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Skew Howe duality
and random rectangular Young tableaux

Greta Panova & Piotr Śniady

Abstract We consider the decomposition into irreducible components of the external power∧p(Cm ⊗ Cn) regarded as a GLm×GLn-module. Skew Howe duality implies that the Young
diagrams from each pair (λ, µ) which contributes to this decomposition turn out to be conjugate
to each other, i.e. µ = λ′. We show that the Young diagram λ which corresponds to a randomly
selected irreducible component (λ, λ′) has the same distribution as the Young diagram which
consists of the boxes with entries 6 p of a random Young tableau of rectangular shape with
m rows and n columns. This observation allows treatment of the asymptotic version of this
decomposition in the limit as m,n, p→∞ tend to infinity.

1. Introduction
1.1. The problem. In this note we address the following question.

Consider
(1)

∧p(Cm ⊗ Cn) =
⊕
λ

SλCm ⊗ Sλ
′
Cn

as a GLm×GLn-module. [. . . ] I would like any information on the
shapes of pairs of Young diagrams (λ, λ′) that give the largest contri-
bution to the dimension asymptotically. [. . . ]

Joseph M. Landsberg [9](1)

Above,
∧p(Cm ⊗ Cn) denotes the external power of the tensor product Cm ⊗

Cn. Also, SλCm denotes the Schur functor applied to Cm or, in other words, the
irreducible representation of the general linear group GLm with the highest weight
λ. The sum in (1) runs over Young diagrams λ ⊆ nm with p boxes, and such that
the number of rows of λ is bounded from above by m, and the number of columns
of λ is bounded from above by n. The decomposition (1) is nowadays referred to as
skew Howe (GLm×GLn)-duality, cf. [8, Theorem 4.1.1]. Even though (1) provides
full information about the decomposition into irreducible components, it is not very
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convenient for answering such asymptotic questions, see the introduction to the work
of Biane [3] for discussion of difficulties related to similar problems.

Despite improvements in the understanding of asymptotic problems related to the
representation theory of the general linear groups GLm [2, 4, 5], we do not see generic
tools which would be suitable for investigation of the external power (1).

1.2. Motivations: Geometric Complexity Theory. Besides the natural interest
in the question as a problem in asymptotic representation theory, this question is also
relevant within Geometric Complexity Theory (GCT). The decomposition appears in
the study of the complexity of matrix multiplication [10] and, in particular, in the
study of the border rank of the matrix multiplication tensor as a standard measure of
complexity. A lower bound for the border rank is obtained from the rank of a particular
linear map, whose kernel can be decomposed as a GL(V ) × GL(W ) representation.
The general approach in GCT would be to study the irreducible components for
polynomials to play the role of “obstruction candidates” and, depending on the precise
setup, the multiplicities would show where to find the obstructions.

1.3. The main result. A partial answer to the question of Landsberg which we give
in the current paper is based on a simple result which transforms the original problem
into a question about the representation theory of the symmetric group Sp for which
more asymptotic tools are available, see Section 1.7 below.

We state our main result in two equivalent versions which are of quite distinct
flavors:

• as Theorem 1.1 which is conceptually simpler and is a purely enumerative
statement which relates some dimensions of the representations of the general
linear groups GLk to the dimensions of some representations of the symmetric
groups Sp, and

• as Theorem 1.4 which is a probabilistic statement which relates the distri-
bution of a random irreducible component of the external power (1) to the
distribution of a random irreducible component of a certain representation
of the symmetric group Sp. This second formulation is more convenient for
addressing Landsberg’s problem.

The proof of Theorem 1.1 is shorter, but the proof of Theorem 1.4 might be advan-
tageous for some readers who prefer more representation-theoretic viewpoint.

1.4. The main result: the enumerative version. Let m,n > 1 be integers and
let λ ⊆ nm be a Young diagram with p boxes which has at most m rows and at
most n columns. We denote by nm the rectangular Young diagram with m rows and
n columns. We denote by fλ the dimension of the irreducible representation of Sp

corresponding to the Young diagram λ. Note that the skew Young diagram nm/λ
is a rotation by 180° of a certain Young diagram therefore it defines an irreducible
representation of Sp.

