16) Des(i) := {1 6 j 6 n− 1 : ij > ij+1}.

The descent number of i is des(i) := |Des(i)| and the major index of i is maj(i) :=∑
j∈Des(i) j. Finally, the inversion number inv(i)

(17) inv(i) := |{(j, j′) : 1 6 j < j′ 6 n, ij > ij′}|

counts the number of inversion pairs in the sequence i.
If a permutation w ∈ Sn has one-line notation w = w(1) · · ·w(n), we define

Des(w), maj(w), des(w), and inv(w) as in the previous paragraph for the sequence
(w(1), . . . , w(n)). It turns out that inv(w) is equal to the Coxeter length `(w) of w,
i.e., the length of a reduced expression for w in the generating set {s1, . . . , sn−1} of
Sn. Moreover, we have i ∈ Des(w) if and only if some reduced expression of w ends
with si. We also let iDes(w) := Des(w−1) be the descent set of the inverse of the
permutation w.

The statistics maj and inv are equidistributed onSn and their common distribution
has a nice form. Let us recall the standard q-analogs of numbers, factorials, and
multinomial coefficients:

[n]q := 1 + q + · · ·+ qn−1 [n]!q := [n]q[n− 1]q · · · [1]q[
n

a1, . . . , ar

]
q

:= [n]!q
[a1]!q · · · [ar]!q

[
n

a

]
q

:= [n]!q
[a]!q[n− a]!q

.

MacMahon [20] proved

(18)
∑
w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w) = [n]!q,

and any statistic on Sn which shares this distribution is called Mahonian. The joint
distribution

∑
w∈Sn q

inv(w)tmaj(w) of the pair of statistics (inv,maj) is called the biMa-
honian distribution.
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If α |= n and i = (i1, . . . , in) is a sequence of integers of length n, we define α∪i |= n
to be the unique composition of n which satisfies
(19) Des(α ∪ i) = Des(α) ∪Des(i).
For example, let α = (3, 2, 3) |= 8 and let i = (4, 5, 0, 0, 1, 0, 2, 2). We have

Des(α ∪ i) = Des(α) ∪Des(i) = {3, 5} ∪ {2, 5} = {2, 3, 5},
so that α∪ i = (2, 1, 2, 3). Whenever α |= n and i is a length n sequence, we have the
relation α � α ∪ i.

A partition λ of n is a weakly decreasing sequence λ = (λ1 > · · · > λ`) of positive
integers which satisfies λ1 + · · ·+λ` = n. We write λ ` n to mean that λ is a partition
of n. We also write |λ| = n for the size of λ and `(λ) = ` for the number of parts of
λ. The (English) Ferrers diagram of λ consists of λi left justified boxes in row i.

Identifying partitions with Ferrers diagrams, if µ ⊆ λ are a pair of partitions related
by containment, the skew partition λ/µ is obtained by removing µ from λ. We write
|λ/µ| := |λ| − |µ| for the number of boxes in this skew diagram. For example, the
Ferrers diagrams of λ and λ/µ are shown below, where λ = (4, 4, 2) and µ = (2, 1).

A semistandard tableau of a skew shape λ/µ is a filling of the Ferrers diagram
of λ/µ with positive integers which are weakly increasing across rows and strictly
increasing down columns. A standard tableau of shape λ/µ is a bijective filling of the
Ferrers diagram of λ/µ with the numbers 1, 2, . . . , |λ/µ| which is semistandard. An
example of a semistandard tableau and a standard tableau of shape (4, 4, 2)/(2, 1) are
shown below.

1 3
2 2 4

3 3

3 4
1 5 7

2 6
A ribbon is an edgewise connected skew diagram which contains no 2 × 2 square.

The set of compositions of n is in bijective correspondence with the set of size n
ribbons: a composition α = (α1, . . . , α`) corresponds to the ribbon whose ith row
from the bottom contains αi boxes. We will identify compositions with ribbons in
this way. For example, the ribbon corresponding to α = (2, 3, 1) is shown on the left
below.

5
2 4 6

1 3
Let α |= n be a composition. We define a permutation w0(α) ∈ Sn as follows.

Starting at the leftmost column and working towards the right, and moving from
top to bottom within each column, fill the ribbon diagram of α with the numbers
1, 2, . . . , n (giving a standard tableau). The permutation w0(α) has one-line notation
obtained by reading along the ribbon from the bottom row to the top row, proceeding
from left to right within each row. It can be shown that w0(α) is the unique left weak
Bruhat minimal permutation w ∈ Sn which satisfies Des(w) = Des(α) (cf. Björner
and Wachs [6]). For example, if α = (2, 3, 1), the figure on the above right shows
w0(α) = 132465 ∈ S6.

2.2. Ordered set partitions. As explained in Section 1, an ordered set partition
σ of size n is a set partition of [n] with a total order on its blocks. Let OPn,k denote
the collection of ordered set partitions of size n with k blocks. In particular, we may
identify OPn,n with Sn.
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Also as in Section 1, we write an ordered set partition of [n] as a permutation of
[n] with bars to separate blocks, such that letters within each block are increasing
and blocks are ordered from left to right. For example, we have

σ = (245 | 6 | 13) ∈ OP6,3.

The shape of an ordered set partition σ = (B1 | · · · | Bk) is the composition α =
(|B1|, . . . , |Bk|). For example, the above ordered set partition has shape (3, 1, 2) |= 6.

If α |= n is a composition, let OPα denote the collection of ordered set partitions
of n with shape α. Given an ordered set partition σ ∈ OPα, we can also represent
σ as the pair (w,α), where w = w(1) · · ·w(n) is the permutation in Sn (in one-
line notation) obtained by erasing the bars in σ. For example, the above ordered set
partition becomes

σ = (245613, (3, 1, 2)).
This notation establishes a bijection between OPn,k and pairs (w,α) where α |= n is
a composition with `(α) = k and w ∈ Sn is a permutation with Des(w) ⊆ Des(α).

We extend the statistic maj from permutations to ordered set partitions as follows.
Let σ = (B1 | · · · | Bk) ∈ OPn,k be an ordered set partition represented as a pair
(w,α) as above. We define the major index maj(σ) to be the statistic

(20) maj(σ) = maj(w,α) := maj(w) +
∑

i : max(Bi)<min(Bi+1)

(α1 + · · ·+ αi − i).

For example, if σ = (24 | 57 | 136 | 8), then
maj(σ) = maj(24571368) + (2− 1) + (2 + 2 + 3− 3) = 4 + 1 + 4 = 9.

We caution the reader that our definition of maj is not equivalent to, or even
equidistributed with, the corresponding statistics for ordered set partitions in [22, 16]
and elsewhere. However, the distribution of our maj on OPn,k is the reversal of the
distribution of their maj.

The generating function for maj on OPn,k may be described as follows. Let revq
be the operator on polynomials in the variable q which reverses coefficient sequences.
For example, we have

revq(3q3 + 2q2 + 1) = q3 + 2q + 3.
The q-Stirling number Stirq(n, k) is defined by the recursion
(21) Stirq(n, k) = Stirq(n− 1, k − 1) + [k]q · Stirq(n− 1, k)
and the initial condition Stirq(0, k) = δ0,k, where δ is the Kronecker delta.

Proposition 2.1. Let k 6 n be positive integers. We have

(22)
∑

σ∈OPn,k

qmaj(σ) = revq([k]!q · Stirq(n, k)).

Proof. To see why this equation holds, consider the statistic maj′ on an ordered set
partition σ = (B1 | · · · | Bk) = (w,α) ∈ OPn,k defined by

(23) maj′(σ) = maj′(w,α) :=
k∑
i=1

(i− 1)(αi − 1) +
∑

i : min(Bi)>max(Bi+1)

i.

This is precisely the version of major index on ordered set partitions studied by
Remmel and Wilson [22]. They proved [22, Eqn. 15, Prop. 5.1.1] that

(24)
∑

σ∈OPn,k

qmaj′(σ) = [k]!q · Stirq(n, k).
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On the other hand, for any σ = (w,α) = (B1 | · · · | Bk) ∈ OPn,k we have

(25) maj(w) =
∑

i : max(Bi)>min(Bi+1)

(α1 + · · ·+ αi).

This implies

maj(σ) = maj(w) +
∑

i : max(Bi)<min(Bi+1)

(α1 + · · ·+ αi − i)(26)

=
k−1∑
i=1

[(k − i) · αi]−
∑

i : max(Bi)<min(Bi+1)

i.(27)

The longest element w0 = n . . . 21 (in one-line notation) of Sn gives an involution
on OPα by

σ = (B1 | · · · | Bk) 7→ w0(σ) = (w0(B1) | · · · | w0(Bk)).
If α |= n and `(α) = k, then for σ = (B1 | · · · | Bk) ∈ OPα and any index 1 6 i 6

k − 1 we have max(Bi) < min(Bi+1) if and only if min(w0(Bi)) > max(w0(Bi+1)).
Therefore,

maj′(σ) + maj(w0(σ)) =
k∑
i=1

[(i− 1)(αi − 1) + (k − i) · αi](28)

=
k∑
i=1

[−αi − i+ 1 + kαi](29)

= (k − 1)(n− k) +
(
k

2

)
.(30)

On the other hand, it is easy to see that

max{maj(σ) : σ ∈ OPn,k} = (k − 1)(n− k)−
(
k

2

)
= max{maj′(σ) : σ ∈ OPn,k}.

Applying Equation (24) gives

(31)
∑

σ∈OPn,k

qmaj(σ) = revq

 ∑
σ∈OPn,k

qmaj′(σ)

 = revq([k]!q · Stirq(n, k)).

�

We have an action of the 0-Hecke algebraHn(0) on F[OPn,k] given by Equation (9).
This Hn(0)-action preserves F[OPα] for each composition α of n.

2.3. Gröbner theory. We review material related to Gröbner bases of ideals I ⊆
F[xn] and standard monomial bases of the corresponding quotients F[xn]/I. For a
more leisurely introduction to this material, see [9].

A total order 6 on the monomials in F[xn] is called a term order if
• 1 6 m for all monomials m ∈ F[xn], and
• if m,m′,m′′ ∈ F[xn] are monomials, then m 6 m′ implies m ·m′′ 6 m′ ·m′′.

In this paper, we will consider the lexicographic term order with respect to the variable
ordering xn > · · · > x2 > x1. That is, we have

xa1
1 · · ·xann < xb1

1 · · ·xbnn
if and only if there exists an integer 1 6 j 6 n such that aj+1 = bj+1, . . . , an = bn,
and aj < bj . Following the notation of sage, we call this term order neglex.
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Let 6 be any term order on monomials in F[xn]. If f ∈ F[xn] is a nonzero polyno-
mial, let in<(f) be the leading (i.e., largest) term of f with respect to <. If I ⊆ F[xn]
is an ideal, the associated initial ideal is the monomial ideal

(32) in<(I) := 〈in<(f) : f ∈ I − {0}〉.

The set of monomials

(33) {monomials m ∈ F[xn] : m /∈ in<(I)}

descends to a F-basis for the quotient F[xn]/I; this basis is called the standard mono-
mial basis (with respect to the term order 6) [9, Prop. 1, p. 230].

