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Lower bound cluster algebras:
presentations, Cohen–Macaulayness,

and normality

Greg Muller, Jenna Rajchgot & Bradley Zykoski

Abstract We give an explicit presentation for each lower bound cluster algebra. Using this
presentation, we show that each lower bound algebra Gröbner degenerates to the Stanley–
Reisner scheme of a vertex-decomposable ball or sphere, and is thus Cohen–Macaulay. Finally,
we use Stanley–Reisner combinatorics and a result of Knutson–Lam–Speyer to show that all
lower bound algebras are normal.

1. Introduction and statement of results
Cluster algebras are a family of combinatorially-defined commutative algebras which
were introduced by Fomin and Zelevinsky at the turn of the millennium to axiomatize
and generalize patterns appearing in the study of dual canonical bases in Lie theory
[8]. Since their introduction, cluster algebras have been discovered in the rings of
functions on many important spaces, such as semisimple Lie groups, Grassmannians,
flag varieties, and Teichmüller spaces [2, 20, 10, 11].(1)

In each of these examples, the cluster algebra is realized as the coordinate ring of
a smooth variety. This makes it all the more surprising that the varieties associated
to general cluster algebras can be singular; in fact, they can possess such nightmar-
ish pathologies as a non-Noetherian singularity [16]. Various approaches have been
introduced to mitigate this.

• Restricting to a subclass of cluster algebras with potentially better behavior:
acyclic cluster algebras [2], locally acyclic cluster algebras [16, 1], or cluster
algebras with a maximal green sequence [6, 18].

• Replacing the cluster algebra by a closely-related algebra with potentially
better behavior: upper cluster algebras [2, 1], the span of convergent theta
functions [12], or lower bound algebras [2].

In this note, we study the algebraic and geometric behavior of lower bound algebras.(2)
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(1)A more interesting and morally correct statement is that each of these spaces possesses a
stratification such that each stratum naturally has a cluster algebra in its ring of functions.

(2)More specifically, we consider lower bound algebras defined by a quiver in the body of the
paper, and consider the more general context of geometric type in Appendix B.
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1.1. Lower bound algebras. Lower bound algebras were introduced in [2] as a
kind of “lazy approximation” of a cluster algebra, in the following sense. A cluster
algebra is defined to be the subalgebra of a field of rational functions generated by
a (usually infinite) set of cluster variables, produced by a recursive procedure called
mutation. A lower bound algebra is defined to be the subalgebra generated by trun-
cating this process at a specific finite set of steps. The resulting algebra is contained
in the associated cluster algebra and is manifestly finitely generated.

A lower bound algebra is constructed from an ice quiver Q: this is a quiver (i.e.
a finite directed graph) without loops or directed 2-cycles, in which each vertex is
designated unfrozen or frozen. As a matter of convenience, we assume the vertices
of Q have been indexed by the numbers {1, 2, . . . , n}. To each unfrozen vertex i, we
associate a pair of monomials p+

i , p
−
i ∈ Z[x1, x2, . . . , xn] as follows.

(1.1) p+
i :=

∏
arrows a∈Q

source(a)=i

xtarget(a), p−i :=
∏

arrows a∈Q
target(a)=i

xsource(a)

Each vertex then determines a Laurent polynomial x′i, called the adjacent cluster
variable at i, which is defined by the following formula.(3)

(1.2) x′i :=
{
x−1
i (p+

i + p−i ) if i is unfrozen
x−1
i if i is frozen

}
The lower bound algebra L(Q) defined by Q is the subalgebra of Z[x±1

1 , . . . , x±1
n ]

generated by the variables x1, . . . , xn and the adjacent cluster variables x′1, . . . , x′n.

1 2

3

4

Figure 1. An ice quiver (the unique frozen vertex is depicted as a square)

Example 1.1. Consider the ice quiver Q in Figure 1. The four adjacent cluster
variables are below.

x′1 = x2
2 + 1
x1

, x′2 = x3x4 + x2
1

x2
, x′3 = 1 + x2

x3
, x′4 = 1

x4

1.2. Relations in L(Q). We first consider the problem of finding relations among
the generators of L(Q). Each adjacent cluster variable satisfies a defining relation
immediately from its definition.

(1.3) ∀i unfrozen, x′ixi = (p+
i + p−i )

(1.4) ∀i frozen, x′ixi = 1

A more interesting class of relations is given by the following proposition.

(3)This is an abuse of terminology. Technically speaking, a frozen vertex i should not have an
adjacent cluster variable x′i, and instead we should include x−1

i as a generator (though this latter
step is a matter of some debate). We are streamlining the process by calling the inverse x−1

i “the
adjacent cluster variable at i”.
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Proposition 1.2 (The cycle relations). For each directed cycle of unfrozen vertices
v1 → v2 → · · · → vk → vk+1 = v1 in Q, the following cycle relation holds.

(1.5)
∑

S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|
(∏
i∈S

p+
vi
p−vi+1

xvi
xvi+1

) ∏
i 6∈S∪(S+1)

x′vi

 =
k∏
i=1

p+
vi

xvi

+
k∏
i=1

p−vi

xvi

We note that the expressions on either side reduce to polynomials in the generators,
despite the presence of fractions. Also note that choosing a different initial vertex v1
in the same directed cycle does not change the corresponding cycle relation.

1

23

Figure 2. An ice quiver (no frozen vertices)

Remark 1.3. A quiver Q is called acyclic if it has no directed cycles of unfrozen
vertices. The unifying theme of this paper is the use of the cycle relations to generalize
results about L(Q) which were previously known only when Q is acyclic (that is, when
there are no cycle relations).

Example 1.4. Let Q be the ice quiver in Figure 2. The three adjacent cluster variables
are

x′1 = x2 + x3

x1
, x′2 = x3 + x1

x2
, x′3 = x1 + x2

x3
The defining relations here are obtained by clearing the denominators above. A non-
trivial directed 3-cycle starting at any vertex determines the cycle relation

x′1x
′
2x
′
3 − x′1 − x′2 − x′3 = 2

which may be verified by direct computation.

1.3. A presentation of L(Q). We may ask whether there are other relations in
L(Q) that are not an immediate consequence of the preceding relations; or more
concretely, whether the defining relations and the cycle relations generate the entire
ideal of relations among the generators.

Explicitly, we consider the homomorphism of rings(4)

π : Z[x1, x2, . . . , xn, y1, y2, . . . , yn] −→ Z[x±1
1 , x±1

2 , . . . , x±1
n ]

∀i, π(xi) = xi, π(yi) = x′i
The image of this homomorphism is L(Q), and soKQ := ker(π) is the ideal of relations
among the generators of L(Q), where each adjacent cluster variable x′i has been re-
placed by the abstract variable yi. The homomorphism π descends to an isomorphism

Z[x1, x2, . . . , xn, y1, y2, . . . , yn]/KQ
∼−→ L(Q)

We will say a directed cycle v1 → v2 → · · · → vk → vk+1 = v1 is vertex-minimal if
no vertex appears more than once and there is no directed cycle whose vertex set is
a proper subset of {v1, v2 . . . , vk}.