Theorem 1.1. For a Young diagram λ ⊆ nm with p boxes we have the following
relationship between dimensions of representations of GLm, GLn and Sp:

(2) dim(SλCm) dim(Sλ′Cn)
dim

∧p(Cm ⊗ Cn) = fλfn
m/λ

fnm
.

Our proof of this result (see Section 2) will be based on algebraic combinatorial
manipulations with the hook-length formula and the hook-content formula.
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1.5. Bijective proofs? Theorem 1.1 implies the following result.

Claim 1.2. For all integers n,m > 1 and 0 6 p 6 nm the fraction

Cn,m,p := fλfn
m/λ

dim(SλCm) dim(Sλ′Cn)
is a constant which does not depend on the choice of a Young diagram λ ⊆ nm with
p boxes. (2)

Conversely, Claim 1.2 implies Theorem 1.1 since

Cn,m,p
∑
λ`p
λ⊆nm

dim(SλCm) dim(Sλ
′
Cn) =

∑
λ`p
λ⊆nm

fλfn
m/λ

implies
Cn,m,p dim

∧p(Cm ⊗ Cn) = fn
m

(the left-hand side is an application of skew Howe duality (1)) which determines
uniquely the constant

(3) Cn,m,p = fn
m

dim
∧p(Cm ⊗ Cn) = fn

m(
nm
p

) .
This observation opens the following challenging problem.

Problem 1.3. For a pair of Young diagrams λ, µ ⊆ nm, each with p boxes, find a
bijective proof of the identity

(4) dim(SλCm) dim(Sλ
′
Cn) fµfn

m/µ = dim(SµCm) dim(Sµ
′
Cn) fλ fn

m/λ

which is clearly equivalent to Claim 1.2 and thus to Theorem 1.1.

Clearly, each of the factors which contribute to (4) has a natural combinatorial
interpretation as the number of (semi)standard Young tableaux of some specific shape.
In fact, it would be enough to find such a bijection in the special case when µ is
obtained from λ by a removal and an addition of a single box.

1.6. The main result: the probabilistic version.

Theorem 1.4. Let m,n > 1 and 0 6 p 6 mn be integer numbers.
The random irreducible component of (1) corresponds to a pair of Young diagrams

(λ, λ′), where λ has the same distribution as the Young diagram which consists of the
boxes with entries 6 p of a uniformly random Young tableau with rectangular shape
nm with m rows and n columns.

Alternatively: the random Young diagram λ has the same distribution as a Young
diagram which corresponds to a random irreducible component of the restriction
V n

mySmn

Sp
of the irreducible representation V nm of the symmetric group Smn which

corresponds to the rectangular diagram nm.

Above, when we speak about a random irreducible component of a representation
we refer to the following concept.

(2)The value of the constant is clearly given by (3); we decided to state the Claim in this weaker
form without the explicit value of Cn,m,p for reasons which will become clear later.
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Figure 1. Asymptotic limit shapes of typical random Young diagrams
which appear in Theorem 1.4, cf. [12, Figure 3]. We draw Young dia-
grams in the French convention. In this example the rectangle ratio is
given by m

n = 1
2 . The limit curves correspond to p

mn ∈
{ 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6
}
.

Definition 1.5. For a representation V of a group G we consider its decomposition
into irreducible components

V =
⊕
ζ∈Ĝ

mζV
ζ ,

where mζ ∈ {0, 1, . . . } denotes the multiplicity of V ζ in V . This defines a probability
measure PV on the set Ĝ of irreducible representations given by

PV (ζ) = PGV (ζ) := mζ dimV ζ

dimV
.

With this definition in mind, each side of the identity (2) from Theorem 1.1 can
be interpreted as the probability that an appropriate random Young diagram (which
appears in Theorem 1.4) has a specified shape. This provides the link between Theo-
rem 1.1 and Theorem 1.4.

1.7. Application: back to Landsberg’s problem. The problem of Landsberg
is exactly a question about the statistical properties of the random Young diagram
λ which appears in Theorem 1.4. This result gives an alternative description of λ
in terms of the representation theory of the symmetric groups Sp in which many
asymptotic problems have well-known answers. Fortunately, this happens to be the
case for the problem of understanding the restriction of irreducible representations
which we encounter in Theorem 1.4.

