
ALGEBRAIC
 COMBINATORICS

Christine Bessenrodt
Critical classes, Kronecker products of spin characters, and the Saxl conjecture
Volume 1, issue 3 (2018), p. 353-369.

<http://alco.centre-mersenne.org/item/ALCO_2018__1_3_353_0>

© The journal and the authors, 2018.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2018__1_3_353_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 1, issue 3 (2018), p. 353–369
https://doi.org/10.5802/alco.18

Critical classes, Kronecker products of spin
characters, and the Saxl conjecture

Christine Bessenrodt

Abstract Using critical conjugacy classes, we find a new criterion for constituents in Kronecker
products of spin characters of the double covers of the symmetric and alternating groups. This
is applied together with earlier results on spin characters to obtain constituents in Kronecker
products of characters of the symmetric groups. Via this tool, we make progress on the Saxl
conjecture; this claims that for a triangular number n, the square of the irreducible character
of the symmetric group Sn labelled by the staircase contains all irreducible characters of Sn as
constituents. With the new criterion we deduce a large number of constituents in this square
which were not detected by other methods, notably all double-hooks. The investigation of
Kronecker products of spin characters also inspires a spin variant of Saxl’s conjecture.

1. Introduction
Even though tensor products of complex representations and the corresponding Kro-
necker products of characters of the symmetric group Sn have been studied for a long
time, their decomposition is still an elusive central open problem in the field. A new
benchmark for this is a conjecture by Heide, Saxl, Tiep and Zalesskii [12] which says
that for any n 6= 2, 4, 9 there is always an irreducible character of Sn whose square
contains all irreducible characters. For triangular numbers an explicit candidate was
suggested by Saxl in 2012; denoting the irreducible character of Sn associated to a
partition λ of n by [λ], his conjecture is the following.

Saxl’s Conjecture. Let ρk = (k, k − 1, . . . , 2, 1) be the staircase partition of n =
k(k+ 1)/2. Then the Kronecker square [ρk]2 contains all irreducible characters of Sn
as constituents.

This has inspired a lot of recent research. In particular, in the work of Pak, Panova
and Vallejo [25] and Ikenmeyer [15] many constituents of the square [ρk]2 have been
identified, notably those to hooks and to partitions comparable to the staircase in
dominance order.

Here, we will take a very different approach and show that results on the spin
characters of a double cover S̃n of the symmetric group Sn can be fruitfully applied
towards this problem. Indeed, it will turn out to be useful to consider also the spin
characters of the double cover Ãn of the alternating group An. An important link is
made as a consequence of an identity found in an earlier investigation of homogeneous
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Kronecker products. While in [4] it was shown that there are no nontrivial homoge-
neous products of Sn-characters, for the double covers S̃n of the symmetric groups
nontrivial homogeneous spin products do occur for all triangular numbers n [5]. In [2],
also nontrivial homogeneous mixed products of complex characters for the double cov-
ers S̃n were found, i.e. products of a non-faithful character of S̃n with a spin character.
This information on nontrivial homogeneous Kronecker products is crucially used here
towards obtaining many constituents in the square [ρk]2.

We give a brief overview on the following sections. In Section 2, we collect the infor-
mation and notation on the irreducible characters for the symmetric and alternating
groups and their double covers to be used later. Here we already draw attention to
special conjugacy classes of these groups, and we prove a general lemma that uses crit-
ical properties of conjugacy classes for identifying constituents in certain Kronecker
products.

In Section 3 we first recall properties of the basic spin character as well as an
important link between the faithful and non-faithful characters of S̃n labelled by
the staircase partition ρk. This leads to crucial observations relating [ρk]2 to spin
characters and the sum of all hook characters. As an easy application we obtain all
hook characters in [ρk]2. We also set the scene for later applications by discussing
products with the sum of all hook characters.

Section 4 starts with a short argument for the criterion given in [25, “Main
Lemma”], and then moves on to the main results on constituents in certain spin
character products (Theorems 4.3 and 4.12). These results are then applied towards
the Saxl conjecture. Powerful new criteria for constituents in [ρk]2 are given in Corol-
lary 4.4; its usefulness is illustrated by providing several families of constituents.
For characters to 2-part partitions this also involves the investigation of unimodality
properties of the number of k-bounded partitions with distinct parts. As a main
new family, characters to all double-hooks are shown to occur as constituents in
Theorem 4.10.

The final Section 5 discusses a spin variant of Saxl’s conjecture, involving the “spin
staircase” (2k−1, 2k−3, . . . , 3, 1). Also spin variants of the conjecture by Heide, Saxl,
Tiep and Zalesskii are presented.

Computational data for illustrating the efficiency of the new results or for finding
conjectures have been obtained using Maple (together with Stembridge’s SF package)
and GAP [34].

2. Preliminaries
We denote by P (n) the set of partitions of n, i.e. weakly decreasing sequences of
nonnegative integers summing to n. For a partition λ ∈ P (n), l(λ) denotes its length,
i.e. the number of positive parts of λ. The set of partitions of n into odd parts only
is denoted by O(n), and the set of partitions of n into distinct parts is denoted by
D(n). We write D+(n) resp. D−(n) for the sets of partitions λ in D(n) with n− l(λ)
even resp. odd; the partition λ is then also called even resp. odd.

We write Sn for the symmetric group on n letters, and S̃n for one of its double
covers; so S̃n is a non-split extension of Sn by a central subgroup 〈z〉 of order 2. It is
well-known that the representation theory of these double covers is ‘the same’ for all
representation theoretical purposes. For background on the properties of the double
cover groups and its complex representations, the reader is referred to Stembridge’s
article [32]. In line with [32], we take the double cover with explicit presentation given
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as follows:

S̃n =
〈
t1, . . . , tn−1, z

∣∣∣∣∣∣
z2 = 1, t2i = z, for 1 6 i 6 n− 1;
ti+1titi+1 = titi+1ti, for 1 6 i 6 n− 2;
titj = ztjti for 1 6 i, j 6 n− 1, |i− j| > 2

〉
.