Let I ⊆ F[xn] be any ideal and let6 be a term order. A finite setG = {g1, . . . , gr} ⊆
I of nonzero polynomials in I is called a Gröbner basis of I if

(34) in<(I) = 〈in<(g1), . . . , in<(gr)〉.

If G is a Gröbner basis of I, then we have I = 〈G〉 [9, Cor. 6, p. 77].
Let G be a Gröbner basis for I with respect to the term order 6. The basis G is

called minimal if
• for any g ∈ G, the leading coefficient of g with respect to 6 is 1, and
• for any g 6= g′ in G, the leading monomial of g does not divide the leading
monomial of g′.

A minimal Gröbner basis G is called reduced if in addition
• for any g 6= g′ in G, the leading monomial of g does not divide any term in
the polynomial g′.

Up to a choice of term order, every ideal I has a unique reduced Gröbner basis [9,
Prop. 6, p. 92].

2.4. Sym, QSym, and NSym. Let x = (x1, x2, . . . ) be a totally ordered infinite
set of variables and let Sym be the (Z-)algebra of symmetric functions in x with
coefficients in Z. The algebra Sym is graded; its degree n component has basis given
by the collection {sλ : λ ` n} of Schur functions. The Schur function sλ may be
defined as

(35) sλ =
∑
T

xT ,

where the sum is over all semistandard tableaux T of shape λ and xT is the monomial

(36) xT := x#of 1s in T
1 x#of 2s in T

2 · · · .

Given partitions µ ⊆ λ, we also let sλ/µ ∈ Sym denote the associated skew Schur
function. The expansion of sλ/µ in the x variables is also given by Equation (35). In
particular, if α is a composition (thought of as a ribbon), we have the ribbon Schur
function sα ∈ Sym.

There is a coproduct of Sym given by replacing the variables x1, x2, . . . with
x1, x2, . . . , y1, y2, . . . such that Sym becomes a graded Hopf algebra which is self-dual
under the basis {sλ} [14, §2].

Let α = (α1, . . . , αk) |= n be a composition. The monomial quasisymmetric func-
tion is the formal power series

(37) Mα :=
∑

i1<···<ik

xα1
i1
· · ·xαkik .

The graded algebra of quasisymmetric functions QSym is the Z-linear span of the
Mα, where α ranges over all compositions.
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We will focus on a basis for QSym other than the monomial quasisymmetric func-
tions Mα. If n is a positive integer and if S ⊆ [n − 1], the Gessel fundamental qua-
sisymmetric function FS attached to S is

(38) FS :=
∑

i16···6in
j∈S⇒ ij<ij+1

xi1 · · ·xin .

In particular, if w ∈ Sn is a permutation with inverse descent set iDes(w) ⊆ [n− 1],
we have the quasisymmetric function FiDes(w). If α |= n is a composition, we extend
this notation by setting Fα := FDes(α).

Next, let NSym be the graded algebra of noncommutative symmetric functions.
This is the free unital associative (noncommutative) algebra

(39) NSym := Z〈h1,h2, . . . 〉

generated over Z by the symbols h1,h2, . . . , where hd has degree d. The degree n com-
ponent of NSym has Z-basis given by {hα : α |= n}, where for α = (α1, . . . , α`) |= n
we set

(40) hα := hα1 · · ·hα` .

Another basis of the degree n piece of NSym consists of the ribbon Schur functions
{sα : α |= n}. The ribbon Schur function sα is defined by

(41) sα :=
∑
β�α

(−1)`(α)−`(β)hβ .

Finally, there are coproducts for QSym and NSym such that they become dual
graded Hopf algebras [14, §5].

2.5. Characteristic maps. Let A be a finite-dimensional algebra over a field F.
The Grothendieck group G0(A) of the category of finitely-generated A-modules is the
quotient of the free abelian group generated by isomorphism classes [M ] of finitely-
generated A-modules M by the subgroup generated by elements [M ] − [L] − [N ]
corresponding to short exact sequences 0 → L → M → N → 0 of finitely-generated
A-modules. The abelian group G0(A) has free basis given by the collection of (isomor-
phism classes of) irreducible A-modules. The Grothendieck group K0(A) of the cate-
gory of finitely-generated projective A-modules is defined similarly, and has free basis
given by the set of (isomorphism classes of) projective indecomposable A-modules.
If A is semisimple then G0(A) = K0(A). See [3] for more details on representation
theory of finite dimensional algebras.

The symmetric group algebra Q[Sn] is semisimple and has irreducible representa-
tions Sλ indexed by partitions λ ` n. The Grothendieck group G0(Q[S•]) of the tower
Q[S•] : Q[S0] ↪→ Q[S1] ↪→ Q[S2] ↪→ · · · of symmetric group algebras is the direct
sum of G0(Q[Sn]) for all n > 0. It is a graded Hopf algebra with product and co-
product given by induction and restriction along the embeddings Sm×Sn ↪→ Sm+n.
The structure constants of G0(Q[S•]) under the self-dual basis {Sλ}, where λ runs
through all partitions, are the well-known Littlewood-Richardson coefficients.

The Frobenius character (1) Frob(V ) of a finite-dimensional Q[Sn]-module V is

(42) Frob(V ) :=
∑
λ`n

[V : Sλ ] · sλ ∈ Sym

(1)The Frobenius character Frob(V ) is indeed a “character” since the Schur functions are char-
acters of irreducible polynomial representations of the general linear groups.
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where [V : Sλ ] is the multiplicity of the simple module Sλ among the composition
factors of V . The correspondence Frob gives a graded Hopf algebra isomorphism
G0(Q[S•]) ∼= Sym [14, §4.4].

One can refine Frob for graded representations of Q[Sn]. Recall that the Hilbert se-
ries of a graded vector space V =

⊕
d>0 Vd with each component Vd finite-dimensional

is

(43) Hilb(V ; q) :=
∑
d>0

dim(Vd) · qd.

If V carries a graded action of Q[Sn], we also define the graded Frobenius series by

(44) grFrob(V ; q) :=
∑
d>0

Frob(Vd) · qd.

Now let us recall the 0-Hecke analog of the above story. Consider an arbitrary
ground field F. The representation theory of the F-algebra Hn(0) was studied by
Norton [21] and has a different flavor from that ofQ[Sn] sinceHn(0) is not semisimple.
Norton [21] proved that the Hn(0)-modules

(45) Pα := Hn(0)πw0(α)πw0(αc),

where α ranges over all compositions of n, form a complete list of nonisomorphic
indecomposable projective Hn(0)-modules. For each α |= n, the Hn(0)-module Pα
has a basis

{πwπw0(αc) : w ∈ Sn, Des(w) = Des(α)}.
Moreover, Pα has a unique maximal submodule spanned by all elements in the above
basis except its cyclic generator πw0(α)πw0(αc), and the quotient of Pα by this maximal
submodule, denoted by Cα, is one-dimensional and admits an Hn(0)-action by πi =
−1 for all i ∈ Des(α) and πi = 0 for all i ∈ Des(αc). The collections {Pα : α |= n}
and {Cα : α |= n} are complete lists of nonisomorphic projective indecomposable and
irreducible Hn(0)-modules, respectively.

Just as the Frobenius character map gives a deep connection between the represen-
tation theory of symmetric groups and the ring Sym of symmetric functions, there are
two characteristic maps Ch and ch, defined by Krob and Thibon [19], which facilitate
the study of representations of Hn(0) through the rings QSym and NSym. Let us
recall their construction.

The two Grothendieck groups G0(Hn(0)) and K0(Hn(0)) have free Z-bases {Cα :
α |= n} and {Pα : α |= n}, respectively. Associated to the tower of algebras H•(0) :
H0(0) ↪→ H1(0) ↪→ H2(0) ↪→ · · · are the two Grothendieck groups

G0(H•(0)) :=
⊕

n>0 G0(Hn(0)) and K0(H•(0)) :=
⊕

n>0 K0(Hn(0)).
These groups are graded Hopf algebras with product and coproduct given by induction
and restriction along the embeddings Hn(0)⊗Hm(0) ↪→ Hn+m(0), and they are dual
to each other via the pairing 〈Pα, Cβ〉 = δα,β .

Analogously to the Frobenius correspondence, Krob and Thibon [19] defined two
linear maps

Ch : G0(H•(0))→ QSym and ch : K0(H•(0))→ NSym
by Ch(Cα) := Fα and ch(Pα) := sα for all compositions α. These maps are iso-
morphisms of graded Hopf algebras. Krob and Thibon also showed [19] that for any
composition α, the characteristic Ch(Pα) equals the corresponding ribbon Schur func-
tion sα ∈ Sym:

(46) Ch(Pα) =
∑

w∈Sn : Des(w)=Des(α)

FiDes(w) = sα.

Algebraic Combinatorics, Vol. 1 #1 (2018) 58



Ordered set partitions and the 0-Hecke algebra

We give graded extensions of the maps Ch and ch as follows. Suppose that V =⊕
d>0 Vd is a graded Hn(0)-module with finite-dimensional homogeneous components

Vd. The degree-graded noncommutative characteristic and degree-graded quasisymmet-
ric characteristic of V are defined by

(47) cht(V ) :=
∑
d>0

ch(Vd) · td and Cht(V ) :=
∑
d>0

Ch(Vd) · td.

On the other hand, the 0-Hecke algebra Hn(0) has a length filtration Hn(0)(0) ⊇
Hn(0)(1) ⊇ Hn(0)(2) ⊇ · · · where Hn(0)(`) is the span of {πw : w ∈ Sn, `(w) > `}.
Let V = Hn(0)v be a cyclic Hn(0)-module whose distinguished generator v ∈ V is
equipped with a length a > 0. The length filtration V (a) ⊇ V (a+1) ⊇ V (a+2) ⊇ · · · of
V is given by

(48) V (`) := Hn(0)(`−a)v, ` > a.

Following Krob and Thibon [19], we define the length-graded quasymmetric charac-
teristic of V as

(49) Chq(V ) :=
∑
`>a

Ch
(
V (`)/V (`+1)

)
· q`.

The freedom to choose a length a > 0 for the distinguished generator v will make
certain formulas look nicer.

Now suppose V =
⊕

d>0 Vd is a graded Hn(0)-module which is also cyclic with
a length filtration V (a) ⊇ V (a+1) ⊇ · · · as in the above paragraph. Let V (`)

d :=
V (`) ∩ Vd for ` > a and d > 0. We define the length-degree-bigraded quasisymmetric
characteristic of V to be

(50) Chq,t(V ) :=
∑
`>a
d>0

Ch
(
V

(`)
d

/
V

(`+1)
d

)
· q`td.

Finally, if an Hn(0)-module V =
⊕

α∈I Vα is a direct sum of cyclic graded Hn(0)-
submodules Vα for α in some index set I, then we define Chq,t(V ) :=

∑
α∈I Chq,t(Vα).

