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Schubert polynomials, 132-patterns, and
Stanley’s conjecture

Anna E. Weigandt

Abstract Motivated by a recent conjecture of R. P. Stanley we offer a lower bound for the
sum of the coefficients of a Schubert polynomial in terms of 132-pattern containment.

1. Introduction
This paper is motivated by a conjecture of R. P. Stanley [8, Conjecture 4.1] concerning
the Schubert polynomials of A. Lascoux and M.-P. Schützenberger [5]. A permutation
is a bijection from the set {1, 2, . . . , n} to itself. We typically represent a permutation
in one-line notation. For instance, w = 25143 is the permutation which maps 1 to 2,
2 to 5, 3 to 1, and so on. The symmetric group Sn consists of the set of permutations.

If w0 = nn− 1 . . . 1 is the longest permutation in Sn, define
Sw0 := xn−1

1 xn−2
2 · · ·xn−1.

For any other w ∈ Sn, there is some i so that w(i) < w(i + 1). Then Sw = ∂iSwsi ,
where ∂if := f−sif

xi−xi+1
and si = (i, i + 1) acts on f by exchanging the variables xi

and xi+1. The ∂i’s satisfy the same braid and commutativity relations as the simple
transpositions and so Sw is well defined. The polynomial Sw is called a Schubert poly-
nomial. We will use an equivalent definition for Schubert polynomials as a weighted
sum over pipe dreams. See Section 2 for these definitions.

We are interested in the following specialization: νw := Sw(1, 1, . . . , 1). Let
(1) P132(w) := {(i, j, k) : i < j < k and w(i) < w(k) < w(j)}.
Write ηw := #P132(w). If ηw > 1 then w contains the pattern 132.

Example 1.1. Let w = 25143. Below, we list the elements of P132(w) by marking in
bold the positions i < j < k for which (i, j, k) ∈ P132(w).

25143 25143 25143 25143
As such, ηw = 4.

We prove that ηw provides a lower bound for νw.

Theorem 1.2 (The 132-bound). For any w ∈ Sn, νw > ηw + 1.
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As a corollary, we obtain the following conjecture of R. P. Stanley [8, Conjec-
ture 4.1].

Corollary 1.3. νw = 2 if and only if ηw = 1.

Proof. Let w ∈ Sn. If ηw = 0 then νw = 1 [6, Chapter 4]. If ηw = 1 then νw = 2 [8,
Section 4]. Otherwise, ηw > 2. Then we apply Theorem 1.2 and obtain

νw > ηw + 1 > 3.

As such, νw = 2 if and only if ηw = 1. �

2. Background on Permutations and Pipe Dreams
We will recall the necessary background on permutations and Schubert polynomi-
als; our references are [7, Chapter 2] and [1] respectively. Each permutation has an
associated rank function rw, where

(2) rw(i, j) := #{k : 1 6 k 6 i and w(k) 6 j}.

The pair (i, j) is an inversion of w if i < j and w(i) > w(j). Equivalently, each
inversion corresponds to a 21-pattern in w. The length of a permutation is the number
inversions,

(3) `(w) := #{(i, j) : i < j and w(i) > w(j)}.

The Rothe diagram of w ∈ Sn is the set

(4) D(w) := {(i, j) : 1 6 i, j 6 n,w(i) > j, and w−1(j) > i}.

Notice immediately from (4), we have

(5) D(w−1) = D(w)t.

The diagram D(w) is in bijection with the set of inversions of w by the map

(6) (i, j) 7→ (i, w−1(j)).

We may visualize D(w) as follows. For each i = 1, . . . , n, plot
(i, w(i)). Then, strike out all boxes to the right and below each of
the plotted points. The boxes which remain form D(w). For exam-
ple, D(25143) is pictured to the right. Notice that we use matrix
conventions; cell (i, j) sits in the ith row from the top and the jth
column from the left.

Schubert polynomials can be written as a sum over pipe dreams. Pipe dreams
appear in the literature under various names; they are the pseudo-line configurations of
S. Fomin and A. N. Kirillov [3] and the RC-graphs of N. Bergeron and S. C. Billey [1].
They were studied from a geometric perspective by A. Knuston and E. Miller [4].

