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A Demazure crystal construction for
Schubert polynomials

Sami Assaf & Anne Schilling

Abstract Stanley symmetric functions are the stable limits of Schubert polynomials. In this
paper, we show that, conversely, Schubert polynomials are Demazure truncations of Stanley
symmetric functions. This parallels the relationship between Schur functions and Demazure
characters for the general linear group. We establish this connection by imposing a Demazure
crystal structure on key tableaux, recently introduced by the first author in connection with
Demazure characters and Schubert polynomials, and linking this to the type A crystal struc-
ture on reduced word factorizations, recently introduced by Morse and the second author in
connection with Stanley symmetric functions.

1. Introduction
Schubert polynomials Sw were first introduced by Bernstein et al. [6] as certain poly-
nomial representatives of cohomology classes of Schubert cycles Xw in flag varieties.
They were extensively studied by Lascoux and Schützenberger [15] using an explicit
definition in terms of difference operators ∂w. Subsequently, a combinatorial expres-
sion for Schubert polynomials as the generating polynomial for compatible sequences
for reduced expressions of a permutation w was discovered by Billey, Jockusch, and
Stanley [7]. In the special case of the Grassmannian subvariety, Schubert polynomials
are Schur polynomials, which also arise as the irreducible characters for the general
linear group.

The Stanley symmetric functions Fw were introduced by Stanley [27] in the pur-
suit of enumerations of the reduced expressions of permutations, in particular of the
long permutation w0. They are defined combinatorially as the generating functions
of reduced factorizations of permutations. Stanley symmetric functions are the stable
limit of Schubert polynomials [20, 21], precisely
(1.1) Fw(x1, x2, . . .) = lim

m→∞
S1m×w(x1, x2, . . . , xn+m).

Edelman and Greene [10] showed that the coefficients of the Schur expansion of
Stanley symmetric functions are nonnegative integer coefficients.

Demazure modules for the general linear group [9] are closely related to Schubert
classes for the cohomology of the flag manifold. In certain cases these modules are
irreducible polynomial representations, and so the Demazure characters also contain
the Schur polynomials as a special case. Lascoux and Schützenberger [16] stated that
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Schubert polynomials are nonnegative sums of Demazure characters. This was proven
by Reiner and Shimozono [25] using the right keys associated to Edelman–Greene
insertion. Using a key tableaux interpretation for Demazure characters [3], Assaf [2]
showed that the Edelman and Greene algorithm giving the Schur expansion of a
Stanley symmetric function can be modified to a weak Edelman–Greene algorithm
which gives the Demazure expansion of a Schubert polynomial.

In this paper, we deepen this connection and provide a converse to (1.1) by showing
that Schubert polynomials are Demazure truncations of Stanley symmetric functions.
Specifically, we show in Theorem 5.11 that the combinatorial objects underlying the
Schubert polynomials, namely the compatible sequences, exhibit a Demazure crys-
tal truncation of the full Stanley crystal of Morse and Schilling [24]. We prove this
using Theorem 3.14, in which we give an explicit Demazure crystal structure on
semi-standard key tableaux, which coincide with semi-skyline augmented fillings of
Mason [22]. This, together with Theorem 5.10, in which we show that the crystal op-
erators on reduced factorizations intertwine with (weak) Edelman–Greene insertion,
proves our main result.

Lenart [18] defined crystal operators on RC graphs [5], which are closely related
to compatible sequences, though it was not observed there that this structure is a
Demazure crystal. Earlier, Reiner and Shimozono [26] defined r-pairings on factorized
row-frank words that can now be interpreted as crystal operators, but again, this was
not observed nor was it noted that this structure is a Demazure crystal structure.
One could complete either of these perspectives to prove our main result, though we
prefer the key tableaux approach given its simplicity, the natural crystal operators on
these objects, and the connection with Edelman–Greene insertion.

This paper is structured as follows. In Section 2, we review the crystal structure
on semi-standard Young tableaux and define Demazure crystals. In Section 3, we
introduce new crystal operators on key tableaux and prove that this amounts to a
Demazure crystal (Theorem 3.14). Section 4 is reserved for the review of Stanley
symmetric functions, Edelman–Greene insertion and the crystal structure on reduced
factorization, which underly the Stanley symmetric functions. Section 5 contains our
main result (Theorem 5.11), namely a Demazure crystal structure on reduced fac-
torizations with cutoff, which are equivalent to compatible sequences. This gives a
Demazure crystal structure for Schubert polynomials and shows that Schubert poly-
nomials are a Demazure truncation of Stanley symmetric functions.

2. Crystal structure on tableaux
We begin in Section 2.1 by reviewing the basics of Schur polynomials via the com-
binatorics of Young tableaux. In Section 2.2, we review the type A crystal structure
on semi-standard Young tableaux, and conclude in Section 2.3 with the definition of
Demazure crystals.

2.1. Combinatorics of Schur polynomials. Given a partition λ, the Young di-
agram of shape λ is the array of left-justified cells with λi boxes in row i. Here we use
French notation, where the rows weakly decrease in size from bottom to top in the
Young diagram. A Young tableau is a filling of the cells of a Young diagram from some
totally ordered alphabet (for example the set of positive integers) such that rows and
columns weakly increase. A semi-standard Young tableau is a Young tableau with dis-
tinct column entries. Figure 1 provides an example of semi-standard Young tableaux
of a fixed shape.
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Figure 1. The semi-standard Young tableaux of shape (2, 2, 1) over
the alphabet {1, 2, 3, 4}.

The weight of a semi-standard Young tableau T , denoted by wt(T ), is the weak
composition whose ith part is the number of occurrences of i in T . The shape λ of T
is also denoted by sh(T ).

Definition 2.1. The Schur polynomial in n variables indexed by the partition λ is

(2.1) sλ(x) = sλ(x1, . . . , xn) =
∑

T∈SSYTn(λ)

x
wt(T )1
1 · · ·xwt(T )n

n ,

where SSYTn(λ) is the set of semi-standard Young tableaux of shape λ over the al-
phabet {1, 2, . . . , n}.

Schur polynomials arise as characters for irreducible highest weight modules for the
general linear group with semi-standard Young tableaux giving a natural indexing set
for the basis of the module.

2.2. Crystal operators on semi-standard Young tableaux. A crystal graph
is a directed, colored graph with vertex set given by the crystal basis and directed
edges given by deformations of the Chevalley generators. For the quantum group
Uq(sln), the crystal basis can be indexed by semi-standard Young tableaux over the
alphabet A = {1, 2, . . . , n} and there is an explicit combinatorial construction of the
crystal graph on tableaux [13, 19]. For an introduction to crystals from the quantum
group perspective, see [11]. For a purely combinatorial introduction to crystals, see [8].

For a word w of length k with letters from the alphabet A = {1, 2, . . . , n}, an
integer 0 6 r 6 k, and an integer 1 6 i < n, define

(2.2) Mi(w, r) = wt(w1w2 · · ·wr)i − wt(w1w2 · · ·wr)i+1,

where wt(w) is the weak composition whose jth part is the number of j’s in w. Set
Mi(w) = maxr{Mi(w, r)}. Observe that ifMi(w) > 0 and p is the leftmost occurrence
of this maximum, then wp = i, and if q is the rightmost occurrence of this maximum,
then either q = k or wq+1 = i+ 1.