In particular, the law of large numbers for the corresponding random Young dia-
grams has been proved in a much wider generality by Biane [3, Theorem 1.5.1] using
the language of free cumulants of Young diagrams. The asymptotic Gaussianity of
their fluctuations around the limit shape has been proved by the second-named au-
thor [13, Example 7 combined with Theorem 8] using the same language.

In the specific case of the restriction V nm
ySmn

Sp
which is in the focus of the current

paper, the above-mentioned generic tools [3, 13] can be applied in the scaling when
m,n, p → ∞ tend to infinity in such a way that the rectangle ratio m

n converges
to a strictly positive limit and the fraction p

mn converges to some limit. Pittel and
Romik [12] have worked out this specific example and, among other results, found
explicit asymptotic limit shapes of typical Young diagrams which contribute to such
representations, see Figure 1. In the light of Theorem 1.4, the above references provide
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a partial answer to the question of Landsberg. For more on this topic see the work of
Sevak Mkrtchyan [11].

1.8. Hypothetical extensions of Theorem 1.4. The formulation of Theo-
rem 1.4 might suggest that it is a special case of a more general result. We state it
concretely as the following problem.

Problem 1.6. Find a natural quantum random walk (in the spirit of Biane [1]) on the
set of irreducible representations (of some group? of some algebra?) with the property
that the probability distribution on the set of paths of this random walk can be identified
(via some hypothetical analogue of Theorem 1.4) with the uniform distribution on the
set of standard Young tableaux of rectangular shape nm.

2. Proof of Theorem 1.1
First, we give an enumerative proof of Theorem 1.1 using the classical dimension
formulas: the hook-length formula for fν

fν = |ν|!∏
�∈ν h�

=: |ν|!
Hν

,

where Hν denotes the product of hook lengths in ν, and the hook-content formula for
the dimensions of representations of GLk:

(5) dimSνCk = sν(1k) =
∏
�∈ν(k + c(�))∏
�∈ν h�

,

where h� is the hook-length of a box � in the diagram of ν, and the content c(�) =
j − i, if � = (i, j) is at row i and column j of the diagram. Here sν(x1, . . . , xk) is the
corresponding Schur function.

Claim 2.1.We have that
(6) sν(1n) = smn/ν(1n) = sν̄(1n)
for any ν ⊆ mn, where ν̄ = (m − νn,m − νn−1, . . . ,m − ν1) is the complementary
partition.

Proof. Representation-theoretic proof: the left-hand side of (6) is equal to the dimen-
sion of the representation SνCn of GLn which corresponds to the Young diagram
ν while the right-hand side is equal to the dimension of the tensor product of the
one-dimensional representation GLn 3 g 7→ (det g)m with the representation contra-
gradient to SνCn. Their dimensions are clearly equal.

Combinatorial (bijective) proof: SSYTs with entries 1, . . . , n of shape ν correspond
to SSYTs with entries 1, . . . , n and shape ν̄ via the following bijection. Consider an
SSYT T of shape ν as sitting inside the mn rectangle. In a given column j of mn, let
a1 < · · · < aν′

j
be the entries of T in this column. Let {b1 < b2 < · · · < bn−ν′

j
} :=

{1, . . . , n} r {a1, . . . , aν′
j
} be the remaining numbers in {1, . . . , n}. Write them in

increasing order top to bottom in the column j in mn above T as in Figure 2a; note
that we use the French convention for drawing Young diagrams. Rotating the resulting
tableau above T by 180° we obtain a SSYT of shape ν̄ with entries in {1, . . . , n} as
in Figure 2b (the row inequalities are easily seen to be satisfied). �

We continue the proof of Theorem 1.1. Using the claim for ν := λ′ we have that

(7) dimSλ
′
Cn = sλ′(1n) = sλ′(1n) =

∏
�∈λ′(n+ c(�))

Hλ′
=
∏
�∈λ′(n+ c(�))

Hλ̄

.
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The last equality follows from the observation that λ′ = (λ̄)′, where the second com-
plement is taken in the nm rectangle and so Hλ′ = Hλ̄.