(4)The y-variables introduced here have no relation to the y-variables or coefficient variables
introduced in [9].
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Theorem 1.5. The ideal of relations KQ is generated by the following elements.
• For each unfrozen vertex i,

(1.6) yixi − p+
i − p

−
i

• For each frozen vertex i,
(1.7) yixi − 1

• For each vertex-minimal directed cycle of unfrozen vertices v1 → v2 → · · · →
vk → vk+1 = v1,

(1.8)
∑

S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|
(∏
i∈S

p+
vi
p−vi+1

xvi
xvi+1

) ∏
i 6∈S∪(S+1)

yvi

− k∏
i=1

p+
vi

xvi

−
k∏
i=1

p−vi

xvi

which simplifies to a polynomial.

The theorem is true without the vertex-minimal condition, which is used here to
reduce the set of relations.

Example 1.6. Let Q be the ice quiver in Figure 2. By Theorem 1.5, L(Q) is iso-
morphic to the quotient of Z[x1, x2, x3, y1, y2, y3] by the ideal KQ generated by the
following 4 relations.
KQ = 〈y1x1 − x2 − x3, y2x2 − x3 − x1, y3x3 − x1 − x2, y1y2y3 − y1 − y2 − y3 − 2〉

1.4. A Gröbner basis for KQ. We prove Theorem 1.5 by means of a stronger
result, that the given generators are a Gröbner basis for the ideal of relations KQ.
Recall that, given a polynomial ring with a monomial order <, a Gröbner basis of an
ideal I is a generating set {g1, g2, .., gk} of I satisfying the additional condition that
{in<(g1), in<(g2), . . . , in<(gk)} is a generating set of in<(I).

The monomial orders relevant to us are those in which the y-variables are much
more expensive than the x-variables, that is xαyβ > xγyδ whenever

∑
i βi is larger

than
∑
i δi. An example of such a monomial order is the lexicographical order where

the variables are ordered by
y1 > y2 > · · · > yn > x1 > x2 > · · · > xn.

Theorem 1.7. For any monomial order of Z[x1, x2, . . . , xn, y1, y2, . . . , yn] in which all
of the y-variables are much more expensive than all of the x-variables, the polynomials
given in Theorem 1.5 are a Gröbner basis for KQ. Consequently, the initial ideal
in<KQ is squarefree monomial ideal with generating set
{xiyi | 1 6 i 6 n} ∪ {yv1yv2 · · ·yvk

∣∣ v1 → v2 → · · · →
→ vk → vk+1 = v1 is a vertex-minimal cycle in Q}.

Remark 1.8. When Q is acyclic, Theorem 1.7 specializes to Corollary 1.17 in [2].
The proof of Theorem 1.7 given in Section 2.2 uses [2, Corollary 1.17] in an essential
way, so our proof is not independent of the original result.

1.5. Simplicial complexes and Cohen–Macaulayness of lower bound alge-
bras. From here on, we work over a fieldK, and consider theK-algebra L(Q)⊗ZK. We
will still refer to this algebra as a lower bound algebra and, though a slight abuse of no-
tation, will simply denote it by L(Q). Similarly, we let KQ denote the associated lower
bound ideal, so that it is the kernel of the map π : K[x1, . . . , xn, y1 . . . , yn]→ L(Q).

To a squarefree monomial ideal I ⊆ K[z1, . . . , zn], one can associate a simpli-
cial complex ∆ on the vertex set {z1, . . . , zn}. This simplicial complex is called the
Stanley–Reisner complex and is defined as follows: {zi1 , . . . zir} is a face of ∆ if and

Algebraic Combinatorics, Vol. 1 #1 (2018) 98
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x1

x2 x3

y1 y2

y3

Figure 3. The Stanley–Reisner complex for 〈x1y1, x2y2, x3y3, y1y2y3〉

only if the monomial zi1 · · · zir /∈ I. Observe that the minimal non-faces of ∆ are in
one-to-one correspondence with a minimal generating set of I. For further information
on Stanley–Reisner complexes, see the textbook [15, Chapter 1].

Whenever the Stanley–Reisner complex is a simplicial ball or a sphere,(5) the corre-
sponding face ring K[z1, . . . , zn]/I is a Cohen–Macaulay ring [19]. Furthermore, when
I = in<J for some ideal J ⊆ K[z1, . . . , zn], we may also conclude that J itself is
Cohen–Macaulay (see eg. [5, Proposition 3.1]).

Example 1.9. We continue Example 1.6 and observe that the initial ideal in<KQ
(for a term order < as in Theorem 1.7) is 〈x1y1, x2y2, x3y3, y1y2y3〉. The facets (i.e.
the maximal faces) of the associated Stanley–Reisner complex are precisely those
{z1, z2, z3} where zi is either xi or yi and at least one of z1, z2, z3 is an xi. This
Stanley–Reisner complex is readily seen to be a simplicial ball, and is pictured in
Figure 3.

This example generalizes, and we are able to conclude that all lower bound algebras
are Cohen–Macaulay.

Theorem 1.10. Let Q be a quiver with n vertices, let KQ ⊆ K[x1, . . . , xn, y1, . . . , yn]
be its ideal of relations, and let < be any monomial order where the y-variables are
much more expensive than the x-variables. Let ∆Q be the Stanley–Reisner complex of
the squarefree monomial ideal in<KQ.

(i) If Q is acyclic, then ∆Q is a simplicial sphere.
(ii) If Q is not acyclic, then ∆Q is a simplicial ball.

We show additional properties of ∆Q. If Q is acyclic, then ∆Q is the boundary
of a cross-polytope. In both cases, ∆Q satisfies the stronger condition of vertex-
decomposibility. Details are in Section 3.

Corollary 1.11. For any Q the lower bound algebra L(Q) over a field K is Cohen–
Macaulay.
Remarks 1.12.

(i) We prove Theorem 1.10 by way of a more general result, which gives a larger
class of simplicial complexes which are automatically vertex-decomposable
balls (see Theorem 3.3).

(5)More precisely, we mean the geometric realization of the simplicial complex is homeomorphic
to a ball or sphere, respectively. Whenever we refer to a simplicial complex as a topological object,
we more precisely mean its geometric realization.
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(ii) When Q is acyclic, L(Q) was already known to be Cohen–Macaulay; specif-
ically, [2, Corollary 1.17] implies that L(Q) is a complete intersection, and,
consequently, that it is Cohen–Macaulay.

1.6. Normality of lower bound algebras. Our last main result is the normality
of the K-algebra L(Q).

Theorem 1.13. Every lower bound cluster algebra defined by a quiver is normal.

Since L(Q) = K[x1, . . . , xn, y1, . . . , yn]/KQ is finitely-generated, Serre’s Criterion
reduces normality to a pair of geometric conditions on the variety V(KQ).

• (R1) The variety V(KQ) has no codimension-1 singularities.
• (S2) Any regular function on an open subset in V(KQ) with codimension-2

complement extends to a regular function on all of V(KQ).
The Cohen–Macaulay property implies the S2 condition, and so normality of L(Q)
reduces to proving there are no codimension-1 singularities.

As with Cohen–Macaulayness, this geometric question will be reduced to Stanley–
Reisner combinatorics, along with a result of Knutson–Lam–Speyer [14, Proposition
8.1]. See Section 4 for further information.