Let Z>0×Z>0 be the semi-infinite grid, starting from the northwest corner. A pipe
dream is a tiling of this grid with ’s (elbows) and a finite number of +’s (pluses). For
simplicity, we will often draw the elbows as dots. We freely identify each pipe dream
with a subset of Z>0 × Z>0 by recording the coordinates of the pluses. Associate a
weight monomial to P:

wt(P) =
∏

(i,j)∈P

xi.

Equivalently, the exponent of xi counts the number of pluses which appear in row i
of P.
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We may interpret P as a collection of overlapping strands, using
the rule that a strand never bends at a right angle. The +’s indicate
the positions where two strands cross. Each row on the left edge of
Z>0×Z>0 is connected by some strand to a unique column along the
top, and vice versa. If the ith row is connected to the jth column, let
wP(i) := j. There exists some n so that wP(i) = i for all i > n, so

wP ∈ S∞. In practice, we identify wP with its representative in some finite symmetric
group. For example, if P is the pipe dream pictured above, then we write wP = 25143.

If #P = `(wP) then P is reduced. Let
RP(w) := {P : wP = w and P is reduced}.

Theorem 2.1 ([1, 3]).

(7) Sw =
∑

P∈RP(w)

wt(P).

Recall, νw := Sw(1, 1, . . . , 1). Immediately from (7), νw = #RP(w).

Example 2.2. The reduced pipe dreams for w = 25143 are pictured below.
+ · + + ·
+ · + · ·
· · · · ·
· · · · ·
· · · · ·




+ · + · ·
+ + + · ·
· · · · ·
· · · · ·
· · · · ·




+ · + + ·
+ · · · ·
· + · · ·
· · · · ·
· · · · ·




+ · · + ·
+ + · · ·
· + · · ·
· · · · ·
· · · · ·




+ · · · ·
+ + + · ·
· + · · ·
· · · · ·
· · · · ·




+ · + + ·
+ · · · ·
· · · · ·
+ · · · ·
· · · · ·




+ · · + ·
+ + · · ·
· · · · ·
+ · · · ·
· · · · ·




+ · · · ·
+ + + · ·
· · · · ·
+ · · · ·
· · · · ·


Therefore,

Sw = x3
1x

2
2 + x2

1x
3
2 + x3

1x2x3 + x2
1x

2
2x3 + x1x

3
2x3 + x3

1x2x4 + x2
1x

2
2x4 + x1x

3
2x4

and νw = 8.

There are two pipe dreams which have an explicit description in terms of w. Let
(8) mi(w) = #{j : (i, j) ∈ D(w)}.
Then the bottom pipe dream is
(9) Bw = {(i, j) : j 6 mi(w)}.
Graphically, Bw is obtained from D(w) by replacing each box with a plus and then
left justifying within each row. We define the top pipe dream as the transpose of the
bottom pipe dream of w−1:

Tw := Btw−1 .

By (5), Tw is obtained from D(w) by top justifying pluses within columns.

Example 2.3. Let w = 25143.

Bw =


+ · · · ·
+ + + · ·
· · · · ·
+ · · · ·
· · · · ·

 Tw =


+ · + + ·
+ · + · ·
· · · · ·
· · · · ·
· · · · ·


Pictured above are the bottom and top pipe dreams for w.
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N. Bergeron and S. C. Billey gave a procedure to obtain any pipe dream in RP(w)
algorithmically, starting from Bw. A ladder move is an operation on pipe dreams
which produces a new pipe dream by a replacement of the following type.

· ·
+ +
+ +
...

...
+ +
+ ·

7→

· +
+ +
+ +
...

...
+ +
· ·

In the above picture, the columns and rows are consecutive. If P 7→ P ′ is a ladder
move, then P ∈ RP(w) if and only if P ′ ∈ RP(w). In other words, RP(w) is closed
under ladder moves [1]. Furthermore, any element of RP(w) can be reached by some
sequence of ladder moves from the bottom pipe dream.