For λ ∈ P (n), we write [λ] for the corresponding irreducible character of Sn; this
is identified with the corresponding non-faithful character of S̃n. When we evaluate
[λ] on an element of Sn of cycle type µ ∈ P (n), we simply write [λ](µ) for the
corresponding value. For background on the representation theory of the symmetric
groups, the reader is referred to [16, 17]. The spin characters of S̃n are those that
do not have z in their kernel. For details on the theory of spin characters resp. for
some results we will need in the sequel, besides Stembridge’s article [32] already
recommended above, we refer to [1, 13, 20, 21, 30]. Below, we collect some of the
necessary notation and some results from [32] that are crucial in later sections. For
n 6 3, the irreducible S̃n-characters are lifted from Sn; hence for results on the double
covers we will always assume that n > 4.

Let λ ∈ P (n). Then the set Cλ of elements in S̃n projecting to elements in Sn
of cycle type λ splits into two S̃n-conjugacy classes if and only if λ ∈ O(n) ∪D−(n),
otherwise it forms only one S̃n-conjugacy class; the latter case happens exactly if each
element x in the set is conjugate to xz (we then speak of a non-split class). When
Cλ splits, a specific labelling C±λ for the two S̃n-classes in Cλ is made; we leave out
the details here (see [30, 32]). Note that any spin character vanishes on the non-split
classes, as the spin representations are − id on the central element z. Thus only the
values on the split classes will be considered for spin characters; in this case, for a
given spin character the values on the two classes differ only by a sign.

Let sgn denote the sign character of S̃n, inflated from the sign character of Sn. A
character χ of S̃n is called self-associate if sgn ·χ = χ, otherwise we have a pair of
associate characters, χ 6= sgn ·χ.

In 1911, Schur has proved the following classification result [30], giving a complete
list of irreducible complex spin characters of S̃n. For each λ ∈ D+(n) there is a self-
associate spin character 〈λ〉, and for each λ ∈ D−(n) there is a pair of associate spin
characters 〈λ〉+ and 〈λ〉−. When we want to consider a spin character labelled by λ,
and it is not specified whether λ is in D+ or D−, we write 〈λ〉(±). The spin characters
labelled by λ = (`1, . . . , `m) ∈ D(n) take the following values on σα ∈ C+

α :
〈λ〉+(σα) = 〈λ〉−(σα) for α ∈ O(n), λ ∈ D−(n)
〈λ〉(±)(σα) = 0 for α ∈ D−(n), λ 6= α

〈λ〉+(σλ) = −〈λ〉−(σλ) = i(n−m+1)/2

√∏
j `j

2 for λ ∈ D−(n).

The values 〈λ〉(±)(σα), α ∈ O(n), are integers determined by a recursion rule akin to
the Murnaghan–Nakayama rule, which is due to Morris [20, 21]. If α = (α1, . . . , αk),
then in this rule, instead of removing hooks of lengths αj , 1 6 j 6 k, so-called bars of
this length are removed from λ, and apart from signs, extra 2-powers appear. Similar
as in the classical case of Schur functions, the values 〈λ〉(±)(σα), α ∈ O(n), appear
crucially in the expansion of the Schur Q-functionQλ into the power sum functions pα,
α ∈ O(n).

For later purposes, it will turn out to be useful to define

ˆ〈λ〉 :=
{
〈λ〉 if λ ∈ D+(n)
〈λ〉+ + 〈λ〉− if λ ∈ D−(n)
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and we set
〈λ〉(2) := 〈λ〉(±) · ˆ〈λ〉.

An important role in the theory is taken by the basic spin characters 〈n〉(±).
Their values on elements σα ∈ C+

α are given explicitly as follows (known already
to Schur [30]).

When n is odd,
〈n〉(σα) = 2(l(α)−1)/2 for α ∈ O(n) ,

and when n = 2k is even,

〈n〉±(σα) =
{

2(l(α)−2)/2 for α ∈ O(n)
±ik
√
k for α = (n).

All other values of 〈n〉(±) are zero.
We will also need some information about the characters of the alternating

groups An and their double covers Ãn.
The classification of the irreducible An-characters is derived from that for Sn.

We obtain all irreducible characters of An as constituents in the restriction of the
characters [λ] as follows (see [17]).

Let µ ∈ P (n), and let µ′ be the transposed partition to µ. Let h(µ) = (h1, . . . , hd)
be the partition of principal hook lengths h1, . . . , hd in µ; then d is the Durfee length
d(µ) of µ.

When µ 6= µ′, [µ] ↓An
= [µ′] ↓An

= {µ} = {µ′} ∈ Irr(An).
When µ = µ′, [µ] ↓An

= {µ}+ +{µ}−; the characters {µ}± are conjugate irreducible
characters of An. The two characters {µ}± differ only on the two conjugacy classes
of cycle type h(µ); note that [µ] takes the value eµ = (−1)(n−d)/2 on elements of
this cycle type. With σ±h(µ) being appropriate representatives of the conjugacy classes
of An of this cycle type, the character values are given as

{µ}+(σ±h(µ)) = 1
2

eµ ±
√√√√eµ

d∏
j=1

hj

 ,

and similarly, with interchanged signs, for {µ}−. In particular, these two conjugate
characters are the only irreducible characters that differ on the elements σ±h(µ).

One also obtains the classification of irreducible spin characters of Ãn from that of
the spin characters of S̃n (see [13, 30, 32]).

For each λ ∈ D−(n), the restriction to Ãn gives one irreducible spin character

〈λ〉+ ↓Ãn
= 〈λ〉− ↓Ãn

= 〈〈λ〉〉 .

Dually, for each λ = (`1, . . . , `m) ∈ D+(n), the restriction to Ãn gives two conjugate
irreducible spin characters

〈λ〉 ↓Ãn
= 〈〈λ〉〉+ + 〈〈λ〉〉− .

If σ ∈ Ãn projects to cycle type λ, then for the difference of the values on σ we
have (with the sign depending on the choice of associates)

∆λ(σ) = 〈〈λ〉〉+(σ)− 〈〈λ〉〉−(σ) = ±i(n−m)/2

√√√√ m∏
j=1

`j .