Note that Chq,t(V ) may depend on the choice of the direct sum decomposition of V
into cyclic submodules. For example, Huang [17] showed that the coinvariant algebra
Rn is isomorphic to the regular representation of Hn(0) and obtained the length-
degree-bigraded quasisymmetric characteristic

(51) Chq,t(Rn) =
∑
w∈Sn

qinv(w)tmaj(w)FiDes(w)

using the cyclic generator of Rn corresponding to the element 1 ∈ Hn(0). However,
if Rn is viewed as a direct sum of projective indecomposable submodules indexed
by compositions of n then the length grading received by each w ∈ Sn needs to be
changed to inv(w) − inv(w0(α)) where α |= n is determined by Des(α) = Des(w).
For our convenience, we will choose an approriate decomposition of V into cyclic
submodules, and further adjust the length grading by a suitable constant for each
cyclic submodule in the distinguished direct sum decomposition of V . This will give
a length-degree-bigraded characteristic Chq,t(V ), which specializes to Ch1,t(V ) =
Cht(V ) and Chq,1(V ) = Chq(V ), respectively.

3. Hilbert Series and Artin basis
3.1. The point sets Zn,k. In this section we will prove that dim(Sn,k) = |OPn,k|.
To do this, we will use tools from elementary algebraic geometry. This basic method
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dates back to the work of Garsia and Procesi on Springer fibers and Tanisaki quotients
[11].

Given a finite point set Z ⊆ Fn, let I(Z) ⊆ F[xn] be the ideal of polynomials which
vanish on Z:

(52) I(Z) := {f ∈ F[xn] : f(z) = 0 for all z ∈ Z}.

There is a natural identification of the quotient F[xn]/I(Z) with the collection of
polynomial functions Z → F.

We claim that any function Z → F may be realized as the restriction of a polyno-
mial function. This essentially follows from Lagrange Interpolation. Indeed, since Z ⊆
Fn is finite, there exist field elements α1, . . . , αm ∈ F such that Z ⊆ {α1, . . . , αm}n.
For any n-tuple of integers (i1, . . . , in) between 1 and m, the polynomial∏

j1 6=i1

(x1 − αj1) · · ·
∏
jn 6=in

(xn − αjn) ∈ F[xn]

vanishes on every point of {α1, . . . , αm}n except for (αi1 , . . . , αin). Hence, an arbitrary
F-valued function on {α1, . . . , αm}n may be realized using a linear combination of
polynomials of the above form. Since Z ⊆ {α1, . . . , αm}n, the same is true for an
arbitrary F-valued function on Z.

By the last paragraph, we may identify the quotient F[xn]/I(Z) with the collection
of all functions Z → F. In particular, the dimension of this quotient as an F-vector
space is

(53) dim (F[xn]/I(Z)) = |Z|.

The ideal I(Z) is almost never homogeneous. To get a homogeneous ideal, we do
the following. For any nonzero polynomial f ∈ F[xn], let τ(f) be the top degree
component of f . That is, if f = fd+fd−1 + · · ·+f0 where fi has homogeneous degree
i for all i and fd 6= 0, then τ(f) = fd. The ideal T(Z) ⊆ F[xn] is generated by the
top degree components of all nonzero polynomials in I(Z). In symbols:

(54) T(Z) := 〈τ(f) : f ∈ I(Z)− {0}〉.

The ideal T(Z) is homogeneous by definition, so that F[xn]/T(Z) is a graded
F-vector space. Moreover, it is well known that

(55) dim (F[xn]/T(Z)) = dim (F[xn]/I(Z)) = |Z|.

Our three-step strategy for proving dim(Sn,k) = |OPn,k| is as follows.
(1) Find a point set Zn,k ⊆ Fn which is in bijective correspondence with OPn,k.
(2) Prove that the generators of Jn,k arise as top degree components of polyno-

mials in I(Zn,k), so that Jn,k ⊆ T(Zn,k).
(3) Use Gröbner theory to prove dim(Sn,k) 6 |OPn,k|, forcing dim(Sn,k) =
|OPn,k| by Steps 1 and 2.

A similar three-step strategy was used by Haglund, Rhoades, and Shimozono [16]
in their analysis of the Sn-module structure of Rn,k. In our setting, since we do not
have a group action, we can only use this strategy to deduce the vector space structure
of Sn,k, rather than the Hn(0)-module structure of Sn,k.

To achieve Step 1 of our strategy, we need to find a candidate set Zn,k ⊆ Fn which
is in bijective correspondence with OPn,k. Here we run into a problem: to define our
candidate point sets, we need the field F to contain at least n+ k − 1 elements. This
problem did not arise in the work of Haglund et. al. [16]; they worked exclusively over
the field Q. To get around this problem, we use the following trick.
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Lemma 3.1. Let F ⊆ K be a field extension and J = 〈f1, . . . , fr〉 ⊆ F[xn] an ideal of
F[xn] generated by f1, . . . , fr ∈ F[xn]. Then dimF(F[xn]/J) = dimK(K[xn]/J ′) where
J ′ := K⊗F J .

Since Jn,k is generated by polynomials with all coefficients equal to 1, the generating
set of Jn,k satisfies the conditions of Lemma 3.1.

Proof. Let 6 be any term order. It suffices to show that the quotient rings F[xn]/J
and K[xn]/J ′ have the same standard monomial bases with respect to 6. To calculate
the reduced Gröbner basis for the ideal J , we apply Buchberger’s Algorithm [9, Ch.
2, §7] to the generating set {f1, . . . , fr}. To calculate the Gröbner basis for the ideal
J ′, we also apply Buchberger’s Algorithm to the generating set {f1, . . . , fr}. In either
case, all of the coefficients involved in the polynomial long division are contained in
the field F. In particular, the reduced Gröbner bases of J and J ′ coincide. Hence, the
standard monomial bases of F[xn]/J and K[xn]/J ′ also coincide. �

We are ready to define our point sets Zn,k. Thanks to Lemma 3.1, we may harm-
lessly assume that the field F has at least n + k − 1 elements by replacing F with
an extension if necessary. We will have to choose a somewhat non-obvious point set
Zn,k ⊆ Fn in order to get the desired equality of ideals T(Zn,k) = Jn,k.

Definition 3.2. Assume F has at least n+k−1 elements and let α1, α2, . . . , αn+k−1 ∈
F be a list of n + k − 1 distinct field elements. Define Zn,k ⊆ Fn to be the collection
of points (z1, z2, . . . , zn) such that

• for 1 6 i 6 n we have zi ∈ {α1, α2, . . . , αk+i−1},
• the coordinates z1, z2, . . . , zn are distinct, and
• we have {α1, α2, . . . , αk} ⊆ {z1, z2, . . . , zn}.

We claim that Zn,k is in bijective correspondence with OPn,k. A bijection ϕ :
OPn,k → Zn,k may be obtained as follows. Let σ = (B1 | · · · | Bk) ∈ OPn,k be an
ordered set partition; we define ϕ(σ) = (z1, . . . , zn) ∈ Zn,k. For 1 6 i 6 k, we first
set zj = αi, where j = min(Bi). Write the set of unassigned indices of (z1, . . . , zn)
as S = [n] − {min(B1), . . . ,min(Bk)} = {s1 < · · · < sn−k}. For s ∈ S, let `s be
the number of blocks B weakly to the left of s in σ which satisfy min(B) < s.
Let zs1 = αk+`s1

. Assuming zs1 , zs2 , . . . , zsj−1 have already been defined, let zsj be
the `thsj term in the sequence formed by deleting zs1 , zs2 , . . . , zsj−1 from the sequence
(αk+1, αk+2, . . . , αn+k−1).

As an example of the map ϕ, let σ = (7 | 248 | 13 | 569) ∈ OP9,4. The following
table computes the image ϕ(σ) = (z1, . . . , z9). We start by assigning the coordinates
(z7, z2, z1, z5) = (α1, α2, α3, α4) of the letters in the minimal blocks of σ. At the top
row of the table, the coordinates corresponding to the letters S = {3, 4, 6, 8, 9} which
are not minimal in their blocks of σ are unassigned and we have the sequence of
possible values (αk+1, . . . , αn+k−1) = (α5, . . . , α12). We add the elements of S to the
blocks of σ one at a time, from smallest to largest. At each stage, we record the letter
s added together with the number `s of blocks B weakly to the left of s in σ which
satisfy min(B) < s. We assign the coordinate zs the value of the `ths term in the list
of unassigned values, and then erase the value from the list. In summary, we have

ϕ : (7 | 248 | 13 | 569) 7→ (α3, α2, α6, α5, α4, α9, α1, α8, α12).

Algebraic Combinatorics, Vol. 1 #1 (2018) 61



Jia Huang & Brendon Rhoades

σ
letter s
added

`s unassigned α’s ϕ(σ) = (z1, . . . , zn)

(7 | 2 | 1 | 5) (α5, α6, α7, α8, α9,
α10, α11, α12)

(α3, α2, z3, z4, α4, z6,
α1, z8, z9)

(7 | 2 | 13 | 5) 3 `3 = 2 (α5, α6, α7, α8, α9,
α10, α11, α12)

(α3, α2, α6, z4, α4, z6,
α1, z8, z9)

(7 | 24 | 13 | 5) 4 `4 = 1 (α5, α7, α8, α9,
α10, α11, α12)

(α3, α2, α6, α5, α4, z6,
α1, z8, z9)

(7 | 24 | 13 | 56) 6 `6 = 3 (α7, α8, α9, α10,
α11, α12)

(α3, α2, α6, α5, α4, α9,
α1, z8, z9)

(7 | 248 | 13 | 56) 8 `8 = 2 (α7, α8, α10, α11,
α12)

(α3, α2, α6, α5, α4, α9,
α1, α8, z9)

(7 | 248 | 13 | 569) 9 `9 = 4 (α7, α10, α11, α12) (α3, α2, α6, α5, α4, α9,
α1, α8, α12)

We leave it for the reader to check that ϕ : OPn,k → Zn,k is well-defined and
invertible. The point set Zn,k therefore achieves Step 1 of our strategy.

Achieving Step 2 of our strategy involves showing that the generators of Jn,k arise
as top degree components of strategically chosen polynomials vanishing on Zn,k.

Lemma 3.3. Assume F has at least n+ k − 1 elements. We have Jn,k ⊆ T(Zn,k).

Proof. It suffices to show that every generator of Jn,k arises as the top de-
gree component of a polynomial in I(Zn,k). Let us first consider the generators
hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn).

For 1 6 i 6 n, we claim that

(56)
∑
j>0

(−1)jhk−j(x1, x2, . . . , xi)ej(α1, α2, . . . , αk+i−1) ∈ I(Zn,k).

Indeed, this alternating sum is the coefficient of tk in the power series expansion of
the rational function

(57) (1− α1t)(1− α2t) · · · (1− αk+i−1t)
(1− x1t)(1− x2t) · · · (1− xit)

.

If (x1, . . . , xn) ∈ Zn,k, by the definition of Zn,k the terms in the denominator cancel
with i terms in the numerator, yielding a polynomial in t of degree k − 1. The asser-
tion (56) follows. Taking the highest degree component, we get hk(x1, x2, . . . , xi) ∈
T(Zn,k).

