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Dual filtered graphs

Rebecca Patrias & Pavlo Pylyavskyy

ABSTRACT We define a K-theoretic analogue of Fomin’s dual graded graphs, which we call dual
filtered graphs. The key formula in the definition is DU —UD = D+ I. Our major examples are
K-theoretic analogues of Young’s lattice, of shifted Young’s lattice, and of the Young—Fibonacci
lattice. We suggest notions of tableaux, insertion algorithms, and growth rules whenever such
objects are not already present in the literature. (See the table below.) We also provide a large
number of other examples. Most of our examples arise via two constructions, which we call the
Pieri construction and the Mobius construction. The Pieri construction is closely related to the
construction of dual graded graphs from a graded Hopf algebra, as described in [1, 19, 16]. The
Moébius construction is more mysterious but also potentially more important, as it corresponds

to natural insertion algorithms.

Tableaux Insertion Growth
Young Standard Young RSK insertion [9]
tableaux [33] [13, 23, 25]
Shifted Young Standard shifted | Shifted Robinson— [11]
Young tableaux Schensted
with and without | insertion [24, 32]
circles [24]
Young—Fibonacci Young—Fibonacci Young—Fibonacci [11]
tableaux [9, 10] insertion [9]
Mobius Young Increasing and Hecke insertion [6] | Section 4.4
set-valued
tableaux [5, 29]
Moébius shifted Young Definitions 5.9 Section 5.3 Section 5.4
and 5.16
Moébius Young—Fibonacci Definitions 6.3 Section 6.2 Section 6.3
and 6.9
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1. INTRODUCTION

Fomin’s dual graded graphs [10], as well as their predecessors - Stanley’s differential
posets [26], were invented as a tool to better understand the Robinson—Schensted in-
sertion algorithm. Dual graded graphs are significant in the areas where the Robinson—
Schensted correspondence appears, for example in Schubert calculus or in the study of
representations of towers of algebras [1, 4]. A recent work of Lam and Shimozono [17]
associates a dual graded graph to any Kac—-Moody algebra, bringing their study to a
new level of generality.

1.1. WEYL ALGEBRA AND ITS DEFORMATIONS. One way to view the theory is as a
study of certain combinatorial representations of the first Weyl algebra. Let us briefly
recall the definitions. The Weyl algebra, or the first Weyl algebra, is an algebra over
some field K (usually K = R) generated by two generators U and D with a single
relation DU — UD = 1. It was originally introduced by Hermann Weyl in his study
of quantum mechanics. We refer the reader to [2], for example, for more background
on the Weyl algebra.

A graded graph is a triple G = (P, p, E), where P is a discrete set of vertices, p : P —
Z is a rank function, and E is a multiset of edges/arcs (z,y), where p(y) = p(z) + 1.
In other words, each vertex is assigned a rank, and edges can only join vertices in
successive ranks. For the set of vertices P, let P,, denote the subset of vertices of rank
n. For any field K of characteristic zero, the formal linear combinations of vertices of
G form the vector space K P.

Let Gy = (P, p, E1) and Gy = (P, p, E2) be a pair of graded graphs with a common
vertex set and rank function. From this pair, define an oriented graded graph G =
(P, p, F1, E5) by orienting the edges of G in the direction of increasing rank and the
edges of Go in the direction of decreasing rank. Let a;(x,y) denote the number of
edges of E; joining x and y or the multiplicity of edge (z,y) in E;. We define the up
and down operators U, D € End(K P) associated with graph G by

Uz =) ai(z,y)y
v

and

Dy =Y as(x,y)z.

Graded graphs G; and Gy with a common vertex set and rank function are said
to be dual if

DU —UD =1,

where [ is an identity operator acting on K P. Thus, we see that K P is a representation
of the Weyl algebra. Furthermore, it is a representation of a very special kind, where
U and D act in a particularly nice combinatorial way on a fixed basis.

One would then expect that variations of the Weyl algebra would correspond to
some variations of the theory of dual graded graphs. One such variation is the ¢- Weyl
algebra defined by the relation

DU —qUD = 1.

The corresponding theory of quantum dual graded graphs was pursued by Lam in [14].
In this paper, we shall study the theory arising from an analogue W of the Weyl
algebra with defining relation

DU —-UD =D +1.
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We shall refer to it as the Ore algebra [20], and we shall see that it is a very natural
object. In particular, the corresponding theory of dual filtered graphs fits naturally
with the existing body of work on the K-theory of Grassmannians.

REMARK 1.1. It is easy to see that by rescaling U and D, we can pass from arbitrary
DU —UD =aD + g to DU —-UD = D + I. We thus suffer no loss in generality by
writing down the relation in the latter form.

1.2. DIFFERENTIAL VS DIFFERENCE OPERATORS. The following provides some intu-
itive explanation for the relation between representations of Weyl and Ore algebras.
The simplest representation of the Weyl algebra is that acting on a polynomial ring.
Indeed, consider polynomial ring R = R[z], and for f € R let

of
U(f) = D(f)==—.
(f)=ef, D=5
It is an easy exercise to verify that this indeed produces a representation of the Weyl
algebra. In fact, this is how it is often defined.

Let us now redefine the down operator to be the difference operator:
U(f)=xf, D(f)=flx+1)— f(x).

LEMMA 1.2. This gives a representation of the Ore algebra W . In other words, those
operators satisfy
DU -UD=D+1,

where I is the identity map on R.
Proof. We have
(DU -UD)(f) = ((z+ ) f(x+1) —af(z) —2(f(z +1) - f(z))
=fle+1)=fl@)+ (flz+1) = f(x)) = I+ D)(f). O

It can also be noted that differential and difference operators can be related as
follows:
el
D =eds — 1.
We omit the easy proof for brevity. As we shall see in Example 7.10, this representation
of W corresponds to a very basic dual filtered graph.

1.3. PIERI AND MOBIUS CONSTRUCTIONS. We make use of two conceptual ways to
build examples of dual filtered graphs. The first construction starts with an algebra
A, a derivation d on A, and an element f € A such that d(f) = f + 1. We often build
the desired derivation d using a bialgebra structure on A. This construction is very
close to an existing one in the literature [1, 16, 19], where dual graded graphs are
constructed from graded Hopf algebras. In fact, if we were to require d(f) = 1, we
would get dual graded graphs instead of dual filtered graphs in our construction. We
refer to this method as the Pieri construction or sometimes as the Pieri deformation.

Instead, we can also start with an existing dual graded graph G = (P, p, E1, E») (see
definition below), composed of graphs G1 = (P, p, E1) and G, = (P, p, E2), and adjust
E; and FE5 in the following manner. To obtain G, we add #{z | y covers z in G}
loops at each vertex y € P to E;. As for G5, we create a new edge set E) by forming

ay(z,y) = [pu(z,y)]
edges between vertices x and y, where p denotes the Mobius function in Gy =
(P, p, E3). We refer to this construction as the Mébius construction or Mébius de-

formation. Note that this does not always produce a pair of dual filtered graphs, and
it is mysterious to determine when it does. In some major examples, however, it is
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the result of this construction that relates to Robinson—Schensted-like algorithms, for
example to Hecke insertion of [6].

The following observation seems remarkable, and we call it the Mdbius via Pieri
phenomenon. Let A be a graded Hopf algebra, and let bialgebra A be its K -theoretic
deformation in some appropriate sense, which we do not know how to formalize. Let G
be a natural dual graded graph associated with A. What we observe is that applying
the Mdbius construction to G yields the same result as a natural Pieri construction
applied to A. In other words, the following diagram commutes.

K deformation

A A

Pieri Pieri
construction construction

Moébius construction

G

Q2

This happens for Young’s lattice, see Section 4.5, and for the binary tree dual
graded graph, see Section 7.1. We expect this phenomenon to also occur for the
shifted Young’s lattice.

The crucial condition necessary for this phenomenon to be observed is for A to be
the associated graded algebra of A, but this is not always the case. For example, this
is not the case for K-theoretic analogues of the Poirier—Reutenauer and Malvenuto—
Reutenauer Hopf algebras, as described in Sections 7.2, 7.3. To put it simply, the
numbers of basis elements for the filtered components of A and A are distinct in
those cases, thus there is no hope to obtain corresponding graphs one from the other
via Mobius construction. Interestingly, those are exactly the examples we found where
the Mobius construction fails to produce a dual filtered graph.

1.4. SYNOPSIS OF THE PAPER. In Section 2, we recall the definition of dual graded
graphs from [10] as well as three major examples: Young’s lattice, Young-Fibonacci
lattice, and shifted Young’s lattice. We then remind the reader of the definition of the
Robinson—Schensted algorithm and how one can obtain it locally via the machinery
of growth diagrams, also introduced by Fomin in [10, 11].

In Section 3, we formulate our definition of dual filtered graphs. We then introduce
the trivial, Pieri, and Mobius constructions.

In Section 4, we build the Pieri and Mobius deformations of Young’s lattice. We
recall the definition of Hecke insertion and observe it is a map into a pair of paths
in the Mo6bius deformation of Young’s lattice. We provide growth rules that realize
Hecke insertion. We also show how the Pieri construction applied to the ring gener-
ated by Grothendieck polynomials yields the same result as the Md&bius construction
applied to Young’s lattice. Thus we demonstrate an instance of the Mébius via Pieri
phenomenon.

In Section 5, we build Pieri and Mébius deformations of the shifted Young’s lattice.
We introduce shifted Hecke insertion and remark that its result always coincides with
that of K-theoretic jeu de taquin rectification as defined in [8]. We also provide the
corresponding growth rules.

In Section 6, we build Pieri and Mo6bius deformations of the Young-Fibonacci lat-
tice. We define K-Young—Fibonacci tableaux and suggest the corresponding insertion
algorithm and growth rules.

In Section 7, we consider some other examples of dual filtered graphs. Of special
interest are the Pieri constructions associated to the quasisymmetric functions, to the
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Poirier—Reutenauer and Malvenuto—Reutenauer Hopf algebras, as well as to their K-
theoretic analogues, which we draw from [15, 21]. The Hopf algebra of quasisymmetric
functions and its K-theoretic analogue provide another instance of the Mobius via
Pieri phenomenon.

In Section 8, we use the calculus of up and down operators to prove some identities
similar to the ones known for dual graded graphs. In particular, we formulate and
prove a K-theoretic analogue of the Frobenius—Young identity.

2. DUAL GRADED GRAPHS

2.1. DUAL GRADED GRAPHS. This section follows [10], and we refer the reader to this
source for further reading on dual graded graphs.

A graded graph is a triple G = (P, p, E), where P is a discrete set of vertices,
p: P — Z is a rank function, and F is a multiset of edges/arcs (x,y), where p(y) =
p(x)+1. In other words, each vertex is assigned a rank, and edges can only join vertices
in successive ranks. For the set of vertices P, let P, denote the subset of vertices of
rank n. For any field K of characteristic zero, the formal linear combinations of vertices
of G form the vector space K P.

In future examples, the idea of inner corners and outer corners of certain configu-
rations of boxes or cells will be necessary. We will call a cell an inner corner if it can
be removed from the configuration and the resulting configuration is still valid. A cell
is an outer corner of a configuration if it can be added to the configuration, and the
resulting configuration is still valid.

EXAMPLE 2.1. Young’s lattice is an example of a graded graph where for any partition
A, p(A) = ||, and there is an edge from A to p if u can be obtained from A by adding
one box. Ranks zero through five are shown below. We see that (3,31) € E and
p(3)+1=3+1=p(31) =4.

E\E/?\@xixi/w\m/m
NN AN
NN
N
|

16}

If we look at the partition (4,4,2,1), visually represented below, we see that the
inner corners are in positions (2,4), (3,2), and (4,1), and the outer corners are in
positions (1,5), (3,3), (4,2), and (5,1).

Let Gy = (P, p, E1) and Gy = (P, p, E2) be a pair of graded graphs with a common
vertex set and rank function. From this pair, define an oriented graded graph G =
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(P, p, F1, E2) by orienting the edges of G in the direction of increasing rank and the
edges of G in the direction of decreasing rank. Let a;(z,y) denote the number of
edges of E; joining x and y or the multiplicity of edge (x,y) in F;. We define the up
and down operators U, D € End(K P) associated with graph G by

Uz = Zal(x,y)y
y

and

Dy =Y as(x,y)z.

For example, in Young’s lattice shown above, U(21) = 31+22+211 and D(21) = 2+11.

The restrictions of U and D to “homogeneous” subspaces K P, are denoted by U,
and D, respectively. Graded graphs G; and G5 with a common vertex set and rank
function are said to be r-dual if

Dpi1Up =Up 1Dy + 11,
for some r € R and simply dual if

DUy, =U,1Dy, + 1.
We focus on the latter.

EXAMPLE 2.2. Young’s lattice is an example of a self-dual graded graph.

ExXAMPLE 2.3. Another well-known example of a self-dual graded graph is the Young-
Fibonacci lattice, YF. The first six ranks are shown below. The vertices of the graph
are all finite words in the alphabet {1,2}, where the rank of a word is the sum of its
entries. The covering relations are as follows: a word w’ covers w if and only if either
w’ = 1w or w’' = 2v for some v covered by w. For example, the word 121 covers the
word 21 since 121 is obtained by concatenating 1 and 21, and 121 is covered by 221
because 121 covers 21. The words in the alphabet {1,2} are sometimes called snakes
and can be represented as a collection of boxes whose heights correspond to the entries
of the word called snakeshapes. For example, the word 122112 can be pictured as

l [

Thought of this way, the rank of a word is the number of boxes in its corresponding
snakeshape.

oH B JH b B Ao B oo

\m/g\\ %/gﬂ//\/

NSNS NS
55 s man
\B/ \m/

N/
\

Young’s lattice and the Young—Fibonacci lattice discussed above are the most in-
teresting examples of self-dual graded graphs. We close this section by describing the
graph of shifted shapes, SY, and its dual, which together form a dual graded graph.
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EXAMPLE 2.4. Given a strict partition A (i.e. A = (A > Ag > -+ > Ag)), the
corresponding shifted shape \ is an arrangement of cells in k rows where row i contains
A; cells and is indented ¢ — 1 spaces. For example, the strict partition (5,4,3,1)
corresponds to the shifted shape shown below.

l

We say that cells in row ¢ and column ¢ are diagonal cells and all other cells are
off-diagonal.