Remark 1.14. Like our other results, Theorem 1.13 is only new in the case of non-
acyclic Q. In the acyclic setting, L(Q) is equal to its upper cluster algebra(6), which
is a normal domain by [16, Prop. 2.1].

Structure of paper. Section 2 considers relations in L(Q) and proves the associ-
ated results: Proposition 1.2, Theorem 1.5 and Theorem 1.7. Section 3 introduces the
relevant combinatorial tools, leading to the proof of Theorem 1.10. Section 4 addresses
normality, proving Theorem 1.13.

The paper concludes with a pair of appendices which frame the scope of the paper.
Appendix A considers the singularities of lower bound algebras directly, and provides
an example to suggest this is a difficult problem. Appendix B explains how the results
of the paper can be extended to skew-symmetrizable lower bound algebras, which are
more general but also somewhat less intuitive.

2. Presentations and Gröbner Bases
2.1. Choice graphs and cycle relations. To every cycle of Q there exists a
corresponding relation in L(Q). Let Q have a directed cycle v1 → v2 → · · · → vk−1 →
vk → v1. By giving an alternate presentation for the product

(2.1)
k∏
i=1

x′vi
=

k∏
i=1

x−1
vi

(p+
vi

+ p−vi
),

we acquire a nontrivial relation that holds in L(Q). It is our goal to expand the right-
hand product as a sum, and from this, Proposition 1.2 will follow. Each term of the
expansion of this product represents a choice, for each i, of either p+

vi
or p−vi

from
x−1
vi

(p+
vi

+ p−vi
). Therefore, to each term, we associate a directed graph with Z/kZ as

its vertex set and {(i, i± 1)}ni=1 as its set of arrows, where the sign of ± corresponds
to the abovementioned choice of p+

vi
(corresponding to the positive sign because xvi+1

divides p+
vi
) or p−vi

(negative sign, since xvi−1 divides p−vi
). Call these graphs the choice

graphs of the terms of the expansion of (2.1), and let C denote the set of all choice

(6)This was proven with an additional assumption in [2, Thm. 1.18], and without said assumption
in [17].
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1 2

3

45

6

Figure 4. The choice graph for (x−1
1 p+

1 )(x−1
2 p+

2 )(x−1
3 p−3 )(x−1

4 p−4 )(x−1
5 p−5 )(x−1

6 p−6 )

graphs. Formally, we write the correspondence between choice graphs and terms as a
function

(2.2) M : C→ {monomials in Z[x±1
1 , . . . , x±1

k ]}, M(g) =
k∏
i=1

x−1
vi
p

signg(i)
vi ,

where

(2.3) signg(i) =
{

+ if (i, i+ 1) ∈ g,
− if (i, i− 1) ∈ g.

.

Example 2.1. Let Q be the quiver on Z/6Z whose set of arrows is {(j, j + 1)}6j=1.
The choice graph in Figure 4 represents the term

(x−1
1 p+

1 )(x−1
2 p+

2 )(x−1
3 p−3 )(x−1

4 p−4 )(x−1
5 p−5 )(x−1

6 p−6 ) = x−1
1 p+

1
p+

2 p
−
3

x3x2
p+

4
p−5
x4

p−6
x5
x−1

6 .

By our construction of C and M , we have that (2.1) may be written as

(2.4)
k∏
i=1

x−1
vi

(p+
vi

+ p−vi
) =

∑
g∈C

M(g),

and so it is our goal to expand the sum on the right of (2.4). The following proposition
gives us such an expansion.

Proposition 2.2.We may expand (2.4) as follows:

k∏
i=1

x−1
vi

(p+
vi

+ p−vi
) =

k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

+
∑

∅ 6=S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|+1

(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x′vi

(2.5)

Proof. Note that a choice graph has a directed 2-cycle if and only if its associated
term has a factor of the form (x−1

vi
p+
vi

)(x−1
vi+1

p−vi+1
), which is a monomial p+

vi

xvi+1

p−vi+1
xvi

in the variables xv1 , . . . , xvn since xvi+1 divides p+
vi

and xvi divides p−vi+1
. Also notice

that no two 2-cycles may share vertices, since each vertex meets the tail of one and
only one arrow. It follows that a choice graph may have at most bk2 c 2-cycles. Finally
notice that a 2-cycle may only exist on adjacent vertices. Now, let Sj denote the
collection of subsets S of {1, . . . , k} of size j > 1 such that S ∩ (S + 1) = ∅, and let
S =

⋃b k
2 c
j=1 Sj . These subsets S correspond to the “left endpoints” of the 2-cycles in

choice graphs with j 2-cycles.
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Let C(S) be the set of all choice graphs with a 2-cycle on every pair {i, i+ 1} for
i ∈ S ∈ S, and let C0 be the set of choice graphs with no 2-cycles, then we have

(2.6) C = C0 ∪

( ⋃
S∈S1

C(S)
)
∪

( ⋃
S∈S2

C(S)
)
∪ · · · ∪

 ⋃
S∈Sbn

2 c

C(S)

 .

Since every g ∈ C(S) has a pair of arrows (i, i+ 1), (i+ 1, i) for every i ∈ S, we have

(2.7)
∑

g∈C(S)

M(g) =
(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x−1
vi

(
p+
vi

+ p−vi

) .

We also have

∑
g∈C0

M(g) =
k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

,

since there are precisely two choice graphs with no 2-cycles, corresponding to a consis-
tent choice of either + or −. We wish use (2.6) to write (2.4) as a sum with summands
of the form (2.7). Such a sum must have precisely one term corresponding to each
member of C. However, there is a certain amount of overcounting involved in (2.6),
since for any S ∈ S, we have

(2.8) C(S) ⊆ C(S r {i}) for every i ∈ S.

We therefore proceed iteratively by way of the inclusion-exclusion principle. We first
include a summand corresponding to C(S) for every S ∈ S1:

T1 =
∑
S∈S1

∑
g∈C(S)

M(g).

As (2.8) shows, for every S ∈ S2, the summand T1 contains two terms corresponding
to each element of C(S). Therefore, we now exclude a summand for each C(S), S ∈
S2:

T2 = T1 −
∑
S∈S2

∑
g∈C(S)

M(g).

Again, (2.8) shows us that, for every S ∈ S3, the summand T2 excludes one term too
many for each element of C(S). We therefore define T3 accordingly, and continue the
process of inclusion and exclusion until we obtain

Tb k
2 c

=
b k

2 c∑
j=1

(−1)j+1
∑
S∈Sj

∑
g∈C(S)

M(g)

 .
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Finally, we must include a term of
∑

g∈C0
M(g) corresponding to C0, and we conclude

that ∑
g∈C

M(g) =
∑

g∈C0

M(g) + Tb k
2 c

k∏
i=1

x−1
vi

(p+
vi

+ p−vi
) =

k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

+

b k
2 c∑
j=1

(−1)j+1
∑
S∈Sj

(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x′vi


=

k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

+

∑
∅6=S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|+1

(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x′vi

 .