Consider the partitions λ and λ′ as sitting inside nm. More specifically, any box

�′ = (i′, j′) ∈ λ′

4 4 2 1 1 1 1 1
3 3 4 4 4 2 2 2
2 2 3 3 3 4 4 3
1 1 1 2 2 3 3 4

(a)

4
3 4 4
2 2 2 4
1 1 1 1 1 2

(b)

Figure 2. An example of the bijection from the proof of Claim 2.1
with m = 8, n = 4, and ν = (7, 5, 4, 2). (a) The original tableau is
in white, and the (not rotated yet) complementary tableau of skew
shape mn/ν is in gray. (b) The complementary tableau of shape ν̄ =
(6, 4, 3, 1).

�

1 n

1

m 1

m

1n

i

j

j′

i′

(a)

�′

1 m

1

n

j′

i′

(b)

Figure 3. The relationship between contents within λ, λ′ and
the rectangle nm. (a) In this example m = 6, n = 8, λ =
(8, 7, 7, 4, 2) is drawn with gray background. (b) The partition λ′ =
(5, 3, 3, 3, 2, 2, 1, 1) is drawn with white background. Figure (a) shows
how λ and λ′ are combined together within the rectangle nm and
how their respective coordinate systems are related. The content of
�′ = (i′, j′) = (3, 2) ∈ λ′ is c(�′) = 2− 3 = −1, the same box in nm
is � = (i, j) = (5, 6) with c(�) = 1 and n+ c(�′) = 7 = m+ c(�).
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corresponds to the box

� = (i, j) = (m+ 1− j′, n+ 1− i′) ∈ nm,

see Figure 3, and so the content c(�′) = cλ̄′(�′) of � regarded as a box of λ′ fulfills

n+ cλ̄′(�′) = n+ j′ − i′ = n+ (m+ 1− i)− (n+ 1− j) = m+ cnm(�),

where the content c(�) = cnm(�) is taken with respect to the nm partition.

Since snm(1m) = 1 (there is only one SSYT of shape nm and entries 1, . . . ,m since
each column is forced to be 1, . . . ,m), it follows from the hook-content formula (5)
that

(8)
∏
�∈nm

(m+ c(�)) = Hnm .

Thus by (7), then by combining the diagrams λ and λ′ into the nm rectangle, and
by (8)

dimSλCm dimSλ
′
Cn = sλ(1m) sλ′(1n)

=
∏
�∈λ(m+ c(�))

Hλ

∏
�′∈nm/λ(m+ c(�′))

Hλ̄

=
∏
�∈nm(m+ c(�))

HλHλ̄

= Hnm

HλHλ̄

= (mn)!/fnm(
p!/fλ

)(
(mn− p)!/fnm/λ

) =
(
mn

p

)
fλfn

m/λ

fnm
.

This concludes the proof of Theorem 1.1.

Remark 2.2. Relationships between Hλ, Hλ̄ and Schur function evaluations have
also been derived by Stanley [14] who used them further in computations of the
normalized symmetric group character corresponding to rectangular partitions.

3. Proof of Theorem 1.4
3.1. Sketch of the proof. We start by presenting a one-paragraph summary of
the proof. Schur–Weyl duality suggests exploring the link between the structure of
the external power (1) viewed as a representation of some general linear group GLm
and the structure of the same space (1), this time viewed as a representation of the
symmetric group Sp. Regretfully, the external power (1) is not a representation of
Sp. This approach can be rescued if, instead, we view the external power as a module
over the center ZC[Sp] of the symmetric group algebra. The character theory of the
symmetric group Sp can be easily adapted to the setting of ZC[Sp]. We will show
that the characters of

∧p(Cm⊗Cn) (for fixed values of m and n and for p varying over
{0, 1, . . . ,mn}) are closely related to each other; in this way it is enough to identify
such a character for p = mn. Yet another application of Schur–Weyl duality shows
that this particular character is irreducible and corresponds to the rectangular Young
diagram nm.

In the remaining part of this section we will present the details of the above sketch.
For clarity the proof is split into a number of propositions.
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3.2. Normalized characters. In this paper whenever we refer to a trace of a
matrix A = (Aij)16i,j6d ∈Md(C) we mean the normalized trace

trdA := 1
d

∑
16i6d

Aii

as opposed to the non-normalized trace

TrA :=
∑

16i6d
Aii.