The graph of shifted shapes, SY, has shifted shapes as vertices, the rank function
counts the number of cells in a shape, and shifted shape A\ covers u if A is obtained
from p by adding one cell. The first six ranks of the graph SY are shown below on
the left. The graph shown on the right is its dual. In the dual graph, there is one edge
between A and p if A is obtained from p by adding a diagonal cell, and there are two
edges between A and p if A is obtained from p by adding an off-diagonal cell. To form
the dual graded graph, the edges of SY are oriented upward and those of its dual are
oriented downward.

| H EEEEN tH H EEEEE
N / \EB/ N/
e N S e N/
N N/

(mm| [mm}
| i
%] 6]

2.2. GROWTH RULES AS GENERALIZED RSK. There is a well-known combinatorial
correspondence between words in the alphabet of positive integers and pairs consisting
of a semistandard Young tableau and a standard Young tableau of the same shape
called the Robinson-Schensted-Knuth (RSK) correspondence. We briefly review the
correspondence here and refer the reader to [27] for more information.

Given a word w, the RSK correspondence maps w to a pair of tableaux via a
row insertion algorithm consisting of inserting a positive integer into a tableau. The
algorithm for inserting positive integer k into a row of a semistandard tableau is as
follows. If k is greater than or equal to all entries in the row, add a box labeled k to
the end of the row. Otherwise, find the first y in the row with y > k. Replace y with k
in this box, and proceed to insert y into the next row. To insert k£ into semistandard
tableau P, we start by inserting k into the first row of P. To create the insertion tableau
of a word w = wiws ... w,, we first insert w; into the empty tableau, insert wsy into
the result of the previous insertion, insert ws into the result of the previous insertion,
and so on until we have inserted all letters of w. We denote the resulting insertion
tableau by P(w). The insertion tableau will always be a semistandard tableau.

To obtain a standard Young tableau from w, we define the recording tableau, Q(w),
of w by labeling the box of P(w; ... ws)/P(w; ... ws_1) by s. For example, w = 14252
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has insertion and recording tableau shown below.

—
[\

P(w) = 2] Qw) =| 1] 2]4]

The RSK correspondence described above is a bijection between words consisting
of positive integers and pairs (P, Q), where P is a semistandard Young tableau and
@ is a standard Young tableau of the same shape.

If w = wyws ... wy is a permutation, we can also obtain (P(w),Q(w)) from w by
using growth diagrams. First, we create a k x k array with an X in the wfh square
from the bottom of column 4. For example, if w = 14253, we have

X

X

We will label the corners of each square with a partition. We begin by labeling all
corners along the bottom row and left side of the diagram with the empty shape, @.

To complete the labeling of the corners, suppose the corners u, A, and v are labeled,
where u, A, and v are as in the picture below. We label 7 according to the following
rules.

(L1) If the square does not contain an X and A = u = v, then v = \.

(L2) If the square does not contain an X and A C u = v, then p/)\ is one box in
some row ¢. In this case, v is obtained from p by adding one box in row ¢+ 1.

(L3) If the square does not contain an X and p # v, define vy = p U w.

(L4) If the square contains an X, then A = v = p and « is obtained from p by
adding one box in the first row.

Following these rules, there is a unique way to label the corners of the diagram. The
resulting array is called the growth diagram of w, and rules (L1)—(L4) are called growth
rules. For the remainder of this paper, we will use the word “square” when referring
to a square in the growth diagram and the word “box” or “cell” when referring to a
box in a partition, shifted partition, or snakeshape.

The chains of partitions read across the top of the diagram and up the right side
of the diagram determine Q(w) and P(w), respectively. To obtain a tableau of shape
A from a chain of partitions @ C A} € A2 C --- C A\¥ = ), label the box of \?/\i~1
by 1.
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ExAMPLE 2.5. The growth diagram for the word 14253 is shown below.

Q—_— Q88— ——Q

From the chains of partitions on the rightmost edge and uppermost edge of the dia-
gram, we can read the insertion tableau and recording tableau, respectively.

P(14253) = i 2[3] Q(14253) = 1]2]4]

We next draw a connection between the growth rules described and an explicit
cancellation in Young’s lattice that shows that DU — UD = I. We shall start by
giving explicit cancellation rules to pair all down-up paths from g to v with up-down
paths from p to v, which will leave one up-down path unpaired with g = v. (Note
that if p(u) # p(v), then there are no up-down or down-up paths from p to v.)

(C1) If u # v, there is only one down-up path from p to v, which passes through
pNv. Pair this with the only up-down path from p to v, which passes through
pUuv.

(C2) If u = v, then any down-up path can be represented by the inner corner
of u that is deleted in the downward step, and any up-down path can be
represented by the outer corner of p that is added in the upward step. Pair
each down-up path with the up-down path that adds the first outer corner of
1 strictly below the inner corner of the down-up path.

Now, the only up-down path that has not been paired with a down-up path is
the path corresponding to adding the outer corner of p in the first row. This gives
(DU -UD)u = p.

It is easy to see that this cancellation yields exactly the growth rules described
above. Cancellation rule (C1) determines growth rule (L3), cancellation rule (C2)
determines growth rule (L2), and the up-down path left unmatched determines growth
rule (L4). If we started with a different explicit cancellation, we could modify (L2),
(L3), and (L4) accordingly to obtain new growth rules. Note that growth rule (L1)
is simply a way to transfer information and will remain the same for any explicit
cancellation.

EXAMPLE 2.6. Starting with u = (3, 1), cancellation rule (C2) says that the down-up
path from p to itself passing through (2,1) is paired with the up-down pathpassing
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through (3,2). The corresponding growth rule in this situation, (L4), is illustrated on
the right.

32 31 — 32
|
31
|
21 21 —31

3. DUAL FILTERED GRAPHS

3.1. THE DEFINITION. A weak filtered graph is a triple G = (P, p, E'), where P is a
discrete set of vertices, p : P — Z is a rank function, and E is a multiset of edges/arcs
(z,y), where p(y) > p(x). A strict filtered graph is a triple G = (P, p, ), where P is a
discrete set of vertices, p : P — Z is a rank function, and E is a multiset of edges/arcs
(z,y), where p(y) > p(x). Let P, as before denote the subset of vertices of rank n.

Let Gy = (P, p, E1) and G2 = (P, p, E3) be a pair of filtered graphs with a common
vertex set, G; weak while G5 strict. From this pair, define an oriented filtered graph
G = (P, p, E1, E5) by orienting the edges of G; in the positive filtration direction and
the edges of Gz in the negative filtration direction. Recall that a;(x,y) denotes the
number of edges of E; joining x and y or the multiplicity of edge (z,y) in F;. Using
the up and down operators associated with graph G as previously defined, we say that
G1 and G are dual filtered graphs if for any x € G,

(DU —UD)x = ax + SDx

for some a, 8 € R. We focus on examples where DU —UD = D + I, see Remark 1.1.
In the next sections, we describe three constructions of dual filtered graphs.

3.2. TRIVIAL CONSTRUCTION. Every dual graded graph has an easy deformation that
makes it a dual filtered graph. To construct it, simply add p(z) “upward” loops to
each element = of the dual graded graph, where p is the rank function. We will call
this the trivial construction.

THEOREM 3.1. For any dual graded graph G, the trivial construction gives a dual
filtered graph G'.

Proof. Tt suffices to show that if ¢ covers p in Gs, then [p|(DU — UD)(q) = [p]D(q),
where [p|(DU — UD)(q) and [p]D(q) denote the coefficient of p in the linear com-
bination (DU — UD)(q) and (D)(q), respectively. If we restrict to all paths that do
not contain a loop, the coefficient of p in (DU — UD)(q) is 0 since without loops, we
have a dual graded graph. Hence we may restrict our attention to up-down paths and
down-up paths that contain a loop. The up-down paths beginning at ¢ and ending
at p are exactly the paths consisting of a loop at ¢ followed by an edge from ¢ to p.
There are p(q)e(q¢ — p) such paths, where e(¢ — p) denotes the number of directed
edges from ¢ to p in G. The down-up paths containing a loop are the paths consisting
of an edge from ¢ to p followed by a loop at p. There are e(¢ — p)p(p) such paths.
Thus

[p|(DU —UD)(q) = e(q — p)(p(q) — p(p)) = e(q — p) = [p|D(q). O
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ExAMPLE 3.2. The trivial construction for the first four ranks of Young’s lattice is
shown below. The edges in the graph on the left are oriented upward, and the edges
in the graph on the right are oriented downward.

A A A
H B mun H an mam
\Q/ \D@/ \B/ \m/
\Q/ \D/
| |

%] 1]

3.3. P1ERI CONSTRUCTION. The following construction is close to the one for dual
graded graphs described in the works of Bergeron—Lam-Li [1], Nzeutchap [19], and
Lam-Shimozono [16].
Let
A= A

>0
be a filtered, commutative algebra over a field F with Ay = F and a linear basis
ax € Ajy. Here, the \’s belong to some infinite indexing set P, each graded component
of which
P ={X[IA =i}
is finite. The property of being filtered means that axa, = > ¢ a,, where ||+ |p| <
[v].

Let f=fi+fo+- - € A be an element of the completion A of A such that
fi € A;. Assume d € End(A) is a derivation on A satisfying d(f) = f+ 1 and
d(ax) € Docigia Ai-

To form a graph, we define F; by defining aj(\, p) to be the coefficient of
ay in d(a,). We also define E5 by defining as (A, 1) to be the coefficient of a,, in ay f.
We assume here that a;(\, ) are non-negative integers.

THEOREM 3.3. The resulting graph is a dual filtered graph.

Proof. Tt follows from
d(fax) = d(f)ax + fd(ar),
or
d(fa)\) —fd(a)\) :aA—l—d(a)\). O

Assume A; is one-dimensional, and let g be its generator. We shall often find
a derivation d from a bialgebra structure on A. Indeed, assume A is a coproduct
on A such that A(a) = 1®a+a® 1+ -+, where the rest of the terms lie in
(A1 040 )@ (A1 ® Ay @ ---). Assume also £ is a map A ® A — A such that
&(p® g) = p and for any element g € A;, i # 1, we have (p ® q) = 0.

LEMMA 3.4. The map D(a) = £(A(a)) is a derivation.

Proof. We have £(A(ab)) = £(A(a)A(D))). Pick a linear basis for A that contains 1
and g. Express A(a) and A(b) so that the right side of tensors consists of the basis
elements. The only terms that are not killed by £ are the ones of the form p ® g. The
only way we can get such terms is from (p; ® 1) - (p2 ® g) or (p1 ® g) - (p2 ® 1). Those
are exactly the terms that contribute to

§(A(a) -0+ a-E(A(D)). 0

Algebraic Combinatorics, Vol. 1 #4 (2018) 451



R. PATRIAS & P. PYLYAVKSYY

3.4. MOBIUS CONSTRUCTION. Let G = (P, p, E1, E5) be a dual graded graph. From
G, form a pair of filtered graphs as follows. Let G} = (P, p, E1) have the set of edges
E;{ consisting of the same edges as E; plus #{z | y covers z in G1} loops at each
vertex y € P. Let G4 = (P, p, F) have the set of edges E, consisting of

as(2,y) = [z, )|

edges between vertices x and y, where p denotes the Mobius function in (P, p, Es).
Compose G and G into an oriented filtered graph G.

As we shall see, in all three of our major examples, the Mobius deformation forms
a dual filtered graph. Unlike with the Pieri construction, we do not have the algebraic
machinery explaining why the construction yields dual filtered graphs. Instead, we
provide the proofs on a case-by-case basis. Nevertheless, the Mobius construction is
the most important one, as it is this construction that relates to insertion algorithms
and thus to K-theory of Grassmannians.

It is not the case that every dual graded graph’s Mobius deformation makes it a
dual filtered graph. For example, it is easy to see that the Moébius deformation of the
graphs in Example 7.7 and Example 7.4 are not dual filtered graphs.

PROBLEM 3.5. Determine for which dual graded graphs G the Mébius construction G
yields a dual filtered graph.

4. MAJOR EXAMPLES: YOUNG’S LATTICE

4.1. PIERI DEFORMATIONS OF YOUNG’S LATTICE. Let A = A be the ring of symmet-
ric functions. Let sy, px, and h) be its bases of Schur functions, power sum symmetric
functions, and complete homogeneous symmetric functions. Let

f=hi+hy+---.

Define up and down edges of a filtered graph G = (P, p, E1, E5) by letting a;(u,v) be
the coefficient of s, in p1s,, and as(p, v) be the coefficient of s, in fs,.

Recall that given two partitions, u and v, u/v forms a horizontal strip if no two
boxes of /v lie in the same column. For example, (4,2,1)/(2,1) forms a horizontal
strip while (4,3,1)/(2,1) does not.

1] |
L] L]

LEMMA 4.1. The up edges E coincide with those of Young’s lattice, while the down
edges FEo connect shapes that differ by a horizontal strip.