For a Young tableau T , the column reading word of T , denoted by w(T ), is the word
obtained by reading the entries of T down columns from left to right. For example,
the column reading word of the leftmost Young tableau in the top row of Figure 1 is
32131.

Definition 2.2.Given an integer 1 6 i < n, define the lowering operator fi on
semi-standard Young tableaux over the alphabet A as follows: if Mi(w(T )) 6 0, then
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fi(T ) = 0; otherwise, let p be the smallest index such that Mi(w(T ), p) = Mi(w(T )),
and fi(T ) changes the entry in T corresponding to w(T )p to i+ 1.

An example of the lowering operator f2 is given in Figure 2. For this example,
the column reading word is given below each semi-standard Young tableau with the
largest index that attains M2(w(T )) > 0 underlined and the corresponding entry in
the tableau circled.

2 3 3
1 2 2 2 �2 2 3 3

1 2 2 �2 3

�2 3 3
1 2 2 3 3

3 3 3
1 2 2 3 3 0

21323222 21323223 21323233 31323233

f2 f2 f2 f2

Figure 2. An example of the lowering operator f2 on semi-standard
Young tableaux.

Definition 2.3.Given an integer 1 6 i < n, define the raising operator ei on semi-
standard Young tableaux over the alphabet A as follows: let q be the largest index such
that Mi(w(T ), q) = Mi(w(T )). If q is the length of w(T ), then ei(T ) = 0; otherwise,
ei(T ) changes the entry in T corresponding to w(T )q+1 to i.

For further examples of raising and lowering operators on semi-standard Young
tableaux, see Figure 3. Note that we have drawn the crystal in Figure 3 with lowering
operators pointing upward to facilitate the bijection with semi-standard key tableaux
as explained in Section 3.

For a partition λ, we may define the highest weight crystal (of type An) of highest
weight λ, denoted B(λ), as the set SSYTn(λ) together with the operators fi, ei for
1 6 i < n and the weight function wt. The character of a crystal is defined as

chB(λ) =
∑

b∈B(λ)

x
wt(b)1
1 · · ·xwt(b)n

n ,

which in this case is precisely the Schur polynomial sλ(x1, . . . , xn).

2.3. Demazure crystals. Demazure characters first arose in connection with Schu-
bert classes for the cohomology of the flag manifold in [9].

The divided difference operators ∂i for 1 6 i < n act on polynomials by

∂if(x1, . . . , xn) = f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)
xi − xi+1

.

For w ∈ Sn, we may define ∂w = ∂i1∂i2 · · · ∂ik if w = si1si2 · · · sik . Here si (1 6 i < n)
is the simple transposition interchanging i and i+1 and k is the number of inversions
(or length) of w. When k is the length of w, the expression si1si2 · · · sik for w is called
a reduced expression. It can be shown that ∂w is independent of the choice of reduced
expression.

There exist degree-preserving divided difference operators πi for 1 6 i < n, which
act on polynomials by

πif(x1, . . . , xn) = ∂i (xif(x1, . . . , xn)) .

As with ∂i, we extend this definition to w ∈ Sn, by πw = πi1πi2 · · ·πik if w =
si1si2 · · · sik is a reduced expression, and πw is independent of the choice of reduced
expression.
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Figure 3. The crystal B(2, 2, 1), with edges f1 ↖, f2 ↑, f3 ↗.

Definition 2.4.Given a weak composition a of length n, the Demazure character κa
is defined as

(2.3) κa(x) = κa(x1, . . . , xn) = πw

(
xλ1

1 xλ2
2 · · ·xλn

n

)
,

where λ is the partition rearrangement of a and w is the shortest permutation such
that (aw1 , . . . , awn

) = λ.
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For example, we may compute the Demazure character κ(0,2,1,2) by taking a =
(0, 2, 1, 2), λ = (2, 2, 1, 0) and w = 2431, and so we have

κ(0,2,1,2)

= π1π3π2π3
(
x2

1x
2
2x3
)

= π1π3π2
(
x2

1x
2
2x3 + x2

1x
2
2x4
)

= π1π3
(
x2

1x
2
2x3 + x2

1x
2
2x4 + x2

1x2x
2
3 + x2

1x2x3x4 + x2
1x

2
3x4
)

= π1
(
x2

1x
2
2x3 + x2

1x
2
2x4 + x2

1x2x
2
3 + 2x2

1x2x3x4 + x2
1x2x

2
4 + x2

1x
2
3x4 + x2

1x3x
2
4
)

= x2
1x

2
2x3 + x2

1x
2
2x4 + x2

1x2x
2
3 + 2x2

1x2x3x4 + x2
1x2x

2
4 + x2

1x
2
3x4 + x2

1x3x
2
4 + x1x

2
2x

2
3

+ 2x1x
2
2x3x4 + x1x

2
2x

2
4 + x1x2x

2
3x4 + x1x2x3x

2
4 + x2

2x
2
3x4 + x2

2x3x
2
4.

Macdonald [20, 21] showed that when a is weakly increasing of length n, we have

κa(x1, . . . , xn) = srev(a)(x1, . . . , xn),

where rev(a) is the partition obtained by reversing (equivalently, sorting) a. In partic-
ular, Demazure characters are a polynomial generalization of irreducible characters.

Making this more precise, Demazure crystals are certain subsets of B(λ), which
were first conjectured by Littelmann [19] to generalize the Demazure characters. This
conjecture was later proven by Kashiwara [12]. Given a subset X ⊆ B(λ), we define
Di for 1 6 i < n as

(2.4) DiX = {b ∈ B(λ) | eki (b) ∈ X for some k > 0}.

For a permutation w ∈ Sn with reduced expression w = si1si2 · · · sik , we define

(2.5) Bw(λ) = Di1Di2 · · ·Dik{uλ},

where uλ is the highest weight element in B(λ) satisfying ei(uλ) = 0 for all 1 6 i < n.
Whenever b, b′ ∈ Bw(λ) ⊆ B(λ) and fi(b) = b′ in B(λ), then this crystal operator is
also defined in Bw(λ).

Let us define the character of a Demazure crystal as

chBw(λ) =
∑

b∈Bw(λ)

x
wt(b)1
1 · · ·xwt(b)n

n .

It was proven by [19, 12] that this character coincides with κa, where w · a = λ.

3. Demazure crystal structure on key tableaux
In Section 3.1, we review the combinatorial model of key tableaux [3] that is central to
our results. In Section 3.2, we introduce a new crystal structure on semi-standard key
tableaux and show that this precisely realizes the Demazure character by truncating
the crystal structure on semi-standard Young tableaux.