Theorem 2.4 ([1, Theorem 3.7]). If P ∈ RP(w), then P can be obtained by a sequence
of ladder moves from Bw.

We will mostly focus on a special type of ladder move. A simple ladder move is a
replacement of the following form.

· ·
+ · 7→ · +

· ·
The outline of the proof is as follows. In Lemma 3.6, we show that any sequence

of ladder moves connecting Bw to Tw must use only simple ladder moves. The exact
number of pipe dreams in any such sequence, is ηw + 1. Since each pipe dream in the
sequence is distinct, this provides a lower bound for νw = #RP(w).

3. Proof of Theorem 1.2
We start by interpreting ηw as a weighted sum over D(w). The “32” in each 132-
pattern of w corresponds to a box (i, j) ∈ D(w). The “1” contributes to the rank
function rw(i, j).

Lemma 3.1.
ηw =

∑
(i,j)∈D(w)

rw(i, j).

Proof. Suppose (i, j, k) ∈ P132(w). Then w(j) > w(k) and w−1(w(k)) = k > j. By (4),
we have (j, w(k)) ∈ D(w). Furthermore, i 6 j and w(i) 6 w(k). Then by (2),

#{` : (`, j, k) ∈ P132(w)} 6 #{` : ` 6 j and w(`) 6 w(k)} = rw(j, w(k)).

Then

(10) ηw 6
∑

(i,j)∈D(w)

rw(i, j).

On the other hand, suppose (i, j) ∈ D(w). Then

w(i) > j = w(w−1(j)) and w−1(j) > i.

Take
k ∈ {k : k 6 i and w(k) 6 j}.

Since (i, j) ∈ D(w), we must have k < i and w(k) < j. Then

k < i < w−1(j) and w(k) < w(w−1(j)) < w(i)
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and so
(k, i, w−1(j)) ∈ P132(w).

As such, if (i, j) ∈ D(w),
#{` : (`, i, w−1(j)) ∈ P132(w)} > rw(i, j).

Therefore,

(11) ηw >
∑

(i,j)∈D(w)

rw(i, j).

As such,
ηw =

∑
(i,j)∈D(w)

rw(i, j). �

Example 3.2. Again, let w = 25143. Below, we label each box (i, j) ∈ D(w) with
rw(i, j).

0
0 1 1

2

As such, ∑
(i,j)∈D(w)

rw(i, j) = 4.

In Example 1.1, we found that ηw = 4. This agrees with Lemma 3.1.

If P ∈ RP(w), let aP := (aP(1), . . . , aP(n)) where
(12) aP(k) = #{(i, j) ∈ P : i+ j − 1 = k}.
Equivalently, aP(k) is the number of pluses that occur in the kth antidiagonal of P.
Notice if P 7→ P ′ is a simple ladder move, then aP = aP′ . If P 7→ P ′ is a ladder move
which is not simple, then aP 6= aP′ .

Example 3.3. Let P,P ′ ∈ RP(25143) be as pictured below.

P =


+ · · · ·
+ + + · ·
· + · · ·
· · · · ·
· · · · ·

 P ′ =


+ · + · ·
+ + + · ·
· · · · ·
· · · · ·
· · · · ·


Although P ′ can be obtained from P by a ladder move, it is not a simple ladder move.
Indeed, aP = (1, 1, 1, 2, 0) and aP′ = (1, 1, 2, 1, 0). Therefore, aP 6= aP′ .

This idea extends to sequences of ladder moves.

Lemma 3.4. Suppose there is a path of ladder moves from P to Q:
(13) P = P0 7→ P1 7→ · · · 7→ PN = Q.
Each ladder move in (13) is simple if and only if aP = aQ.