For an operator A ∈ EndV we denote by trV A its normalized trace, defined analo-
gously.

Also, by the character of a group representation ρ : G → EndV we mean the
normalized character χV : G→ C given by
(9) χV (g) := trV ρg,
which is defined in terms of the normalized trace trV .

3.3. Modules over the center ZC[G] of the group algebra. In the following
we will consider the following setup. We assume that G is a finite group and W is
a G-module. We also assume that Π: W → W is an idempotent Π2 = Π with the
property that Π commutes with the action of the center ZC[G] of the group algebra.
We denote by V := ΠW the image of Π. The space V is invariant under the action
of ZC[G]; in other words V can be regarded as a ZC[G]-module.

We define the character of the ZC[G]-module V as a function χV : G → C given
by

(10) χV (g) := 1
dimV

Tr
[
Π ρg

]
,

where ρg : W →W denotes the action of g ∈ G on W .
Our goal in this proof is to understand V as a ZC[G]-module and to identify the

corresponding character.

3.4. The key example. The key example we should keep in mind is the tensor
product
(11) W = Wp := (Cm)⊗p ⊗ (Cn)⊗p

which carries a natural structure of G-module, where
G = Gp := Sp ×Sp

is the Cartesian product of the symmetric groups which acts on W by permuting the
factors in the tensor product.

By rearranging the order of the factors we see that
(12) W ∼= (Cm ⊗ Cn)⊗p

is a tensor power which carries another structure, this time of a Sp-module. This
action of Sp is related to the action from (11) via the diagonal inclusion of groups
given by
(13) Sp 3 g 7→ (g, g) ∈ Sp ×Sp.

We consider the projection Π which is given by the action on (12) of the central
projection

Π = Πp := 1
p!
∑
g∈Sp

(−1)gg ∈ ZC[Sp](14)
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which under the inclusion (13) becomes the action on (11) of the element

Π = 1
p!
∑
g∈Sp

(−1)g(g, g) ∈ C[Sp ×Sp](15)

which is not central.
The image V = ΠW of this projection is the external power

V = Vp :=
∧p(Cm ⊗ Cn)

which is in the focus of the current paper.

3.5. Modules over the center ZC[G], revisited. Consider now a more general
situation than in Section 3.3 in which V is an arbitrary ZC[G]-module, without any
additional structure.

3.5.1. Characters of ZC[G]-modules. We can define the character χV : G → C of V
by the formula

(16) χV (g) := trV ρ
[

1
|G|

∑
h∈G

hgh−1

]
.

Note that in the specific setup considered in Section 3.3 the formulas (10) and (16)
define the same function. Also, in the specific setup in which the structure of a ZC[G]-
module on V arises from the structure of a G-module, the usual character of the group
G given by (9) coincides with the character from (16).

3.5.2. Irreducible ZC[G]-modules versus irreducible G-modules. The algebra ZC[G]
is commutative, hence each irreducible ZC[G]-module is one-dimensional, contrary
to irreducible G-modules. Nevertheless, irreducible ZC[G]-modules and irreducible
G-modules are intimately related; we shall review this relationship in the following.
In particular we shall decribe the canonical bijection between (equivalence classes of)
irreducible ZC[G]-modules and (equivalence classes of) irreducible G-modules.

By Schur’s lemma, each central element from ZC[G] acts on an irreducible G-
module V as a scalar multiple of identity. In particular, it follows that V — viewed
this time as a ZC[G]-module — is a sum of dimV copies of some irreducible one-
dimensional ZC[G]-module which we denote by V ZC[G]. We claim that the map
V 7→ V ZC[G] provides a bijection between (equivalence classes of) irreducible G-
modules and (equivalence classes of) irreducible ZC[G]-modules. Indeed, the charac-
ters of the corresponding modules are equal: χV = χV ZC[G] thus if two irreducible G-
modules V1, V2 are not equivalent then the corresponding irreducible ZC[G]-modules
V
ZC[G]
1 and V

ZC[G]
2 are also not equivalent; it follows that the map V 7→ V ZC[G] is

injective. The surjectivity follows from comparison of the cardinalities: the number
of (equivalence classes of) irreducible modules over the commutative algebra ZC[G]
is equal to the dimension of the latter algebra which happens to be the number of
conjugacy classes of G; the latter number is also the number of (equivalence classes
of) irreducible representations of G.