Proof. The statement follows from the Pieri rule and the fact that p; = hq,
see [27]. O
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In the figure below, the first six ranks are shown. The edges in the graph on the left
are upward-oriented, and the edges on the graph on the right are downward-oriented.

i F 8 g7 oo P B e oo
NSNS NS NN N
27w = K
\B/\m/ \B/ m/
\D/ \D/
| |

THEOREM 4.2. The Pieri deformation of Young’s lattice is a dual filtered graph with
DU-UD=D+1.
Recall the following facts regarding the ring of symmetric functions.

THEOREM 4.3 ([27, 18]).

(a) A is a free polynomial ring in p1,pa,....
(b) A can be endowed with a standard bilinear inner product determined by
(s, 8u) = Oxp-

Because of the first property, we can differentiate elements of A with respect to p;
by expressing them first as a polynomial in the p;’s. We shall need the following two
properties of f and p;.

LEMMA 4.4.
(a) For any h,g € A we have

d
(b) We have

d
—f=f+1
dplf f

Proof. By bilinearity, it suffices to prove the first claim for g, h in some basis of A.
Let us choose the power sum basis. Then we want to argue that

( ) = a
Px,P1Pu) = dplp)wp# .

This follows from the fact that py’s form an orthogonal basis and [27, Proposi-
tion 7.9.3].
For the second claim, using [27, Proposition 7.7.4] we have

N N R
1+ f=elrtm2m ]

which of course implies dd?(l +f)=1+f. O

Now we are ready for the proof of Theorem 4.2.
Proof. Applying Lemma 4.4 we see that A = A, a) = s),d = % and f = hi+ho+---

satisfy the conditions of Theorem 3.3. The claim follows. O
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REMARK 4.5. We can make a similar argument for the analogous construction where
the edges in F; are again those of Young’s lattice and the edges in F5 connect shapes
that differ by a vertical strip. In this case we use f = e; +es + -+ -, where the e; are
the elementary symmetric functions.

4.2. MOBIUS DEFORMATION OF YOUNG’S LATTICE. Given two partitions, A and v,
/v forms a rook strip if no two boxes of \/v lie in the same row and no two boxes of
A/v lie in the same column. In other words, A/v is a rook strip if it is a disconnected
union of boxes. We state the following well-known result about the Mobius function
on Young’s lattice.

PROPOSITION 4.6. We have

1 if A/v is a rook strip;
lu(Av)| = .
0 otherwise.

Proof. The statement follows from the fact that Young’s lattice is a distributive lat-
tice, and the interval [\, u] is isomorphic to a Boolean algebra if and only if u/\ is a
rook strip. See [28, Example 3.9.6]. O

The Mobius deformation of Young’s lattice is shown below with upward-oriented
edges shown on the left and downward-oriented edges shown on the right. Notice that
loops at a partition A may be indexed by inner corners of .

) AN @
NN
\g/ \‘/ \O/ \ﬁ/ \EE/ \zm/

\ﬂ/ @\O/ \B/ NP4

m

No” N

O

1] %]

H ER== =

THEOREM 4.7. The Mébius deformation of Young’s lattice forms a dual filtered graph
with
DU-UD=D+1.

Proof. 1t suffices to show that [A(DU — UD)u = [A\|Du when p covers A in Go since
we started with a dual graded graph.

Suppose shape A is covered by shape p. Each inner corner of p contributes one to
the coefficient of A in DUy via taking the loop corresponding to that inner corner of
w1 as an upward move and then going down to .

Next, consider shape p and mark the outer corners of A contained in p. The
marked boxes will be inner corners of p. The shapes with an upward arrow from
u and a downward arrow to A are exactly those obtained by adding one box to
an outer corner of u which is not adjacent to one of the marked boxes. There are
#{outer corners of A} — |u/A| possible places to add such a box. Thus the coefficient
of AMin DUy is

#{inner corners of u} + #{outer corners of A} — |u/\|.
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For down-up paths that involve three shapes, consider the inner corners of p that
are also inner corners of \. Every shape obtained by removing one of these inner cor-
ners determines one down-up path from p to A, and there are #{inner corners of p}—
|2/ A such shapes. The remaining down-up paths are given by going from g to A and
then taking a loop at A. Hence the coeflicient of A in UDy is

#{inner corners of u} — |u/A| + #{inner corners of \}.

Since all shapes have one more outer corner than inner corner, the coefficient of A in
(DU —-UD)u is 1. O

4.3. HECKE INSERTION. We next describe an insertion and reverse insertion proce-
dure that correspond to the Mobius deformation of Young’s lattice in the same way
that RSK corresponds to Young’s lattice, which is called Hecke insertion [6]. In other
words, if we insert a word w of length n using Hecke insertion, the construction of the
insertion tableau will be represented as a path of length n downward that ends at &
in the M6bius deformation of Young’s lattice, and the construction of the recording
tableau is represented as a path of length n upward starting at @. We illustrate this
in Example 4.15 after introducing the necessary definitions.

An increasing tableau is a filling of a Young diagram with positive integers such
that the entries in rows are strictly increasing from left to right and the entries in
columns are strictly increasing from top to bottom.

ExXAMPLE 4.8. The tableau shown on the left is an increasing tableau. The tableau
on the right is not an increasing tableau because the entries in the first row are not
strictly increasing.

2 2|4\

(S
~J
EEE

’OO@[\DD—‘

We follow [6] to give a description of Hecke (row) insertion of a positive integer
r into an increasing tableau Y resulting in an increasing tableau Z. The shape of
Z is obtained from the shape of Y by adding at most one box. If a box is added in
position (i, j), then we set ¢ = (7, j). In the case where no box is added, then ¢ = (3, j),
where (4, j) is a special corner indicating where the insertion process terminated. We
will use a parameter « € {0,1} to keep track of whether or not a box is added to Y
after inserting = by setting « = 0if c€ Y and o = 1 if ¢ ¢ Y. We use the notation

Z = (Y&x) to denote the resulting tableau, and we denote the outcome of the
insertion by (Z, ¢, a).

We now describe how to insert z into increasing tableau Y by describing how to
insert = into R, a row of Y. This insertion may modify the row and may produce an
output integer, which we will insert into the next row. To begin the insertion process,
insert x into the first row of Y. The process stops when there is no output integer.
The rules for insertion of x into R are as follows:

(H1) If x is weakly larger than all integers in R and adjoining = to the end of row
R results in an increasing tableau, then Z is the resulting tableau and c is the
new corner where x was added.

(H2) If 2 is weakly larger than all integers in R and adjoining x to the end of row
R does not result in an increasing tableau, then Z = Y, and c is the box at
the bottom of the column of Z containing the rightmost box of the row R.
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For the next two rules, assume R contains boxes strictly larger than x, and let y be
the smallest such box.

(H3) If replacing y with z results in an increasing tableau, then replace y with x.
In this case, y is the output integer to be inserted into the next row

(H4) If replacing y with a does not result in an increasing tableau, then do not
change row R. In this case, y is the output integer to be inserted into the
next row.

EXAMPLE 4.9.

A3 =

\1|G§l\3»—
\1|03[\3H

We use rule (H4) in the first row to obtain output integer 5. Notice that the 5 cannot
replace the 6 in the second row since it would be directly below the 5 in the first row.
Thus we use (H4) again and get output integer 6. Since we cannot add this 6 to the
end of the third row, we use (H2) and get ¢ = (4,1). Notice that the shape did not
change in this insertion, so a = 0.

EXAMPLE 4.10.

6
8

s =

(2]
3

~N| W l\.’)‘
| o »Jk‘
oo

7

The integer 5 bumps the 6 from the first row using (H3). The 6 is inserted into the
second row, which already contains a 6. Using (H4), the second row remains unchanged
and we insert 8 into the third row. Since 8 is larger than everything in the third row,
we use (H1) to adjoin it to the end of the row. Thus o = 1.

Using this insertion algorithm, we define the Hecke insertion tableau of a word
w = wiWs ...Ww, to be

Py(w) = (... (7 <= wy) & wy) . ) & .

In [6], Buch, Kresch, Shimozono, Tamvakis, and Yong give the following algorithm
for reverse Hecke insertion starting with the triple (Z, ¢, «) as described above and
ending with a pair (Y, z) consisting of an increasing tableau and a positive integer.

(rH1) If y is the cell in square ¢ of Z and a = 1, then remove y and reverse insert
y into the row above.
(rH2) If o = 0, do not remove y, but still reverse insert it into the row above.

Let = be the largest integer in the row above square ¢ (if such a row exists) such that
T <y.
(rH3) If replacing = with y results in an increasing tableau, then we replace  with
y and reverse insert x into the row above.
(rH4) If replacing x with y does not result in an increasing tableau, leave the row
unchanged and reverse insert = into the row above.
(rH5) If there is no row above in (rH4), the final output consists of x and the
modified tableau.

THEOREM 4.11 ([6, Theorem 4]). Hecke insertion (Y, z) — (Z, ¢, ) and reverse Hecke
insertion (Z,c,a) — (Y, x) define mutually inverse bijections between the set of pairs
consisting of an increasing tableau and a positive integer and the set of triples consist-
ing of an increasing tableau, a corner cell of the increasing tableau, and o € {0,1}.
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We next describe the tableaux that will act as recording tableau for Hecke insertion.
A set-valued tableau T of shape ) is a filling of the boxes with finite, non-empty
subsets of positive integers so that

(1) the smallest number in each box is greater than or equal to the largest number
in the box directly to the left of it (if that box is present), and

(2) the smallest number in each box is strictly greater than the largest number
in the box directly above it (if that box is present).

We call a set-valued tableau standard if it contains exactly the integers [n] for
some n.

Given a word w = wyws . . . w;, we can associate a pair of tableaux (Py(w), Qg (w)),
where Pp(w) is the Hecke insertion tableau described previously and Qp(w) is a
standard set-valued tableau called the Hecke recording tableau obtained as follows.
Start with Qp (&) = @. At each step of the insertion of w, let Qg (wy ... wy) be
obtained from Qg (w; ...wk—1) by labeling the special corner, ¢, in the insertion of
wy into Py (wy ... wg—1) with the positive integer k. Then Qg (w) = Qu(wrws ... w;)
is the resulting standard set-valued tableau.

EXAMPLE 4.12. Let w be 15133. We obtain (Py(w), Qu(w)) with the following se-
quence, where in column &, Qg (w; ... wy) is shown below Py (w; ... wg).

N T 0 2 Y 2 R B ) e
19 9] 9]

[1]2] 1]2] 1]2] 125‘:621{(10)
B B B

Call a word w 4nitial if the letters appearing in it are exactly the numbers in [k]
for some positive integer k. For example, the word 13422 is initial since the letters
appearing in it are the numbers from 1 to 4. On the other hand, the word 1422 is not
initial because the letters appearing in it are 1, 2, and 4 and do not form a set [k]
for any k. Similarly, call an increasing tableau initial if the entries appearing in it are
exactly the numbers in [k] for some positive integer k.

As with RSK, Hecke insertion gives a useful bijection.

THEOREM 4.13 ([21]). The map sending w = wiws ...w, to (Pg(w),Qu(w)) is a
bijection between words and ordered pairs of tableaux of the same shape (P, Q), where
P is an increasing tableau and Q is a set-valued tableau with entries {1,2,...,n}. It
18 also a bijection if there is an extra condition of being initial imposed both on w
and P.

REMARK 4.14. Hecke insertion is closely related to the K-theoretic jeu de taquin
algorithm introduced in [29]. This relationship is explored in [7, 31]

ExaMPLE 4.15. We may now see the correspondence between initial increasing
tableaux and walks in G; and between standard set-valued tableaux and walks in Go
in an example. The thickened walks in the graphs correspond to the tableaux below,
where we assign the lower loop on partition 21 to the corner in row 2. Suppose the
walk in G5 has includes n edges. The ith step upward from @ in G; tells us the
location of ¢ in the set-valued tableau, and the jth step downward from the top shape
of the walk in G tells us the location(s) of n — j 4+ 1 in the increasing tableau.

112 112
34|56 2
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Notice that if the path on the left contains no loops and the path on the right contains
to edges between shapes differing in size by more than one box, i.e., both are paths
in Young’s lattice, the correspondence yields a pair of standard Young tableaux.

4.4. HECKE GROWTH AND DECAY. Given any word, h = hihs ... h; containing n < k
distinct numbers, we can create an n x k array with an X in the ht" square from the
bottom of column 4. Note that there can be multiple X’s in the same row but is at
most one X per column. For example, if h = 121331, we have the array below.

X | X

X X X

We will label each of the four corners of each square with a partition and some of
the horizontal edges of the squares with a specific inner corner of the partition on the
left vertex of the edge, which will indicate the box where the insertion terminates. We
do this by recording the row of the inner corner at which the insertion terminates.
We begin by labeling all corners along the bottom row and left side of the diagram
with the partition &.

To complete the labeling of the corners, suppose the corners p, A, and v are labeled,
where u, A, and v are as in the picture below. We label 7 according to the following

rules.
b7
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e If the square contains an X:

(1) If py = vq, then 7/ consists of one box in row 1.

(2) If py # v1, then v = p and the edge between them is labeled by the row
of the highest inner corner of pu.

o If the square does not contain an X and if either p = X or v = X with no label

between A\ and v:

(3) If w= A, then set y=v. If v = A, then v = p.

o [f the square does not contain an X, does not satisfy the conditions of previous

bullet point, and if v € p:

(4) In the case where v € p, v = v U p.

e [f the square does not contain an X, does not satisfy the conditions of second

bullet point, and if v C p:

(5) If v/ is one box in row ¢ and p/v has no boxes in row ¢ + 1, then v/u
is one box in row ¢ + 1.

(6) If v/X is one box in row ¢ and p/v has a box in row i + 1, then v = p
and the edge between then is labeled 7 + 1.

(7) If v = A, the edge between them is labeled i, and there are no boxes of
w/v immediately to the right or immediately below the inner corner of
v in row ¢, then v = p with the edge between them labeled .