3.1. Combinatorics of Demazure characters. Combinatorial interpretations
and definitions for Demazure characters for the general linear group were given by
Lascoux and Schützenberger [17], Kohnert [14], Reiner and Shimozono [25], and Ma-
son [22], all of whom refer to them as key polynomials. We use an equivalent defini-
tion in terms of semi-standard key tableaux due to Assaf [3], which is combinatorially
equivalent to Mason’s semi-skyline augmented fillings but which replaces the triple
conditions for more direct row and column conditions (see also [23]). Generalizing
Young diagrams, given a weak composition a, the key diagram of shape a is the array
of left-justified cells with ai boxes in row i.
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Definition 3.1 ([3]).A key tableau is a filling of a key diagram with positive integers
such that columns have distinct entries, rows weakly decrease, and, if some entry i
is above and in the same column as an entry k with i < k, then there is an entry
immediately right of k, say j, with i < j.

For the Schur polynomial case, we restrict entries in the semi-standard Young
tableaux globally allowing entries 1 through n to appear anywhere. In the Demazure
case, we must restrict the entries in the semi-standard key tableaux locally allowing
entries to appear only in their row and lower.

Definition 3.2 ([1]).A semi-standard key tableau is a key tableau in which no entry
exceeds its row index.
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4 4
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2 1

4 4
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1 1

4 4
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1 1
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2 2
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3 3
1
2 2

3 2
2
1 1

Figure 4. The semi-standard key tableaux of shape (0, 2, 1, 2).

For examples, see Figure 4. The following property of semi-standard key tableaux
will be useful.

Lemma 3.3. Suppose row r of a semi-standard key tableau has two entries i + 1 in
columns c and c+ 1. If there is an i above row r in column c, then there cannot be an
i below row r in column c+ 1.

Proof. If this were the case, then there must be an entry, say k, in column c imme-
diately left of the i in column c+ 1. By the weakly decreasing rows condition, k > i,
and so by the distinct column entries condition, and k > i+ 1. However, since there
is an i+ 1 above k, the entry immediately right of k, which is an i, is not larger than
i+ 1, a contradiction to the key tableaux column inversion condition. �

The weight of a semi-standard key tableau T , denoted by wt(T ), is the weak com-
position whose ith part is the number of occurrences of i in T . The following result
is proved in [1] by showing that the semi-standard key tableaux conditions are equiv-
alent to the triple conditions on Mason’s semi-skyline augmented fillings [22]. This
more direct characterization facilitates the constructions to follow.

Theorem 3.4 ([1]). The key polynomial κa(x) is given by

(3.1) κa(x) =
∑

T∈SSKT(a)

x
wt(T )1
1 · · ·xwt(T )n

n ,

where SSKT(a) is the set of semi-standard key tableaux of shape a.

The map from standard key tableaux of shape a to standard Young tableaux of
shape λ, where λ is the unique partition rearrangement of a, from [3] relates the
tableaux models for key polynomials and Schur polynomials. We extend this map to
the semi-standard case as follows.
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Definition 3.5.Given a weak composition a of length n, define the column sorting
map φ on SSKT(a) by letting cells fall vertically until there are no gaps between
rows, sorting the columns to decrease bottom to top, and then replacing all entries by
i 7→ n− i+ 1.

For example, the semi-standard key tableaux in Figure 4 map to the semi-standard
Young tableaux in the first two rows of Figure 1, respectively. The four semi-standard
Young tableaux in the bottom row of Figure 1 are not in the image of the column
sorting map.

Proposition 3.6. The column sorting map is a well-defined, injective map
φ : SSKT(a)→ SSYT(λ), where λ is the partition rearrangement of a.

Proof. The distinct column entries condition on semi-standard key tableaux ensures
that a column sorted tableau will have strictly increasing columns. By the column
inversion condition for key tableaux, if row j sits above row i and is weakly longer,
then column by column the entries in row j must be greater than those in row i.
Consider applying the column sorting map by first rearranging rows of longest size
at the bottom and reversing the relative order of rows of equal length. Since entries
within rows are maintained, the weakly decreasing row condition on semi-standard
key tableaux is obviously maintained by this process. The column sorting necessarily
brings entries from a strictly shorter row down into a longer row. That is, row values
can be increased only when the first k values all increase for some k, and entries
decrease only when the entire row is changed, maintaining the weakly decreasing row
condition. Hence φ(T ) is indeed a semi-standard Young tableau of shape λ.

To see that the map is injective, we can define an inverse map by first applying
i 7→ n − i + 1 to all letters in a semi-standard Young tableau. Then fill the shape
of a column by column from right to left, and within a column from bottom to top,
according to the columns of the given tableau by selecting at each step the smallest
available entry that maintains the weakly decreasing row condition. Since columns are
strict in the Young tableau, they will still have distinct entries. It is easy to see that
the column inversion condition for key tableaux is maintained, but it could happen
that an entry is placed in a row with smaller index. The tableaux for which this occurs
are precisely the ones not in the image of the column sorting map. �

3.2. Crystal operators on semi-standard key tableaux. We generalize the
crystal structure on semi-standard Young tableaux to a Demazure crystal structure
on semi-standard key tableaux as follows.

For a word w of length k with letters in the alphabet A = {1, 2, . . . , n}, an integer
1 6 r 6 k, and an integer 1 6 i < n, define
(3.2) mi(w, r) = wt(wrwr+1 · · ·wk)i+1 − wt(wrwr+1 · · ·wk)i.
Set mi(w) = maxr{mi(w, r)}. Observe that if mi(w) > 0 and q is the rightmost
occurrence of this maximum, then wq = i + 1, and if p is the leftmost occurrence of
this maximum, then either p = 1 or wp−1 = i.

For T a key tableau, the column reading word of T , denoted by w(T ), is the word
obtained by reading the entries of T down columns from right to left. Note that
columns for key tableaux are read in the reverse order as columns for Young tableaux.
For example, the column reading word of the leftmost key tableau in the top row of
Figure 4 is 42432.

Definition 3.7.Given an integer 1 6 i < n, define the raising operators ei on
semi-standard key tableaux of shape a of length n as follows: if mi(w(T )) 6 0, then
ei(T ) = 0; otherwise, let q be the largest index such that mi(w(T ), q) = mi(w(T )),
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and ei(T ) changes all entries i + 1 weakly right of the entry in T corresponding to
w(T )q to i and change all i’s in the same columns as these entries to i+ 1’s.

Notice that the largest index that attains the maximum must correspond to an
i+ 1 and, moreover, that there cannot be an i below it in the same column. Similarly,
if there is an i above the i+ 1 in the same column, then there cannot be an i in the
column to the left. Moreover, in the case of an i above an i + 1, there must be an
i+ 1 in the column to the right (by the column inversion condition on key tableaux)
and both of these i + 1s have the same index. In particular, all entries i + 1 that
are changed by ei are in consecutive columns, attain the maximum, and all but the
rightmost have an i above them in their column.

For an example of the raising operator e1, see Figure 5. For this example, the
column reading word is given below each key tableau with the largest index that
attains m1(w(T )) > 0 underlined and the corresponding entry in the tableau circled.

3 1 1
2 2 2 2 �2 3 1 1

2 �2 2 2 1
3 2 2�2 1 1 1 1

3 2 2
1 1 1 1 1 0

22121232 12121232 11212132 11212131

e1 e1 e1 e1

Figure 5. An example of the raising operator e1 on key tableaux.