3.5.3. Probability distribution associated to a ZC[G]-module. Thanks to the corre-
spondence between irreducible ZC[G]-modules and irreducible G-modules which was
discussed in Section 3.5.2, any ZC[G]-module V defines (analogously as in Defini-
tion 1.5) a probability measure PZC[G]

V on the set of irreducible representations of G.
Note that in the specific situation when the structure of a ZC[G]-module on V arises
from the structure of a G-module, the corresponding measures are equal: PGV = PZC[G]

V ,
no matter if we regard V as a G-module or as a ZC[G]-module.
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These probability measures are directly related to the character of the correspond-
ing module:

(17) PV (ζ) = χV (pζ) =
∑
g∈G

χV (g) pζ(g),

where pζ ∈ ZC[G] is the minimal central projection which corresponds to the irre-
ducible representation ζ ∈ Ĝ.

3.6. Schur–Weyl duality. GLm versus Sp.

Proposition 3.1. The probability distributions of the following two pairs of random
Young diagrams are equal:

• the pair (λ, µ) of random Young diagrams which correspond to a random ir-
reducible component of

∧p(Cm ⊗ Cn) regarded as GLm×GLn-module, and
• the pair (λ, µ) of random Young diagrams which correspond to a random ir-
reducible component of

∧p(Cm ⊗Cn) regarded as ZC[Sp]×ZC[Sp]-module.

In the following we shall present the missing details of notation and the proof of
this proposition.

The tensor power
(18) (Cm ⊗ Cn)⊗p ∼= (Cm)⊗p ⊗ (Cn)⊗p

carries a natural structure of a (GLm×Sp)×(GLn×Sp)-module and, more generally,
a structure of a (GLm×C[Sp])×(GLn×C[Sp])-module: each of the two general linear
groups GLm and GLn acts on all corresponding factors Cm (respectively, Cn), while
each of the two symmetric groups Sp acts by permuting the factors in the tensor
product. Regretfully, its subspace
(19)

∧p(Cm ⊗ Cn)
which is in the focus in the current paper is not invariant under the action of the
symmetric groups Sp which are factors in

(GLm×Sp)× (GLn×Sp)
and under the action of the corresponding symmetric group algebras C[Sp].

On the bright side, the space (19) is invariant under the action of each of the centers
ZC[Sp] of the two symmetric group algebra as well as their product ZC[Sp]×ZC[Sp];
indeed, this is a special case of the situation considered in Section 3.3 in the setting
presented in Section 3.4.

Thus both (18) and (19) carry a structure of a (GLm×ZC[Sp])×(GLn×ZC[Sp])-
module. Our proof of Theorem 1.4 will be based on exploration of this module struc-
ture.

Proof of Proposition 3.1. Let us decompose the (GLm×ZC[Sp])× (GLn×ZC[Sp])-
module (19) into irreducible components:
(20)

∧p(Cm ⊗ Cn) =
⊕

λ,ν,µ,π

mλ,ν,µ,π S
λ(Cm)⊗ V ν ⊗ Sµ(Cn)⊗ V π,

where mλ,ν,µ,π ∈ {0, 1, . . . } denotes the multiplicity, V ν denotes the irreducible rep-
resentation of the symmetric group Sp which corresponds to the Young diagram ν
and the sum runs over Young diagrams λ, ν, µ, π.