Next, we show er(x1, . . . , xn) ∈ T(Zn,k) for n− k < r 6 n. To prove this, we claim
that

(58)
∑
j>0

(−1)jer−j(x1, . . . , xn)hj(α1, . . . , αn+k−1) ∈ I(Zn,k).

Indeed, this alternating sum is the coefficient of tr in the rational function

(59) (1 + x1t)(1 + x2t) · · · (1 + xnt)
(1 + α1t)(1 + α2t) · · · (1 + αkt)

.

If (x1, . . . , xn) ∈ Zn,k, the terms in the denominator cancel with k terms in the
numerator, yielding a polynomial in t of degree n−k. Since r > n−k, the assertion (58)
follows. Taking the highest degree component, we get er(x1, . . . , xn) ∈ T(Zn,k). �
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3.2. The Hilbert series of Sn,k. Let < be the neglex term order on F[xn]. We
are ready to execute Step 3 of our strategy and describe the standard monomial basis
of the quotient Sn,k. To do so, we recall the definition of ‘skip monomials’ in F[xn] of
[16].

Let S = {s1 < · · · < sm} ⊆ [n] be a set. Following [16, Defn. 3.2], the skip
monomial x(S) is the monomial in F[xn] given by
(60) x(S) := xs1

s1
xs2−1
s2

· · ·xsm−m+1
sm .

For example, we have x(2578) = x2
2x

4
5x

5
7x

5
8. The adjective ‘skip’ refers to the fact that

the exponent sequence x(S) increases whenever the set S skips a letter. Our variable
order convention will require us to consider the reverse skip monomial
(61) x(S)∗ := xs1

n−s1+1x
s2−1
n−s2+1 · · ·x

sm−m+1
n−sm+1 .

For example, if n = 9 we have x(2578)∗ = x2
8x

4
5x

5
3x

5
2. The following definition is the

reverse of [16, Defn. 4.4].

Definition 3.4. Let k 6 n be positive integers. A monomial m ∈ F[xn] is (n, k)-
reverse nonskip if

• xki - m for 1 6 i 6 n, and
• x(S)∗ - m for all S ⊆ [n] with |S| = n+ k − 1.

Let Cn,k denote the collection of all (n, k)-reverse nonskip monomials in F[xn].

There is some redundancy in Definition 3.4. In particular, if n ∈ S, the power of
x1 in x(S)∗ where |S| = n − k + 1 is xk1 , so that we need only consider those sets S
with n /∈ S.

Theorem 3.5. Let F be any field and 6 be the neglex term order on F[xn]. The
standard monomial basis of Sn,k = F[xn]/Jn,k with respect to 6 is Cn,k.

Proof. By the definition of neglex, we have
(62) in<(hk(x1, x2, . . . , xi)) = xki ∈ in<(Jn,k).
By [16, Lem. 3.4, Lem. 3.5] we also have x(S)∗ ∈ in<(Jn,k) whenever S ⊆ [n] satisfies
|S| = n− k + 1. It follows that Cn,k contains the standard monomial basis of Sn,k.

To prove that Cn,k is the standard monomial basis of Sn,k, it suffices to show
|Cn,k| 6 dim(Sn,k). Thanks to Lemma 3.1, we may replace F by an extension if
necessary to assume that F contains at least n + k − 1 elements. By Lemma 3.3, we
have
(63) dim(Sn,k) = dim (F[xn]/Jn,k) > dim (F[xn]/T(Zn,k)) = |Zn,k| = |OPn,k|.
On the other hand, [16, Thm. 4.9] implies (after reversing variables) that |OPn,k| =
|Cn,k|. �

When k = n, the collection Cn,n consists of sub-staircase monomials xa1
1 · · ·xann

whose exponent sequences satisfy 0 6 ai 6 n− i; this is the basis for the coinvariant
algebra obtained by E. Artin [2] using Galois theory. Let us mention an analogous
characterization of Cn,k which was derived in [16].

Recall that a shuffle of two sequences (a1, . . . , ar) and (b1, . . . , bs) is an interleaving
(c1, . . . , cr+s) of these sequences which preserves the relative order of the a’s and
the b’s. A (n, k)-staircase is a shuffle of the sequences (k − 1, k − 2, . . . , 1, 0) and
(k − 1, k − 1, . . . , k − 1), where the second sequence has n − k copies of k − 1. For
example, the (5, 3)-staircases are the shuffles of (2, 1, 0) and (2, 2):

(2, 1, 0, 2, 2), (2, 1, 2, 0, 2), (2, 2, 1, 0, 2), (2, 1, 2, 2, 0), (2, 2, 1, 2, 0), and (2, 2, 2, 1, 0).
The following theorem is just the reversal of [16, Thm. 4.13].
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Corollary 3.6 ([16, Thm. 4.13]). The monomial basis Cn,k of Sn,k is the set of
monomials xa1

1 xa2
2 · · ·xann in F[xn] whose exponent sequences (a1, a2, . . . , an) are com-

ponentwise 6 some (n, k)-staircase.

For example, consider the case (n, k) = (4, 2). The (4, 2)-staircases are the shuffles
of (1, 0) and (1, 1):

(1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).
It follows that
C4,2 = {1, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1x3x4, x1x2x4, x1x2x3}

is the standard monomial basis of S4,2 with respect to neglex. Consequently, we have
the Hilbert series

Hilb(S4,2; q) = 1 + 4q + 6q2 + 3q3.

We can also describe a Gröbner basis of the ideal Jn,k. For γ = (γ1, . . . , γn) a
weak composition (i.e., possibly containing 0’s) of length n, let κγ(xn) ∈ F[xn] be the
associated Demazure character (see e.g. [16, Sec. 2.4]).

If S ⊆ [n], let γ(S) = (γ1, . . . , γn) be the exponent sequence of the corresponding
skip monomial x(S). That is, if S = {s1 < · · · < sm} we have

(64) γi =
{
sj − j + 1 if i = sj ∈ S
0 if i /∈ S.

Let γ(S)∗ = (γn, . . . , γ1) be the reverse of the weak composition γ(S). In particular,
we can consider the Demazure character κγ(S)∗(xn) ∈ F[xn].

Theorem 3.7. Let k 6 n be positive integers and let 6 be the neglex term order on
F[xn]. The polynomials

hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn)
together with the Demazure characters

κγ(S)∗(xn) ∈ F[xn]
for all S ⊆ [n− 1] satisfying |S| = n− k+ 1, form a Gröbner basis for the ideal Jn,k.

When k < n, this Gröbner basis is minimal.

For example, if (n, k) = (6, 4), a Gröbner basis of J6,4 ⊆ F[x6] is given by the
polynomials

h4(x1), h4(x1, x2), h4(x1, x2, x3), h4(x1, x2, x3, x4),
h4(x1, x2, x3, x4, x5) and h4(x1, x2, x3, x4, x5, x6)

together with the Demazure characters
κ(0,0,0,1,1,1)(x6), κ(0,0,2,0,1,1)(x6), κ(0,3,0,0,1,1)(x6), κ(0,0,2,2,0,1)(x6), κ(0,3,0,2,0,1)(x6),
κ(0,3,3,0,0,1)(x6), κ(0,0,2,2,2,0)(x6), κ(0,3,0,2,2,0)(x6), κ(0,3,3,0,2,0)(x6), κ(0,3,3,3,0,0)(x6).

Proof. We need to show that the polynomials in question lie in the ideal Jn,k. This is
clear for the polynomials hk(x1, . . . , xi). For the Demazure characters, we apply [16,
Lem. 3.4] (and in particular [16, Eqn. 3.4]) to see that κγ(S)∗(xn) ∈ Jn,k whenever
S ⊆ [n− 1] satisfies |S| = n− k + 1.

Next we examine the leading terms of the polynomials in question. It is evident
that

in<(hk(x1, . . . , xi)) = xki .

After applying variable reversal to [16, Lem. 3.5], we see that
in<(κγ(S)∗(xn)) = x(S)∗.
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By Theorem 3.5 and the remarks following Definition 3.4, it follows that these mono-
mials generate the initial ideal in<(Jn,k) of Jn,k.

When k < n, observe that for S ⊆ [n−1] with |S| = n−k+1, the monomial x(S)∗
has support {i : n− i+ 1 ∈ S}. Moreover, the monomial x(S)∗ does not contain any
exponents > k since n /∈ S. The minimality of the Gröbner basis follows. �

Theorem 3.7 is the 0-Hecke analog of [16, Thm. 4.14]. Unlike the case of [16,
Thm. 4.14], the Gröbner basis of Theorem 3.7 is not reduced. When k = n,
the ideal Jn,n is the classical invariant ideal In and has reduced Gröbner basis
{h1(x1, . . . , xn), h2(x1, . . . , xn−1), . . . , hn(x1)}. The authors do not have a conjecture
for the reduced Gröbner basis for the ideal Jn,k. The work of [16] gives us a formula
for the Hilbert series of Sn,k.

Theorem 3.8. Let k 6 n be positive integers. We have Hilb(Sn,k; q) = revq([k]!q ·
Stirq(n, k)).

Proof. By Theorem 3.5 and [16, Thm. 4.13], the Hilbert series of Sn,k equals the
Hilbert series of Rn,k. Applying [16, Thm. 4.10] finishes the proof. �

4. Garsia-Stanton type bases
Let k 6 n be positive integers. Given a composition α |= n and a length n sequence
i = (i1, . . . , in) of nonnegative integers, define a monomial xα,i ∈ F[xn] by

(65) xα,i :=

 ∏
j∈Des(α)

x1x2 · · ·xj

xi11 x
i2
2 · · ·xinn .

If w ∈ Sn is a permutation and i = (i1, . . . , in) is a sequence of nonnegative integers,
we define the generalized Garsia-Stanton monomial gsw,i := w(xα,i), where α |= n
is characterized by Des(α) = Des(w). The degree of gsw,i is given by deg(gsw,i) =
maj(w) + |i|, where |i| := i1 + · · ·+ in.

For example, let (n, k) = (9, 5), w = 254689137 ∈ S9 and i = (2, 2, 1, 1, 0, 0, 0, 0, 0).
We have Des(w) = {2, 6}, so that the composition α |= 9 with Des(α) = Des(w) is
α = (2, 4, 3). It follows that

xα,i = (x1x2)(x1x2x3x4x5x6)(x2
1x

2
2x

1
3x

1
4).

The corresponding generalized GS monomial is
gsw,i = (x2x5)(x2x5x4x6x8x9)(x2

2x
2
5x

1
4x

1
6).

Haglund, Rhoades, and Shimozono introduced [16, Defn. 5.2] (using different no-
tation) the following collection GSn,k of monomials:
GSn,k := {gsw,i : w ∈ Sn, k − des(w) > i1 > · · · > in−k > 0 = in−k+1 = · · · = in}.
When k = n, we have gsw,i ∈ GSn,n if and only if w ∈ Sn and i = 0n is the
sequence of n zeros. Garsia [10] proved that GSn,n descends to a basis of the classical
coinvariant algebra Rn. Garsia and Stanton [12] later studied GSn,n in the context of
Stanley-Reisner theory. Extending Garsia’s result, Haglund et. al. proved that GSn,k
descends to a basis of Rn,k [16, Thm. 5.3]. We will prove that GSn,k also descends to
a basis of Sn,k. In fact, we will prove that GSn,k is just one of a family of bases of
Sn,k.