�

Proposition 1.2 follows, since we now have

k∏
i=1

x−1
vi

(p+
vi

+ p−vi
)−

∑
∅ 6=S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|+1

(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x′vi

 =

k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

∑
S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|
(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i/∈S∪(S+1)

x′vi

 =

k∏
i=1

p+
vi

xvi−1

+
k∏
i=1

p−vi

xvi+1

.

2.2. Generators for KQ. Now, in addition to the defining polynomials yixi−(p+
i +

p−i ), yixi−1 given by the defining relations (1.6) and (1.7), we have by Proposition 2.2
that the ideal of relations KQ also contains the cycle polynomials. We define the cycle
polynomials in Z[x1, x2, . . . , xn, y1, y2, . . . , yn] to be those polynomials coming from
vertex-minimal directed cycles whose images under π vanish by virtue of (2.5). That is,
for every vertex-minimal directed cycle of unfrozen vertices v1 → v2 → · · · → vk → v1
in Q, we have the cycle polynomial

∑
S⊂{1,2,...,k}
S∩(S+1)=∅

(−1)|S|
(∏
i∈S

p+
vi

xvi+1

p−vi+1

xvi

) ∏
i 6∈S∪(S+1)

yvi

− k∏
i=1

p+
vi

xvi−1

−
k∏
i=1

p−vi

xvi+1

.

Note again that this expression reduces to a polynomial in the x- and y-variables
because each xvi+1 divides p+

vi
and each xvi

divides p−vi+1
. In Table 1, we present the

cycle polynomials given by some basic ice quivers.
We now obtain a presentation for the ideal of relations KQ and for the initial

ideal in<KQ, where < is a monomial order in which the y-variables are much more
expensive than the x-variables. This presentation will suffice to prove Theorems 1.5
and 1.7. We first require the following standard lemma.
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Table 1. Cycle polynomials in several examples

1

23

y1y2y3 − y1 − y2 − y3 − 2

1 2

34

y1y2y3y4−y1y2−y1y4−y2y3−y3y4

1

2

34

5 y1y2y3y4y5 − y1y2y3 − y1y2y5 −
y2y3y4 − y3y4y5 + y1 + y2 + y3 +

y4 + y5 − 2

2

1 4

35

y1y2y5−y1x3−y2−y5x4−x3−x4
and

y2y3y4−y2−y3x1−y4x5−x1−x5

Lemma 2.3. Let J and L be ideals in a polynomial ring. Suppose that J ⊆ L and
in< J = in< L. Then J = L.

Proof. Let G be a Gröbner basis for J and let f ∈ L. Since in<G generates in< L,
dividing f by G gives a remainder of 0, and so f ∈ J . �

Theorem 2.4.Given an ice quiver Q on n vertices, the defining polynomials together
with the cycle polynomials form a Gröbner basis for KQ = kerπ, where

π : Z[x1, x2, . . . , xn, y1, y2, . . . , yn] −→ Z[x±1
1 , x±1

2 , . . . , x±1
n ]

∀i, π(xi) = xi, π(yi) = x′i.

Proof. Let J be the ideal of Z[x1, x2, . . . , xn, y1, y2, . . . , yn] that is generated by the
set G of defining and cycle polynomials. We know that J ⊆ KQ, and therefore that
in< J ⊆ in<KQ. Let M be the monomial ideal generated by the initial terms of the
polynomials in G. We know that M ⊆ in< J ⊆ in<KQ, so we would like to show that
in<KQ ⊆M .

Assume (for the purpose of contradiction) that there is some f ∈ KQ such that
in<(f) 6∈M . We may write (assume all a, b and λ non-zero for simplicity)

(2.9) in<(f) = λx
ai1
i1
x
ai2
i2
· · ·xaik

ik
y
bj1
j1
y
bj2
j2
· · · ybj`

j`

Note that {j1, j2, . . . , j`} cannot contain the indices of a directed cycle of unfrozen ver-
tices. Otherwise, it would also contain the indices of a vertex-minimal directed cycle,
and in<(f) would be a multiple of the initial term of a cycle polynomial, contradicting
the assumption that in<(f) 6∈M .

Let Y ⊂ [n] be the indices of unfrozen vertices which are not in {j1, j2, . . . , j`},
and let Q′ be the ice quiver obtained by freezing the vertices in Q indexed by Y . By
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the preceding observation, Q′ is an acyclic quiver. There is a natural inclusion
L(Q) ↪→ L(Q′)

induced by inclusions into Z[x±1
1 , . . . , x±1

n ]. This inclusion may be lifted to a ring
homomorphism

µ : Z[x1, . . . , xn, y1, . . . , yn]→ Z[x1, . . . , xn, y1, . . . , yn]

µ(xi) = xi, µ(yi) =
{
yi(p+

i + p−i ) if i ∈ Y
yi otherwise

}
with the property that π′ ◦ µ = π, where π′ is the map

Z[x1, x2, . . . , xn, y1, y2, . . . , yn] −→ Z[x±1
1 , x±1

2 , . . . , x±1
n ]

defined by Q′ instead of Q.
Each of the variables appearing in the initial term of f are fixed by µ. In lower-

order terms of f , µ may introduce monomials in x; however, this will never create a
term greater than in<(f). Hence,

in<(f) = in<(µ(f)) ∈ in<(KQ′)
Since Q′ is acyclic, it was shown in [2, Corollary 1.17] that in<(KQ′) is generated

by {xiyi | i ∈ [n]}. Hence, in<(f) is a multiple of xiyi for some i. However, this
implies that in<(f) is a multiple of the initial term of the ith defining polynomial in
KQ, contradicting the assumption that in<(f) 6∈M .

It follows that in<(KQ) ⊂ M . This consequently implies that in<(J) = in<(KQ)
and, by the preceding lemma, that J = KQ. Furthermore, since in<(G) generates
in<(KQ), the set G is a Gröbner basis for KQ. �

3. Simplicial Complexes and Cohen–Macaulayness
Now that we have obtained a generating set for in<KQ, we can explicitly construct
the Stanley–Reisner complex of in<KQ. We first consider a larger class of simplicial
complexes, defined as follows:

Definition 3.1. Let S = {1, . . . , n}, let C be a collection {C1, . . . , Ck} of subsets
of S, and let Y ⊆ S. Define the simplicial complex ∆(S,C , Y ) on the set {xi

∣∣ i ∈
S} ∪ {yi

∣∣ i ∈ Y } by the rule(7)

F ∈ ∆(S,C , Y ) ⇐⇒ ∀i {xi, yi} 6⊆ F and ∀j {yi}i∈Cj
6⊆ F.

Since every facet of ∆(S,C , Y ) is of the form {z1, . . . , zn}, where zi is either xi
or yi, we see that ∆(S,C , Y ) is always a pure simplicial complex. Note that for any
quiver Q on vertex set S, where C is the collection of sets of vertices of vertex-minimal
directed cycles on Q, we have by Theorem 2.4 that

(3.1) in<KQ =
〈
x1y1, . . . , xnyn,

∏
i∈C1

yi, . . . ,
∏
i∈Ck

yi

〉
, Cj ⊆ S,

and the Stanley–Reisner complex of in<KQ is precisely ∆(S,C , S).

Remark 3.2. Whenever {i} ∈ C , there is no vertex of the form yi in the simplicial
complex ∆(S,C , Y ). Such confusing notation is necessary for later induction. A vertex
in ∆(S,C , Y ) of the form yi will be called a y-vertex.