If σ ∈ Ãn does not project to type λ, then ∆λ(σ) = 0 [30]. Let σ project to type λ. If
λ ∈ D∩O(n), and τ ∈ Ãn is S̃n-conjugate to σ but not in σÃn , then ∆λ(σ) = −∆λ(τ)
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(see [32, remark after 7.5]). Note that 〈λ〉(σ) = 0 if λ ∈ D+(n)r (D ∩O(n)); thus we
can compute all the character values also in the case where λ ∈ D+(n).

For elements projecting to other types, the values of the two conjugate characters
〈〈λ〉〉± are the same; in particular, the characters 〈〈λ〉〉± vanish on classes projecting
to a cycle type µ 6= λ that is not in O(n). We emphasize that when λ ∈ D ∩ O(n),
both of these two conjugate characters have different values on the two Ãn-classes that
come from one S̃n-class projecting to cycle type λ, and they are the only irreducible
spin characters of Ãn with this property.

We also note the following special situation. When λ = λ′, the principal hook length
partition h(λ) is in D ∩ O(n), and then the two doubling classes of S̃n projecting to
cycle type h(λ) each split a second time, into two classes of Ãn. As pointed out above,
the spin characters 〈〈h(λ)〉〉+, 〈〈h(λ)〉〉− differ on the two classes of Ãn contained in
one S̃n-class but projecting onto different An-classes of cycle type h(λ). Note that
also the non-faithful characters {λ}± differ on these classes.

The alternating groups An and the double covers S̃n and Ãn exhibit a special
phenomenon that we want to highlight here.

Definition 2.1. Let G be a finite group, I ⊂ Irr(G). A pair of conjugacy classes xG
and yG is said to be critical for I if χ(x) 6= χ(y), for χ ∈ I, but χ(x) = χ(y) for all
χ ∈ Irr(G) r I.

We call a critical pair xG and yG for I = {χ1, χ2} ⊂ Irr(G) a pair of detecting
classes for χ1, χ2 if χ1(x)− χ1(y) = χ2(y)− χ2(x).

Of course, the set I above should be taken of small size to give interesting infor-
mation.

Remarks and Examples 2.2.

(i) If there is a pair of detecting classes for χ1, χ2, then χ2 = χ1, or the characters
are both real.

(ii) For An, for each symmetric partition µ of n, the pair of classes σ±h(µ) is a
detecting pair for {µ}±.

(iii) For S̃n, for each λ ∈ D−(n), the pair C±λ of classes of elements projecting to
cycle type λ is a detecting pair for 〈λ〉±.

(iv) For Ãn, for each λ ∈ D+(n), the two pairs of classes of elements of Ãn
projecting to cycle type λ and belonging to one S̃n class are detecting pairs
for 〈〈λ〉〉±.

(v) While the situations above are the ones used in the later sections, it should
be noted that there are many more such instances, and we mention just a
few examples. For G = GL(3, 2), the pair of classes of elements of order 7
is detecting for the pair of characters of degree 3. For G = PSL(2, 11), the
pair of classes of elements of order 5 (resp. order 11) is detecting for the pair
of characters of degree 12 (resp. degree 5). For G = M11, the pair of classes
of elements of order 8 (resp. order 11) is detecting for the conjugate pair of
characters of degree 10 (resp. degree 16).

The reason for the notions of critical and detecting classes is the following easy but
very useful result on Kronecker products. It originates with the usage of detecting
classes in [3], its variations in [25, 23], and the idea to consider detecting classes for
pairs of spin characters of the double cover groups; we will follow this up in later
sections.
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Lemma 2.3. Let G be a finite group, x, y ∈ G. Let ψ be a character of G with ψ(x) =
ψ(y) 6= 0.

(1) Assume that xG, yG is a critical pair for I ⊂ Irr(G). Then for any χ ∈ I, ψ ·χ
has a constituent in I.
In particular, if ψ is irreducible and χ ∈ I, then χ ·

∑
ν∈I ν contains ψ as a

constituent.
(2) Assume that xG, yG is a detecting pair for χ1, χ2 ∈ Irr(G). Set mj =
〈ψ · χ1, χj〉, j = 1, 2. Then

ψ(x) = m1 −m2 .

Furthermore,
max(m1,m2) > |ψ(x)| > 0 .

Proof. (1) By our assumption on ψ and Definition 2.1, ψ · χ(x) 6= ψ · χ(y), for any
χ ∈ I. Since the values of all characters in Irr(G) r I coincide on x, y, the product
ψ · χ must have a constituent in I.

As I is closed under complex conjugation, we then deduce 〈ψ, χ ·
∑
ν∈I ν〉 =

〈ψ · χ̄,
∑
ν∈I ν〉 > 0, for all χ ∈ I.

For the claim in (2), we compute the difference of the values of ψ · χj on the two
classes. Set t := χ1(x)− χ1(y) = χ2(y)− χ2(x); note that t 6= 0. First we have

ψχ1(x)− ψχ1(y) = ψ(x)(χ1(x)− χ1(y)) = ψ(x)t.

On the other hand, ψχ1 = m1χ1 + m2χ2 +
∑
χ 6=χ1,χ2

mχχ, and hence (as the pair
xG, yG is detecting for χ1, χ2) we obtain

ψχ1(x)− ψχ1(y) = m1(χ1(x)− χ1(y)) +m2(χ2(x)− χ2(y)) = (m1 −m2)t.

As t 6= 0, we deduce ψ(x) = m1 − m2. The assertion max(m1,m2) > |ψ(x)| now
follows immediately. �

3. Spin characters, hooks, and a link to the Saxl conjecture
Of central interest in the representation theory of the symmetric groups are the Kro-
necker coefficients g(λ, µ, ν) appearing as expansion coefficients in the Kronecker prod-
ucts

[λ][µ] =
∑
ν

g(λ, µ, ν)[ν] .

Using this notation, Saxl’s conjecture may be rephrased as saying the following for
the staircase partition ρk = (k, k − 1, . . . , 2, 1) of n = k(k + 1)/2:

g(ρk, ρk, λ) > 0 for all partitions λ of n .

As we will show in the following, products of spin characters or mixed products
of a spin character and a non-faithful character can play an important role towards
finding constituents in the square [ρk]2.