Proof.
(⇒) Assume each Pi 7→ Pi+1 is a simple ladder move. Then Pi+1 is obtained from

Pi by moving a single plus to a new position in the same antidiagonal. As such,
aPi

= aPi+1 for each i. Therefore aP = aQ.
(⇐) We prove the contrapositive. Suppose there is a nonsimple ladder move in the

sequence (13). It acts by removing a plus from the ith antidiagonal and replacing it in
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the jth antidiagonal with i < j. In particular, we may pick j to be the maximum such
label. By the maximality, no plus moves into the jth antidiagonal from a different
antidiagonal. Then aP(j) > aQ(j) and so aP 6= aQ. �

Fix an indexing set I. A labeling of a pipe dream is an injective map LP : P → I.
Suppose P 7→ P ′ is a simple ladder move. Then P ′ inherits a labeling from P as
follows:

LP′(i, j) =
{
LP(i, j) if (i, j) ∈ P
LP(i+ 1, j − 1) otherwise.

Since P 7→ P ′ is a simple ladder move, P ′ is obtained from P by adding some (i, j) to
P and removing (i+1, j−1). Therefore LP′ is well defined. If there is a path of simple
ladder moves from P to Q, then Q inherits the labeling LQ from LP inductively.

Lemma 3.5. Let LP be a labeling. Suppose Q can be reached from P by simple ladder
moves. Then Q inherits the same labeling from P regardless of the choice of sequence.

Proof. Suppose P 7→ P ′ is a simple ladder move. Then within any antidiagonal,
both pipe dreams have the same set of labels in the same relative order. Iterate
this argument along a path of simple ladder moves from P to Q. Then, in each
antidiagonal, P and Q have the same set of labels, still in the same relative order. As
such, the labeling is uniquely determined and independent of the choice of path. �

Lemma 3.6.
(i) The map

(i, j) 7→ (i, j − rw(i, j))
is a bijection between D(w) and Bw.

(ii) The map
(i, j) 7→ (i− rw(i, j), j)

is a bijection between D(w) and Tw.
(iii) Bw and Tw are connected by simple ladder moves.

Proof.
(i). Suppose ` > i and w(`) < w(i). Since w−1(w(`)) = ` > i and w(i) > w(`),

by (4), we have (i, w(`)) ∈ D(w). Therefore,

w(`) ∈ {j : (i, w(j)) ∈ D(w)}.

By (8), the ith row of D(w) has as many boxes as there are pluses in the ith row of
Bw. Let

j1 < j2 < · · · < jmi(w)

be the sequence obtained by sorting the set {j : (i, j) ∈ D(w)}. Then

j` − rw(i, j`) = j` −#{k : k 6 i and w(k) 6 j`}
= #{k : k > i and w(k) 6 j`}
= #{j : (i, j) ∈ D(w) and j 6 j`}
= `.

Therefore (i, j`) 7→ (i, `). Since 1 6 ` 6 mi(w) the map is well defined. This holds for
any

` ∈ {1, . . . ,mi(w)}
so the map is surjective. By definition, j` = j`′ if and only if ` = `′, giving injectivity.
As such, this is a bijection.
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(ii). Let φ be the map defined by (i, j) 7→ (j, i). Restricted to D(w), φ is a bijection
between D(w) and D(w−1). By the definition of Tw, the restriction

φ : Bw−1 → Tw
is also a bijection.

Let
ψ : P(w−1)→ Bw

be the map in (i). Then the composition

D(w) φ−→ D(w−1) ψ−→ Bw−1
φ−→ Tw

is a bijection. Computing directly,
φ(ψ(φ(i, j))) = φ(ψ(j, i))

= φ(j, i− rw−1(j, i))
= (i− rw−1(j, i), j).

Applying (2),
rw−1(j, i) = #{k : k 6 j and w−1(k) 6 i}

= #{` : w(`) 6 j and w−1(w(`)) 6 i}
= #{` : ` 6 i and w(`) 6 j}
= rw(i, j).

Therefore,
φ(ψ(φ(i, j))) = (i− rw(i, j), j).

(iii). By Theorem 2.4, there is a path of ladder moves from Bw to Tw. Applying (12)
and the bijections in parts (i) and (ii),

aBw
(k) = #{(i, j) ∈ D(w) : i+ (j − rw(i, j))− 1 = k}

= #{(i, j) ∈ D(w) : (i− rw(i, j)) + j − 1 = k}
= aTw (k).