(7)If a subset Cj is not contained in Y , we may simply ignore the condition {yi}i∈Cj
6⊆ S, which

is vacuously true because yi is not defined for i 6∈ Y .
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We now recall some definitions. Given a simplicial complex ∆ and a vertex v of ∆,
the link of v is the set

link∆(v) := {F ∈ ∆
∣∣ F 63 v and F ∪ {v} ∈ ∆},

and the deletion of v is the set
del∆(v) := {F ∈ ∆

∣∣ F ∪ {v} /∈ ∆},
where the bar denotes closure, so that del∆(v) is a simplicial complex. We call a
vertex v of a simplicial complex ∆ a shedding vertex of ∆ if no face of link∆(v) is a
facet of del∆(v). Finally, we recall the (recursive) notion of vertex-decomposability: a
simplicial complex ∆ is vertex-decomposable if it is a simplex, or if it has a shedding
vertex v such that both link∆(v) and del∆(v) are vertex-decomposable (see [3], also
[4]).

It is our goal to prove the following theorem, from which Theorem 1.10 will follow.

Theorem 3.3. The complex ∆(S,C , Y ) is always homeomorphic to a vertex-decom-
posable (n − 1)-ball, except when C = ∅ and Y = S, in which case ∆(S,C , Y ) is
homeomorphic to a vertex-decomposable (n− 1)-sphere.

Note that the case where C = ∅ and Y = S is precisely the case in which {yj}j∈S
is a face of ∆(S,C , Y ). We first characterize the link and the deletion in ∆(S,C , Y )
for any vertex of the form yi for i ∈ Y .

Proposition 3.4. For y-vertex yi in ∆(S,C , Y ), we have
link∆(S,C ,Y )(yi) = ∆(Si,C i, Y i),

where Si := S r {i}, C i := {Cj ∩ Si
∣∣ Cj ∈ C }, and Y i := Y ∩ Si.

Proof. We first show Link := link∆(S,C ,Y )(yi) ⊆ ∆(Si,C i, Y i). Since Link is a sub-
complex of ∆(S,C , Y ), no face of Link contains {xj , yj} for any j, since ∆(S,C , Y ) is
defined so as never to contain any such face. Since no face of Link may contain either
xi or yi, we see that Link is a simplicial complex on {xj

∣∣ j ∈ Si} ∪ {yj ∣∣ j ∈ Y i}.
Finally, were some F ∈ Link to contain {yj}j∈Ci

`
for some `, then F ∪ {yi} would

contain {yj}j∈C`
, contradicting F ∪ {yi} ∈ ∆(S,C , Y ). We now have that Link ⊆

∆(Si,C i, Y i).
We now show ∆(Si,C i, Y i) ⊆ Link. Consider some F ∈ ∆(Si,C i, Y i). Clearly

F 63 yi, so suppose that F ∪ {yi} /∈ ∆(S,C , Y ). Then either {xi, yi} ⊆ F ∪ {yi} or
{yj}j∈C`

⊆ F ∪{yi} for some `. The former case is impossible since xi /∈ Si. The latter
case implies {yj}j∈Ci

`
⊆ F , contradicting the definition of ∆(Si,C i, Y i). Therefore

we must have F ∪ {yi} ∈ ∆(S,C , Y ) for every face F of ∆(Si,C i, Y i), from which it
follows that ∆(Si,C i, Y i) ⊆ Link. We conclude that ∆(Si,C i, Y i) = Link. �

Proposition 3.5. For y-vertex yi in ∆(S,C , Y ), we have
del∆(S,C ,Y )(yi) = ∆(S,C , Y i),

where Y i is defined as above.

Proof. We first show Del := del∆(S,C ,Y )(yi) ⊆ ∆(S,C , Y i). Since no face of Del may
contain yi, we see that Del is a simplicial complex on {xj

∣∣ j ∈ S} ∪ {yj ∣∣ j ∈ Y i}.
Since Del is a subcomplex of ∆(S,C , Y ), no face of Del contains either {xj , yj} for
any j or {yj}j∈C`

for any `. Therefore Del ⊆ ∆(S,C , Y i).
Since ∆(S,C , Y i) has xi as a vertex but not yi, we have by the definition of

∆(S,C , Y i) that every facet of ∆(S,C , Y i) contains xi. Consider some arbitrary facet
F of ∆(S,C , Y i). Since xi ∈ F , we cannot have F∪{yi} ∈ ∆(S,C , Y ), and so F ∈ Del.
Therefore Del ⊆ ∆(S,C , Y i), and so we conclude that Del = ∆(S,C , Y i). �
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We may now observe an important relationship between links and deletions that
arises in our case. The following result shows that any vertex yi is a shedding vertex.
Note that in the case where C = ∅ and Y = S, every vertex yi must be a shedding
vertex because its link is always empty.

Lemma 3.6. Except in the case where C = ∅ and Y = S, the complex ∆(Si,C i, Y i)
is properly contained in the boundary complex ∂∆(S,C , Y i).

Proof. Since ∆(Si,C i, Y i) ⊆ ∆(S,C , Y i) and ∆(S,C , Y i) is pure, it follows that
every facet of ∆(Si,C i, Y i) meets at least one facet of ∆(S,C , Y i). Now we show that
each facet of ∆(Si,C i, Y i) meets only one facet of ∆(S,C , Y i). Observe that the facets
of ∂∆(S,C , Y i) are characterized as the codimension 1 faces {zj}j 6=k, k ∈ {1, . . . , n},
where each zj is either xj or yj , such that exactly one of either {zj}j 6=k ∪ {xk}
or {zj}j 6=k ∪ {yk} lies in ∆(S,C , Y i). Every facet of ∆(Si,C i, Y i) is of the form
{zj}j 6=i, and it always happens that {zj}j 6=i∪{xi} ∈ ∆(S,C , Y i) and {zj}j 6=i∪{yi} /∈
∆(S,C , Y i). Therefore ∆(Si,C i, Y i) ⊆ ∂∆(S,C , Y i).

We now must show that this containment is proper. We have two cases. Either
{yj}j 6=i is a face of ∆(S,C , Y i) or it is not. If it is, then it must lie on ∂∆(S,C , Y i),
because {yj}j 6=i ∪ {xi} is a face of ∆(S,C , Y i), while {yj}j 6=i ∪ {yi} is not a face of
∆(S,C , Y i) since either C 6= ∅ or Y 6= S. If {yj}j 6=i is not a face of ∆(S,C , Y i),
then there must be some C ∈ C not containing i such that no other member of C is
a subset of C. Then, for any k ∈ C, we have that F = {xj}j /∈C ∪ {yj}j∈Cr{k} is a
face of ∆(S,C , Y i). This face F lies on ∂∆(S,C , Y i), since F ∪ {xk} ∈ ∆(S,C , Y i)
but F ∪ {yk} /∈ ∆(S,C , Y i). Since both {yj}j 6=i and F contain xi, neither is a face
of ∆(Si,C i, Y i). Therefore there is always an element of ∂∆(S,C , Y i) that is not in
∆(Si,C i, Y i), and so the containment ∆(Si,C i, Y i) ⊆ ∂∆(S,C , Y i) is proper. �

By the previous lemma and the remarks above, we see that every ∆(S,C , Y ) is
vertex-decomposable, because the y-vertices are always shedding vertices, and any
complex without y-vertices is a simplex. The remainder of the proof is to strengthen
this argument to prove that these simplicial complexes are balls or spheres, as appro-
priate.