For the product of any ordinary character [λ] of Sn with the basic spin charac-
ters 〈n〉(±), Stembridge has provided an efficient combinatorial formula in [32]. It was
already observed in [2] that as an immediate consequence of this formula the following
result is obtained.

Proposition 3.1. For the spin product 〈n〉(2) we have:

〈n〉(2) = 〈n〉(±) · 〈̂n〉 =
n−1∑
j=0

[n− j, 1j ] =: χhook.
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Regev [26] showed that the sum of all hook characters has particular easy values;
Taylor recently gave a different proof of this fact [33]. Here, we point out that this is
a direct consequence of the proposition above and the knowledge of the values of the
basic spin characters stated in Section 2:

Corollary 3.2. Let σ ∈ Sn be of cycle type α. Then

χhook(σ) =
{

2l(α)−1 if α ∈ O(n)
0 otherwise.

For our purpose of finding constituents in the square of the staircase character the
following result on spin products for S̃n turns out to be important; it was obtained
in the context of classifying the homogeneous spin products [5]. Here, it provides the
crucial link to the Saxl conjecture.

Proposition 3.3. Let n = k(k + 1)/2, ρk = (k, k − 1, . . . , 2, 1). Then

〈n〉(±) · 〈ρk〉(±) = 2a(k)[ρk]

where a(k) is given by

a(k) =


k−2

2 if k is even

k−1
2 if k ≡ 1 mod 4

k−3
2 if k ≡ 3 mod 4.

The proposition above is the key for finding new constituents in [ρk]2; this is due
to the following observations on the connections between [ρk]2, χhook and 〈ρk〉(2) =
〈ρk〉(±) · 〈̂ρk〉 which are crucial for our new contributions to Saxl’s conjecture.

Lemma 3.4. Let λ be a partition of n = k(k + 1)/2.
(1) The products χhook · 〈ρk〉(2) and [ρk]2 have the same constituents (apart from

multiplicities).
(2) If [λ] is a constituent of 〈ρk〉(2), then all constituents of χhook · [λ] are con-

stituents of [ρk]2. In particular, all constituents of 〈ρk〉(2) are constituents
of [ρk]2.

(3) The character [λ] is a constituent of [ρk]2 if and only if χhook · [λ] and 〈ρk〉(2)

have a common constituent.

Proof. (1) By Proposition 3.3 we have for any choice of associates

〈n〉(±)〈n〉(±) · 〈ρk〉(±) · 〈ρk〉(±) = 22a(k)[ρk]2 .

Now the assertion follows immediately from Proposition 3.1.
(2) is an immediate consequence of (1).
(3) By (1), [λ] is a constituent of [ρk]2 if and only if

〈[λ], χhook · 〈ρk〉(2)〉 = 〈[λ] · χhook, 〈ρk〉(2)〉 > 0.

Clearly, this is equivalent to [λ] ·χhook and 〈ρk〉(2) having a common constituent. �

Computational data suggest that while the character 〈ρk〉(2) does not contain all
irreducible characters as constituents (see also [2, Theorem 3.5]), the number of miss-
ing irreducible characters is relatively small. In the next section we will investigate
〈ρk〉(2) in more detail.
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As an immediate contribution towards the Saxl conjecture we obtain the following
consequence of Lemma 3.4, which was proved by very different methods by Iken-
meyer [15] and a weaker asymptotic version by Pak, Panova and Vallejo [25]:

Corollary 3.5. All hook characters [n− j, 1j ] are constituents in [ρk]2.

Proof. For any µ ∈ D(n), 〈µ〉(±) is one of the characters 〈µ〉(±), so the character 〈µ〉(2)

always contains [n]. Hence, applying this to µ = ρk, the assertion follows immediately
from Lemma 3.4. �

We now take a closer look at the products with the character χhook. Note that
formulae for the products with a hook character are available (see [8], [11], [19]), but
we will take a simpler route here. To prepare for our next result, we recall a useful
formula due to Dvir. This determines the constituents with maximal first part in a
product [λ] · [µ], assuming that we already know the decomposition of the product of
the skew characters [λ/λ ∩ µ] and [µ/λ ∩ µ] (by the Littlewood–Richardson rule, the
decomposition of the skew characters is considered to be known).

For a partition ν = (ν1, ν2, . . . , νm) we set ν̂ = (ν2, ν3, . . . , νm), and when t > ν1,
we denote by (t, ν) the partition obtained by adjoining the first part t to ν.

Theorem 3.6 ([9, Theorems 1.6 and 2.4]). Let λ and µ be partitions of n. Then
max{ν1 | g(λ, µ, ν) > 0} = |λ ∩ µ|.

Furthermore, when ν is a partition of n with ν1 = |λ ∩ µ|, we have
g(λ, µ, ν) = 〈[λ/λ ∩ µ] · [µ/λ ∩ µ], [ν̂]〉 .

Moreover, if [α] is a constituent of [λ/λ∩µ] · [µ/λ∩µ], then [|λ∩µ|, α] is a constituent
in [λ] · [µ] of multiplicity 〈[λ/λ ∩ µ] · [µ/λ ∩ µ], [α]〉.

This is now applied to prove the following product property of χhook.

Proposition 3.7. Let λ be a partition. Then, the maximal constituent in the prod-
uct χhook ·[λ], with respect to lexicographic ordering of the labelling partitions, is [h(λ)]
and its multiplicity is 2d(λ)−1.