(8) If v = A, the edge between them is labeled 4, and there is a box of p/v
directly below the inner corner of v in row i, then v = p with the edge
between them labeled 7 + 1.

(9) If v = A, the edge between them is labeled 4, and there is a box of /v
immediately to the right of the inner corner of v in row ¢ but no box of
p/v in row i 4+ 1, then «/p is one box in row ¢ + 1.

(10) If v = A, the edge between them is labeled i, and there is a box of /v
immediately to the right of the inner corner of v in row ¢ and a box of
w/v in row i + 1, then v = p with the edge between them labeled i + 1.

The four bullet points clearly cover all possibilities, and it is easy to check that the
options below each cover all subcases of that bullet point.

We call the resulting array the Hecke growth diagram of h. In our previous example
with h = 121331, we would have the diagram below.

g —1—2—21 —31 31231
L] Ixlx] ]
g —1—2—21 —21 —21 =21
olx
g—1—1——1—1—1—1
x| x| x|
S —F— I — I —F—F—

Let pg = @ C 1 C ... pug be the sequence of partitions across the top of the Hecke
growth diagram, and let vy = @ C v; C ..., be the sequence of partitions on the
right side of the Hecke growth diagram. The sequence across the top corresponds to
a standard set-valued tableau Q(h) and the sequence on the right corresponds to an
increasing tableau P(h). If the edge between p; and p;41 is labeled j, then p; = piy1,
and the label ¢ + 1 of Q(hy...h;41) is placed in the box at the end of row j of
Q(hy ... h;). Also note that if p; = p;t+1, the edge between them will have a label.
This is because there is an X somewhere in the corresponding column, and it follows
that growth rule (3) will not be applied to obtain p;41. For the array above, we have
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the following P(h) and Q(h).

Py | ! 2[3] Q) = 1 2 [45]
2 £l

THEOREM 4.16. For any word h, the increasing tableau P(h) and set-valued tableau
Q(h) obtained from the sequence of partitions across the right side of the Hecke growth
diagram for h and across the top of the Hecke growth diagram for h, respectively, are
Py (h) and Qg (h), the Hecke insertion and recording tableau for h.

Proof. We first prove two necessary facts.
CLAIM 4.17. Oriented as in the square above, |v/A| < 1.

Proof of Claim 4.17. By the induction hypothesis, A is the recording tableau after
inserting the numbers in columns 1 through s — 1, and v is the insertion tableau after
inserting the number in column s. Since we are only inserting one number, |v/)| is at
most 1.

CLAIM 4.18. Oriented as in the square above, u/\ is a rook strip, that is, no two boxes
in u/X\ are in the same row or column.

Proof of Claim 4.18. By induction, u/\ represents the positions of boxes filled with
t at some point in the insertion. Since insertion results in an increasing tableau, p/A
must be a rook strip. O

We use the notation of Theorem 7.13.5 of [27]. Let (4, j) denote the partition in
row 7 and column j, where rows are numbered from bottom to top and columns from
left to right. For fixed j, we have

where |y(4,7)/v(i — 1,7)| =2 0. Let T(i, j) be the tableau of shape (i, j) obtained by
inserting k into v(k, j)/~v(k — 1,7) when 0 < k < ¢ and |y(k,j)/~v(k —1,5)| > 0.
Similarly, for fixed ¢, we have
2 =7(i,0) S(i,1) S -+ S (i n),
where |(4,7)/7(i,j—1)| = 0 or 1. Let R(i, ) be the set-valued tableau of shape (i, 5)
obtained by inserting k into y(i,k)/v(i,k — 1) when 0 < k < j and |y(k,j)/~v(k —
1,7)] = 1 and by inserting k into the rightmost cell in row i of (i, k) when 0 < k < j

and |y(k, j)/v(k—1,j)| = 0 with the edge between them having label i. For example,
in the growth diagram for h = 121331 shown above, we have the tableaux below.

7(1,3) =1 7(2,3) = 7(3,3) = L] 2]

2
R(2,1) _[1] R(2,2) = R2.3) = R(2.4) = R2.5) = | 1| 2]
3
R,6) | 12]
36

We will prove that T'(4, j) and R(i, j) can also be defined as follows. Suppose the X’s
to the left of and below T'(4, j) are in positions (i1,71), - . -, (ig, jr) With j; < -+ < ji.
Then

T(i,5) = (& <= i) Edg) 1 gy
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and R(i,j) is a recording tableau for this insertion using entries ji, ..., ji. We prove
this fact by induction on i + j. We do it simultaneously for both T'(¢,5) and R(i, j)
but focus on T'(4, 7). The claim is clearly true when ¢ =0 or j = 0.

Consider now some T'(t, s) for t,s > 0. By the induction hypothesis, T'(t — 1, s),

T(t,s —

1), and T(t — 1,s — 1) satisfy the desired conditions. We next check that

T'(t, s) satisfies the conditions.We will denote the shape of T'(t — 1, s) by v,the shape
of T'(t,s — 1) by u, the shape of T'(t —1,s — 1) by A, and the shape of T'(¢, s) by ~y to
match the description of the growth rules.

(1)

Since our square contains an X, there is no other X in the same column. It
follows that A = v. Also, the X in the square we are considering corresponds
to inserting a t into T'(t,s — 1). Since, by the induction hypothesis, shapes
along columns represent the insertion tableaux, g1 = v; = A1 means that
before adding the ¢, there are no t’s in the first row of T'(t,s — 1). Since ¢ is
weakly the largest number inserted to this point, inserting the t will result in
a t being added to the first row of T'(t,s — 1). Thus v = (u1 + 1, 2, pi3, - . . ).
If 41 # v1 = Aq, then there is a ¢ at the end of the first row of T'(t,s — 1). It
follows that inserting another ¢ will result in this ¢ merging with the ¢ at the
end of the first row, and the special corner in this case becomes the bottom
box of the last column, or in other words, the highest inner corner of p.
If 4 = X\ and there is no X in our square, then there is no X in row ¢ in
columns 1 to s. Thus there is no ¢ to add to T'(t — 1, s) to obtain T'(¢, s), and
so v = . Similarly for the case where v = A.
Suppose that v/ is one box in row ¢ and p/\ is a rook strip containing boxes
in rows ji, ja,...,jk. Then v ¢ p implies that ¢ & {j1,j2,...,jk}. Since /A
is one box, the last action in the insertion sequence of r into T'(t—1,s—1) is a
box being added in row 4, where r is the row index of the X in column s. (We
will continue to denote this row index by r for the rest of the proof.) Since
there is not a t in row ¢ of T'(¢,s — 1), the bumping sequence when inserting
r into T'(t,s — 1) will not disturb the ¢’s.
Suppose v is A plus one box in position (7, j). Then since v C p, u/A contains
the box at (4, 7), and so there is a t in position (4, j) of T'(t,s — 1). It follows
that inserting r into T'(¢,s — 1) will result in bumping the ¢ in position (3, j)
since the bumping path of r inserted into T'(t — 1, s — 1) ends by adding a box
t (4, 7). Since there is no box in row i 4+ 1 of u/A, everything in row ¢ + 1 of
T(t,s — 1) is strictly less than ¢. It follows that the ¢ bumped from (i, j) can
be added to the end of row i + 1.
This is almost identical to the proof of Rule (4). Since there is now a box in
row i+ 1 of u/A, there is a ¢ at the end of row i+ 1 of T'(t,s — 1). Inserting r
will bump the ¢ in row ¢ as above, but now the ¢ will merge with the ¢ in row
14 1. Thus the special corner is now at the inner corner of y in row i + 1.
There are two ways that inserting r into T'(t, s—1) will involve the ¢’s. Assume
the edge between v and A is labeled ¢, and the inner corner of v in row 7 is in
column j. Assume rows k through i all have length j in v for some k < 3.

CASE 1. A box containing some y > r was bumped from row k—1 of T'(¢,s—1)
or inserted into T'(¢,s — 1) if k = 1, merged with itself in row k, and there
was a t to the right of the y in row k. Note that k& # i. Then the y duplicates
and bumps the ¢ in row k of T'(t,s — 1), but this ¢ cannot be added to row
k41 as it would be directly below the original ¢. Thus, by the rules of Hecke
insertion, the special corner is the box at the bottom of column j, box (i, 7).
See the left-hand figure below where the dot indicates the box (i, 7).
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CASE 2. Consider the situation in the right-hand figure below where the dot
indicates the box (4, j). Assume that during the insertion of r into T'(¢,s — 1),
some number merged with itself to the left of z in row k—1 and z is duplicated
bumped to the next row. Following the rules of Hecke insertion, z bumps the
t in row k, but as it cannot replace the ¢, the ¢ remains at the end of row k.
The t that was bumped cannot be added to end of row k+ 1, so no new boxes
are created in the insertion and the special corner is the box at the bottom
of column j, box (i, j).

Y]] t

(8) There are three ways that inserting r into T'(t,s — 1) will involve the t’s.
Assume the edge between v and A is labeled ¢, and the inner corner of v in
row ¢ is in column j. Assume rows k through ¢ all have length j in v.

CASE 1. If there is a ¢ in square (4,5 + 1), we are in the situation described
by Rule (9).

Cases 2 and 3 are described in the proof of Rule (7). The difference is that
the bottom of column j after we insert r is now the box (i + 1,j), so the
special corner in each case will be (i + 1, ), as desired.

nn t

0 i

(9) Note that an edge label of i between A and v with a box of /v in row 4
implies that ;1 > v; > v;11. There are two ways the special corner of the
insertion of r into the T'(t — 1,s — 1) could have been (i, j).

CASE 1. Some y was bumped from row ¢ — 1 and merged with itself in box
(4,7). Since there is a t to the right of box (4,j) in T(¢,s — 1), this will
result in duplicating and bumping ¢. Since there is nothing in row ¢ + 1 of
w/v, everything in row ¢ + 1 of T'(¢, s — 1) is strictly less than t. Hence the ¢
bumped from row ¢ of T'(t,s — 1) can be added to the end of row ¢ + 1.

CASE 2. As in the figure below, z was duplicated and bumped from box
(i—1,j+1). This z cannot replace the ¢ in box (¢,j + 1) of T'(¢, s — 1) since it
would be directly below the original z, but it bumps the ¢ to row i + 1. Since
there is nothing in row i + 1 of p/v, everything in row i + 1 of T'(¢,s — 1) is
strictly less than ¢. Hence the ¢ bumped from row ¢ can be added to the end
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of row ¢ + 1 of T(t,s — 1) to obtain T'(t, s).

©

(10) This is similar to the situation described in the proof of Rule 9. The difference
is that a box in row ¢+ 1 of u/v means there is already a t at the end of row
i+1of T'(t,s—1), so each insertion will end with the bumped ¢ merging with
itself at the end of row ¢ 4 1.

O

4.5. MOBI1US VIA PIERI. The following shows that we have an instance of the M6bius
via Pieri phenomenon in the case of Young’s lattice. Namely, the Mobius deforma-
tion of Young’s lattice is obtained by the Pieri construction from an appropriate
K-theoretic deformation of the underlying Hopf algebra.

Let A be the subring of the completion A of the ring of symmetric functions with
basis {G,}, the stable Grothendieck polynomials. For details, see [5, 15]. Define the
signless stable Grothendieck polynomials Gx by omitting the sign. Note that these
coincide with the K defined in [15]. The structure constants will coincide with those
of the stable Grothendieck polynomials up to sign. We recall these structure constants
here.

Let S, be the superstandard tableau of shape pu, that is, the first row of S is
filled with 1,2,..., u1, the second row with py + 1,mq + 2,..., 1 + pe, etc. Given
an increasing tableau R, let row(R) denote the row word of R: the word obtained by
reading the entries of R left to right across rows from the bottom row to the top row.
This space has a bialgebra product structure given by

Gy =Y &,
where ¢, is the number of increasing tableaux R of skew shape v/A such that
Py (row(R)) = S,. The coproduct structure is given by
AGy) =D d{,Gr®G,,
A1

where df , is the number of increasing tableaux R of skew shape A & p such that
Py (row(R)) = Sy, see [7, 21, 30]. Here A @ i denotes the skew shape obtained by
joining the rightmost top corner of A to the leftmost bottom corner of p. For example,

(2,1)®(2,2) = (4,4,2,1)/(2,2) is shown below.

We consider the following Pieri construction in A. Let g = G1, and define an

operator d by d(G,) = £(A(G,)). We define a graph G, where elements are partitions,
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a1 (11, \) is the coefficient of G, in d(G'), and aa(p, A) is the coefficient of Gy in G, G.
Here, our element f = fi + fo 4 --- € A is Gy.

PRrROPOSITION 4.19. The resulting graph coincides with the one obtained via Mobius
construction in Section 4.2.

F B g DIDE
N NN PN
F mun|
NN NN
S N
‘ O

) |

Proof. To verify this claim, we first show why the coefficient of G, in G\G is 1 if v /A
is a rook strip and is 0 otherwise. This follows from that fact that the only words that
Hecke insert into S; are words consisting only of the letter 1. Thus, row(R) = 11...1
for any R contributing to ¢5 ;- Increasing tableaux of shape v/ with row word 11...1
are precisely rook strips.

Secondly, it must be true that d§,1 is the number of inner corners of A and if v # A,
d5 ; is 1 if v is obtained from A by adding one box and 0 otherwise. Suppose v # A
and consider all skew tableaux R of shape A @ 1 such that Py(row(R)) = S,. To
obtain such A, simply reverse insert an entry of S, with = 1 and use the output
integer to fill the single box in A & 1. The resulting shapes are the shapes obtained
from v by deleting one inner corner of v. Similarly, if v = A, we reverse insert each
inner corner of Sy using @ = 0 and then let R be S\ & x, where x is the result of the
reverse insertion. g

5. MAJOR EXAMPLES: SHIFTED YOUNG’S LATTICE

5.1. PIERI DEFORMATION OF SHIFTED YOUNG’S LATTICE. Let A = A’ be the subring
of the ring of symmetric functions generated by the odd power sums p1, ps, . ... Let Qx
and Py be the bases of Schur () and Schur P functions for this ring. Here X varies over
the set of partitions with distinct parts. We refer the reader to [18] for background.