Proof of Theorem 3.3. First, we prove that ∆(S,C , Y ) is a vertex-decomposable (n−
1)-ball when Y 6= S or C 6= ∅, by induction on the number of y-vertices.

If there are no y-vertices in ∆(S,C , Y ) (that is, {i} ∈ C for all i ∈ Y ), then
∆(S,C , Y ) is just one simplex on n vertices, which is homeomorphic to an (n−1)-ball.
Assume the inductive hypothesis holds whenever there are fewer than m y-vertices,
and assume that ∆(S,C , Y ) has m-many y-vertices. Choose a vertex yi in ∆(S,C , Y ),
and define

Link := link∆(S,C ,Y )(yi) = ∆(Si,C i, Y i) and Del := del∆(S,C ,Y )(yi) = ∆(S,C , Y i)

We observe that both Link and Del satisfy the inductive hypothesis; this is clear
when Y 6= S. If Y = S, then by assumption C 6= ∅. Since yi is a vertex of ∆(S,C , Y ),
we also know that {i} 6∈ C . It follows that C i 6= ∅, and so Link still satisfies the
inductive hypothesis. Therefore, Link is a vertex-decomposable (n− 2)-ball and Del
is a vertex-decomposable (n− 1)-ball.

As a consequence, the cone Cone from yi on link∆(S,C ,Y )(yi) is a vertex-decom-
posable (n− 1)-ball. By Lemma 3.6, Cone and Del meet at the proper subset Link of
∂Del, which is a vertex-decomposable (n−2)-ball. Therefore, ∆(S,C , Y ) = Cone∪Del
is a vertex-decomposable (n− 1)-ball, completing the induction.

The remaining case is ∆(S,∅, S). Consider the mapping {x1, . . . , xn, y1, . . . , yn} →
Rn given by xi 7→ ei and yi 7→ −ei, where {e1, . . . , en} is the standard basis for Rn.
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This mapping induces a bijection between the faces of ∆(S,∅, S) and the faces of the
cross-polytope (i.e. orthoplex) on the vertices {e1, . . . , en,−e1, . . . ,−en}. Since this
figure is homeomorphic to an (n− 1)-sphere, so must be ∆(S,∅, S). �

As noted, by Theorem 2.4 we have that the initial ideal of any lower bound ideal
is of the form (3.1). Therefore, by Theorem 3.3, the Stanley–Reisner complex of the
initial ideal of any lower bound ideal is homeomorphic to either a ball or a sphere.
It follows that all lower bound algebras over a field are Cohen–Macaulay, and so
Theorem 1.10 holds.

4. Normality of lower bound algebras
In this section, we prove that all lower bound algebras defined from a quiver are nor-
mal. As explained in the introduction, the case where Q is acyclic follows immediately
because L(Q) is equal to its upper cluster algebra, and is therefore normal. So, for the
remainder of the section, we assume that Q contains a cycle. In this case, our proof
of normality relies on a very slight adaptation of [14, Proposition 8.1].

Proposition 4.1 (cf. [14, Proposition 8.1]). Fix a monomial order < on the polyno-
mial ring K[z1, . . . , zn]. Let X be a (closed, irreducible) subvariety of An, and suppose
that Y1, . . . , Yr are subvarieties of X. Assume that, with respect to the term order
<, each of X and Y1, . . . , Yr Gröbner degenerate to Stanley–Reisner schemes. Also
assume that the following three conditions hold:

(i) The Stanley–Reisner complex of in<X is a simplicial ball.
(ii) If Yi is codimension-1 in X, then the Stanley–Reisner complex of in< Yi lies

entirely on the boundary sphere ∂∆X .
(iii) X r (Y1 ∪ Y2 ∪ · · · ∪ Yr) is normal.

Then, X is normal.

We need the following standard result to prove this proposition. It is very similar
to [5, Proposition 3.1 (b)]; we provide the necessary modifications in the proof below.

Lemma 4.2. Fix a monomial order < on the polynomial ring S := K[z1, . . . , zn]. Let
X and Y be irreducible affine subvarieties of An, and assume that Y is codimension-1
in X. Then if in<X is generically regular along each irreducible component of in<Y
then X is generically regular along Y .

Proof. Let X = V(I) and Y = V(J) for I, J ⊆ K[z1, . . . , zn]. Pick a weight vector λ
such that inλI = in<I and inλJ = in<J . Let f =

∑
i aimi, where each ai ∈ K, and

each mi is a monomial. Let homλ(f) denote the λ-homogenization of f inside S[t],
that is,

homλ(f) :=
∑

aimit
λ(f)−λ(mi),

where λ(f) denotes the highest λ-weight of any monomial in f , and λ(mi) is the
λ-weight of the monomial mi. Let homλI denote the λ-homogenization of the ideal I,
that is, homλI := 〈homλ(f) | f ∈ I〉. It is a standard fact that A := S[t]/homλI is a
free K[t]-module and that A/〈t〉 ∼= S/inλI (see eg. [5, Proposition 2.4] or [7, Theorem
15.17]).

Now, by assumption, in<X is generically regular along each irreducible component
of in<Y . That is, the localization of S/in<I at any minimal prime of in<J is a regular
local ring. Thus, by the above facts, we have that the localization of A/〈t〉 at any
minimal prime of (homλJ + 〈t〉) is a regular local ring.

Observe that A is positively graded. Let m denote the maximal ideal generated
by the indeterminates z1, . . . , zn, t, and let Am denote the localization at m. Because
A/〈t〉 localized at any minimal prime p of (homλJ + 〈t〉) is regular, so too is Am/〈t〉
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localized at any non-trivial Amp, and the non-trivial Amp are precisely the minimal
primes of (homλJ + 〈t〉) as an ideal in Am/〈t〉.

Now we can use the proof of [5, Lemma 3.2] to get that the localization of Am at the
height-1 prime ideal homλJ is regular. The second half of the proof of [5, Proposition
3.1 (b)] then gives that the localization of S/I at J is regular. �

We now prove Proposition 4.1.

Proof of Proposition 4.1. We follow the proof given in [14, Proposition 8.1]. To show
that X is normal, we need to show that X is R1 and S2. Since ∆X is a simplicial
ball by assumption (i), it follows that X is Cohen–Macaulay, and hence S2. To show
that X is R1, first observe that, by assumption (iii), if p ⊆ S/I is a prime ideal of
height 6 1 which is not the generic point of any Yi, then (S/I)p is regular.

The remaining primes in S/I which have height 6 1 are the generic points of the
codimension-1 subvarieties Yi ⊆ X. It therefore remains to show that X is generically
regular along each codimension-1 subvariety Yi. Fix one such Yi of codimension-1 inX.
By assumption (ii), we have that in<X is generically regular along each irreducible
component in<Yi. Thus, by the lemma, we get that X is generically regular along
Yi. �

To use Proposition 4.1 to prove that all lower bound algebras are normal, we need
to show that the hypotheses (ii) and (iii) always hold for quivers with cycles. We start
with (ii). To show the desired result, we use results of Knutson from [13](8).