Proposition 3.8. The raising operator ei : SSKT(a) → SSKT(a) ∪ {0} is a well-
defined map. Moreover, the restriction of ei to the pre-image e−1

i (SSKT(a)) satisfies
wt(ei(T ))i = wt(T )i + 1, wt(ei(T ))i+1 = wt(T )i+1 − 1, and wt(ei(T ))j = wt(T )j for
all j 6= i, i+ 1.

Proof. Let T ∈ SSKT(a), set m = mi(w(T )), and suppose m > 0. Let x, say in row
r and column c, be the cell in T that attains m at the rightmost position in column
reading order. We claim that every cell weakly right of x in row r with entry i + 1
except for one has an i above it. If the entry immediately right of x is h for some
h < i+ 1, then the key tableaux conditions ensure that there cannot be an i above x
since h 6 i. Suppose, then, that there is an i+1 immediately right of x. Since x attains
the maximum m and there is an i+ 1 to its left, we must have an i between them in
column reading order. Thus there must be an i either below row r in column c + 1
or above row r in column c. If there is an i in row r′ < r in column c+ 1, then there
must be an entry, say k, in row r′ in column c satisfying k > i. Moreover, by the key
tableau column inversion condition, we cannot have k > i+1 since i+1 > i. Therefore
k = i, in which case x cannot be the rightmost position to attain m, a contradiction.
Moreover, it now follows by induction from Lemma 3.3 that every i + 1 right of x
in row r either has an i above it or no i in its column, and the latter cannot be the
case more than once else the rightmost i+ 1 would have i-index greater than m. This
proves the claim, from which it follows that one more cell changes entry from i+1 to i
than the reverse, thus proving wt(ei(T ))i = wt(T )i + 1, wt(ei(T ))i+1 = wt(T )i+1− 1,
and wt(ei(T ))j = wt(T )j for all j 6= i, i+ 1.

Next we show that rows of ei(T ) are weakly decreasing. This is clear for row r
since all i+ 1 weakly right of x change to i. If i changes to i+ 1 in cell y and the cell
immediately left of y also contains an i, then this i also is changed to an i+ 1. This
is clear from the previous analysis provided y is not in the column of x; if y is in the
column of x and has an i immediately to its left, then x cannot be the rightmost cell
in column reading order to attain m.
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Next we show that columns of ei(T ) have distinct entries. Since x cannot have an
i below it and be the leftmost cell in column reading order to attain m, any i+ 1 that
changes to an i either has no i in the column or an i above it. In the latter case, this
i will become an i+ 1.

Next we show that in ei(T ) if a < c with a above c, then there is an entry b
immediately right of c with a < b. If a column of T contains i and not i + 1, then
nothing is changed, and if it has both, then the i+1 appears above i in ei(T ). Therefore
the only potential problem occurs when b = i + 1 in T is changed to i in ei(T ) and
a = i. In this case, if the column of a has no i+1, then b does not attain m and is not
changed to i, and otherwise both a and c change removing the inversion triple from
consideration.

Finally, decrementing values maintains the property that entries do not exceed
their row index, and i changes to i+1 only when it sits above an i+1, so these entries
lie strictly above row i+ 1. Therefore ei(T ) is a semi-standard key tableau. �

Lemma 3.9. For T ∈ SSKT(a) and for any 1 6 i < n, ei(T ) 6= 0 if and only if
fn−i(φ(T )) 6= 0. In this case, we have φ(ei(T )) = fn−i(φ(T )), where φ denotes the
column sorting map.

Proof. Given a word w = w1w2 · · ·wk with 1 6 wj 6 n for all j, let u = (n − wk +
1)(n − wk−1 + 1) · · · (n − w1 + 1). Then mi(w, r) = Mn−i(u, k − r + 1), and q is the
index of the rightmost occurrence of mi(w) in w if and only if k− q+1 is the index of
the leftmost occurrence of Mn−i(u) in u. If T ∈ SSKT(a) has no column inversions,
then since the column reading word of a semi-standard key tableau is right to left and
the column reading word of a semi-standard Young tableau is left to right, w(T ) and
w(φ(T )) precisely have the relationship of w and u, and the result follows.

In the general case, since ei and fi depend only on the letters i, i+1, we may restrict
our attention to the subword on those letters. In doing so, notice that columns with
i above i+ 1 appear in consecutive runs separated at least by a column immediately
right of the run with an i + 1 and no i. In the column reading word, this manifests
itself as a string of alternating i’s and i + 1’s that begins and ends with an i + 1. If
we let q′ denote the index of the leftmost i+ 1 in the alternating string that attains
mi(w(T )), then k − q′ + 1 is the smallest index that attains Mn−i(w(φ(T ))). That
is, the rightmost column of T in which an i + 1 changes to an i without an i also
changing to an i + 1 in passing to ei(T ) is precisely the column of φ(T ) in which an
n− i changes to an n− i+ 1 in passing to fn−i(φ(T )). �

For example, the semi-standard key tableaux of shape (0, 5, 3) in Figure 5 map
by the column sorting map to the semi-standard Young tableaux of shape (5, 3) in
Figure 2, and the raising operator e1 on the former becomes the lowering operator f2
on the latter.

Definition 3.10.Given an integer 1 6 i < n, define the lowering operator fi on
semi-standard key tableaux of shape a as follows: let p be the smallest index such that
mi(w(T ), p) = mi(w(T )). If p = 1 or if the entry in T corresponding to wp lies in
row i, then fi(T ) = 0; otherwise fi(T ) changes all entries i weakly right of the entry
in T corresponding to wp−1 to i + 1 and change all i + 1’s in the same columns as
these entries to i’s.

For examples of lowering operators on semi-standard key tableaux, see Figure 6
(fi are inverses of ei when they are defined on an element).

Proposition 3.11. For T ∈ SSKT(a) and for any 1 6 i < n, if there exists S ∈
SSKT(a) such that ei(S) = T , then fi(T ) = S, and otherwise fi(T ) = 0. In particular,
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Figure 6. The crystal structure on SSKT(0, 2, 1, 2), with edges
e1 ↗, e2 ↑, e3 ↖.

the lowering operator fi is well-defined and if fi(T ) 6= 0, then it satisfies wt(fi(T ))i =
wt(T )i + 1, wt(fi(T ))i+1 = wt(T )i+1 − 1, and wt(fi(T ))j = wt(T )j for all j 6=
i, i+1. Moreover, letting φ denote the column sorting map, if fi(T ) 6= 0, then we have
φ(fi(T )) = en−i(φ(T )).

Proof. Recall from the analysis in the proof of Lemma 3.9 that when ei(S) 6= 0, w(S)
and w(ei(S)) differ on the restriction to letters i, i+ 1 precisely in that an alternating
string beginning and ending with i + 1 for which the last entry is the rightmost to
attain mi(w(S)) becomes an alternating string beginning and ending with i for which
the first entry is immediately left of the leftmost to attain mi(w(ei(S))). Therefore if
ei(S) = T , then fi(T ) = S. We have fi(T ) = 0 precisely when there is no place to act
(when p = 1) or when acting would violate the semi-standard key tableaux condition
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that entries cannot exceed their row index. The remainder of the result follows from
Proposition 3.8 and Lemma 3.9. �

3.3. Demazure crystal on semi-standard key tableaux. To arrive at our main
result, that the raising and lowering operators on semi-standard key tableaux give a
Demazure crystal, we refine the column sorting map to an injective map between
semi-standard key tableaux for different weak compositions.