Let ¢; be defined by
=Y ehij

0<y<e
andlet f=q¢ +q2+---.

Define up and down edges of the Pieri deformation of shifted Young’s lattice G =
(P, p, E1, E3) by letting as(p, ) be the coefficient of @, in fQ, and a;(u,v) be the
coefficient of P, in p1 P, .

We will fill a shifted partition A with ordered alphabet 1’ <1 <2 <2< 3 <3...
according to the usual rules:

e the filling must be weakly increasing in rows and columns;
e there can be at most one instance of k¥’ in any row;

e there can be at most one instance of k£ in any column;

e there can be no primed entries on the main diagonal.
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For example, the shifted partition below is filled according to the rules stated above.

1|12 2]2|4
23|55
415
6

Given two shifted shapes, 1 and v, we say that u/v forms a border strip if it contains
no 2-by-2 square.

LEMMA 5.1. The Pieri deformation of the shifted Young’s lattice is formed by adding
downward-oriented edges from p to v whenever p/v forms a border strip. The number
of such edges added is the same as the number of ways to fill the bozxes of the border
strip with k and k' according to the usual rules.

Proof. The proof follows from Formula (8.15) in Chapter IIT of [18], which is an
analogue of the Pieri rule for Schur P functions, and the fact that ¢; = 2p;. 0

The first six ranks of the Pieri deformation are shown below.

W T om W @7 oo
N N / N\ 7\
NS Y

H oo H
N 7z

| j
|

%] 1]

Notice that there are two edges from 41 to 2 corresponding to the following fillings
of the border strip (4,1)/(2).

%] &)
THEOREM 5.2. The Pieri deformation of the dual graded graph of shifted shapes sat-
isfies

DU -UD=D+1.
We shall need the following two properties of A’.
THEOREM 5.3 ([18]).

e A’ is a free polynomial ring in odd power sums p1,ps,....
o A\’ inherits the standard bilinear inner product from A, which satisfies

(Qx, By) = 216y .

Because of the first property, we can again differentiate elements of A’ with respect
to p1 by expressing them first as a polynomial in the p;’s. We shall need the following

property of f.

LEMMA 5.4. We have d
—f=2f+2
dp:
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Proof. From [18, Ex. 6 (a), III, 8] we have
Lbf o e

which of course implies T(l + f)=2+2f. O

Now we are ready for the proof of Theorem 5.2.

Proof. Applying Lemma 4.4 we see that A = A/, ax = Qy, d = %d% and f =
q1 + g2 + - - - satisfy the conditions of Theorem 3.3. The claim follows. 0

REMARK 5.5. If we instead take aq(u, ) to be 2 times the coefficient of @, in p1Q,,
and as(u, v) to be 3 times the coefficient of P, in fP,, we get a dual filtered graph
with

DU -UD =2D +1.

This choice corresponds to first swapping F7 and F» in the original dual graded graph
of SY and then adding downward edges to F5 as described above.

o H- EEEEm
\/\w/ NN\
/\/ . Y/
\/ 7

[mm| (]
| \
O O
! !

2. MOBIUS DEFORMATION OF SHIFTED YOUNG’S LATTICE. The Mobius deforma-
tion of the shifted Young’s lattice is shown below with upward-oriented edges shown
on the left and downward-oriented edges on the right. Note that we swapped the F;
and FE5 of Example 2.4.

@ @ A
V%\WV g\/\/
rM\M

/ \/
\j/ N

(]
O
a
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LEMMA 5.6. For the lattice of shifted shapes, the Mdbius function is given by the
following formula:

(pq) = (=1)lPl=lal - 4f q/p is a disjoint union of bozes
AP0 = 0 otherwise

Proof. Tt is known that SY is a distributive lattice [10, Example 2.2.8], and so it
follows that p(p, q) is nonzero if and only if the interval [p, g is a Boolean lattice, in
which case u(p, q) is as described above, [27, Example 3.9.6]. And [p, ¢] is a Boolean
lattice exactly when ¢/p is a disjoint union of boxes, i.e. no two boxes of ¢/p share an
edge. O

THEOREM 5.7. The Mobius deformation of the shifted Young’s lattice forms a dual
filtered graph with
DU—-UD=D+1.

Proof. Given that the non-deformed pair form a pair of dual graded graphs, it suffices
to show that

[A(DU = UD)(p) = [A(D)(n)
when p covers A in Ga.

For a shifted shape A, let Iyiqq(A\) denote the size of the set of inner corners of A
that are on the diagonal, I,qiaq(A) denote the size of the set of inner corners of A that
are not on the diagonal, Ogiq4(A) denote the size of the set of outer corners of A that
are on the diagonal, and O,g;qg(A) denote the size of the set of outer corners of A that
are not on the diagonal.

LEMMA 5.8. For any shifted shape A,
Odiag()\) + 2Oodiag()\) - Idiqq(A) - 2Iodiag(A) =1

Proof. Consider some element A = (A1, \a,..., A\x). Suppose A\, = 1. We can add a
box at some subset of rows {i; = 1,4,...,%;} and fill each with either s or s’. Thus
Odiag(A) +20,4iag(A) = 2t. We can delete a box in rows {ip —1,i3 —1,...,4 — 1,k},
where each can be filled with s or s’ except the box in row &, which is on the diagonal.
Thus Idiag()\) + QIodiag()\) = 2(t — 1) + 1.

Now suppose A; > 2. We can add a box at some subset of rows {i; = 1,4a,..., 1,
k + 1} and fill each with either s or s’ except for the box in row k + 1, which is
on the diagonal. This gives Ogiag(A) + 200diag(A) = 2t + 1. We can delete boxes in
rows {is —1,...,i; — 1,k}, where each can be filled with s or s, giving Igiaq(\) +
21sdiag ()‘) =2t U

First, consider all up-down paths from p to A that begin with a loop at p. There are
2Iodiag (/,L) + Idiag (/’[’)

such paths since there are the same number of loops at pu. Up-down paths that do
not start with a loop can be counted by the number of outer corners of A that are
not inner corners of ¢ counted with multiplicity two if they are off the main diagonal
since each of these corners may be added to ¢ for the step up and then removed in
addition to the boxes of p/A for the step down. There are

2(Oodiag()\) - Iodiag (M/)\)) + (Odiag()\) - Idiag (,U//)\))

such corners. Thus there are

2lodiag() + Laiag(1) + 2(Oodiag(N) — Lodiag(1t/A)) + (Odiag(N) = Ldiag(11/A))
up-down paths from p to A.
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Next, consider all down-up paths from p to A that end with a loop at A. There are
exactly
2Iocliag(>\) + Idiag(>\)
such paths. Down-up paths that do not end with a loop can be counted by the inner
corners of ¢ that are also inner corners of A counted twice if they are off the main
diagonal since removing this type of inner corner in addition to the boxes of A/p will
result in a shifted shape covered by A. There are

2(Iod1'ag (,u) - Iodiag (,U,/)\)) + (Idiag (M) - Idiag (,U//\))
such corners. Thus there are
2Iodiag()\) + Idiag()\) + 2(Iodiag(/1*) - Iodiag(//f/)‘)) + (Idiag(,uf) - Idiag (M/)‘))

down-up paths from p to A.
Hence

[/\}(DU —UD)(u) = QIodiag(U) + Ldiag (1) + 2(Oodiag(/\) — Lodiag (1/N)
+ (Odiag(/\) - Idmg (N/)‘)) - (2Iodmg ()‘) + Idiag ()‘)
+ Q(Iodiag (,u) - Iodiag (,u/)‘)) + (Idiag (M) - Idiag (/J/)\))))
= 2Oodiag()\> + Odiag ()\) - 2Iodiag ()\) - Idiag ()\>
=1
by Lemma 5.8. d

5.3. SHIFTED HECKE INSERTION.

DEFINITION 5.9. An increasing shifted tableau is a filling of a shifted shape with pos-
itive integers such that entries are strictly increasing across rows and down columns.

The following are examples of increasing shifted tableaux.

\1 24\ \2 3]5 7|8\
4 5(8
B 9]

We now describe an insertion procedure for increasing shifted shapes that is similar
to Hecke insertion, which we call shifted Hecke insertion. This procedure is a natural
analogue of that of Sagan and Worley, [24, 32]. As before, any insertion tableau will
correspond to a walk downward ending at @ in the dual filtered graph of shifted shapes
from the Mobius deformation and any recording tableau corresponds to a walk upward
starting at @. The correspondence is completely analogous to that in Example 4.15.
In this case, whenever there are two edges connecting A and pu, we assign one of the
two edges to be the “primed edge” and the other to be the “unprimed edge”.

We start by describing how to insert x into an increasing shifted tableau Y to
obtain increasing shifted tableau Z. We begin by inserting x = y; into the first row of
Y. This insertion may modify the first row of Y and may produce an output integer
y2. Following the rules below, we then insert - into the second row of Y and continue
in this manner until one of two things happens. Either at some stage the insertion will
not create an output integer, in which case the insertion of x into Y terminates, or yy
will replace some diagonal element of Y. In the latter case, we continue the insertion
process along the columns: y41 is inserted into the column to the right of its original
position and so on until some step in this process does not create an output integer.

For each insertion, we designate a specific box of the resulting tableau, Z, as be-
ing the box where the insertion terminated. We will later use this notion to define
recording tableaux.
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The rules for inserting any positive integer x into a row or column are as follows:

(S1) If x is weakly larger than all integers in the row (resp. column) and adjoining
x to the end of the row (resp. column) results in an increasing tableau, then
Z is the resulting tableau. We say that the insertion terminated at this new
box.

ExXAMPLE 5.10. Inserting 4 into the first row of the tableau below on the left gives
the tableau on the right. This insertion terminated in position (1, 3).

1]2 \124\
4 4

Inserting 5 into the third column of the resulting tableau gives the tableau shown
below. This insertion terminated in position (2, 3).

]124
5

(S2) If  is weakly larger than all integers in the row (resp. column) and adjoining x
to the end of the row (resp. column) does not result in an increasing tableau,
then Z = Y. If x was row inserted into a nonempty row, we say that the
insertion terminated at the box at the bottom of the column containing the
rightmost box of this row. If x was row inserted into an empty row, we say
the insertion terminated at the rightmost box of the previous row. If = was
column inserted, we say the insertion terminated at the rightmost box of the
row containing the bottom box of the column x could not be added to.

ExXAMPLE 5.11. Inserting 4 into the first row of the tableau below does not change
the row and does not give an output integer, and so the insertion does not change the
tableau. The insertion terminated in position (2, 3).

[1]2

5

Inserting 4 into the third column of the tableau below does not change the column
and does not produce an output integer, and so the insertion does not change the
tableau. The insertion terminated in position (1,4).

E § 1[5

Inserting 2 into the (empty) second row of the tableau below does not change the
row. The insertion terminated in position (1,2)

For the last two rules, suppose the row (resp. column) contains a box with label
strictly larger than x, and let y be the smallest such box.

(S3) If replacing y with z results in an increasing tableau, then replace y with x.
In this case, y is the output integer. If z was inserted into a column or if y
was on the main diagonal, proceed to insert all future output integers into
the next column to the right. If = was inserted into a row and y was not on
the main diagonal, then insert y into the row below.
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ExAMPLE 5.12. Inserting 6 into the second row of the tableau on the left results in
the tableau on the right with output integer 7 to be inserted into the third row.

112134 11234
4718 41618
8 8

Inserting 6 into the third column of the tableau on the left also results in the tableau
on the right with output integer 7, but this time, 7 is to be inserted into the fourth
column.

Inserting 3 into the second row of the tableau on the left results in the tableau
shown below with output integer 4 to be inserted into the third column.

11234
3 8

7
8
(S4) If replacing y with  does not result in an increasing tableau, then do not
change the row (resp. column). In this case, y is the output integer. If z was
inserted into a column or if y was on the main diagonal, proceed to insert

all future output integers into the next column to the right. If = was inserted
into a row, then insert y into the row below.

EXAMPLE 5.13. Inserting 2 into the first row of the tableau below does not change

the tableau and produces output integer 5 to be inserted into the second row.
112|518

3|6

Inserting 5 into the third column does not change the tableau and gives output integer
6 to be inserted into the fourth column.

Inserting 2 into the second row does not change the tableau. In this case, the output
integer is 3 and is to be inserted into the third column.

Using this insertion algorithm, we define the shifted Hecke insertion tableau of a
word w = wiws . ..w, to be

Ps(w) = (... ((F + wy) < wa)...) + wy.

EXAMPLE 5.14. We show the sequence of shifted tableaux obtained while computing
Ps(4211232). We start by inserting 4 into the first row.

(4] [2]a] [2]2]4] [2]2]4a] [2 ’ 1] 2 ’ 3] 2 JE

REMARK 5.15. The result of such insertion agrees with that of K-theoretic jeu de
taquin rectification described in [8]. See [12].

In this setting, recording tableaux will be set-valued shifted tableaux.
DEFINITION 5.16. A set-valued shifted tableau T' of shifted shape X\ is a filling of the

bozes with finite, nonempty subsets of primed and unprimed positive integers so that

(1) the smallest number in each box is greater than or equal to the largest number
in the box directly to the left of it (if that box is present),

(2) the smallest number in each box is greater than or equal to the largest number
in the box directly to the above it (if that box is present),
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(3) any positive integer appears at most once, either primed or unprimed, but not
both, and
(4) there are no primed entries on the main diagonal.