Huang used isobaric Demazure operators to define a basis of the classical coinvari-
ant algebra Rn which is related to the classical GS basis GSn,n by a unitriangular
transition matrix [17]. We will modify GSn,k to get a new basis of Sn,k in an analogous
way. As in [17], our modified basis will be crucial in our analysis of the Hn(0)-module
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structure of Sn,k. This modified basis and GSn,k itself will both belong to the following
family of bases of Sn,k.

To describe these bases, we will need a partial order on monomials in F[xn]. If
m = xa1

1 · · ·xann is a monomial in F[xn], let λ(m) := sort(a1, . . . , an) be the se-
quence obtained by sorting the exponent sequence of m into weakly decreasing order.
Following Adin, Brenti, and Roichman [1], we associate a collection of objects to
any monomial m = xa1

1 · · ·xann in F[xn] as follows. Let σ(m) = σ1 · · ·σn ∈ Sn be
the permutation (in one-line notation) obtained by listing the indices of variables
in weakly decreasing order of the exponents in m, breaking ties by listing smaller
indexed variables first. Let d(m) = (d1, . . . , dn) be the integer sequence given by
dj = |Des(σ(m)) ∩ {j, j + 1, . . . , n}|. Adin, Brenti, and Roichman [1] showed that
the componentwise difference λ(m) − d(m) is an integer partition (i.e., has weakly
decreasing components). Let µ(m) be the conjugate of this integer partition.

For example, if m = x3
1x

4
2x

0
3x

2
4x

2
5x

0
6x

0
7, then λ(m) = (4, 3, 2, 2, 0, 0, 0) and σ(m) =

2145367. It follows that d(m) = (2, 1, 1, 1, 0, 0, 0), λ(m) − d(m) = (2, 2, 1, 1, 0, 0, 0),
and µ(m) = (4, 2).

Definition 4.1. Let ≺ be the partial order on monomials in F[xn] defined by m ≺ m′
if and only if λ(m) < λ(m′) in lexicographical order.

Lemma 4.2. Let Bn,k = {bw,i} be a set of polynomials indexed by pairs (w, i) where
w ∈ Sn and i = (i1, . . . , in) satisfy

k − des(w) > i1 > · · · > in−k > 0 = in−k+1 = · · · = in.

Assume that any bw,i ∈ Bn,k has the form

(66) bw,i = gsw,i +
∑

m≺gsw,i

cm ·m,

where the cm ∈ F are scalars which could depend on (w, i) and ≺ is the partial order
on monomials appearing in Definition 4.1. The set Bn,k descends to a basis of Sn,k.

Proof. By [16, Thm. 5.3], we know that |Bn,k| = |GSn,k| = |OPn,k|. By Theorem 3.8,
we have dim(Sn,k) = |OPn,k|. Therefore, it is enough to show that Bn,k descends to
a spanning set of Sn,k.

If Bn,k did not descend to a spanning set of Sn,k, then there would be a monomial
m ∈ F[xn] whose image m+ Jn,k did not lie in the span of Bn,k. Working towards a
contradiction, suppose that such a monomial existed.

Let m = xa1
1 · · ·xann be any monomial in F[xn]. We argue that m is expressible

modulo Jn,k as a linear combination of monomials of the form m′ = xb1
1 · · ·xbnn with

bi < k for all i. Indeed, if m does not already have this form, choose i maximal such
that ai > k. Since hk(x1, . . . , xi) ∈ Jn,k, modulo Jn,k we have

(67) m ≡ −(xa1
1 · · ·x

ai−k
i · · ·xann )

∑
16j16···6jk6i

j1 6=i

xj1 · · ·xjk .

If every monomial appearing on the right hand side is of the required form, we are
done. Otherwise, we may iterate this procedure. Since hk(x1) = xk1 ∈ Jn,k, iterating
this procedure eventually yields 0 or a linear combination of monomials of the required
form.

Let ≺ABR be the partial order on monomials in F[xn] defined by m ≺ABR m′ if
and only if λ(m) < λ(m′) in lexicographical order or (λ(m) = λ(m′) and inv(σ(m)) >
inv(σ(m′))). In particular, the relation m ≺ m′ implies m ≺ABR m′.
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Letm = xa1
1 · · ·xann be any monomial in F[xn] such thatm+Jn,k does not lie in the

span of Bn,k. By the reasoning above, we may assume that ai < k for all 1 6 i 6 n.
Choose such an m which is minimal with respect to the partial order ≺ABR.

Adin, Brenti, and Roichman [1, Lem. 3.5] proved that we can ‘straighten’ the
monomial m and write
(68) m = gsσ(m)eµ(m)(xn)− Σ,
where Σ is a linear combination of monomials which are ≺ABR m. Here
(69) gsσ(m) := gsσ(m),0n = xd1

σ1
· · ·xdnσn

is the ‘classical’ GS monomial indexed by σ(m). Our assumption on m guarantees
that Σ lies in the span of Bn,k modulo Jn,k.

If µ(m)1 > n − k, then eµ(m)(xn) ≡ 0 modulo Jn,k. It follows that m lies in the
span of Bn,k modulo Jn,k, which is a contradiction.

If µ(m)1 6 n− k, then by the definition of λ(m), d(m), and µ(m), we may write

(70) m = gsσ(m) · x
µ(m)′1
σ1 · · ·xµ(m)′n−k

σn−k ,

where µ(m)′1 > · · · > µ(m)′n−k > 0 is the conjugate of µ(m). Suppose µ(m)′1 >
k − des(σ(m)). Since the exponent of xσ1 in gsσ(m) equals des(σ(m)), we then have
xkσ1
| m, which contradicts the assumption that m has no variables with power > k.

Therefore, we have µ(m)′1 < k − des(σ(m)). This means that m ∈ GSn,k and m =
gsw,i for some pair (w, i). (In fact, we can take (w, i) = (σ(m), µ′).) However, our
assumption on Bn,k guarantees that

(71) m = gsw,i = bw,i −
∑
m′≺m

cm′ ·m′

for some scalars cm′ ∈ F. Then our assumption on m together with the fact (m′ ≺
m ⇒ m′ ≺ABR m) imply that m lies in the span of Bn,k modulo Jn,k, which is a
contradiction. �

Corollary 4.3. Let k 6 n be positive integers. The set GSn,k of generalized Garsia-
Stanton monomials descends to a basis of Sn,k.

For example, suppose (n, k) = (7, 5) and w = 6123745. Then des(w) = 2 and
the classical GS monomial is gsw = (x6)(x6x1x2x3x7). We have n − k = 2 and
k − des(w) = 3, so that this classical GS monomial gives rise to the following six
elements of GSn,k:

(x6)(x6x1x2x3x7) (x6)(x6x1x2x3x7)(x6) (x6)(x6x1x2x3x7)(x2
6)

(x6)(x6x1x2x3x7)(x6x2) (x6)(x6x1x2x3x7)(x2
6x2) (x6)(x6x1x2x3x7)(x2

6x
2
2).

5. Module structure over the 0-Hecke algebra
In this section we prove an isomorphism Sn,k ∼= F[OPn,k] of (ungraded) Hn(0)-
modules.

5.1. Ordered set partitions. We first describe the Hn(0)-module structure of
F[OPn,k]. Recall that if α |= n is a composition, then Pα is the corresponding inde-
composable projective Hn(0)-module. We need a family of projective Hn(0)-modules
which are indexed by pairs of compositions related by refinement. Let α, β |= n be
two compositions satisfying α � β. Let Pα,β be the Hn(0)-module given by
(72) Pα,β := Hn(0)πw0(α)πw0(βc).

In particular, we have Pα,α = Pα. More generally, we have the following structural
result on Pα,β .
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Lemma 5.1 (Huang [18, Thm. 3.2]). Let α, β |= n and assume α � β. Then Pα,β has
basis

(73) {πwπw0(βc) : w ∈ Sn, Des(α) ⊆ Des(w) ⊆ Des(β)}

and direct sum decomposition

(74) Pα,β ∼=
⊕

α�γ�β
Pγ .

For example, the module P(4,1),(1,2,1,1) breaks up into projective indecomposable
submodules as

P(4,1),(1,2,1,1) ∼= P(4,1) ⊕ P(1,3,1) ⊕ P(3,1,1) ⊕ P(1,2,1,1).

Recall that, for each composition α = (α1, . . . , α`) |= n, we denote by OPα the
collection of ordered set partitions of shape α, i.e., pairs (w,α) for all w ∈ Sn with
Des(w) ⊆ Des(α).

Lemma 5.2. Let α = (α1, . . . , α`) be a composition of n. Then F[OPα] is a cyclic
Hn(0)-module generated by the ordered set partition (12 · · ·n, α) and is isomorphic
to P(n),α via the map defined by sending (w,α) to πwπw0(αc) for all w ∈ Sn with
Des(w) ⊆ Des(α).

Proof. Huang [18, (3.3)] defined an action of Hn(0) on the F-span Pα1⊕···⊕α` of stan-
dard tableaux of skew shape α1 ⊕ · · · ⊕ α`, where α1 ⊕ · · · ⊕ α` is a disconnected
union of rows of lengths α1, . . . , α`, ordered from southwest to northeast. There is
an obvious isomorphism F[OPα] ∼= Pα1⊕···⊕α` by sending an ordered set partition
(B1| · · · |Bk) to the tableau whose rows are B1, . . . , Bk from southwest to northeast.
Combining this with the isomorphism Pα1⊕···⊕α`

∼= P(n),α provided by [18, Thm. 3.3]
gives the desired result. �

Proposition 5.3. Let k 6 n be positive integers. Then we have isomorphisms of
Hn(0)-modules:

(75) F[OPn,k] ∼=
⊕
α|=n
`(α)=k

F[OPα] ∼=
⊕
β|=n

P
⊕(n−`(β)

k−`(β))
β .