Lemma 3.12.Given a weak composition a and an index i such that ai < ai+1, for
T ∈ SSKT(a) such that ei(T ) = 0, there exists S ∈ SSKT(sia) such that φ(T ) = φ(S),
where φ is the column sorting map.

Proof. The statement is equivalent to the assertion that there exists S ∈ SSKT(sia)
with the same column sets as T . We may describe the map from T to S explicitly as
follows. First, move the ai+1 − ai rightmost cells in row i + 1 down to row i. Since
ei(T ) = 0, there cannot be a letter i + 1 that is moved down since if any of these
cells contain an i + 1, there will be a positive index allowing ei to act non-trivially.
If, after this, row i is not weakly decreasing, then swap the entries in rows i and
i + 1 of the offending columns. Since ei(T ) = 0, there cannot be any letters i + 1
that are moved down at this step either, so the resulting tableau S has no entry
exceeding its row index. Rows clearly maintain their weakly decreasing status, and it
is easy to see that no violations of the column inversion condition can arise. Therefore
S ∈ SSKT(sia). �

Lemma 3.12 ensures that the following operators are well-defined on semi-standard
key tableaux.

Definition 3.13.Given a weak composition a and an index i such that ai < ai+1,
define an operator Ei on SSKT(a) by Ei(T ) = S, where S ∈ SSKT(sia) satisfies
φ(S) = φ(ek−1

i (T )) for k minimal such that eki (T ) = 0.

For examples of Ei, see Figure 7. Similar to πw and ∂w, we may extend this to
define Ew = Ei1 · · · Eik , where si1 · · · sik is any reduced expression for w. It is easy to
see that this is well-defined from the local relations of the type A crystal operators
on tableaux as characterized by Stembridge [28].

1
3 3
2 2

4 3
1
2 2

4 3
2

1 1

2
3 3

1 1

3

2 2
1 1

3
2 2
1 1

4 3

2
1 1

3 3
2
1 1

E3 E1

E1 E3 E2 E3

E2
E3

E2

Figure 7. An example of the Ei operators on semi-standard key tableaux.
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Given a weak composition a, for w the permutation that sorts a to partition shape
λ, the operator Ew takes T ∈ SSKT(a) to the highest weight element of the crys-
tal along edges specified by w. This is precisely the statement needed to show that
the crystal operators defined on semi-standard key tableaux of shape a realize the
Demazure crystal for w.

Theorem 3.14. Let a be a weak composition that sorts to the partition λ. The raising
and lowering operators on SSKT(a) give the Demazure crystal for highest weight λ
truncating with respect to the minimal length permutation w that sorts a to λ.

Proof. Given T ∈ SSKT(a), for w the permutation that sorts a to partition shape λ,
we necessarily have Ew(T ) ∈ SSKT(λ). However, the constraint that entries cannot
exceed their row index together with distinct column values forces SSKT(λ) to have
a single element, the tableau with all entries in row i equal to i. In particular, this
element maps via the column sorting map to the highest weight uλ. By Lemma 3.9,
this means φ(T ) ∈ Dw{uλ} for every T ∈ SSKT(a), and so φ(SSKT(a)) ⊆ Bw(λ).
By Theorem 3.4, the sums of the weights on both sides agree, so we must have
equality. �

For example, removing the four vertices of the (2, 2, 1)-crystal in Figure 3 corre-
sponding to the four semi-standard Young tableaux of shape (2, 2, 1) that are not
in the image of the column sorting map on semi-standard key tableaux of shape
(0, 2, 1, 2) precisely gives the (0, 2, 1, 2)-Demazure crystal in Figure 6.

4. Crystal structure for Stanley symmetric polynomials
We review the combinatorics of Stanley symmetric functions and polynomials in terms
of reduced factorizations of a permutation in Section 4.1. We proceed in Section 4.2
to review Edelman–Greene insertion and review the crystal structure on reduced
factorizations as recently introduced in [24] in Section 4.3.

4.1. Combinatorics of Stanley symmetric functions. Stanley [27] introduced
a new family of symmetric functions to enumerate reduced expressions for permuta-
tions.

Definition 4.1.A reduced word for a permutation w ∈ Sn is a word i1 . . . ik such
that si1 · · · sik = w where k is the inversion number of w. Denote the set of reduced
words for w by R(w).

For example, there are 11 reduced words for the permutation 153264 as shown in
Figure 8.

45323 45232 43523 42532 43253 24532 42352 43235 24352 42325 24325

Figure 8. The reduced words for 153264.

Definition 4.2.Given a reduced word ρ, an increasing factorization for ρ partitions
the word ρ into (possibly empty) blocks (or factors) such that entries increase left to
right within each block.

Given a permutation w, a reduced factorization for w is an increasing factorization
of a reduced word for w. Denote the set of reduced factorizations for w by RF(w).
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()(45)(3)(23) ()(45)(23)(2) ()(4)(35)(23) (4)(25)(3)(2) (4)(3)(25)(3) ()(245)(3)(2)
(4)(5)(3)(23) (4)(5)(23)(2) (4)()(35)(23) (2)(45)(3)(2)
(45)()(3)(23) (45)()(23)(2) (4)(3)(5)(23) (24)(5)(3)(2)
(45)(3)()(23) (45)(2)(3)(2) (4)(35)()(23) (245)()(3)(2)
(45)(3)(2)(3) (45)(23)()(2) (4)(35)(2)(3) (245)(3)()(2)
(45)(3)(23)() (45)(23)(2)() (4)(35)(23)() (245)(3)(2)()

()(4)(235)(2) ()(4)(3)(235) ()(24)(35)(2) ()(4)(23)(25) ()(24)(3)(25)
(4)()(235)(2) (4)()(3)(235) (2)(4)(35)(2) (4)()(23)(25) (2)(4)(3)(25)
(4)(2)(35)(2) (4)(3)()(235) (24)()(35)(2) (4)(2)(3)(25) (24)()(3)(25)
(4)(23)(5)(2) (4)(3)(2)(35) (24)(3)(5)(2) (4)(23)()(25) (24)(3)()(25)
(4)(235)()(2) (4)(3)(23)(5) (24)(35)()(2) (4)(23)(2)(5) (24)(3)(2)(5)
(4)(235)(2)() (4)(3)(235)() (24)(35)(2)() (4)(23)(25)() (24)(3)(25)()

Figure 9. The reduced factorizations for 153264 into 4 blocks.

For example, the reduced factorizations for 153264 into 4 blocks are shown in
Figure 9.

The weight of a reduced factorization r, denoted by wt(r), is the weak composition
whose ith part is the number of letters in the ith block of r from the right. For
example, wt((45)(3)(23)()) = (0, 2, 1, 2).

Definition 4.3. The Stanley symmetric function indexed by the permutation w is

(4.1) Fw(x) =
∑

r∈RF(w−1)

xwt(r).