A set-valued shifted tableau is called standard if the set of labels consists of
1,2,...,n, each appearing either primed or unprimed exactly once, for some n.

A recording tableau for a word w = wyws ... w, is a standard shifted set-valued
tableau and is obtained as follows. Begin with Qg(@) = @. If the insertion of wy, into
Pg(w; ... wg—_1) resulted in adding a new box to Ps(wj ...wk—1), add this same box
with label & if the box was added via row insertion and %’ if the box was added via col-
umn insertion to Qg(wy ... wk_1) to obtain Qg(wy ... wy). If the insertion of wy into
Ps(wy ... wi—1) did not change the shape of Pg(wy ...wg—_1), obtain Qg(wy ... wy)
from Qg(w; ... wk—1) by adding the label k to the box where the insertion terminated
if the last move was a row insertion into a nonempty row and k' if the last move was
a column insertion. If the last move was row insertion into an empty row, label the
box where the insertion terminated &’

ExXAMPLE 5.17. The top row of tableaux shows the sequence of tableaux obtained
from inserting w = 4211232 as in the previous example, and the bottom row shows
the corresponding steps to form Qg (w).

[4l2[a]fr]z]af[a]ofa]fr]2]a][r]o]3][1]2]38]_p,
4 4 34

\1|2’ 1|2' 3 1|2’ a1 o a1 2 el 1] 3/4I=Qs(w)
5| 56| 56| 7

We next define a reverse insertion procedure so that given a pair (Ps(w), Qs(w)),
Wwe can recover w.

First locate the box containing the largest label of Qg (w), call the label n and the
position of the box (i, j»), and find the corresponding box in Pg(w). Say the integer
in position (in,jn) of Ps(w) is y,. We then perform reverse insertion on cell (i, jn)
of Ps(w) by following the rules below.

(rS1) If n is the only label in cell (iy, j,) of Q(w), remove box (i, j,) from Pg(w)
and reverse insert ¥, into the row above if n is unprimed and into the column
to the left if n is primed.

(rS2) If n is not the only label in cell (i, j,) of @s(w), do not remove box (in, jn)
from Ps(w), but still reverse insert y,, into the row above if n is unprimed
and into the column to the left if n is primed.

If y,, is reverse inserted into row i, — 1, let = be the largest label in row ¢,, — 1
with < y,. If y, is reverse inserted into column j, — 1, let = be the largest label in
column j, — 1 with z < y,.

(rS3) If replacing = with y, results in an increasing shifted tableau, replace x with
Un. If y, was reverse column inserted and x was not on the main diagonal,
reverse insert x into the column to the left. Otherwise, reverse insert z into
the row above.

(rS4) If replacing x with y,, does not result in an increasing shifted tableau, leave
the row or column unchanged. If y,, was reverse column inserted and x was not
on the main diagonal, reverse insert x into the column to the left. Otherwise,
reverse insert x into the row above.

If we are in the first row of the tableau and the last step was a reverse row insertion
or we are in the first column and the last step was a reverse column insertion, then
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x and the modified tableau, which we will call Pg(w), are the final output value.
Define 1 = z.

Repeat this process using the pair (Pg1(w),Qgn—1(w)), where Qg ,_1(w) is
the result of removing the entry n or n’ from Qg(w). Define x5 to be the output
value and Pga(w) to be the modified tableau. Continue this process with pairs
(Ps2(w),Qsn-2(w)),...,(Psn-1(w),RQs1(w)). Then we claim w = z1z5... 2y.

THEOREM 5.18. There is a bijection between pairs consisting of an increasing shifted
tableau and a standard set-valued shifted tableau of the same shape, (P, Q), and words,
where the word w corresponds to the pair (Ps(w), Qg(w)).

Proof. We show that given a pair of tableaux of the same shape, (P, Q), where P is an
increasing shifted tableau on some [n] and @ is standard shifted set-valued tableau on
1<2 <2<3 < - <n' <n,wecan recover w so that P = Pg(w) and Q = Qg(w).
Assume first that (P, Q) has been obtained by inserting some integer h into a pair
(Y, Z). We must show that the reverse insertion procedure defined above recovers h
and (Y, Z) from (P, Q).

It is clear that if the insertion of h ended by adding a new box to Y and Z
using (S1), then reverse insertion steps (rS1), (rS2), (rS3), and (rS4) undo insertion
steps (S1), (S2), (S3), and (S4), respectively. Therefore, it suffices to show that if the
insertion of h does not result in adding a new box to Y and Z using (S2), then the
reverse insertion procedure can recover h from (Y, 7).

Suppose the last step of the insertion of A into Y is inserting some x into nonempty
row 4 using (S2) and the insertion terminates in row i+ j. We first use (rS2) and
reverse insert the entry at the end of row i+ j into row ¢+ j — 1, which will not
change row ¢ + j — 1 because the entry being reverse inserted is strictly larger than
all entries in row 7 + j — 1 but cannot replace the entry at the end of row ¢ + j — 1
since this would put it directly above the occurence of the entry in row ¢ + j. Next,
we reverse insert the entry at the end of row ¢ 4+ j7 — 1 into ¢ 4+ j — 2, and in the same
manner, it will not change row ¢ + j — 2. This process continues until we reverse insert
the entry at the end of row ¢ 4+ 1 into 4 and obtain output integer x. From this point
onward, the reverse insertion rules will exactly undo the corresponding insertion rules
to recover h. We can use the transpose of this argument if x is column inserted into
column j using (S2) and the insertion terminates in column j + i.

For example, inserting 4 into the first row of the tableau below does not change the
tableau, and the insertion terminates at (3,4). Starting reverse insertion at (3,4), we
reverse insert 6 into the second row. It cannot replace the 5, so the third row doesn’t
change, and 5 is reverse inserted into the first row. The 5 cannot replace the 4, so the
first row is unchanged, and we end with the original tableau and the integer 4.

\1234
3045
516

If = is inserted into empty row 4 using (S2), then our original tableau looked like
the one shown below, where the bottom row shown is row ¢ — 1 and the dot indicates
where the insertion terminated. In this case,  must have been bumped by a row
insertion of a into row ¢ — 1. We show reverse insertion starting from the box where
the insertion terminated recovers the step of inserting a into row ¢ — 1.
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Using (rS4), we reverse insert the entry at the end of row ¢ — 1 into the column to
the left. The column will not change since the entry being reverse inserted is strictly
larger than all entries in the column and cannot replace the entry at the end of the
column. We then reverse insert the second rightmost entry of row ¢ —1 into the column
to its left. Continuing in this manner, we eventually reverse column insert = into the
main diagonal, which results in reverse row inserting a into row ¢ — 2. From this point
on, the reverse insertion rules will exactly undo the corresponding insertion rules to
recover h.

For example, suppose some insertion ends with inserting 2 into the empty second
row of the tableau below. The insertion terminates in position (1,4), and we see that
the 2 must have been bumped by a row insertion of 1 into the first row. We start reverse
column insertion in position (1,4) and reverse column insert 4 into the third column.
The integer 4 cannot replace the 3 in the third column since it would be directly to the
left of the 4 in the fourth column, so the third column is left unchanged. We reverse
column insert 3 into the second column. Again, the column remains unchanged, and
we reverse insert 2 into the first column. The 2 cannot replace the 1, so the column is
unchanged. Since the 1 was on the main diagonal, we next reverse row insert 1 into
the row above.

e

5.4. SHIFTED HECKE GROWTH AND DECAY. As before, given any word w =
wiwWs . . . Wk, containing n < k distinct numbers, we can create an n x k array with an
X in the w!" square from the bottom of column i. Note that there can be multiple
X’s in the same row but is at most one X per column.

We will label the corners of each square with a shifted partition and label some of
the horizontal edges of the squares with a specific inner corner where the insertion
terminated and/or a ‘c’ to designate column insertion. To denote a specific inner
corner, we will give either its row or column. For example, the edge label 2 denotes
the inner corner at the end of the second row of the shifted diagram, and an edge
labeled 2c¢ denotes the inner corner at the end of the second column of the shifted
diagram. We begin by labeling all corners along the bottom row and left side of the
diagram with the empty shape, &, as before.

To complete the labeling of the corners, suppose the corners p, A, and v are labeled,
where p, A, and v are as in the picture below. We label v according to the following
rules.

e If the square contains an X:
(1) If Ay = p1, then v/p consists of one box in the first row.
(2) If A\; + 1 = py, then v = p and the edge between them is labeled with a
1 to signify the inner corner in the first row of ~.
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o [If the square does not contain an X and p = X or if the square does not
contain an X and v = \ with no edge label on the bottom edge
(3) If p = A, then set v = v and label the top edge label as the bottom edge
if one exists. If v = A, then v = pu.

C
11— 2 2——2

1l——m2 1l——mm1

o If v ¢ p, the square does not contain an X, and the square does not satisfy
the conditions of the previous bullet point:
(4) In the case where v & p, v = v U p1, and the top edge label is the same
as the bottom edge label.

21 — 31

2——3

o Ifv C u, the square does not contain an X, and the square does not satisfy
the conditions of the second bullet point:
Suppose the square of v/ is one box in position (4,j). If (i,5) is not on
the diagonal and the edge between A and v is not labeled c:
(5) If there is no box of p/A in row ¢ + 1 of u, then v is obtained from u by
adding a box to the end of row 7 + 1.
(6) If there is a box of /X in row i + 1 of p, then v = p and the top edge
is labeled i + 1.

1——m2 2——3

If (i, 7) is on the main diagonal or the bottom edge is labeled c:
(7) If there is no box of x/A in column j + 1 of y, then « is obtained from p
by adding a box to the end of column j + 1. The top edge is labeled c.
(8) If there is a box of u/A in column j + 1 of p, then v = p. The top edge
is labeled with ¢ and j + 1.
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If A = v and the bottom edge is labeled with ¢ but not with c:

(9) If there is no box of u/A immediately to the right of or immediately
below the box at the end of row ¢ of v, then v = u and the top edge is
labeled by 1.

(10) If there is a box of u/A directly below the box at the end of row ¢ of v,
then v = p and the edge between them is labeled by i + 1.

(11) If there is a box of u/X\ immediately to the right of the box at the end
of row ¢ of v, say in position (¢, + 1), no box of u/A in row i + 1, and
the outer corner of row 4 + 1 is not in column j, then ~/u is one box in
row ¢ + 1.

(12) If there is a box of u/A immediately to the right of the box at the end
of row i of v, say in position (é,5 + 1), no box of u/X in row ¢ + 1, and
the outer corner of row ¢ + 1 is in column j 4 1, then the outer corner of
row ¢ + 1 is on the main diagonal. In this case, v = u, and the top edge
is labeled with j 4+ 1 and c.

31— 31 21 —21 33— 31 2——2

If A = v and the bottom edge is labeled with j and with c:

(13) If there is no box of /A immediately to the right of or immediately
below the box at the end of column j of v, then v = u and the edge
between them is labeled by j and c.

(14) If there is a box of p/\ immediately to the right of the box at the end
of column j of v, then v = p and the top edge is labeled by 7 + 1 and c.

(15) If there is a box of p/A directly below the box at the end of column j
of v but no box of p/A in column j + 1, then +/p is one box in column
j + 1. The top edge is labeled c.

4c 4c ¢
42 ——— 42 4] —— 41 32— 42

4
P T N B R o)

Algebraic Combinatorics, Vol. 1 #4 (2018) 475



R. PATRIAS & P. PYLYAVKSYY

We call the resulting array the shifted Hecke growth diagram of w. In our previous
example with w = 4211232, we would have the diagram below.

c c 3c

g —1 2 3 3—31 23132
x| | L LT
g—g—1-029 21-92—3—31
o L X
g—o—1-"029 21 9—9 2
x| x| Jx]
g —F—g—1 l—1—1—1
o Ix x|
o ——F— F— P —F—F— @

Let po = @ C puy C ... ug be the sequence of shifted partitions across the top of the
growth diagram, and let vy = @ C 11 C ...v, be the sequence of shifted partitions on
the right side of the growth diagram. These sequences correspond to increasing shifted
tableaux Q(w) and P(w), respectively. If the edge between p; and p,11 is labeled j,
then p1; = 11, and the label i +1 of Q(wy ... w;+1) is placed in the box at the end of
row j of Q(wy ... w;). If the edge between u; and ;4 is labeled jc, then p; = piy1,
and the label i + 1’ of Q(w; ... w;41) is placed in the box at the end of column j of
Q(wy ... w;). Since there is an X in each column of a shifted Hecke growth diagram,
there must be an edge label when p; = p;41. For the shifted Hecke growth diagram
above, we have:

! 1Al
\1 2 Q(w):’1 2 1374
3] 4 56| 7/

We see that this P and @ agree with Pg(w) and Qg(w), which is not a coincidence.

THEOREM 5.19. For any word w, the increasing shifted tableaur P and @ obtained
from the sequence of shifted partitions across the right side of the shifted Hecke growth
diagram for w and across the top of the shifted Hecke growth diagram for w, respec-
tively, are Pg(w) and Qgs(w), the shifted Hecke insertion and recording tableau for w.

Proof. Recall the definitions of T'(¢, ) and R(i, j) from the proof of Theorem 4.16. We
define them analogously in this context and prove the analogous result by induction
on i 4 j. The desired statement is clearly true when ¢ = 0 or j = 0. Suppose we are
considering some T'(s,t) with s,¢ > 0.

We will use the same two claims from the Hecke growth diagram proof, which have
analogous proofs.

CLAIM 5.20. Oriented as in the square above, |v/A| < 1.