Proof. Let λ be a partition of n, ` := `(λ). We set χn := χhook at level n.
We prove the assertion by induction on d = d(λ). If d = 1, λ is a hook, so h(λ) =

(n), and clearly 〈[n], χn · [λ]〉 = 〈[λ], χn〉 = 1.
Now assume d > 1; let h(λ) = (h1, . . . , hd), and let λ∗ be the partition of n−h1 > 0

obtained by removing the first principal hook H11 from λ.
By Dvir’s formula, for the constituents [ν] of maximal width in χn · [λ] we have

ν1 = h1, and they all occur in the products of [λ] with hooks containing (λ1, 1`−1),

i.e. in
n−h1∑
k=0

[λ1 +k, 1n−k−λ1 ] · [λ]. Here, the skew characters in Dvir’s formula are easily

determined, as for 0 6 k 6 n − h1 the intersection (λ1 + k, 1n−k−λ1) ∩ λ is exactly
H11 = (λ1, 1`−1). Thus from the k-th summand we have the contribution

([k] ◦ [1n−h1−k]) · [λ∗] = ([k, 1n−h1−k] + [k + 1, 1n−h1−k−1]) · [λ∗],
where ◦ denotes the outer product of two characters; note that on the right hand side
the first summand is 0 for k = 0, and the second is 0 for k = n−h1. Hence, by Theo-
rem 3.6, the constituents [α] in 2χn−h1 · [λ∗] give us the constituents [h1, α] in [λ] · [µ]
with maximal first part. Now by induction applied to λ∗, χn−h1 · [λ∗] has the maximal
constituent [h(λ∗)] = [h2, . . . , hd], with multiplicity 2d(λ∗)−1 = 2d(λ)−2. Hence the
maximal constituent in χn · [λ] is [h(λ)] = [h1, . . . , hd], with multiplicity 2d(λ)−1, as
claimed. �
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We can now deduce the following connections between 〈ρk〉(2) and [ρk]2:

Corollary 3.8. Let k ∈ N, λ a partition of n = k(k+1)/2. Then the following holds:
(1) If [λ] is a constituent of 〈ρk〉(2), [h(λ)] is a constituent of [ρk]2.
(2) If [h(λ)] is a constituent of 〈ρk〉(2), [λ] is a constituent of [ρk]2.

Proof. Both assertions follow immediately from Lemma 3.4 and Proposition 3.7. �

Example 3.9. In [2, Theorem 3.5] it was shown that [n − 3, 3] is a constituent
of 〈ρk〉(2). By Corollary 3.8(1) we then obtain [n − 2, 2] as a constituent in [ρk]2.
When n > 6, Corollary 3.8(2) gives all [λ] as constituents in [ρk]2 that satisfy h(λ) =
(n− 3, 3), i.e. all double-hooks where the smaller principal hook is of size 3.

Remark 3.10. We emphasize the strength of the corollary above. In the case of [ρk]2,
we know by Ikenmeyer’s criterion that all characters to partitions with distinct parts
appear as constituents. Given a similar (or even weaker) property for 〈ρk〉(2), Saxl’s
conjecture would follow immediately from Corollary 3.8(2). Unfortunately, in general
〈ρk〉(2) does not contain all the characters to partitions of type h(λ) (i.e. those with
part differences at least 2).

4. Constituents in spin products and the Saxl conjecture
As mentioned earlier, the common theme in the character theories of the alternating
groups and the double covers of the symmetric and alternating groups that is crucial
in the applications here is the existence of critical or detecting classes.

For example, by using the characters of the alternating groups, it was shown in [3]
that for a symmetric partition λ, the character [λ] is always a constituent in its own
square [λ]2. The idea was to use the pair of conjugacy classes in the alternating groups
that detect the characters {λ}±, namely the ones of cycle type h(λ). This was taken
up by Pak, Panova and Vallejo in [25] to provide a criterion for constituents in [λ]2;
we give a very short argument here.

Lemma 4.1 ([25, “Main Lemma”]). Let λ be a symmetric partition. Let µ be a partition
with [µ](h(λ)) 6= 0. Then [µ] is a constituent of [λ]2.

Proof. The restriction χ = [µ] ↓An
takes the same (non-zero) values on the two

classes of cycle type h(λ), which are critical for the pair of characters {λ}±. Hence
by Lemma 2.3 the character χ · {λ}+ contains one of {λ}±, and thus the covering
product [µ] · [λ] contains [λ], i.e. g(λ, λ, µ) > 0, as required. �

Towards the Saxl conjecture this immediately gives:

Corollary 4.2 ([25]). Let µ be a partition with [µ](h(ρk)) 6= 0. Then [µ] is a con-
stituent of [ρk]2.

Unfortunately, many irreducible characters vanish on the class of cycle type h(ρk);
this was already analyzed in [25]. It turns out that the idea of critical detecting
classes is more powerful in the context of spin characters. For constituents in a spin
product 〈λ〉(2) we have the following new criterion, which is based again on non-
vanishing character values.

Theorem 4.3. Let λ ∈ D(n), n > 4. Let µ be a partition with [µ](λ) 6= 0. Then [µ] is
a constituent of 〈λ〉(2).

Proof. For λ ∈ D−(n), this follows immediately from Lemma 2.3(1), as the two S̃n-
classes projecting to cycle type λ are a critical pair for the pair of characters 〈λ〉±.
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For λ ∈ D+(n), we use spin characters of the double covers of the alternating
groups. First assume λ ∈ D+(n) r (D ∩ O(n)). We recall from Section 2 that the
two classes of Ãn projecting to cycle type λ are critical for the two spin characters
of Ãn labelled by λ. Hence one of 〈〈λ〉〉± is a constituent of [µ] ↓Ãn

·〈〈λ〉〉±; thus
〈λ〉 is a constituent of [µ] · 〈λ〉, and the claim follows. Now take λ ∈ D ∩ O(n); note
that we then have four Ãn-classes projecting to type λ. We consider non-conjugate
elements σ1, σ2 ∈ Ãn that belong to the same S̃n-class, projecting to cycle type λ.
Recall that 〈〈λ〉〉± are the only irreducible spin characters that differ on σ1, σ2. Now
[µ] ↓Ãn

·〈〈λ〉〉± is a spin character with different values on σ1, σ2, hence it must have
one of 〈〈λ〉〉± as a constituent, implying the claim as before. �

This leads to powerful new criteria in the context of the Saxl conjecture:
Corollary 4.4. Let µ be a partition of n = k(k + 1)/2. Then the following holds:

(1) If [µ](ρk) 6= 0, then all constituents of χhook · [µ] are constituents of [ρk]2. In
particular, [µ] and [h(µ)] are constituents of [ρk]2.