By Lemma 3.4, the path uses only simple ladder moves. �

In light of the previous lemma, we may label the pluses of Bw using the map
(i, j) 7→ (i, j − rw(i, j)), i.e. we refer to the plus which is the image of (i, j) as +(i,j).
Likewise we label Tw using the map (i, j) 7→ (i− rw(i, j), j).

Lemma 3.7. The above labeling of Tw is the same as the labeling it inherits from Bw.

Proof. It is enough to show that within any given antidiagonal the labels in Bw and
Tw are the same and have the same relative order. If (i, j) ∈ D(w), then +(i,j) is in
position (i, j − rw(i, j)) in Bw and in position (i− rw(i, j), j) in Tw. Since

i+ j − rw(i, j) = i− rw(i, j) + j,

they are in the same antidiagonal.
Now consider the rth antidiagonal in Bw. Suppose the sorted list of pluses from

top to bottom is
+(i1,j1),+(i2,j2), · · · ,+(ik,jk).

Since the map from D(w) is by left justification, we must have i1 < i2 < · · · < ik. As
i` + j` − 1 = r for all `, it follows that j1 > j2 > · · · > jk. Since the map from D(w)
to Tw is by top justification, the sorted list of pluses from top to bottom must also be

+(i1,j1),+(i2,j2), · · · ,+(ik,jk).
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Therefore, the labeling which Tw inherits from Bw coincides with the labeling deter-
mined by the map (i, j) 7→ (i− rw(i, j), j). �

We conclude with the proof of the 132-bound.

Proof of Theorem 1.2. By Lemma 3.6, there is a path of simple ladder moves con-
necting Bw to Tw, say

(14) Bw = P0 7→ P1 7→ · · · 7→ PN = Tw.

Let ni,j = #{k : Pk 7→ Pk+1 moves +(i,j)}. By definition, Pk 7→ Pk+1 moves exactly
one plus, labeled by an element of D(w). Therefore,

(15) N =
∑

(i,j)∈D(w)

ni,j .

Claim 3.8. If (i, j) ∈ D(w) then ni,j = rw(i, j).

Proof. By Lemma 3.7, +(i,j) must move from position (i, j−rw(i, j)) in Bw to position
(i− rw(i, j), j) in Tw. At each step +(i,j) remains stationary or it moves up a row and
one column to the right. As such, +(i,j) must move exactly i− (i− rw(i, j)) = rw(i, j)
times to go from row i to row i− rw(i, j). �

Then

ηw =
∑

(i,j)∈D(w)

rw(i, j) (by Lemma 3.1)

=
∑

(i,j)∈D(w)

ni,j (by Claim 3.8)

= N (by (15)).

Each Pi in the sequence (14) is distinct. As such, #RP(w) > N + 1. Therefore

νw = #RP(w) > N + 1 = ηw + 1. �

Example 3.9. Let w = 25143. Below, we give a sequence of simple ladder moves
connecting Bw to Tw. The last row and column of each pipe dream has been omitted.

+(1,1) · · ·
+(2,1) +(2,3) +(2,4) ·
· · · ·

+(4,3) · · ·

 7→


+(1,1) · · +(2,4)
+(2,1) +(2,3) · ·
· · · ·

+(4,3) · · ·

 7→


+(1,1) · · +(2,4)
+(2,1) +(2,3) · ·
· +(4,3) · ·
· · · ·



7→


+(1,1) · +(2,3) +(2,4)
+(2,1) · · ·
· +(4,3) · ·
· · · ·

 7→


+(1,1) · +(2,3) +(2,4)
+(2,1) · +(4,3) ·
· · · ·
· · · ·


Notice for each (i, j) ∈ D(w), the plus +(i,j) moves rw(i, j) times. For instance,
rw(4, 3) = 2 and +(4,3) moves twice. This follows from Claim 3.8. The above sequence
from Bw to Tw uses ηw + 1 = 5 pipe dreams in total. This agrees with the 132-bound,
νw > ηw + 1.
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