Therefore we compute F143625 using reduced factorizations for 143625−1 = 153264.
Note that reduced factorizations can, in principle, have an arbitrary number of

blocks and hence Fw(x) is a symmetric function in infinitely many variables x =
(x1, x2, . . .).

We can restrict Stanley symmetric functions to Stanley symmetric polynomials by
restricting the number of blocks in the reduced factorizations. Let RF`(w) be the set
of reduced factorizations of w with precisely ` blocks. Then the Stanley symmetric
polynomial in ` variables is

Fw(x1, x2, . . . , x`) =
∑

r∈RF`(w−1)

xwt(r).

4.2. Edelman–Greene correspondence. In their study of Stanley symmetric
functions, Edelman and Greene [10] developed the following insertion algorithm that
they used to give a formula for the Schur expansion of Stanley symmetric functions.

Definition 4.4 ([10, Definition 6.21]). Let P be a Young tableau, and let x be a posi-
tive integer. Let Pi be the ith lowest row of P . Define the Edelman–Greene insertion of
x into P , denoted by P ← x, as follows. Set x0 = x and for i > 0, insert xi into Pi+1
as follows. If xi > z for all z ∈ Pi+1, place xi at the end of Pi+1 and stop. Otherwise,
let xi+1 denote the smallest element of Pi+1 such that xi+1 > xi. If xi+1 6= xi + 1
or xi is not already in Pi+1, replace xi+1 by xi in Pi+1 and continue (we say that xi
bumps xi+1 in row i+ 1). Otherwise leave Pi+1 unchanged and continue with xi+1.

Given a reduced expression ρ, define the insertion tableau for ρ, denoted by P (ρ),
to be the result of inserting the word for ρ letter by letter into the empty tableau.

Algebraic Combinatorics, Vol. 1 #2 (2018) 238



Demazure crystals for Schubert polynomials

To track the growth of P (ρ), define the recording tableau for ρ, denoted by Q(ρ),
to be the result of adding i into the new cell created when inserting the ith letter.
For example, Figure 10 constructs the insertion tableau (top) and recording tableau
(bottom) for the reduced expression 45232.

4 4 5
4
2 5

4 5
2 3

4
3 5
2 3

1 1 2
3
1 2

3 4
1 2

5
3 4
1 2

Figure 10. The insertion and recording tableaux for the reduced
expression 45232.

Theorem 4.5 ([10, Theorem 6.25]). The Edelman–Greene correspondence ρ 7→
(P (ρ), Q(ρ)) is a bijection between reduced expressions and all pairs of tableaux
(P,Q) such that P and Q have the same shape, P is increasing with row(P ) a reduced
word, and Q is standard.

We may extend the Edelman–Greene correspondence to a bijection between re-
duced factorizations and all pairs of tableaux (P,Q) such that P and Q have the
same shape, P is increasing with row(P ) a reduced word, and Q is semi-standard. To
do so, given a reduced factorization r into ` blocks, define P (r) to be P (ρ) where ρ
is the underlying reduced expression for r, and define Q(r) to be the result of adding
` − i + 1 into each new cell created when inserting a letter from block i (from the
right). For example, the recording tableau for the reduced factorization (4)(5)(23)(2)
is constructed in Figure 11.

1 1 2
3
1 2

3 3
1 2

4
3 3
1 2

Figure 11. The recording tableau for the reduced factorization (4)(5)(23)(2).

Corollary 4.6. The correspondence r 7→ (P (r), Q(r)) is a bijection between reduced
factorizations and all pairs of tableaux (P,Q) such that P and Q have the same shape,
P is increasing with row(P ) a reduced word, and Q is semi-standard. Moreover, if r
has ` blocks, then wt(Q(r))i = wt(r)`−i+1.

For example, the Edelman–Greene correspondence gives a weight-reversing bijec-
tion

RF�(153264)→

⎛
⎜⎝

4
3 5
2 3

× SSYT�(2, 2, 1)

⎞
⎟⎠

⋃
⎛
⎜⎝

4
3
2 3 5

× SSYT�(3, 1, 1)

⎞
⎟⎠ .

In particular, by the symmetry of Schur functions, we have the following expansion
from [10].

Algebraic Combinatorics, Vol. 1 #2 (2018) 239



Sami Assaf & Anne Schilling

Corollary 4.7. The Stanley symmetric function for w may be expressed as

(4.2) Fw(x) =
∑

T∈Yam(w−1)

ssh(T )(x),

where Yam(w−1) is the set of insertion tableaux with row(P ) a reduced word for w−1.

For example, we have

(4.3) F143625(x) = s(2,2,1)(x) + s(3,1,1)(x).

4.3. Crystal operators on reduced factorizations. Following [24], we are
going to define an A`−1-crystal structure on RF`(w). Let r = r`r`−1 · · · r1 ∈ RF`(w),
where ri is the ith block from the right. The Kashiwara raising and lowering operators
ei and fi only act on the blocks ri+1ri. The action is defined by first bracketing certain
letters and then moving an unbracketed letter from one factor to the other. Let us
begin by describing the bracketing procedure. Start with the largest letter b in ri and
pair it with the smallest a > b in ri+1. If no such a exists in ri+1, then b is unpaired.
The pairing proceeds in decreasing order on elements of ri, and with each iteration
previously paired letters of ri+1 are ignored. Define

Ri(r` · · · r1) = {b ∈ ri | b is unpaired in the ri+1ri-pairing}

and
Li(r` · · · r1) = {b ∈ ri+1 | b is unpaired in the ri+1ri-pairing} .

Then fi(r` · · · r1) is defined by replacing the blocks ri+1ri by r̃i+1r̃i such that

r̃i = ri\{b} and r̃i+1 = ri+1 ∪ {b− t}

for b = min(Ri(r` · · · r1)) and t = min{j > 0 | b − j − 1 6∈ ri}. If Ri(r` · · · r1) = ∅,
then fi(r` · · · r1) = 0.

Similarly, ei(r` · · · r1) is defined by replacing the factors ri+1ri by r̃i+1r̃i such that

r̃i = ri ∪ {a+ s} and ri+1 = ri+1\{a}

for a = max(Li(r` · · · r1)) and s = min{j > 0 | a+ j + 1 6∈ ri+1}. If Li(r` · · · r1) = ∅,
then ei(r` · · · r1) = 0.

Example 4.8. Let (2)(13)(23) ∈ RF3(w) for w = s2s1s3s2s3 ∈ S4. To apply f1 we
need to first bracket the letters in r1 = 23 with those in r2 = 13. The letter 3 in r1

is unbracketed since there is no bigger letter in r2, but the letter 2 in r1 is bracketed
with 3 in r2. Hence b = min(R1(r3r2r1)) = 3 and t = min{j > 0 | b− j− 1 6∈ r1} = 1.
Therefore, f1((2)(13)(23)) = (2)(123)(2). Similarly, e1((2)(13)(23)) = (2)(3)(123).

Remark 4.9. In [24], the Stanley symmetric function Fw is defined using decreasing
factorizations of reduced words of w. Here we use increasing factorizations of w−1. To
relate the two, one needs to revert the reduced factorizations. The crystal structures
are related by interchanging fi (resp. ei) with e`−i (resp. f`−i).