(2) If [h(µ)](ρk) 6= 0, then [µ] is a constituent of [ρk]2.
Proof. Assertion (1) follows immediately from Theorem 4.3, Lemma 3.4 and Corol-
lary 3.8(1). The claim in (2) is a direct consequence of Theorem 4.3 and Corol-
lary 3.8(2). �

Remark 4.5. Computational data indicate that using non-vanishing on the class ρk
produces many more constituents than non-vanishing on the class h(ρk)! Also, the
criterion detecting [µ] as a constituent in [ρk]2 via non-vanishing of [h(µ)] at ρk is
quite useful. Fortunately, the non-vanishing tests may be combined to give even more
constituents. Here are the numerical values up to k = 11 (the last column in the table
gives the percentage of irreducible characters [µ] found as constituents of [ρk]2 by the
combination of all three tests):

[µ](h(ρk)) [µ](ρk) [h(µ)](ρk) combined
k n p(n) 6= 0 6= 0 6= 0 tests %
1 1 1 1 1 1 1 100
2 3 3 3 2 3 3 100
3 6 11 5 6 6 11 100
4 10 42 21 24 21 33 78.6
5 15 176 45 114 91 148 84.1
6 21 792 231 524 441 712 89.9
7 28 3718 573 2408 2024 3205 86.2
8 36 17977 3321 12734 11149 16281 90.6
9 45 89134 9321 67462 63110 83442 93.6
10 55 451276 59091 370590 353523 436315 96.7
11 66 2323520 183989 2036486 1932462 2279648 98.1

Recall that Ikenmeyer’s criterion in [15] gives all characters to partitions com-
parable to ρk in dominance order as constituents in [ρk]2; in the region above, the
corresponding percentage is decreasing, and already below 50% at k = 9.

We want to illustrate the usefulness of our new criterion by finding new families
of constituents of [ρk]2, in particular all characters to double-hooks (i.e. partitions of
Durfee length 2). We start by a discussion of the characters to 2-part partitions. Note
that by the criterion which uses the value on the class to h(ρk), asymptotically, the
characters to 2-part partitions are found to be constituents in [25, Corollary 6.4]; on
the other hand, the constituents to 2-part partitions are also obtained by Ikenmeyer’s
result [15].
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We set the scene for the following theorem and discuss first how the non-vanishing
of the character values [n − j, j](ρk) is connected to a unimodality question for a
sequence of certain partition numbers.

We consider a character to a 2-part partition [n − j, j], with 1 6 j 6 n/2. By the
Littlewood–Richardson rule, we have

[n− j, j] = [n− j] ◦ [j]− [n− j + 1] ◦ [j − 1].
For k 6 n, we set

dk(n) = |{λ = (`1, . . . ) ∈ D(n) | `1 6 k}| .
As we want to apply the criterion given in Theorem 4.3, we have to evaluate

[n− j, j](ρk), for n = k(k + 1)/2. By the above, we obtain the value
[n− j, j](ρk) = dk(j)− dk(j − 1) .

Thus the critical set of characters [n − j, j] vanishing at the class of cycle type ρk is
determined by the exceptional set

Ek := {j ∈ {1, . . . , bn/2c} | dk(j) = dk(j − 1)}.
The partition numbers dk(m), 0 6 m 6 n = k(k + 1)/2, are easily seen to form a

symmetric sequence. They are also the coefficients in the expansion
k∏
i=1

(1 + xi) =
n∑

m=0
dk(m)xm .

This polynomial is known to be unimodal, by quite different and intricate proofs due
to Hughes [14], and Odlyzko and Richmond [22]; see also Stanley’s article [31] for
more on this and related unimodal sequences. Here, based on a result by Odlyzko and
Richmond [22], we find that the sequence of numbers dk(m), 0 6 m 6 n = k(k+1)/2,
is in fact almost strictly unimodal; there are only few instances where equality holds
in the sequence, and these can be described explicitly.

Theorem 4.6. Let k ∈ N, k > 1. Then the exceptional sets
Ek = {j ∈ {1, . . . , bk(k + 1)/4c} | dk(j) = dk(j − 1)}

are as follows:
k Ek
2 1
3 1, 2
4 1, 2, 4, 5
5 1, 2, 4, 6, 7
6 1, 2, 4, 7, 8, 10
7 1, 2, 4, 8, 11, 13, 14
8 1, 2, 4, 16, 17
9 1, 2, 4, 19, 22

10 1, 2, 4, 26
11 1, 2, 4, 32

> 12 1, 2, 4

All other equalities in the sequences (dk(m))06m6k(k+1)/2 are deduced by their sym-
metry (including an equality for the two middle terms when k ≡ 1 or 2 mod 4).

Proof. For k 6 11, the sets are easily obtained by computation. For any k > 4, we
have dk(0) = dk(1) = dk(2) = 1 and dk(3) = dk(4) = 2, so {1, 2, 4} ⊆ Ek.

Now let k > 12. It remains to show dk(j−1) < dk(j) for all j ∈ {5, . . . , bk(k+1)/4c}.
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Considering partitions of m into distinct parts with largest part being smaller
than k or equal to k, respectively, gives the recursion

dk(m) = dk−1(m) + dk−1(m− k) .
This will now be applied to show our claim in an induction on k.

For 12 6 k < 60, this claim holds by direct computation. So we assume now that
k > 60. Then, using unimodality of the sequences and induction, for 5 6 j 6 k(k−1)/4
we obtain
dk(j)− dk(j − 1) = dk−1(j)− dk−1(j − 1) + dk−1(j − k)− dk−1(j − 1− k) > 0 .

For the range k(k−1)/4 6 j 6 k(k+1)/4, the inequality dk(j−1) < dk(j) is provided
by [22, Theorem 4]. Hence we are done. �

As discussed above, [n−j, j](ρk) = dk(j)−dk(j−1), so we now deduce immediately:

Corollary 4.7. Let k ∈ N, n = k(k+ 1)/2. Then [n− j, j](ρk) > 0 for 0 6 j 6 n/2,
j 6∈ Ek (with Ek given explicitly in Theorem 4.6).

Our criterion in Theorem 4.3 now implies:

Corollary 4.8. Let k ∈ N, n = k(k+ 1)/2, 0 6 j 6 n/2, j 6∈ Ek. Then [n− j, j] is a
constituent of 〈ρk〉(2) = 〈ρk〉(±) · ̂〈ρk〉(±).