Proof. Since OPn,k is the disjoint union of OPα for all compositions α |= n of length
`(α) = k, the first desired isomorphism follows. Applying Lemma 5.1 and Lemma 5.2
to each OPα gives a direct sum decomposition of F[OPn,k] into projective indecom-
posable modules. The multiplicity of Pβ in this direct sum equals

|{β � α : `(α) = k}| =
(
n− `(β)
k − `(β)

)
for each β |= n. The second desired isomorphism follows. �

For example, when n = 4 and k = 2 we have F[OP(1,3)] ∼= P(1,3)⊕P(4), F[OP(2,2)] ∼=
P(2,2) ⊕ P(4), F[OP(3,1)] ∼= P(3,1) ⊕ P(4), and summing these gives

(76) F[OP4,2] ∼= P(1,3) ⊕ P(2,2) ⊕ P(3,1) ⊕ P⊕3
(4) .
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π3=−1tt

12|34 π1=π3=0
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13|24
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π3 ##

23|14π1=−1
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π3
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14|23 π2=0
π3=−1tt

π1
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24|13
π1=π3=−1

ee

π2

��

34|12 π1=π3=0
π2=−1tt

123|4 π1=π2=0
tt

π3

��

124|3 π1=0
π3=−1tt

π2

��

134|2 π2=−1
π3=0tt

π1
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234|1 π1=−1
π2=π3=0tt

OP(1,3) ∼= P(4) ⊕ P(1,3) OP(2,2) ∼= P(4) ⊕ P(2,2) OP(3,1) ∼= P(4) ⊕ P(3,1)

Figure 1. A decomposition of F[OP4,2]

5.2. 0-Hecke action on polynomials. Our next task is to show that Sn,k has
the same isomorphism type as the Hn(0)-module of Proposition 5.3. To do this, we
will need to study the action of Hn(0) on the polynomial ring F[xn] via the isobaric
Demazure operators πi defined in (7). Using the relation πi = πi − 1, we have

πi(f) := xi+1f − xi+1(si(f))
xi − xi+1

, ∀i ∈ [n− 1], ∀f ∈ F[xn].

Thus for an arbitrary monomial xa1
1 · · ·xann , we have

(77)

πi(xa1
1 · · ·xann ) =



(xa1
1 · · ·x

ai−1
i−1 x

ai+2
i+2 · · ·x

an
n )

ai−ai+1∑
j=1

xai−ji x
ai+1+j
i+1 ai > ai+1

0 ai = ai+1

−(xa1
1 · · ·x

ai−1
i−1 x

ai+2
i+2 · · ·x

an
n )

ai+1−ai−1∑
j=0

x
ai+1+j
i xai−ji+1 ai < ai+1.

Using this we have the following triangularity result.

Lemma 5.4. Let d = (d1 > · · · > dn) be a weakly decreasing vector of nonnegative
integers and let xd = xd1

1 · · ·xdnn be the corresponding monomial in F[xn]. Suppose
w ∈ Sn satisfies Des(w) ⊆ Des(d). The polynomial πw(xd) has the form

(78) πw(xd) = w(xd) +
∑

m≺w(xd)

cm ·m

for some cm ∈ F.

Proof. The proof is similar to [17, Lem. 4.1]. Observe that a monomial m satisfies
m ≺ xd if and only if m ≺ w(xd) for any permutation w ∈ Sn.

We induct on the length `(w) of the permutation w. If `(w) = 0, then w is the
identity permutation and the lemma is trivial. Otherwise, we may write w = sjv,
where j ∈ [n − 1] and v ∈ Sn satisfies `(w) = `(v) + 1. We have j ∈ Des(w−1),
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j /∈ Des(v−1), and Des(v) ⊆ Des(w) ⊆ Des(d). By induction we have

(79) πv(xd) = v(xd) +
∑
m≺xd

am ·m

for some scalars am ∈ F.
Since j /∈ Des(v−1), we have v−1(j) < v−1(j+1) and thus dv−1(j) > dv−1(j+1). Since

wv−1(j) = sj(j) > sj(j+1) = wv−1(j+1), there exists an element of [v−1(j), v−1(j+
1)− 1] which belongs to Des(w) ⊆ Des(d). This implies dv−1(j) > dv−1(j+1). Then by
(77), applying πj to v(xd) = xd1

v(1) · · ·x
dn
v(n) we have

(80) πj(v(xd)) = sjv(xd) +
∑

m′≺v(xd)

bm′ ·m′ = w(xd) +
∑

m′≺xd

bm′ ·m′

for some scalars bm′ ∈ F. On the other hand, (77) also implies that applying πj to
any monomial which is ≺ xd will only yield terms which are also ≺ xd. Hence πw(xd)
has the desired form. �

We will decompose the quotient Sn,k into a direct sum of projective modules of the
form Pα,β defined in (72). This decomposition will ultimately rest on the following
lemma.

Lemma 5.5. Let d = (d1 > · · · > dn) be a weakly decreasing sequence of nonneg-
ative integers. Suppose α, β |= n such that α � β and Des(d) = Des(β). Then
Hn(0)πw0(α)xd has basis

(81)
{
πw(xd) : Des(α) ⊆ Des(w) ⊆ Des(β)

}
.

Furthermore, sending each element πw(xd) in the basis (81) to πwπw0(βc) gives an
isomorphism Hn(0)πw0(α)xd ∼= Pα,β of Hn(0)-modules.

Proof. Let 1 6 i 6 n − 1. If i /∈ Des(β), then the monomial xd is symmetric in
xi and xi+1, so that πi(xd) = 0 by (77). More generally, if w ∈ Sn is such that
Des(w) 6⊆ Des(β) then πw(xd) = 0 because there exists a reduced expression for w
ending in si for some i ∈ Des(w) r Des(β).

By the last paragraph and the fact that w0(α) is the left weak Bruhat minimal
permutation with descent set α, the module Hn(0)πw0(α)xd is spanned by the set
(81). This set is linearly independent and hence a basis for Hn(0)πw0(α)xd, since by
Lemma 5.4 and the equality Des(d) = Des(β), any two distinct elements πw(xd)
and πw′(xd) of this set have neglex leading monomials w(xd) and w′(xd), which are
distinct by Des(w) ⊆ Des(d) and Des(w′) ⊆ Des(d).

By Lemma 5.1, the module Pα,β has basis given by (73). Thus the assignment
πw(xd) 7→ πwπw0(βc) induces a linear isomorphism from Hn(0)πw0(α)xd to Pα,β .
To check that this is an isomorphism of Hn(0)-modules, let 1 6 i 6 n − 1. We
compare the action of πi on the bases (81) and (73) as follows. Let w ∈ Sn satisfy
Des(α) ⊆ Des(w) ⊆ Des(β).

If i ∈ Des(w−1), then there is a reduced expression for w starting with si and πi
acts by the scalar −1 on both πw(xd) and πwπw0(βc) since π2

i = −πi.
If i /∈ Des(w−1) and Des(siw) ⊆ Des(β), then the polynomial πiπw(xd) = πsiw(xd)

lies in the basis (81) and the algebra element πiπwπw0(βc) = πsiwπw0(βc) lies in the
basis (73).

If i /∈ Des(w−1) and Des(siw) 6⊆ Des(β), we have πiπw(xd) = πsiw(xd) = 0 by the
observation in the first paragraph. On the other hand, we also have πiπwπw0(βc) =
πsiwπw0(βc) = 0, since siw has a reduced expression ending with sj for some j ∈
Des(βc) and πjπw0(βc) = 0 by the relation πjπj = 0. �
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5.3. Decomposition of Sn,k. We begin by introducing a family of Hn(0)-
submodules of Sn,k.

Definition 5.6. Let An,k be the set of all pairs (α, i), where α |= n is a composition
whose first part satisfies α1 > n− k and i = (i1, . . . , in) is a sequence of nonnegative
integers satisfying

k − `(α) > i1 > · · · > in−k > 0 = in−k+1 = · · · = in.

Given a pair (α, i) ∈ An,k, let Nα,i be the Hn(0)-module generated by the image of
the polynomial πw0(α)(xα,i) in the quotient ring Sn,k.

For example, let (n, k) = (6, 3). Eliminating the k = 3 trailing zeros from the i
sequences, and omitting parentheses and commas from compositions α and sequences
i, we have

A6,3 =

(411, 000), (42, 111), (42, 110), (42, 100), (42, 000), (51, 111),
(51, 110), (51, 100), (51, 000), (6, 222), (6, 221), (6, 220),

(6, 211), (6, 210), (6, 200), (6, 111), (6, 110), (6, 100), (6, 000)

 .

Recall that, if α |= n and if i is a length n integer sequence, the composition
α ∪ i |= n is characterized by Des(α ∪ i) = Des(α) ∪ Des(i). When (α, i) ∈ An,k we
have the disjoint union decomposition Des(α ∪ i) = Des(α) t Des(i). In fact, each
element of Des(i) lies in the interval 1 6 j 6 n − k whereas each element of Des(α)
lies in the interval n− k + 1 6 j 6 n− 1.

It will turn out that the Nα,i modules are special cases of the Pα,β modules. We
will prove that if (α, i) ∈ An,k, then Nα,i ∼= Pα,α∪i. To prove this fact, we will need
a modification of the GS basis GSn,k of Sn,k. This modified basis will come from
the following lemma, which states that the collection of GS basis elements GSn,k is
related in a unitriangular way with the collection of polynomials

{πw(xα,i) : (α, i) ∈ An,k, Des(α) ⊆ Des(w) ⊆ Des(α ∪ i)}.

Lemma 5.7. Let k 6 n be positive integers and endow monomials in F[xn] with the
partial order ≺.

(i) Let (α, i) ∈ An,k and w ∈ Sn be such that Des(α) ⊆ Des(w) ⊆ Des(α ∪ i).
Then the unique ≺-leading term of πw(xα,i) is w(xα,i) = gsw,i′ ∈ GSn,k,
where i′ = (i′1, . . . , i′n) is related to i = (i1, . . . , in) by

(82) i′j = ij − |{r ∈ Des(w) ∩ [n− k] : r > j}|.

(ii) Let gsw,i′ ∈ GSn,k be a GS basis element. Then gsw,i′ is the unique ≺-leading
term of πw(xα,i) for some w ∈ Sn and some (α, i) ∈ An,k satisfying Des(α) ⊆
Des(w) ⊆ Des(α ∪ i) if and only if
• α |= n is characterized by Des(α) = Des(w) r [n− k], and
• the sequence i = (i1, . . . , in) is related to the sequence i′ = (i′1, . . . , i′n) by
Equation (82).

Proof. (i) Since Des(w) ⊆ Des(α ∪ i), Lemma 5.4 applies to show that the unique
≺-leading term of πw(xα,i) is w(xα,i). We need to show that

• the sequence i′ = (i′1, . . . , i′n) is nonnegative, weakly decreasing, and satisfies
i′1 < k − des(w) and i′n−k+1 = · · · = i′n = 0 so that the GS monomial gsw,i′
makes sense and lies in GSn,k, and

• we have w(xα,i) = gsw,i′ .
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It is clear that i′j = ij = 0 for j > n − k. We check that the sequence i′ is weakly
decreasing. To see this, let 1 6 j 6 n− k and note that

(83) i′j − i′j+1 =
{
ij − ij+1 − 1 j ∈ Des(w) ∩ [n− k],
ij − ij+1 j /∈ Des(w) ∩ [n− k].

Since i is a weakly decreasing sequence and ij = ij+1 implies j /∈ Des(α∪ i) ⊇ Des(w),
we conclude that i′j > i′j+1. Finally, we have Des(w)∩ [n−k] = Des(w)rDes(α) since
the definition of An,k implies D(α) ∩ [n− k] = ∅. Then

(84) i′1 = i1 − |Des(w) ∩ [n− k]| = i1 − des(w) + `(α)− 1 < k − des(w),

so that gsw,i′ ∈ GSn,k is a genuine GS basis element.
Next, we show w(xα,i) = gsw,i′ . Let 1 6 j 6 n. Since Des(w)∩ [n− k] = Des(w)r

Des(α), it follows from (82) that

(85) |{r ∈ Des(α) : r > j}|+ ij = |{r ∈ Des(w) : r > j}|+ i′j .