CLAIM 5.21. Oriented as in the square above, u/ X is a rook strip, that is, no two bozes
in u/ A are in the same row or column.

(1-2) Note that if the square contains an X, then A = v because there are no other
X’s in column ¢. If Ay = py, then there are no s’s in the first row of T'(s,t—1).
Thus the inserted s will be added to the end of the first row, creating ~. If
A1 = p1, then there is already an s at the end of the first row of T'(s,t — 1).
The inserted s cannot be added to the first row, so the y = 7. In this case,
the insertion terminated at the end of the first row. We know this is an inner
corner because s is the largest number inserted so far, so there can not be
anything directly below the box labeled s in the first row.
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If 4 = A, there is no X to the left of square (s,t) in row s. Thus nothing
changes between v and « as we consider occurrences of entry s. If A = v,
there is no X below square (s,t) in column ¢ and so no new insertion.Thus
nothing changes between p and ~.

Suppose v/ is one box in row n and p/A contains boxes in rows exactly
{j1,72,---,Jk}- Suppose the box in /X corresponds to inserting r < s. Then
v ¢ p implies that n ¢ {j1,j2,...,jx}. Since v/ is one box, the last action
in the insertion sequence of r into the T'(s — 1, — 1) is a box being inserted
in row n. Since there is no s in row n, the bumping sequence when inserting
r into the T'(s,t — 1) will not disturb the s’s. The edge between A and v is
either labeled ¢ or not, corresponding to whether or not inserting the number
in column ¢ involves column insertions. This remains unchanged.

Since v/ is one box in position (4, ), there is some X in position (r,t) for
r < s. It follows that inserting r into T'(s,t — 1) will result in bumping the s
in position (7, ) of T'(s,t — 1). If there is no box in row 4 + 1 of u/A, there is
not an s in row ¢ + 1 of T'(s,t — 1). Thus the s in position (7, ) is bumped
from row i by r and added to the end of row ¢ + 1. If there is a box in row
i+ 1 of u/A, there is already an s in row i + 1 of T'(s,t — 1). It follows that
the s bumped from row ¢ cannot be added to row ¢ + 1, and so v = p. The
insertion terminates at the end of row ¢ + 1 since there cannot be any boxes
directly below the s in row ¢ + 1.

If (i,7) is on the main diagonal or the edge between A and v is labeled ¢, any
bumped entries will be column inserted into the column j. The rules are the
transpose of rules 5 and 6, and the new edge is labeled c since all subsequent
bumping will be column inserted after the first column insertion.

Since there is no box directly to the right of (7, j), nothing is bumped when
inserting r < s into T'(s,t — 1). Since there is no box directly below (4, j), the
insertion terminates at inner corner (4, 7).

In the situation described above, if there is a box directly below (i, 7), the
insertion now terminates at the inner corner in row ¢ + 1.

When inserting r into T'(s,t — 1), the s in position (i,5 + 1) is bumped but
not replaced and inserted into row ¢ 4 1. Since there is no s in row ¢ + 1, this
s can be added to the row as long as it is not directly below the s in position
(i,5)-

When inserting r into T'(s,t — 1), the s in position (i, + 1) is bumped but
not replaced and inserted into row i + 1. Since there is no s in row i + 1,
we attempt to add this s to the end of row i 4+ 1. However, this s would end
directly below the s in row 4, and so cannot be added. If the outer corner of
row ¢ + 1 is not on the main diagonal, the insertion terminates at the end of
row ¢ + 1. If it is on the diagonal, the insertion terminates at the end of row
i, and we know the last box in row ¢ must be in column j since there are no
entries larger than s. This edge is labeled with ¢ since this action may bump
an entry from the main diagonal in column j in future steps.

Rules 13-15 are the transpose of rules 10-12, and may be explained in an
analogous way. O

We can also formulate the rules for the reverse insertion, as follows. The proof is
omitted for brevity.

REVERSE RULES.

(R1)

If v/u is one box in the first row, then the square has a X and A\ = v.
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(R2) If v = p and the edge between them is labeled 1, then the square has an X
and A = .

(R3) If v = p with no edge label, then A = p. If v = v, then A = p and the edge
label between A and v is the same as the label between v and p.

(R4) If v € p, then A= pNw.

(R5) If v/u is one box in row i + 1 for some i > 0, the edge between  and p has
no label, and p/v has no box in row 7, then v/\ is one box in row i.

(R11) If v/ is one box in row 7 + 1 for some ¢ > 0, the edge between v and p has
no label, and /v has a box in row 4, then A = v and the edge between them
is labeled <.

(R7) If v/u is one box in column j + 1 for some j > 0, the edge between v and p
is labeled ¢, and p/v has no box in column j, then v/\ is one box in column
7 and the edge between v and A is labeled c.

(R15) If v/p is one box in column j + 1 for some j > 0, the edge between v and p is
labeled ¢, and p/v has a box in column j, then v = X and the edge between
them is labeled j and c.

(R6) If v = p, the edge between them is labeled ¢ 4+ 1 for some i > 0, u/v has a
box in row i + 1, and p; # pit1 + 1, then v/ is one box in row i.

(R9) If v = p, the edge between them is labeled i + 1 for some ¢ > 0, u/v has no
box in row ¢ + 1, then A = v and the edge between them is labeled i + 1.

(R10) If v = p, the edge between them is labeled ¢ 4+ 1 for some i > 0, u/v has a
box in row ¢ + 1, and p; = ;41 + 1, then A = v and the edge between them
is labeled 1.

(R8) If v = p, the edge between them is labeled j 4+ 1 and ¢ for some j > 0, u/v
has a box in column j + 1, and the j** and j + 1** columns of x are not the
same size, then v/ is one box in column j.

(R12) If v = u, the edge between them is labeled j + 1 and ¢ for some j > 0, and
the bottom box of column j + 1 is in the last row of u, then A = v and the
edge between them is labeled with the bottom row of v.

(R13) If v = p, the edge between them is labeled j + 1 and ¢ for some j > 0, p/v
has no box in column j+ 1, then A = v and the edge between them is labeled
7+ 1 and c.

(R14) If v = p, the edge between them is labeled j + 1 and ¢ for some j > 0, pu/v
has a box in column j + 1, and the j** and j 4 1" columns of y are the same
size, then A = v and the edge between them is labeled j and c.

6. MAJOR EXAMPLES: YOUNG—FIBONACCI LATTICE

6.1. MOBIUS DEFORMATION OF THE YOUNG—-FIBONACCI LATTICE. In order to de-
scribe the Mobius deformation of the Young—Fibonacci lattice, we first need to deter-
mine its Mobius function.

THEOREM 6.1. Let X > Y be elements in the Young—Fibonacci lattice and suppose X
has n edges below it. Then
n—1 if2y =X
wY, X)=<¢ -1 if X coversY
0 otherwise
Proof. Suppose X > Y. If p(X) = p(Y) + 1, then clearly, u(Y, X) = —1.
If p(X) = p(Y)+2 and X = 2Y, then u(Y, X) = n—1 since 2Y covers exactly the

elements that cover Y. If X # 2Y, then it can be checked that X covers exactly one
element that covers Y. Therefore p(Y, X) = 0.
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Assume now p(X) > p(Y) + 2. We will argue that (Y, X) = 0 by induction on
p(X). The base case p(X) = p(Y) + 2 was just proved. Let us argue the step of
induction. There are two cases.

e We have 2Y" < X. In this case, we argue that >y, u(Y, W) = 0. Indeed,
Yyvewsoy MY, W) = 0. If W is in the interval [Y, X] but not in [V,2Y],
then W does not cover Y and W # 2Y. Thus by the inductive hypothesis
w(Y, W) =0.

e We have 2Y £ X. We claim there is only one Z that covers Y such that
7 < X. Indeed, since the Young-Fibonacci lattice is a lattice, and since the
join of any two distinct such Z’s is 2Y, we would have a contradiction. Then
p(Y,V)+ u(Y,Z) =1+ (=1) = 0. For the rest of Y < W < X we have
w(Y, W) = 0 by the induction assumption. O

By the previous result, for each element X in the Young—Fibonacci lattice, the
Mobius deformation is formed by adding an upward-oriented loop for each of the n
elements X covers and adding n—1 downward-oriented edges from X to Y if X = 2Y.
For example, there are 2 edges from 221 to 21. The first few ranks are shown below.

N N n N N
A B & Bo oo o B & Bo =an

\Eg/ \\/ \o/ \EH/\BH/ N4
\O/Q\O/ \B/ \m/
\Q/ \D/

! !

THEOREM 6.2. The Mébius deformation of the Young—Fibonacci lattice forms a dual
filtered graph with
DU-UD=D+1.

Proof. Suppose that shape X covers shape Y, and first assume that p(Y) = p(X) —1.
The up-down paths from X to Y that consist of a loop at X followed by following the
edge from X to Y can be counted by the number of loops at X, i.e. the number of
edges below X in the Young—Fibonacci lattice. In the second type of up-down path,
we start at X, move up to a distinct shape W, and then move down to Y. The only W
with p(W) = p(Y') + 2 that cover Y is the W defined by W = 2Y. This W covers X
by definition of the Young—Fibonacci lattice. To count the number of paths through
W, we need to count the number of edges from W to Y. This number is the same
as one fewer than the number edges below W in YF, which is the same as one fewer
than the number of edges above Y in YF.

To count down-up paths, we first count the paths that consist of the edge from X
to Y followed by a loop at Y. These can be counted by the number of loops at Y or, in
other words, the one fewer than the number of edges above Y in YF. The second type
of down-up paths involve traveling from X down to some Z with p(Z) + 2 = p(X)
and then going up to Y. There is a unique such Z defined by 2Z = X, and Y covers
this Z. We thus need to count the number of ways to get from X to Z, which is the
same as one fewer than the number of edges below X in YF.
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Putting the previous two arguments together, [Y](DU —UD)(X) = 1 in this case,
as desired.

Now suppose p(Y) = p(X) — 2. The only up-down paths from X to Y consist of a
loop at X followed by an edge from X to Y. There are

(#{edges below X in YF})(#{edges below X in YF} — 1)

such paths.
To count down-up paths, we must count the number of ways to choose an edge
from X to Y and then choose a loop of Y. There are

(#{edges below X in YF} — 1)(#{edges above Y in YF} — 1)
such paths. Since
#{edges down from X in YF} = #{edges above Y in YF},
we have that
[Y](DU — UD)(X) = #{edges below X in YF} — 1 = [Y]D(X). O

6.2. K-YOUNG—FIBONACCI INSERTION. As with the previous examples of Mé&bius
construction, we describe an insertion procedure that corresponds to the M&bius defor-
mation of the Young—Fibonacci lattice, which is an analogue of the Young—Fibonacci
insertion of Fomin. We recommend [10] for details about Young-Fibonacci insertion.
In this analogue, any walk upward from @ will correspond to a recording tableau and
any walk downward to & will correspond to an insertion tableau. (See Example 6.10.)
We begin by describing the insertion tableaux in this setting.

DEFINITION 6.3. A K-Young-Fibonacci (KYF) tableau is a filling of a snakeshape
with positive integers such that

(i) for any pair the inequality A < B holds;
A

(ii) to the right of any , there are no numbers from the interval [A, B)] in either
A

the upper or lower rows;

(iii) f the position above is not occupied yet, then to the right of there are

no numbers greater than or equal to A in either the lower or upper rows;

(iv) any pair must come before any single box and must not be in rightmost
A

column of the snakeshape. In addition, A may not be the smallest entry in the
snakeshape.

EXAMPLE 6.4. The three snakeshapes below are valid KYF tableaux.

34 7 213 5 415 2
\921865 217|64 405631

The snakeshapes below are not valid KYF tableaux. The first violates condi-
tion (iii), the second violates condition (ii), and the third, fourth, and fifth violate
condition (iv).

34 34 416 2 3]2 1]3
\421 20114 457|32 1|2 1
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Let 7 be a valid KYF tableau. We show how to insert positive integer = into 7 to
obtain a new valid KYF tableau that may or may not be different than 7. Notice that
this insertion procedure is different than Hecke insertion and shifted Hecke insertion
in that the algorithm does not proceed row-by-row or column-by-column. As before,
we designate a specific box of the resulting tableau, 7/, as being the box where the
insertion terminated. We will later use this notion to define recording tableaux.

The rules for inserting any positive integer x into 7 are as follows:

(YF1)

(YF2)
(YF3)

(YF4)
(YF5)

(YF6)

(YF7)

If z is equal to the smallest entry in 7, then 7 = 7’. In this case, we say the
insertion terminated in the top cell of the first column of 7 = 7/. If this is not
the case, continue to step 2.

EXAMPLE 6.5. Inserting 1 into the tableau on the left or 2 into the tableau
on the right will not change the tableaux.

2 3
[4]1]3] 2[5]4]

Attach a new box just to the left of 7 in the lower row.
Find all the entries of 7 that are greater than or equal to x and sort them:

r<a; Sag <K Qg
If in 7 we have , then we consider the A in the upper row to be the larger
A

of the two.
If a; = a;11, then replace a;41 with *.

Now put a box E just above and move the a; chainwise according to the
following rule: a; moves into the new box, as moves to a;1’s original position,
a3 moves to as’s original position, etc. The box that was occupied by ay
disappears. If it was located in the lower row, then the left and right parts of
the snake are concatenated.

If there is a box with * and no box directly above it, delete this box and
concatenate the left and right parts of the snake. If this happens, we say the
insertion terminated at the box in the upper row of the column directly to
the right of this concatenation. Otherwise, a box was added in the insertion
process, and we say the insertion terminated at this new box.

Replace any pair with A .

EXAMPLE 6.6. Let’s insert 3 into 7 = 3|4 . We first attach as shown below.