Schur–Weyl duality implies that a decomposition (analogous to (20)) of the ten-
sor power (18) into irreducible components (no matter whether we regard (18) as a
(GLm×Sp)×(GLn×Sp)-module or as a (GLm×ZC[Sp])×(GLn×ZC[Sp])-module)
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involves only summands for which ν = λ and π = µ. It follows that the same is true
for its (GLm×ZC[Sp]) × (GLn×ZC[Sp])-submodule (19), thus the decomposition
(20) takes a simpler form

(21)
∧p(Cm ⊗ Cn) =

⊕
λ,µ

mλ,µ S
λ(Cm)⊗ V λ ⊗ Sµ(Cn)⊗ V µ

for some multiplicities mλ,µ := mλ,λ,µ,µ.
The linear span of all irreducible components of (21) which correspond to a given

pair of Young diagrams (λ, µ) remains the same, no matter if we regard (21) as a
GLm×GLn-module or as a ZC[Sp]×ZC[Sp] module. It follows that the correspond-
ing probability distributions are equal. This concludes the proof of Proposition 3.1. �

Proposition 3.1 shows that in order to prove Theorem 1.4 it is enough to understand
the structure of

∧p(Cm ⊗ Cn) as a ZC[Sp] × ZC[Sp]-module. We shall do it in the
following.

3.7. Characters of the external power do not depend on the exponent.
We come back to the specific setup from Section 3.4. Assume that 0 6 p < p′ 6 mn.
There is a natural inclusion Gp = Sp ×Sp ⊆ Sp′ ×Sp′ = Gp′ of the corresponding
groups which allows us to compare the characters of the external powers

Vp :=
∧p(Cm ⊗ Cn)

for various values of the exponent p.

Lemma 3.2. For 0 6 p < p′ 6 mn the character χVp : Gp → C is equal to the
restriction of the character χVp′ : Gp′ → C.

Proof. It is enough to prove this result in the case when p′ = p+ 1.

Let g = (π1, π2) ∈ Gp = Sp ×Sp. We denote by π′1, π′2 ∈ Sp+1 the corresponding
permutations from the larger symmetric group; in this way g corresponds to g′ =
(π′1, π′2) ∈ Gp+1.

We consider the decomposition

(22) Wp+1 = (Cm ⊗ Cn)⊗(p+1) = Wp ⊗ (Cm ⊗ Cn).

With respect to this decomposition, the action of ρg′ on Wp+1 coincides with the
action of ρg ⊗ 1:

(23) ρg′ = ρg ⊗ 1.

The projection Πp+1 viewed as in (14) as an element of C[Sp+1] can be written as
the product

(24) Πp+1 = 1
p+ 1

[
1−Xp+1

]
Πp,

where
Xp+1 = (1, p+ 1) + · · ·+ (p, p+ 1) ∈ C[Sp+1]

is a Jucys–Murphy element; above (i, j) ∈ Sp+1 denotes the transposition which
interchanges i with j. We view now (24) as an operator acting on (22); with this
perspective

(25) Πp+1 = 1
p+ 1

[
1−Xp+1

](
Πp ⊗ 1

)
is an element of End(Wp)⊗ End(Cm ⊗ Cn).
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A direct calculation on the elementary tensors shows that application of the (non-
normalized) trace Tr: End(Cm ⊗ Cn) → C to the second factor in (25) yields a
multiple of identity:

(1⊗ Tr) 1
p+ 1

[
1−Xp+1

]
= mn− p

p+ 1 .

By combining this idea with (23), (25) it follows that

χVp+1(g′) = 1(
mn
p+1
) Tr [Πp+1 ρg′ ] = 1(

mn
p

) Tr [Πp ρg] = χVp(g)

which concludes the proof. �

3.8. The character of
∧p(Cm ⊗ Cn). Until now we considered the symmetric

group Sp as the diagonal subgroup of Sp ×Sp via (13). In the following we take a
different perspective and we shall view the symmetric group

Sp
∼= Sp × {id} ⊆ Sp ×Sp = Gp

as the first factor in the Cartesian product.
In this way the space Wp = (Cm)⊗p ⊗ (Cn)⊗p has a structure of a Sp-module and

Vp =
∧p(Cm ⊗ Cn) a structure of a ZC[Sp]-module.

Corollary 3.3. The character χVp : Sp → C of ZC[Sp]-module Vp =
∧p(Cm ⊗ Cn)

is equal to the restriction of the irreducible character χmn : Smn → C of the symmetric
group Smn which corresponds to the rectangular Young diagram mn.

Proof. In the light of Lemma 3.2 it is enough to prove this result for the maximal
possible value p = mn and to show the equality

(26) χVmn = χmn .