This means that the variable xw(j) has the same exponent in w(xα,i) as gsw,i′ . We
conclude that w(xα,i) = gsw,i′ .

(ii) Let gsw,i′ ∈ GSn,k. Suppose gsw,i′ is the unique ≺-leading term of πw(xα,i) for
some w ∈ Sn and some (α, i) ∈ An,k satisfying Des(α) ⊆ Des(w) ⊆ Des(α ∪ i).

The definition of An,k implies Des(α) ∩ [n − k] = ∅ and Des(i) ⊆ [n − k]. Thus
Des(α) = Des(w) r [n − k] and Des(w) r Des(α) = Des(w) ∩ [n − k]. Lemma 5.4
guarantees that gsw,i′ = w(xα,i). Comparing the power of the variable xw(j) on both
sides of this equality gives (82) for all 1 6 j 6 n.

Conversely, given gsw,i′ ∈ GSn,k, define α and i as in the statement of the lemma.
We have (α, i) ∈ An,k and the unique ≺-leading term of πw(xα,i) is gsw,i′ by similar
arguments to those above. �

Lemma 5.7 can be used to derive a new basis for the quotient Sn,k. This basis will
be helpful in decomposing Sn,k into a direct sum of Hn(0)-modules of the form Nα,i.

Lemma 5.8. Let k 6 n be positive integers. The set of polynomials

(86) {πw(xα,i) : (α, i) ∈ An,k, w ∈ Sn, Des(α) ⊆ Des(w) ⊆ Des(α ∪ i)}

in F[xn] descends to a vector space basis of the quotient ring Sn,k. Moreover, for any
(α, i) ∈ An,k and any w ∈ Sn with Des(α) ⊆ Des(w) ⊆ Des(α ∪ i) we have

(87) deg(πw(xα,i)) = deg(xα,i) = maj(α) + |i|.

Proof. By Lemma 5.7, the polynomials in the statement satisfy the conditions of
Lemma 4.2, and hence descend to a basis for Sn,k. The degree formula is clear. �

In the coinvariant algebra case k = n, the basis of Lemma 5.8 appeared in [17]. As
in [17], this modified GS-basis will facilitate analysis of the Hn(0)-structure of Sn,k.

Theorem 5.9. Let k 6 n be positive integers. For each (α, i) ∈ An,k, the set of
polynomials

(88) {πw(xα,i) : w ∈ Sn, Des(α) ⊆ Des(w) ⊆ Des(α ∪ i)}

descends to a basis for Nα,i, and we have an isomorphism Nα,i ∼= Pα,α∪i of Hn(0)-
modules by πw(xα,i) 7→ πwπw0((α∪i)c). Moreover, the Hn(0)-module Sn,k satisfies

(89) Sn,k =
⊕

(α,i)∈An,k
Nα,i ∼=

⊕
β|=n

P
⊕(n−`(β)

k−`(β))
β

∼= F[OPn,k].
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Proof. By Lemma 5.8, Sn,k has a basis given by (86), which is the disjoint union
of (88) for all (α, i) ∈ An,k. Combining this with Lemma 5.5, we have the basis
(88) for Nα,i and the desired isomorphism Nα,i ∼= Pα,α∪i for all (α, i) ∈ An,k. The
decomposition Sn,k =

⊕
(α,i)∈An,k Nα,i follows.

Next, let β |= n and count the multiplicity of Pβ as a direct summand in Sn,k.
Suppose Pβ is a direct summand of Nα,i for some (α, i) ∈ An,k. Since Des(α ∪ i)
is the disjoint union Des(α) t Des(i) and α � β � α ∪ i, we must have Des(α) =
Des(β) r [n − k]. It follows that the multiplicity of Pβ in Sn,k equals the number of
choices of i such that (α, i) ∈ An,k and α � β � α ∪ i, where α is characterized by
Des(α) = Des(β) r [n− k].

We count the sequences i = (i1, . . . , in) of the above paragraph as follows. Since
Des(β) ∩ [n − k] ⊆ Des(i), subtracting 1 from i1, . . . , ir for all r ∈ Des(β) ∩ [n − k]
gives a weakly decreasing sequence i′ = (i′1, . . . , i′n) satisfying i′n−k+1 = · · · = i′n = 0
and

i′1 6 k − `(α)− |Des(β) ∩ [n− k]| = k − `(β).

This gives a bijection from the collection of sequences i of the last paragraph and se-
quences i′ satisfying the conditions of the last sentence. The number of such sequences
i′ is

(
n−`(β)
k−`(β)

)
, which equals the multiplicity of Pβ in Sn,k. Then Proposition 5.3 gives

us Sn,k ∼= F[OPn,k], as desired. �

For example, let (n, k) = (4, 2). We have

A4,2 = {(31, 0000), (4, 1100), (4, 1000)(4, 0000)}.

We get the corresponding Nα,i modules
N31,0000 ∼= P(3,1),(3,1) ∼= P(3,1) N4,1100 ∼= P(4),(2,2) ∼= P(4) ⊕ P(2,2)

N4,1000 ∼= P(4),(1,3) ∼= P(4) ⊕ P(1,3) N4,0000 ∼= P(4),(4) ∼= P(4).

Combining this with Theorem 5.9, we have S4,2 ∼= P(2,2) ⊕ P(1,3) ⊕ P(3,1) ⊕ P⊕3
(4)
∼=

F[OP4,2]. The following picture illustrates this isomorphism via the action of H4(0)
on the basis (86) of S4,2 in Lemma 5.8. Note that the elements in this basis are
polynomials in general, although they happen to be monomials in this example.

x1 π2=π3=0
gg

π1

��
x2

π1=−1
π3=0gg

π2

��
x3

π1=0
π2=−1gg

π3

��
x4

π1=π2=0
π3=−1gg

N4,10 ∼= P(4) ⊕ P(1,3)

1 π1=π2=π3=0dd

N4,00 ∼= P(4)

x1x2x4
π1=0
π3=−1

dd

π2

��
x1x3x4

π2=−1
π3=0

dd

π1

��
x2x3x4

π1=−1
π2=π3=0

dd

N31,00 ∼= P(3,1)
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x1x2 π1=π3=0
kk

π2

��
x1x3

π2=−1
ss

π1
uu

π3
))

x2x3
π1=−1
π2=0 33

π3

))

x1x4
π2=0
π3=−1kk

π1

uu
x2x4

π1=π3=−1
dd

π2

��
x3x4

π1=π3=0
π2=−1kk

N4,1100 ∼= P(4) ⊕ P(2,2)

6. Characteristic formulas
In this section we derive formulas for the quasisymmetric and noncommutative sym-
metric characteristics of the modules Sn,k. To warm up, we calculate the degree-graded
characteristics of the Nα,i modules.

Recall that for (α, i) ∈ An,k the module Nα,i is the cyclic Hn(0)-module generated
by the image of the polynomial πw0(α)(xα,i) in the quotient Sn,k.

We adopt the length grading convention that the distinguished gener-
ator πw0(α)(xα,i) of Nα,i has length inv(w0(α)).

Lemma 6.1. Let k 6 n be positive integers and let (α, i) ∈ An,k. The module Nα,i
is projective and the characteristics cht(Nα,i) and Chq,t(Nα,i) have the following ex-
pressions:

cht(Nα,i) = tmaj(α)+|i|
∑

α�β�α∪i

sβ ,(90)

Chq,t(Nα,i) = tmaj(α)+|i|
∑
w∈Sn

Des(α)⊆Des(w)⊆Des(α∪i)

qinv(w)FiDes(w),(91)

where in the second formula we view Nα,i as a cyclic module generated by πw0(α)(xα,i).

Proof. Theorem 5.9 and Lemma 5.1 show that Nα,i ∼= Pα,α∪i ∼=
⊕

α�γ�α∪i Pγ is a
direct sum of projective modules, so that Nα,i is projective. As observed in the proof
of Theorem 5.9, the set

{πw(xα,i) : w ∈ Sn, Des(α) ⊆ Des(w) ⊆ Des(α ∪ i)}

is a basis for Nα,i. Since the degree of the polynomial πw(xα,i) is maj(α) + |i|, the
formula for cht(Nα,i) follows from Theorem 5.9. For any ` > 0, the term N

(`)
α,i in the

length filtration of Nα,i has basis

{πw(xα,i) : w ∈ Sn, Des(α) ⊆ Des(w) ⊆ Des(α ∪ i), `(w) > `}.

The formula for Chq,t(Nα,i) follows. �
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Theorem 6.2. Let k 6 n be positive integers. We have

cht(Sn,k) =
∑
α|=n

tmaj(α)
[
n− `(α)
k − `(α)

]
t

sα,(92)

Chq,t(Sn,k) =
∑
w∈Sn

qinv(w)tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w)(93)

=
∑

(w,α)∈OPn,k

qinv(w)tmaj(w,α)FiDes(w).(94)

Proof. Theorem 5.9 gives a decomposition

(95) Sn,k =
⊕

(α,i)∈An,k
Nα,i.

Combining this with Lemma 6.1 we have

cht(Sn,k) =
∑

(α,i)∈An,k

tmaj(α)+|i|
∑

α�β�α∪i

sβ

=
∑
β|=n

∑
(α,i)∈An,k
α�β�α∪i

tmaj(α)+|i|sβ .

For each fixed composition β |= n, there exists (α, i) ∈ An,k such that α � β � β ∪ i
if and only if

• Des(α) = Des(β) r [n− k] (so that α is uniquely determined by β),
• the sequence i = (i1, . . . , in) satisfies Des(i) = Des(β) ∩ [n− k], and
• we have k − `(α) > i1 > · · · > in−k > 0 = in−k+1 = · · · = in.

We obtain a sequence i′ = (i′1, . . . , i′n) from i by subtracting 1 from i1, . . . , ij for
all j ∈ Des(i). This gives a bijection between the sequences i satisfying the above
requirements and the sequences i′ = (i′1, . . . , i′n) such that

k − `(β) > i′1 > · · · > i′n−k > 0 = in−k+1 = · · · = in.

We also have

maj(α) + |i| = maj(β) + |i| −maj(i) = maj(β) + |i′|.

It follows that

cht(Sn,k) =
∑
β|=n

tmaj(β)
[
n− `(β)
k − `(β)

]
t

sβ .

Lemma 6.1 and the decomposition (95) yield

Chq,t(Sn,k) =
∑

(α,i)∈An,k

tmaj(α)+|i|
∑

w∈Sn:
Des(α)⊆Des(w)⊆Des(α∪i)

qinv(w)FiDes(w)

=
∑
w∈Sn

qinv(w)
∑

(α,i)∈An,k:
Des(α)⊆Des(w)⊆Des(α∪i)

tmaj(α)+|i|FiDes(w)

=
∑
w∈Sn

qinv(w)tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w)

where the last equality follows from the previous argument for cht(Sn,k) by setting
Des(β) = Des(w).
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Now recall that for an ordered set partition (w,α) = (B1|B2| · · · |Bk) ∈ OPn,k we
have

maj(w,α) := maj(w) +
∑

i : max(Bi)<min(Bi+1)

(α1 + · · ·+ αi − i).