Towards the Saxl conjecture we deduce:

Corollary 4.9. Let k ∈ N, n = k(k + 1)/2.
(1) Let 0 6 j 6 n/2, j 6∈ Ek. Then all constituents of χhook · [n − j, j] are

constituents of [ρk]2.
(2) All characters [n− j, j], 0 6 j 6 n/2, are constituents of [ρk]2.

Proof. The first assertion follows from Corollary 4.8 and Lemma 3.4.
For the second assertion, we only have to check the characters [n− j, j] for the few

exceptional values j ∈ Ek. For j = 1, we have a hook, a case already dealt with. By
direct computation for k 6 11, we may assume k > 11. Applying Corollary 3.8(1)
to λ = (n − j − 1, j + 1) when j + 1 6 n/2 and j + 1 6∈ Ek, reduces the amount
of computation and also deals with the cases j = 2 and j = 4 for all k > 12.
(Note also that for j = 1, k > 2, or j = 2, k > 3, or j = 4, k > 4, the assertion
g(ρk, ρk, (n− j, j)) > 0 is already known by work of Saxl [29].) �

Products of hook characters and characters to 2-part partitions have been studied
by Remmel [27] and Rosas [28]. By their formulae, the extra constituents that we ob-
tain from Corollary 4.9(1) are all labelled by double hooks. Indeed, going beyond the
families of hooks and 2-part characters, we illustrate the power of our new criterion
by dealing with all characters labelled by double-hooks. We note that Corollary 4.8
together with Corollary 3.8(2) already provide all double-hook characters [µ] as con-
stituents in [ρk]2 where h(µ) = (n − j, j) satisfies j 6∈ Ek. As we want to use some
of the known formulae for the exceptional j in any case, we will prove the following
result applying these together only with Corollary 4.9.

Theorem 4.10. Let k ∈ N, n = k(k + 1)/2. Let µ be a partition of n with d(µ) = 2.
Then [µ] is a constituent of [ρk]2.

Proof. Since 2-part partitions are already dealt with, we may assume (conjugating,
if necessary) that our partition has the form µ = (v, u, 2t, 1s), where v > u, v > 3,
u > 2, s, t > 0, and s + t > 1. By Corollary 4.9(1), it suffices to show that [µ] is a
constituent in χhook · [n− j, j] with j 6∈ Ek.
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We recall from [27, Theorem 2.2(iii)(b)] that for any m with 2 6 m 6 n/2, the
multiplicity of [µ] in the product [n−m,m]·[u+v, 1s+2t] is 1 if u 6 m−t 6 min(v, u+s),
and 0 otherwise.

Choosing m = u + t then implies that [µ] is a constituent in the product [v + t +
s, u+ t] · [u+ v, 1s+2t]. Thus, if u+ t 6∈ Ek, we are done.

Again, the few exceptional cases for k 6 11 may be done by direct computation (or
by a similar reasoning as follows below). So we now assume that k > 12; as u+ t > 2,
we only have to deal with the cases u+ t = 2 and u+ t = 4.

When u+ t = 2, we have u = 2 and t = 0, i.e. µ = (v, 2, 1s), with v > 3 and s > 1.
For such µ, we take m := 3 and find that [µ] is a constituent of [n−3, 3] · [u+v, 1s+2t].
So we are done in this case.

Now assume u+ t = 4. Conjugating, if necessary, we may assume that v−u > s. If
s > 1, we take m := u+ t+ 1 = 5 and find again that [µ] is a constituent of [n− 5, 5] ·
[u+ v, 1s+2t] by [27, Theorem 2.2(iii)(b)]. If s = 0, we have µ = (v, u, 2t) with u 6 3,
t = 4− u 6 2; as n > 10, we have v > u. In this case we use [27, Theorem 2.2(iii)(c)];
this implies that for 2 6 m 6 n/2, [µ] is a constituent in [n−m,m] · [u+v−1, 1s+2t+1]
if u 6 m− t 6 min(v, u+ s+ 1) holds but m− t = v = u+ s is not true. We choose
m = u+ t+ 1 = 5 and find that [µ] is a constituent of [n− 5, 5] · [u+ v − 1, 1s+2t+1],
completing the proof. �

Remark 4.11. We note that Pak and Panova have considered special cases of double-
hooks in [23, Theorem 7.1]. They sketch a proof that [ρk]2 has constituents to parti-
tions of the form (n− `−m,m, 1`), 2 6 m 6 10, when `, k are sufficiently large.

Already in [3], for symmetric λ the result on the multiplicity g(λ, λ, λ) was made
more precise; from the calculation of the scalar products on the level of the alternating
groups a congruence mod 4 was found for the Kronecker coefficient. Indeed, a similar
calculation was used to find the value |[µ](h(λ))| as a lower bound for the Kronecker
coefficient g(λ, λ, µ) in [23]; we have seen a general version of this in Lemma 2.3.

Also in the spin case we can make the result in Theorem 4.3 more precise.

Theorem 4.12. Let λ ∈ D(n), n > 4. Let µ be a partition such that [µ](λ) 6= 0.
(1) Let λ ∈ D−(n). Set m± = 〈〈λ〉±, [µ] · 〈λ〉+〉. Then

m+ −m− = [µ](λ) .

In particular, 0 < |[µ](λ)| 6 max(m+,m−) 6 〈[µ], 〈λ〉(2)〉 .
(2) Let λ ∈ D+(n). Set m± = 〈〈〈λ〉〉±, [µ] ↓Ãn

·〈〈λ〉〉+〉. Then

m+ −m− = [µ](λ)

and
m+ +m− = 2m− + [µ](λ) = 〈[µ]〈λ〉, 〈λ〉〉 .

In particular,

0 < |[µ](λ)| 6 max(m+,m−) 6 〈[µ]〈λ〉, 〈λ〉〉

and
〈[µ]〈λ〉, 〈λ〉〉 ≡ [µ](λ) mod 2 .

Proof. The D− case is an immediate consequence of Lemma 2.3.
For the D+ case, we compute the difference of the values of [µ] ↓Ãn

·〈〈λ〉〉+ on the
two Ãn-classes contained in one S̃n class projecting to cycle type λ, similarly as in the
proof of Lemma 2.3. Note that this character is a linear combination of irreducible
spin characters, and restricted to the spin characters, the two Ãn-classes are critical.