Theorem 4.10 ([24, Theorem 3.5]). The above defined operators fi and ei for 1 6 i <
` and the weight function wt define a A`−1-crystal structure on RF`(w).

Corollary 4.11 ([24]). The Stanley symmetric function for w may be expressed as

(4.4) Fw(x) =
∑

r∈RF`(w−1)
eir=0 ∀16i<`

swt(r)(x).
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For example, the highest weight reduced factorizations for 153264 = 143625−1 with
` = 4 are ()(4)(35)(23) and ()(4)(3)(235) of weights (2, 2, 1) and (3, 1, 1), respectively,
confirming (4.3).

It turns out that this crystal structure on reduced factorizations relates to the
crystal structure on semi-standard Young tableaux via the Edelman–Greene corre-
spondence.

Theorem 4.12 ([24, Theorem 4.11]).Given r ∈ RF`(w), let P (r) denote its
Edelman–Greene insertion tableau and Q(r) its Edelman–Greene semi-standard
recording tableau, where letters in block i of r are recorded by the letter i. Then, if
ei(r) 6= 0, we have P (ei(r)) = P (r) and Q(ei(r)) = f`−i(Q(r)).

5. Demazure crystal structure for Schubert polynomials
We review the combinatorial expression of Billey, Jockusch and Stanley [7] for Schu-
bert polynomials in terms of compatible sequences in Section 5.1 and show that it
can be reformulated in terms of reduced factorizations with a cutoff condition. In
Section 5.2 we discuss the weak analog of the Edelman–Greene insertion presented
in [2]. It turns out that the cut-off condition precisely amounts to a Demazure crystal
structure as shown in Section 5.3.

5.1. Combinatorics of Schubert polynomials. Schubert polynomials are gen-
eralizations of Schur polynomials which represent cohomology classes of Schubert cy-
cles in flag varieties. They were first introduced by Bernstein et al. [6] and extensively
studied by Lascoux and Schützenberger [15].

Definition 5.1 ([15]).Given a permutation w, the Schubert polynomial for w is given
by

(5.1) Sw(x) = ∂w−1w0(xn−1
1 xn−2

2 · · ·xn−1),

where w0 = nn− 1 . . . 21 is the longest permutation of length
(
n
2
)
.

The first proven combinatorial formula for Schubert polynomials, due to Billey,
Jockusch and Stanley [7], is in terms of compatible sequences for reduced expressions.

Definition 5.2 ([7]). For ρ = ρ1 . . . ρk a reduced word, a sequence α = α1 . . . αk of
positive integers is ρ-compatible if α is weakly decreasing, αj 6 ρj, and αj > αj+1
whenever ρj > ρj+1. Denote the set of compatible sequences for the reduced word ρ by
RC(ρ).

For example, seven of the reduced words for 153264 have compatible sequences as
shown in Figure 12.

45323 45232 43523 43253 42352 43235 42325
44322 44221 43322 43221 42221 43222 42211
44321 43221 43321 32221 43221 32211
44311 33221 43311 43211
44211 43211 43111
43211 42211 42111
33211 32211 32111

Figure 12. The compatible sequences for the reduced words for 153264.
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Theorem 5.3 ([7]). The Schubert polynomial Sw(x) indexed by a permutation w is
given by

(5.2) Sw(x) =
∑

ρ∈R(w−1)

∑
α∈RC(ρ)

xα,

where xα is the monomial xα1 · · ·xαn
.

We may encode compatible sequences for the reduced words as increasing factor-
izations with an additional cutoff condition.

Definition 5.4.Given a reduced word ρ, an increasing factorization with cutoff is an
increasing factorization such that in addition the first entry in block i from the right
is at least i.

Given a permutation w, a reduced factorization with cutoff for w is an increasing
factorization with cutoff of a reduced word for w.

The set of reduced factorizations with cutoff is denoted by RFC(w). For example,
the reduced factorizations with cutoff for 153264 are shown in Figure 13.

(45)(3)(23)() (45)()(23)(2) (4)(35)(23)() (4)(3)(25)(3) (4)()(235)(2) (4)(3)(235)() (4)()(23)(25)
(45)(3)(2)(3) (4)(5)(23)(2) (4)(35)(2)(3) ()(4)(235)(2) (4)(3)(23)(5) ()(4)(23)(25)
(45)(3)()(23) ()(45)(23)(2) (4)(35)()(23) (4)(3)(2)(35)
(45)()(3)(23) (4)(3)(5)(23) (4)(3)()(235)
(4)(5)(3)(23) (4)()(35)(23) (4)()(3)(235)
()(45)(3)(23) ()(4)(35)(23) ()(4)(3)(235)

Figure 13. The reduced factorizations with cutoff for 153264.

The weight function on reduced factorizations provides a simple bijection between
compatible sequences and increasing factorizations with cutoff for a reduced word.
For example, compare Figure 13 with Figure 12.

Proposition 5.5. The Schubert polynomial Sw(x) is given by

(5.3) Sw(x) =
∑

r∈RFC(w−1)

xwt(r).

Proof. To prove that (5.3) is equivalent to (5.2), we show that there is a bijection⋃
ρ∈R(w−1) RC(ρ) → RFC(w−1) that preserves the weights. Given a compatible se-

quence α for a reduced word ρ, the letter ρi belongs to the a-th factor from the right
if αi = a. Due to the condition that αj > αj+1 whenever ρj > ρj+1, the letters within
each factor are weakly increasing. Since the word ρ is reduced, the letters within each
factor must actually be increasing. Furthermore, since αj 6 ρj , all letters in the a-th
factor must be of value at least a. Conversely, given a reduced factorization with cutoff
one can immediately construct the compatible sequence α by setting αj = a if ρj is
in factor a. �

Reduced factorizations have the advantage of tracking the reduced word along with
the weight, making this a more natural indexing set for the crystal structure discussed
in the next section.

5.2. Weak Edelman–Greene correspondence. We recall a generalization of the
Edelman–Greene correspondence [2] that gives the Demazure expansion of a Schubert
polynomial, parallel to the Schur expansion of a Stanley symmetric function.

Following [2], for P a semi-standard Young tableau with strictly increasing rows,
define the lift of P , denoted by lift(P ), to be the tableau of key shape obtained by
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raising each cell in the first column of P until its entry equals its row index, and,
once columns 1 through c − 1 have been lifted, raising cells in column c from top to
bottom, maintaining their relative order, placing each cell in the highest available row
such that there is an entry in column c− 1 that is strictly smaller.

Definition 5.6 ([2]). For ρ a reduced expression, define the weak insertion tableau
P̂ (ρ) by P̂ (ρ) = lift(P (ρ)), where P (ρ) is the insertion tableau under the Edelman–
Greene insertion. In addition, define the weak recording tableau Q̂(ρ) to be the unique
standard key tableau of the same key shape as P̂ (ρ) such that φ(Q̂(ρ)) = Q(ρ), where
Q(ρ) is the Edelman–Greene recording tableau and φ is the column sorting map.