For a fixed w ∈ Sn, there exists α |= n such that (w,α) ∈ OPn,k if and only if
|Des(w)| < k and Des(α) contains all descents of w together with k−1−des(w) many
elements of [n−1]rDes(w). Given a set of k−1−des(w) elements of [n−1]rDes(w),
we have (w,α) = (B1| · · · |Bk) ∈ OPn,k determined in the above way, and this set
corresponds to a lattice path from the lower-left corner to the upper-right corner of a
(k− 1− des(w))× (n− k) rectangle. The areas of the rows above this path are given
by α1 + · · ·+ αi − i for all i ∈ [k − 1] satisfying max(Bi) < min(Bi+1). Thus∑

(w,α)∈OPn,k

qinv(w)tmaj(w,α)FiDes(w) =
∑
w∈Sn

qinv(w)tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w).

This completes the proof. �

Remark 6.3. We can get the same characteristic Chq,t(Sn,k) as in Theorem 6.2 using
a different decomposition of Sn,k into cyclic modules coming from the Hn(0)-module
isomorphisms

Sn,k ∼= F[OPn,k] ∼=
⊕
α|=n
`(α)=k

F[OPα]

provided by Theorem 5.9 and Proposition 5.3, without adjusting the length grading
of each copy of the cyclic module F[OPα] in Sn,k. The proof is somewhat messy and
hence skipped.

The first expression for Chq,t(Sn,k) presented in Theorem 6.2 is related to an
extension of the biMahonian distribution to ordered set partitions. More precisely, let
σ ∈ OPn,k be an ordered set partition and represent σ as (w,α), where w ∈ Sn is a
permutation which satisfies Des(w) ⊆ Des(α). We define the length statistic `(σ) by

(96) `(σ) = `(w,α) := inv(w).

In the language of Coxeter groups, the permutation w is the Bruhat minimal rep-
resentative of the parabolic coset wSα = w(Sα1 × · · · × Sαk), so that `(σ) is the
Coxeter length of this minimal element.

We have

(97)
∑

σ∈OPα

q`(σ) =
[

n

α1, . . . , αk

]
q

.

Summing Equation (97) over all α |= n with `(α) = k gives a different distribution
than the generating function of maj:

(98)
∑

σ∈OPn,k

qmaj(σ) = revq([k]!q · Stirq(n, k)),

although these distributions both equal [n]!q in the case k = n.(2)

By Theorem 6.2 we have

(99) Chq,t(Sn,k) =
∑

σ∈OPn,k

q`(σ)tmaj(σ)FiDes(σ),

(2)There is a different extension of the inversion/length statistic onSn toOPn,k [22, 27, 23, 15, 16]
whose distribution is [k]!q · Stirq(n, k).
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where FiDes(σ) := FiDes(w) for σ = (w,α). In other words, we have that Chq,t(Sn,k) is
the generating function for the ‘biMahonian pair’ (`,maj) on OPn,k with quasisym-
metric function weight FiDes(σ).

We may also derive expressions for the degree-graded quasisymmetric characteristic
Cht(Sn,k). It turns out that this quasisymmetric characteristic is actually a symmetric
function since Sn,k is projective and Ch(Pα) = sα ∈ Sym as given in (46). We give an
explicit expansion of Cht(Sn,k) in the Schur basis.

Corollary 6.4. Let k 6 n be positive integers. We have

Cht(Sn,k) =
∑

(w,α)∈OPn,k

tmaj(w,α)FiDes(w)(100)

=
∑
w∈Sn

tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w)(101)

=
∑
α|=n

tmaj(α)
[
n− `(α)
k − `(α)

]
t

sα.(102)

Moreover, the above symmetric function has expansion in the Schur basis given by

(103) Cht(Sn,k) =
∑

Q∈SYT(n)

tmaj(Q)
[
n− des(Q)− 1
k − des(Q)− 1

]
t

sshape(Q).

Proof. The first and second expressions for Cht(Sn,k) follow from Theorem 6.2 by
setting q = 1 in the expressions for Chq,t(Sn,k) given there. The third expression for
Cht(Sn,k) follows from replacing sα by sα in cht(Sn,k).

To derive Equation (103), we start with

Cht(Sn,k) =
∑
w∈Sn

tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w)

and apply the Schensted correspondence. More precisely, the (row insertion) Schensted
correspondence gives a bijection w 7→ (P (w), Q(w)) from the symmetric group Sn to
ordered pairs of standard Young tableaux with n boxes having the same shape. An
example is given below.

25714683 7→
1 3 6 8
2 4 7
5 ,

1 2 3 7
4 5 6
8

A descent of a standard tableau P is a letter i which appears in a row above
the row containing i + 1 in P . We let Des(P ) denote the set of descents of P ,
and define the corresponding descent number des(P ) := |Des(P )| and major index
maj(P ) :=

∑
i∈Des(P ) i. Under the Schensted bijection we have Des(w) = Des(Q(w)),

so that des(w) = des(Q(w)) and maj(w) = maj(Q(w)). Moreover, we have w−1 7→
(Q(w), P (w)), so that iDes(w) = Des(P (w)).

Applying the Schensted correspondence, we see that

Cht(Sn,k) =
∑
w∈Sn

tmaj(w)
[
n− des(w)− 1
k − des(w)− 1

]
t

FiDes(w)(104)

=
∑

(P,Q)

tmaj(Q)
[
n− des(Q)− 1
k − des(Q)− 1

]
t

FDes(P ),(105)
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where the second sum is over all pairs (P,Q) of standard Young tableaux with n boxes
satisfying shape(P ) = shape(Q). Gessel [13] proved that for any λ ` n,

(106)
∑

P∈SYT(λ)

FDes(P ) = sλ,

where the sum is over all standard tableaux P of shape λ. Applying Equation (106)
gives∑
(P,Q)

tmaj(Q)
[
n− des(Q)− 1
k − des(Q)− 1

]
t

FDes(P ) =

=
∑
Q

tmaj(Q)
[
n− des(Q)− 1
k − des(Q)− 1

]
t

∑
P∈SYT(shape(Q))

FDes(P )

=
∑
Q

tmaj(Q)
[
n− des(Q)− 1
k − des(Q)− 1

]
t

sshape(Q),

as desired. �

The Schur expansion of Cht(Sn,k) given in Corollary 6.4 coincides (after setting
q = t) with the Schur expansion [16, Cor. 6.13] of the Frobenius image of the graded
Sn-module Rn,k. That is, we have

(107) Cht(Sn,k) = grFrob(Rn,k; t).

7. Conclusion
7.1. Macdonald polynomials and Delta conjecture. Equation (107) gives a
connection between our work and the theory of Macdonald polynomials. More pre-
cisely, the Delta Conjecture of Haglund, Remmel, and Wilson [15] predicts that

(108) ∆′ek−1
en = Risen,k−1(x; q, t) = Valn,k−1(x; q, t),

where ∆′ek−1
is the Macdonald eigenoperator defined by

(109) ∆′ek−1
: H̃µ 7→ ek−1[Bµ(q, t)− 1] · H̃µ

and Risen,k−1(x; q, t) and Valn,k−1(x; q, t) are certain combinatorially defined qua-
sisymmetric functions; see [15] for definitions. By the work of Wilson [27] and Rhoades
[23], we have the following consequence of the Delta Conjecture:

(110) Risen,k−1(x; q, 0) = Risen,k−1(x; 0, q) = Valn,k−1(x; q, 0) = Valn,k−1(x; 0, q).

If we let Cn,k(x; q) denote the common symmetric function in Equation (110), the
work of Haglund, Rhoades, and Shimozono [16, Thm. 6.11] implies that

(111) grFrob(Rn,k; q) = (revq ◦ ω)Cn,k(x; q),

where ω is the standard involution on Sym sending hd to ed for all d > 0. Equa-
tion (107) implies that

(112) Cht(Sn,k) = (revt ◦ ω)Cn,k(x; t).

The derivation of grFrob(Rn,k; q) in [16] has a different flavor from our derivation
of Cht(Sn,k); the definition of the rings Rn,k is extended to include a family Rn,k,s
involving a third parameter s. The Rn,k,s rings are related to the image of the Rn,k
rings under a certain idempotent in the symmetric group algebra Q[Sn]; this relation-
ship forms the basis of an inductive derivation of grFrob(Rn,k; q). The coincidence of
Cht(Sn,k) and grFrob(Rn,k; t) is mysterious to the authors.
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Problem 7.1. Find a conceptual explanation of the identity
Cht(Sn,k) = grFrob(Rn,k; t).

7.2. Tanisaki ideals. Given a partition λ ` n, let Iλ ⊆ F[xn] denote the cor-
responding Tanisaki ideal (see [11] for a generating set of Iλ). When F = Q, the
quotient Rλ := F[xn]/Iλ is isomorphic to the cohomology ring of the Springer fiber
attached to λ. The quotient Rλ is a graded Sn-module. It is well known [11] that
grFrob(Rλ; q) = revq(Q′λ(x; q)), where Q′λ(x; q) is the dual Hall-Littlewood polyno-
mial indexed by λ.

Huang proved that Iλ is closed under the action of Hn(0) on F[xn] if and only if
λ is a hook, so that the quotient Rλ has the structure of a graded 0-Hecke module
for hook shapes λ [17, Prop. 8.2]. Moreover, when λ ` n is a hook, [17, Cor. 8.4]
implies that Cht(Rλ) = grFrob(Rλ; t) = revt(Q′λ(x; t)). When λ ` n is not a hook,
the quotient Rλ does not inherit a 0-Hecke action.

In this paper, we modified the ideal In,k of [16] to obtain a new ideal Jn,k ⊆
F[xn] which is stable under the action of Hn(0) on F[xn]. Moreover, we have
Cht (F[xn]/Jn,k) = grFrob (Q[xn]/In,k; t). This suggests the following problem.

Problem 7.2. Let λ ` n. Define a homogeneous ideal Jλ ⊆ F[xn] which is stable
under the 0-Hecke action on F[xn] such that
(113) Cht (F[xn]/Jλ) = grFrob(Rλ; t) = revt(Q′λ(x; t)).

When λ is a hook, the Tanisaki ideal Iλ is a solution to Problem 7.2.

7.3. Generalization to reflection groups. Let W be a Weyl group. There
is an action of the 0-Hecke algebra HW (0) attached to W on the Laurent ring of
the weight lattice Q of W . If W has rank r, this Laurent ring is isomorphic to
F[x1, . . . , xr, x

−1
1 , . . . , x−1

r ]. Huang described the 0-Hecke structure of the correspond-
ing coinvariant algebra [17, Thm. 5.3]. On the other hand, Chan and Rhoades [7]
described a generalization of the ideal In,k of [16] for the complex reflection groups
G(r, 1, n) ∼= Zr o Sn. It would be interesting to give an analog of the work in this
paper for a wider class of reflection groups.
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