Algebraic Combinatorics, Vol. 1 #3 (2018) 365



Christine Bessenrodt

This gives the first assertion. Observing that 〈〈〈λ〉〉±, [µ] ↓Ãn
·〈〈λ〉〉−〉 = m∓ then

gives the second assertion.
In both cases the additional claims are an immediate consequence. �

Remark 4.13. There is a different way to obtain a character [µ] as a constituent in
[ρk]2 by using its character value on the class of cycle type ρk. As the criterion to be
described now is much weaker than the one given in Theorem 4.3, we only sketch the
main arguments without going into the necessary background in detail; again, it is
based on using a special detection property of the class of cycle type ρk.

By the results in [6] and [7], each partition α ∈ O(n) is special for the spin char-
acter(s) 〈β〉(±) to its Glaisher correspondent β ∈ D(n), with respect to the condition
that the 2-power in the spin character value of 〈β〉(±) on elements projecting to cycle
type α is the smallest (among the 2-powers in spin character values on this class). The
spin character(s) to β = ρk are indeed unique (up to associates) with this property
on their special class, to the Glaisher correspondent α of ρk. Thus, when we multiply
〈ρk〉(±) with a character [µ] that has odd value on α, the product has to contain
〈ρk〉(±) as a constituent. Now it follows from a general character-theoretic fact [10,
(6.4)] that the values [µ](ρk) and [µ](α) are congruent modulo 2. Hence, whenever
[µ](ρk) is odd, we deduce that [µ] is a constituent of 〈ρk〉(±)〈̂ρk〉, and hence also
of [ρk]2.

5. Spin variants of Saxl’s conjecture
The product of two spin characters for the double cover groups decomposes into
non-faithful irreducible characters, while a mixed product of a spin character and a
non-faithful character decomposes into irreducible spin characters. Thus in a variant
of Saxl’s conjecture for the double cover groups we cannot expect to find an irreducible
character whose square contains all irreducible characters but have to be more modest.

We start with a result obtained in the context of classifying homogeneous mixed
products; it is a special product appearing in [2, Theorem 3.2]:

Proposition 5.1. For n = k2 > 4 we have

〈n〉(±) · [k
k] = 2b

k−1
2 c〈2k − 1, 2k − 3, . . . , 3, 1〉 .

We denote by τk = (2k−1, 2k−3, . . . , 3, 1) ∈ D(k2) the “spin staircase” of length k;
note that τk ∈ D+(k2) and τk = h((kk)).

Arguing similarly as for Lemma 3.4, we deduce from Proposition 5.1, using also
Proposition 3.7:

Lemma 5.2. Let µ be a partition of k2.
(1) The products χhook · [kk]2 and 〈τk〉2 have the same constituents (apart from

multiplicities).
(2) If [µ] is a constituent of [kk]2, then all constituents of χhook·[µ] are constituents

of 〈τk〉2; in particular, 〈τk〉2 contains [µ] and [h(µ)].
(3) The character [µ] is a constituent of 〈τk〉2 if and only if χhook · [µ] and [kk]2

have a common constituent.

The lemma immediately implies:

Corollary 5.3. All hook characters [k2−j, 1j ], j ∈ {0, 1, . . . , k2−1} are constituents
of 〈τk〉2.

Similarly as before we obtain the following criteria for constituents of 〈τk〉2.
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Corollary 5.4. Let µ be a partition such that [µ](τk) 6= 0 or [h(µ)](τk) 6= 0. Then
[µ] is a constituent of 〈τk〉2.

Proof. First assume [µ](τk) 6= 0. As τk = h((kk)), Lemma 4.1 implies that [µ] is a
constituent of [kk]2. Hence Lemma 5.2(2) yields that [µ] is a constituent of 〈τk〉2.

Now assume [h(µ)](τk) 6= 0. Again, Lemma 4.1 implies that [h(µ)] is a constituent of
[kk]2. By Proposition 3.7, [h(µ)] is also a constituent of χhook · [µ], thus Lemma 5.2(3)
implies that [µ] is a constituent of 〈τk〉2. �

Remark 5.5. In fact, for 2 6 k 6 5, 〈τk〉2 contains all characters [µ], µ ∈ P (k2). So
as a spin variant of Saxl’s conjecture we may ask whether this holds for all k > 2.

From the criteria in Corollary 5.4 above, already many constituents of 〈τk〉2 are
obtained; here are the numerical values up to k = 8 (the penultimate column gives
the number of partitions where at least one of the two non-vanishing criteria holds,
the percentage refers to the number of constituents [µ] of 〈τk〉2 found by the combined
tests):

k n p(n) [µ](τk) [h(µ)](τk) combined %
6= 0 6= 0 tests

1 1 1 1 1 1 100
2 4 5 3 4 5 100
3 9 30 15 23 28 93.3
4 16 231 93 97 148 64.1
5 25 1958 755 754 1240 63.3
6 36 17977 7185 7554 11860 65.9
7 49 173525 75430 85750 124418 71.7
8 64 1741630 851522 961907 1338428 76.8

Computations with GAP [34] led to the following conjecture, adding to the con-
jectures made by Heide, Saxl, Tiep and Zalesskii [12] on character squares; note that
for λ ∈ D−(n), always one of [n] or [1n] is missing from the square 〈λ〉2±.

Conjecture 5.6. For any n > 4, n 6= 5, there is a spin character 〈λ〉, λ ∈ D+(n),
whose square 〈λ〉2 contains all [µ], µ ∈ P (n).

It was also conjectured in [12] that for n > 4 there is always an irreducible character
of the alternating group An whose square contains all irreducible An-characters; in
fact, a quick check with GAP up to n = 25 shows that for growing n a large percentage
of irreducible An-characters has this property. For the double cover groups Ãn, data
computed with GAP [34] up to n = 25 provides evidence for the following conjecture;
again, for growing n, it seems that a large percentage of irreducible Ãn spin characters
has the property considered here.

Conjecture 5.7. For any n > 5 there is a spin character χ ∈ Irr(Ãn) whose
square χ2 contains all non-faithful ψ ∈ Irr(Ãn).
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