Theorem 4.3 (cf. Theorem 2, Lemma 6, Corollary 2 of [13]). Let f ∈ Z[z1, . . . , zn] be
a polynomial with the property that, for each prime p, fp−1(mod p) has a unique term
divisible by zp−1

1 zp−1
2 · · · zp−1

n , and let < be a term order of Z[z1, . . . , zn] for which
in<f = z1z2 · · · zn. Denote by J the smallest set of ideals that contains the ideal 〈f〉
and such that

(i) if I1, I2 ∈ J , then I1 + I2, I1 ∩ I2 ∈ J ; and
(ii) if I ∈ J and J is a primary component of I then J ∈ J .

Then, over any field K, every ideal J ∈ J is a radical ideal and the initial ideal of
every J ∈ J with respect to < is a squarefree monomial ideal. Furthermore, for any
I1 and I2 in J ,

in<(I1 ∩ I2) = in<I1 ∩ in<I2, and in<(I1 + I2) = in<I1 + in<I2.

We will make use of this theorem in the case where f =
∏n
i=1(xiyi − p+

i − p
−
i ).

Here we take < to be a weighting of the variables where the y-variables are much
more expensive than the x-variables. Observe that f and < satisfy the assumptions
of Theorem 4.3 and the ideal

IQ := 〈xiyi − p+
i − p

−
i | 1 6 i 6 n〉.

lies in the collection of ideals J from the theorem. Consequently I is radical. We may
then write an irredundant prime decomposition
(4.1) IQ = KQ ∩ P1 ∩ · · · ∩ Pr
where each Pi is a minimal prime, and KQ is the lower bound ideal [1, Lemma 5.7].
Consequently, each Pi + KQ ∈ J and so each Pi + KQ is radical and degenerates to
a squarefree monomial ideal.

(8)The statement given here is less general than the one that appears in [13, Theorem 2] and [13,
Lemma 6]. We also change the hypotheses of [13, Theorem 2], however, this is harmless as the proof
goes through in the exact same way.
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Proposition 4.4. Let Q be a quiver with a directed cycle, so that there is at least one
prime Pi in (4.1). With respect to a term order where the y-variables are much more
expensive than the x-variables, each prime component of Pi + KQ Gröbner degener-
ates to the Stanley–Reisner ideal of a sub-simplicial complex of ∂∆KQ . Furthermore,
in<((P1 ∩ · · · ∩ Pr) +KQ) is the Stanley–Reisner ideal of the entire boundary ∂∆KQ .

Proof. By Theorem 4.3, we have that Pi +KQ is radical and Gröbner degenerates to
a squarefree monomial ideal. Let

KQ + Pi = ∩JJ
be a decomposition of KQ +Pi into minimal primes. By Theorem 4.3, each in<J is a
squarefree monomial ideal. Applying the second part of Theorem 4.3 and translating
into the language of simplicial complexes yields the equality

∆KQ+Pi = ∆KQ ∩∆Pi = ∪J∆J

where ∆J denotes the Stanley–Reisner complex in<J . To prove the first claim of the
proposition, we must show that every face of each ∆J is contained in the boundary
sphere of the simplicial ball ∆KQ . So, suppose otherwise, and let F be a face of some
∆J which is not contained in the boundary ∂∆KQ . Assume that F is a maximal such
face. We claim that F must be a facet of ∆Pi

.
To prove this claim, we first apply Theorem 4.3 to the prime decomposition in

equation (4.1) to get
(4.2) in<I = in<(KQ) ∩ in<(P1) ∩ · · · ∩ in<(Pr)
which, after translating into the language of simplicial complexes, says that ∆KQ and
every ∆Pi

is contained in the Stanley–Reisner complex associated to in<I = 〈xiyi |
1 6 i 6 n〉, which can be geometrically realized as the (n− 1)-dimensional boundary
sphere of a cross-polytope on 2n vertices. Decompose this simplicial sphere into the
union of two (n− 1)-dimensional simplicial balls:

∆I = ∆KQ ∪ C, where C := ∆I r ∆KQ .

Observe that, by construction, ∆KQ ∩ C is the boundary sphere of ∆KQ .
Now, suppose that F is not a facet of ∆Pi

. Then there is a vertex z such that
F ∪ {z} is a face of ∆Pi

. Then, using the decomposition of ∆I , we see that either
F ∪{z} is contained in ∆KQ , or it is contained in C. If F ∪{z} ⊆ ∆KQ , we contradict
the maximality of F . If F ∪ {z} ∈ C, we contradict that F was not contained in the
boundary of ∆KQ (since ∆KQ and C only intersect along the boundary of ∆KQ).

Thus, our maximal face F must be a facet of ∆Pi
, which, since Pi is prime, must

have dimension one less than the dimension dim(S/Pi). But this is not possible be-
cause dim(S/J) is strictly smaller than dim(S/Pi).

To obtain the last statement, we translate equality (4.2) into the language of sim-
plicial complexes to see that the union ∪ri=1∆Pi necessarily contains the boundary
sphere ∂∆KQ . Thus, so does

∆(P1∩···∩Pr)+KQ) = ∆(P1∩···∩Pr) ∩∆KQ = ∪ri=1(∆Pi ∩∆KQ).
But, as already shown, each ∆Pi

∩∆KQ is contained inside of the boundary sphere of
∆KQ and so we are done. �

We next show that (iii) of Proposition 4.1 holds for lower bound algebras.

Proposition 4.5. Let V(KQ) denote the lower bound variety of a quiver Q. Then
V(KQ) rV(P1 ∩ P2 ∩ · · · ∩ Pr) is normal(9).

(9)We note that V(P1 ∩ P2 ∩ · · · ∩ Pr) is empty when Q is acyclic.
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Proof. Consider q ∈ V(KQ), and define the (possibly empty) set

Sq := {i ∈ {1, 2, . . . , n} | xi(q) = 0}

The vertices indexed by Sq must be unfrozen, since frozen x-variables are invertible.
First, assume Sq does not contain a directed cycle, and consider the open set

Uq := {q′ ∈ V(KQ) | ∀i 6∈ Sq, xi(q) 6= 0}

The coordinate ring of Uq is the localization of L(Q) at the set of x-variables which
are not in Sq; hence, it is isomorphic to the lower bound algebra of the ice quiver
Q† obtained by freezing the vertices not in Sq. This ice quiver is acyclic, and so the
lower bound algebra coincides with the upper cluster algebra [2], which is normal [16].
Hence, V(KQ) is normal at q.

Next, assume Sq contains a directed cycle, and consider the affine space

Wq := {q′ ∈ K2n | ∀i, xi(q′) = xi(q), and ∀i 6∈ Sq, yi(q′) = yi(q)}

This contains q and is contained in V(KQ∩P1∩· · ·∩Pr). Since Sq contains a directed
cycle, there is some cycle polynomial whose leading term is a product of y-variables
whose indices are contained in Sq, and hence cannot vanish on Wq. Hence, Wq 6⊂
V (KQ). By the irreducibility of Wq, we have that q ∈Wq ⊂ V(P1 ∩ · · · ∩ Pr), and so
q 6∈ V(KQ) rV(P1 ∩ · · · ∩ Pr). �

We can now prove that all lower bound algebras are normal.