We shall do it in the following.
For p = mn the external power Vmn is a one-dimensional representation of

GLm×GLn which corresponds to a pair of Young diagrams

(27) (mn, nm).

The corresponding random pair of Young diagrams (associated via Definition 1.5)
is deterministic, equal to (27). Proposition 3.1 shows that if we view Vmn as a
ZC[Smn] × ZC[Smn]-module, the corresponding pair of random Young diagrams is
also deterministic, equal to (27). If we regard Vmn as ZC[Smn]-module, this implies
that its character is equal to the character of the irreducible representation V mn . This
concludes the proof. �

3.9. Pair of random Young diagrams (λ, µ). One of the claims in Theorem 1.4
is that the random Young diagrams λ, µ that correspond to the random irreducible
component of (1) are related to each other by the equality µ = λ′. This result would
follow from the decomposition (1). In order to be self-contained we present below a
short proof based on the original ideas of Howe [8, Section 4.1.2].

Application of Schur–Weyl duality (Proposition 3.1) changes this into a problem of
understanding the structure of the external power Vp viewed as a ZC[Sp]×ZC[Sp]-
module. For any permutation g2 ∈ Sp the action of

(
g−1

2 , g−1
2
)
∈ Sp × Sp on the

external power Vp coincides with the multiple of identity (−1)g2 . It follows that for
any g1, g2 ∈ Sp

χVp(g1, g2) = (−1)g2 χVp
(
g1g
−1
2 , id

)
.
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By linearity, it follows that for the minimal central projections pλ, pµ ∈ ZC[Sp] which
correspond to the Young diagrams λ, µ we have

χVp(pλ ⊗ pµ) =
∑

g1,g2∈Sp

χVp(g1, g2) pλ(g1) pµ(g2) =

=
∑

g1,g2∈Sp

χVp(g1g
−1
2 , id) pλ(g1) (−1)g2pµ(g2) = χVp(pλpµ′ ⊗ 1).

The left-hand side is equal to the probability of sampling the pair (λ, µ); the right
hand side vanishes unless λ = µ′ which concludes the proof.

3.10. Proof of Theorem 1.4.

Proof of Theorem 1.4. In the light of the discussion from Section 3.9 the only re-
maining difficulty is to identify the distribution of the random Young diagram λ
which corresponds to the random irreducible component of the external power (1).
By Schur–Weyl duality (Proposition 3.1) one can equivalently view λ as a random
Young diagram corresponding to a random irreducible component of the external
power (1), viewed this time as a ZC[Sp]-module in the specific way described in
Section 3.8.

Equation (3.8) shows that in order to prove equality of the probability distributions
of random Young diagrams associated to ZC[G]-modules it is enough to prove equal-
ity of the corresponding characters. The latter equality of characters is provided by
Corollary 3.3. In this way we proved the second part of Theorem 1.4 (the alternative
formulation).

In order to finish the proof of the first part of Theorem 1.4 we notice that the
branching rule implies that the distribution of the Young diagram which consists of
boxes with enties 6 p of a uniformly random standard Young tableau of fixed shape
µ such that |µ| > p (in our setup we consider the special case µ = nm) coincides
with the distribution of a Young diagram which corresponds to a random irreducible
component of the restricted representation V µ

yS|µ|

Sp
. �

3.11. Stanley character formula.

Remark 3.4. It is easy to use the ideas presented in the above proof to find a
new elementary proof of Stanley’s formula [14, Theorem 1] for the character of the
symmetric group Smn which corresponds to the rectangular diagram nm; for other
proofs see also [6, 7]. More specifically, one should calculate the character χVp directly
by calculating the trace (10) in the standard basis of the tensor power (Cm ⊗ Cn)⊗p
and apply Corollary 3.3.

4. Outlook
We have to admit that in Section 1 we quoted only a part of the original question of
Landsberg; in particular we have skipped the following more specific passage.

[. . . ] I am most interested in the case where p is near mn
2 . Is there

a slowly growing function f(n) such that partitions with fewer than
f(n) steps contribute negligibly? If so, can the fastest growing such f
be determined?

Joseph M. Landsberg [9]
It is not clear if the ideas presented in this note are sufficient to tackle this more

specific problem. For more on this topic see the work of Sevak Mkrtchyan [11].
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