For example, Figure 14 constructs the weak insertion tableau (top) and weak
recording tableau (bottom) for the reduced expression 45232. Compare this with
Figure 10.

4 4 5 4 5

2

4 5

2 3

4 5
3
2 3

5 5 4 5 4

3

5 4

3 2

5 4
1
3 2

Figure 14. The weak insertion and recording tableaux for the re-
duced expression 45232.

For P a key tableau, define the drop of P , denoted by drop(P ), to be the Young
tableau defined by letting the entries of P fall in their columns while maintaining
their relative order. It is clear that drop(lift(P )) = P for any P of partition shape.

Theorem 5.7 ([2]). The weak Edelman–Greene correspondence ρ 7→ (P̂ (ρ), Q̂(ρ)) is
a bijection between reduced expressions and all pairs of tableaux (P,Q) such that P
and Q have the same key shape, P is increasing (in rows and columns) with row(P )
a reduced word and lift(drop(P )) = P , and Q is a standard key tableau.

Analogous to the Edelman–Greene correspondence, this extends to a bijection be-
tween reduced factorizations with cutoff and all pairs of tableaux (P,Q) such that
P and Q have the same key shape, P is increasing with row(P ) a reduced word and
lift(drop(P )) = P , and Q is a semi-standard key tableau. For example, the recording
tableau for the reduced factorization (4)(5)(23)(2) is constructed in Figure 15.

4 4 3 4 3

2

4 3

2 2

4 3
1
2 2

Figure 15. The weak recording tableau for the reduced factoriza-
tion (4)(5)(23)(2).
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Corollary 5.8. The correspondence r 7→ (P̂ (r), Q̂(r)) is a weight-preserving bijection
between reduced factorizations with cutoff and all pairs of tableaux (P,Q) such that
P and Q have the same key shape, P is increasing with row(P ) a reduced word and
lift(drop(P )) = P , and Q is a semi-standard key tableau.

Proof. Theorem 5.7 is proved in [2, Theorem 5.16] using the standard key tableau. To
get the semi-standard case, we appeal to [1, Proposition 2.6] where it is shown that the
fundamental slide polynomial, defined in [4], associated to a standard key tableau is
the sum of monomials associated to the semi-standard key tableaux that standardize
to it. As shown in [2, Theorem 2.4], the fundamental slide polynomial associated to a
reduced expression is the sum of monomials associated to the corresponding compat-
ible sequences. The result follows from the bijection between compatible sequences
and increasing factorizations with cutoff. �

For example, the weak Edelman–Greene correspondence gives a weight-preserving
bijection

RFC(153264) →

⎛
⎜⎜⎝

4 5
3
2 3

× SSKT(0, 2, 1, 2)

⎞
⎟⎟⎠

⋃
⎛
⎜⎜⎝

4
3
2 3 5

× SSKT(0, 3, 1, 1)

⎞
⎟⎟⎠ .

In particular, we have the following expansion from [2].

Corollary 5.9 ([2]). The Schubert polynomial for w may be expressed as

(5.4) Sw(x) =
∑

T∈Yam(w−1)

κwt(T )(x),

where Yam(w−1) is the set of increasing tableaux of key shape with row(P ) a reduced
word for w−1 and lift(drop(P )) = P .

For example, we have
S143625(x) = κ(0,2,1,2)(x) + κ(0,3,1,1)(x).

5.3. Demazure crystal operators on reduced factorizations with cutoff.
Since RFC(w) ⊆ RFn(w) for w ∈ Sn, we can restrict the crystal operators fi and ei on
reduced factorizations to RFC(w) by defining fi(r) as in Section 4.3 if fi(r) ∈ RFC(w)
and fi(r) = 0 otherwise and similarly for ei. An example is given in Figure 16.

We will show in this section that this amounts to a union of Demazure crystal
structures. We begin with an analog of Theorem 4.12.

Theorem 5.10.Given r ∈ RFC(w) for w ∈ Sn, denote by P̂ (r) the weak Edelman–
Greene insertion tableau and by Q̂(r) the weak Edelman–Greene recording tableau,
where letters in block i of r are recorded by the letter i. Then, if ei(r) 6= 0, we have
P̂ (ei(r)) = P̂ (r) and Q̂(ei(r)) = ei(Q̂(r)) for 1 6 i < n.

Proof. By Theorem 4.12 we have P (ei(r)) = P (r) and Q(ei(r)) = fn−i(Q(r)), where
P and Q are the Edelman–Greene insertion and recording tableaux, respectively.
By Definition 5.6, we have P̂ (r) = lift(P (r)), which proves P̂ (ei(r)) = P̂ (r). Again
by Definition 5.6, we have φ(Q̂(r)) = Q(r). By Lemma 3.9, we have φ(eiQ̂(r)) =
fn−iφ(Q̂(r)) = fn−iQ(r), proving that Q̂(ei(r)) = ei(Q̂(r)). �

By Proposition 5.5, combinatorial objects underlying the Schubert polynomials
Sw−1(x) are the reduced factorizations with cutoff RFC(w). On the other hand,
RFn(w) are combinatorial objects underlying the Stanley symmetric polynomials
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()(4)(35)(23)

()(45)(3)(23) (4)()(35)(23)

()(45)(23)(2) (4)(5)(3)(23) (4)(3)(5)(23)

(4)(5)(23)(2) (4)(3)(25)(3) (4)(35)()(23) (45)()(3)(23)

(4)(35)(2)(3) (45)()(23)(2) (45)(3)()(23)

(4)(35)(23)() (45)(3)(2)(3)

(45)(3)(23)()
()(4)(3)(235)

()(4)(23)(25) (4)()(3)(235)

()(4)(235)(2) (4)()(23)(25) (4)(3)()(235)

(4)()(235)(2) (4)(3)(2)(35)

(4)(3)(23)(5)

(4)(3)(235)()

Figure 16. The Demazure crystal structure on RFC(153264), with
edges e1 ↗, e2 ↑, e3 ↖.

Fw−1(x) by Definition 4.3. By Theorem 4.10, there is a crystal structure on RFn(w).
Now we show that RFC(w) admits a Demazure crystal structure.

Theorem 5.11. The operators fi and ei for 1 6 i < n define a Demazure crystal
structure on RFC(w). More precisely,

RFC(w) ∼=
⋃

r∈RFC(w)
eir=0 ∀16i<n

Bw(r)(wt(r)),

where w(r) is the shortest permutation that sorts sh(P̂ (r)).

Proof. By Theorem 5.10, the crystal operators on reduced factorizations under weak
Edelman–Greene insertion intertwine with the crystal operators on key tableaux.
On the other hand, by Theorem 3.14 the crystal operators on key tableaux form a
Demazure crystal. �

For example, the highest weight elements in RFC(153264) are ()(4)(35)(23) and
()(4)(3)(235) (see Figure 16), so that as Demazure crystals

RFC(153264) ∼= Bs1s3s2s3(2, 2, 1) ∪Bs1s2s3(3, 1, 1).

Corollary 5.12. The Schubert polynomial for w ∈ Sn may be expressed as

(5.5) Sw(x) =
∑

r∈RFC(w−1)
eir=0 ∀16i<n

κsh(P̂ (r))(x).
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