Proof of Theorem 1.13. We have already treated the case when Q is acyclic (i.e. L(Q)
equals its associated upper cluster algebra, and is hence normal). So assume that Q
contains a cycle. Let KQ be the relevant lower bound ideal, and let P1, . . . , Pr ⊆ S be
minimal primes of 〈xiyi − p+

i − p
−
i | 1 6 i 6 n〉 such that

〈xiyi − p+
i − p

−
i | 1 6 i 6 n〉 = KQ ∩ P1 ∩ · · · ∩ Pr.

Now apply Proposition 4.1 with X = V(KQ), and Y1, . . . , Ys the irreducible compo-
nents of the various V(Pj +KQ), 1 6 j 6 r. Observe that item (i) of Proposition 4.1
follows from Theorem 1.10, item (ii) follows from Proposition 4.4, and item (iii) holds
by Proposition 4.5. �

Appendix A. The singular locus of L(Q)
The Cohen–Macaulayness and normality of L(Q) may both be regarded as constraints
on the singularities of the variety V(KQ). It is then natural to directly consider the
singularities of V(KQ). This appendix provides an example to demonstrate that, even
in the most elementary cases, even the existence of singularities in V(KQ) can be
difficult to predict, suggesting a direct study of of the singularities of V(KQ) may be
daunting.

Fix an algebraically closed field K. Let Qn denote the ice quiver with vertex set
{1, 2, . . . , n}, an arrow from i to i+ 1 for each 1 6 i < n, and no frozen vertices (see
Figure 5).

1 2 3 n

Figure 5. The quiver Qn

Proposition A.1. The K-variety V(KQn
) has a unique singular point when n ≡

3 (mod 4), and no singularities otherwise.
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Proof. Since there are no directed cycles, we have the following presentation of L(Qn).

L(Qn) = K[x1, . . . , xn, y1, .., yn]/〈y1x1 − x2 − 1, y2x2 − x3 − x1, . . .

. . . , yn−1xn−1 − xn − xn−2, ynxn − 1− xn−1〉

Let p ∈ V(KQn
). First, we observe that xi(p) and xi+1(p) cannot both be zero. This

is clear for i = 1 from the defining relation for y1, and the general case follows by
induction on i.

The point p is singular if and only if the associated Jacobian matrix Jacp has rank
less than n.

Jacp :=


y1(p) −1 0 0 · · · x1(p) 0 0 0 · · ·
−1 y2(p) −1 0 · · · 0 x2(p) 0 0 · · ·
0 −1 y3(p) −1 · · · 0 0 x3(p) 0 · · ·
0 0 −1 y4(p) · · · 0 0 0 x4(p)
...

...
...

...
. . .

...
...

...
...

. . .


Equivalently, p is singular if and only if there is a non-trivial linear relation among the
rows of Jacp. Clearly, such a relation can only include the ith row if xi(p) = 0; hence,
such a relation can only involve non-adjacent rows of Jacp. This is only possible when
n is odd and when xi(p) = yi(p) = 0 for every odd i; furthermore, the relation (up to
scaling) must be that the alternating sum of the odd rows of Jacp is 0.

Returning to the defining relations, the condition that xi(p) = 0 for all odd i is
only possible when n is congruent to 3 mod 4, in which case x2j(p) = (−1)j . Since
these are non-zero, it follows that y2i(p) = x2i−1(p)+x2i+1(p)

x2i(p)
= 0. Consequently, when

n ≡ 3 (mod 4), the unique singular point is given by

∀i ∈ {1, 2, . . . , n}, xi(p) =
{

0 if i is odd
(−1) i

2 if i is even

}
, yi(p) = 0

If n 6≡ 3 (mod 4), there is no singular point. �

The family of algebras L(Qn) is one of the most fundamental and elementary in
the theory of cluster algebras; in this case, the lower bound L(Qn) coincides with the
cluster algebra of Dynkin-type An. This and other simple examples suggest that that
presence of singularities in V(KQ) is difficult to predict, and is very sensitive to small
changes in the quiver Q.

Appendix B. Skew-symmetrizable lower bound cluster algebras
The body of this paper considered lower bound cluster algebras defined by ice quiv-
ers, also called skew-symmetric lower bound cluster algebras. However, the proofs
and results can be extended to the larger generality of skew-symmetrizable lower
bound cluster algebras.(10) This appendix outlines the necessary modifications. A skew-
symmetrizable lower bound algebra is defined by a exchange matrix B: an n×m integer
matrix (for n > m) such that there is an m×m diagonal matrix D with the property
that the top m×m minor of BD is skew-symmetric.

To each index i ∈ {1, . . . ,m}, we associate two monomials p+
i , p

−
i ∈ Z[x1, x2, . . . , xn]

as follows.

(B.1) p+
i :=

∏
j∈{1,2,...,n}

x
max(Bji,0)
j , p−i :=

∏
j∈{1,2,...,n}

x
max(−Bji,0)
j

(10)We remark that we still work in geometric type, rather than more exotic semifield coordinates.
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Each index then determines a Laurent polynomial x′i, called the adjacent cluster
variable at i, which is defined by the following formula.(11)

(B.2) x′i :=
{
x−1
i (p+

i + p−i ) if i ∈ {1, 2, . . . ,m}
x−1
i if i ∈ {m+ 1,m+ 2, . . . , n}

}
The lower bound algebra L(B) defined by B is the subalgebra of Z[x±1

1 , . . . , x±1
n ] gen-

erated by the variables x1, . . . , xn and the adjacent cluster variables x′1, . . . , x′n.

Example B.1. Consider the following 3× 2 matrix B, which is skew-symmetrizable
with the given D.

B :=

 0 3
−2 0
1 2

 , D :=
(

3 0
0 2

)
The three adjacent cluster variables are below.

x′1 = x3 + x2
2

x1
, x′2 = x3

1x
2
3 + 1
x2

, x′3 = x−1
3

To translate prior results into the generality of exchange matrices, we associate an
ice quiver Q(B) to B. The vertex set of Q(B) is the set {1, 2, . . . , n}, the frozen vertex
set is {m + 1,m + 2, . . . , n}, and there is an arrow from i to j if Bji > 0 or Bij < 0
(and no other arrows). The lower bound algebra L(B) is not the lower bound algebra
of the ice quiver Q(B); the arrows in Q(B) only keep track of the sign of entries in B.

The results and proof in this paper hold verbatim for L(B), using Q(B) in place of
Q, for two key reasons.

• Our arguments never use the specific exponent of the monomials p±i ; rather,
we only need to know if a variable xj divides p±i , which corresponds to the
existence of an arrow in Q(B).

• When Q(B) is acyclic, the presentation of L(B) given in [2, Corollary 1.17]
and used in the proof of Theorem 1.7 is still valid in the larger generality of
skew-symmetrizable cluster algebras.

Remark B.2. The body of the paper is not in this larger generality for reasons of
clarity and exposition, rather than any mathematical limitations.
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