241\

[3]2[4]1]

Next, we locate and order

3<(a1:3)<(a2:4)<(a3:4),

and we replace ag with . After shifting the boxes as in (YF5), we have

34
32*|1\
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We then delete the box with * to obtain the final KYF tableau below.

This insertion terminates at the box at the top of the third column.
Notice also that inserting 1 into 7 does not change the tableau, and this insertion
terminates at the box at the top of the first column.

(2]
[4]3]2]1]
containing 2 to the left of the original tableau. We then locate and order

EXAMPLE 6.7. We insert 2 into KYF tableau . We first attach a box

2<(a1:2)<(a2:2)<(a3:3)<(a4:4).

We replace as with * and shift the boxes to obtain

After performing the last step of the insertion procedure, we end with the tableau
shown below.

This insertion terminated at the box at the top of the first column of the resulting
tableau.

As usual, for a word w = wyws . .. w,, we define Py p(w) by setting

Pyp(wl ’U)k;) = PYF(wl ---wkfl) < Wk

ExXAMPLE 6.8. The sequence of KYF tableaux below shows the intermediate tableaux
obtained in computing Py r(1334241), which is shown on the right.

3 3
\3|1\31\\431\241 4121 41271

We need the next definition to define the recording tableaux for KYF insertion.
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DEFINITION 6.9. A standard set-valued KYF tableau is a snakeshape whose boxes
are filled with finite, nonempty subsets of positive integers that satisfy the following
conditions, where A, B,C are subsets, A < B when max(ﬁ) < min(B), and the letters
[n] are used exactly once for some n:

(i) for any pair E the inequality A < B holds;

(ii) to the right of any , there are no numbers from the interval [max(A),

min(B)] in either the upper or lower rows;

(iii) if the position above is not occupied yet, then to the right of there are
no entries greater than min(A) in either the lower or upper rows;

A recording tableau for a word w = wiws...w, is a standard set-valued KYF
tableau and is obtained as follows. Begin with Qyr(2) = @. If the insertion of wy,
into Pyp(wy ... wi_1) resulted in adding a new box to Pyp(w; ... wk_1), add this
same box with label k to Qy p(w; ... wg_1) to obtain Qy p(w; ... wg).

If the insertion of wy into Pyp(w;...wg—1) did not change the shape of
Pyp(wy ... wg—1), obtain Qyp(w;...wy) from Qyp(w;...wr—1) by adding the
label k to the box where the insertion terminated.

EXAMPLE 6.10. In Example 6.8, we computed Py (1334241). We repeat this com-
putation on the top row and show the corresponding steps of building Qy r(1334241)
on the bottom row.

(3] (3] 3[4 413 K]
\3|1\31\\431\241\421\421\

(3] (3] 53 5]3 57] 3
\2|1\ 21\ \421\ 421\ 4216\ 4216\

The top row below shows the walk in G; corresponding to the recording tableau.
Here, we must pair the loops on each shape to its inner corners. In the walk shown,
the last two steps use distinct loops at the shape 221. The second row below shows
the walk in G5 corresponding to the insertion tableau.

®7 ) 7— Y ] U ) )

{ LI LT | | | l}
’— ) 9 7’®

{ LT }

We next define a reverse insertion procedure so that given a pair (Pyr(w), Qyr(w)),
We can recover w = wj ... Wpy.

First locate the box containing the largest label of Qy r(w), call the label n and
its column ¢, and find the corresponding box in Py p(w). Let & denote the label in
the leftmost box of the bottom row of Py p(w).

(rYF1) If the label n of @ was not the only label in its box and was located in
the upper row of the first column, then Pyp(w) = Pyp(wy...wp—1) < S,
where s is the smallest entry in Py p(w; ... wp—1). Finally, Qyr(w; ... w,—1)
is obtained from Qy r(w) by removing the label n.
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In all remaining cases, Py p(w) = Pyp(w; ... w,—1) + x, and we describe how to
construct Py p(wy ... w,—1). In each case, Qy r(w; ... w,—1) is obtained from Qy r(w)
by removing the label n. If n is the only label in its box, the box is removed.

(rYF2) If the label n of @ was the only label in its box:
(a) Delete the leftmost square in the bottom row.
(b) Let k denote the largest entry in Py p(w), and sort the entries of Py p(w)
as shown below:

r<b <y <<=k

If we have , then we consider the A in the upper row to be the larger
of the two.

(c) If b; = byy1, replace b; with *.

(d) Move the b; chainwise according the following rule: b; moves into by’s po-
sition, by moves into bs’s position, etc until b;_; moves into b;’s position.
The box that was occupied by b; disappears.

(e) Place b, in the position determined by the shape of Qg n—1.

(f) Replace any pair with .

(rYF3) If the label n of @ was not the only label in its box and the largest entry in
PYF (u)) is k:
(a) Add the column directly to the left of column ¢ to Py p(w).
k
(b) Sort the entries of Py r(w) as shown below:

k=b1=2by2by--- 22 =10y

If we have , then we consider the A in the upper row to be the larger
A
of the two.
(¢) If b; = biy1, replace b1 with .
(d) Move the b; chainwise according to the following rule: b; moves into the

new box E, b moves to by’s original position, bs moves to bs’s original
position, etc. The box that was occupied by b; = x disappears.

(e) Replace any pair with .

The steps above clearly reverse the KYF insertion steps, giving us the result below.

THEOREM 6.11. KYF insertion and reverse KYF insertion define mutually inverse
bijections between the set of words on N and the set of pairs (Pyp,Qyr) consisting
of a KYF tableau and a set-valued KYF tableau of the same shape.

Proof. Omitted for brevity. d

6.3. KYF GROWTH AND DECAY. As before, given any word w = wiws . .. wy, con-
taining n < k distinct numbers, we can create an n x k array with an X in the w!*
square from the bottom of column 7. Note that there can be multiple X’s in the same
row but is at most one X per column.

We will label the corners of each square with a snakeshape, label some of the
horizontal edges of the squares with a specific inner corner by writing the column
of the inner corner, and label some vertical edges corresponding to where a 2 was
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added to the bottom shape to obtain the top shape. For example, if the corner at the
bottom of the vertical edge is labeled with 221, the corner at the top is labeled 2221,
and the vertical edge has label 3, this means that the third column of 2’s in 2221 is
the column that was added when going from 221 to 2221. We begin by labeling all
corners in the bottom row and left side of the diagram with the empty shape, &.

To complete the labeling of the corners, suppose the corners p, A, and v are labeled,
where u, A, and v are as in the picture below. We label « according to the following
rules.

H—7

AN———V

e [f the square contains an X:
(1) T A=v =g, then v =p =1 and the top edge is labeled 1.
(2) T A=pu=v, then y =1\,
(3) If u = 2X and the left edge is labeled i, then v = 2, the top edge is
labeled ¢ + 1, and the right edge is labeled 1.
(4) If w # A, p # 2\, and p # 1, then v = 2\ and the right edge is labeled 1.

1 1+ 1

1——1 A— 1A 2 2 H—2)

X X 7 X 1 X 1

bg—0 A=A A=A A=A

o If the square does not contain an X and p = X or if the square does not
contain an X and v = X\ with no edge label between A and v:
(5) If p = A, then set v = v and label the top edge with the same label as
the bottom edge if one exists. If v = A, then v = p with the right edge
labeled with the same label as the left edge if such a label exists.

)\71 v W —— n

A———vV A— A

o [f the square does not contain an X, v = X\, and the bottom edge is labeled 1:
(6) If v = X\ and the bottom edge is labeled 1, then v = pu, the top edge is
labeled 1, and the label on the left edge (if one exists) is the same as the

label on the right edge.
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o [f no previous cases apply, then set v = 2\ and follow the rule below:
(7) If the bottom edge is labled ¢, then label the right edge i. If the left edge
is labled 7, then label the top edge 7 + 1.
Jj+1 Jj+1
H—2) B ——2) B——2)

A 7 v AN———V AN———V
We call the resulting array the KYF growth diagram of w. For example, continuing
with the word from Example 6.8, w = 1334241, we would have the diagram below.
EXAMPLE 6.12. Below is the KYF growth diagram for the word 1334241.
g —1—11—21 — 121 — 221 = 221 = 221
L x| Axd]
g—1—11—21—21 21 —21 — 21
o lx b xf o
—1—1—1—1—11—11—11
I x
—1—1—1—1—1—1—1
x| Tx
O — P — P — P — P —F— O

%)
%)
@ -

Let o = @ C pu1 C ... ux be the sequence of snakeshapes across the top of the
growth diagram, and let vy = @ C 1y, C ... 1, be the sequence of snakeshapes on the
right side of the KYF growth diagram. These sequences correspond to KYF tableaux
Q(w) and P(w), respectively.

If the edge between v; and v;4; is labeled j, then 2v; = v;41, and a column of i’s
is added in the j* column of v; to obtain v; ;. If the edge between p; and ju;41 is
labeled j, then p; = ;41 and the label i + 1 of Q(w; ... w;y1) is placed in the box at
the top of the 5 column of Q(w; ... w;).

In the example above, we have

p_[4]3 Q=573
421\ 4216\

which agrees with the insertion and recording tableau from Example 6.8. As for Hecke
insertion and shifted Hecke insertion, this is not a coincidence.

THEOREM 6.13. For any word w, the KYF tableau and set-valued KYF tableau P and
Q@ obtained from the sequence of snakeshapes across the right side of the KYF growth
diagram for w and across the top of the KYF growth diagram for w, respectively, are
Py p(w) and Qyr(w), the KYF insertion and recording tableau for w.

Proof. Recall the definitions of T'(i, j) and R(%, j) from the proof of Theorem 4.16. We
define them analogously in this context and prove the analogous result by induction
on ¢ + j. The desired statement is clearly true when ¢ = 0 or j = 0.

Suppose we are considering some T'(t, s) with s,¢ > 0. Assume also the X in column
s is in row r. We may or may not have r = ¢. As in the previous growth diagram
proofs, we have the following claims.

CLAIM 6.14. Oriented as in the square above, |v/A| < 1.
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CLAIM 6.15. Oriented as in the square above, to obtain p from X\, we add either one
box or a column of 2 boxes.

Rule 1 follows from the fact that inserting ¢ into the tableau does not change
the tableau. Rules 2 applies when inserting positive integer ¢ that is strictly larger
than all other entries of the KYF tableau. Thus a box with ¢ will be added directly
to the left of the tableau. In Rule 3, we are adding integer ¢ to a tableau that already
has 2 boxes labeled t in the i** column, and t is the largest integer in the tableau.
Following the insertion rules, we end with a column of ¢’s in the first column, hence the
right edge is labeled 1. The special corner of this insertion is in the (i + 1)** column,
the column where the ¢ on the top row of the original KYF tableau was deleted in
the insertion procedure.

In Rule 4, there is exactly one ¢t in T'(t,s — 1). Thus, inserting a ¢ will result in a
tableau where the first column has two boxes filled with a t.

If A = v as in Rule 5, then r > ¢t. Thus no integer is being inserted as we move
from p to 7, so p = v and the edge labels are unchanged. Similarly, if A = pu, then
there is no X to the left of the square we are considering, and so no boxes labeled ¢
in the T'(¢, s). Thus there is no change in the insertion and recording tableaux.

Rule 6 follows directly from insertion rule YF1.

In considering Rule 7, note that r < t because if not, we would be in the situation
described in Rule 5. In Rule 7, v = 2\ because no matter what r is inserted, since
w # A, there is at least one entry of T'(¢,s — 1) that is larger than r. This means that
when we insert r into T'(t, s — 1), a box with r will be added to the first column, and
after the shifting of YF5, there will be a box directly above this new box with r. An
entry t will shift into the position of any box that was “lost” when shifting during the
insertion of r into T'(t — 1, s — 1), and if there were two boxes labeled ¢ in T'(t,s — 1),
the second will be deleted in YF6. It follows that v = 2.

If the bottom edge is labeled 4, then insertion of r into T'(t — 1,s — 1) included
the situation described by YF6 in column ¢ of A\. When we insert = into T'(¢,s — 1),
column ¢ now becomes and thus in T(t —1,s — 1). This means that the edge

t
between v and 7 should be labeled i, indicating where the ¢’s are in T'(¢, s).
If the left edge is labeled j, then the difference between T'(t—1,s—1) and T'(¢t,s—1)

is a column in column j of T'(¢t,s — 1). The process of inserting r into T'(t,s — 1)
t

will match that of inserting r into T'(t — 1,s — 1) until we get to the point where we

are shifting the entries ¢ and *. Since ¢ is the largest entry in T'(¢,s — 1), the insertion

of r into T'(t,s — 1) will end with deleting the unmatched * from column j + 1 of

T(t,s), and therefore the top edge is labeled j + 1. O

We can also formulate the rules for the reverse insertion as follows. The proof is
omitted for brevity.

REVERSE RULES.

(R1) If u = v =1, v =@, at the top edge is labeled 1, then the square contains an
X and A =0@.

(R2) If p = v and v = 1pu = 1y, then the square contains an X and A = p = v.

(R3) u = v = 2v, the top edge is labeled 7 and the right edge is labeled 1, then
there is an X in the square, A = v and the left edge is labeled i — 1.

(R4) If v = 2v and the right edge is labeled 1, then the square contains an X and
A=v.
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(R5) If v = v, then set A = p and label the bottom edge with the same label as
the top edge if one exists. If v = p, then A = v and the left edge has the same
label as the right edge if such a label exists.

(R6) If v = p and the top edge is labeled 1, then A = v, the bottom edge is labeled
1, and the left edge has the same label as the right edge.

(R7) If no previous cases apply, then A is obtained from ~ by removing the first
2. If the right edge is labeled i, then the bottom edge is labeled i. If the top
edge is labeled j, then the left edge is labeled j — 1.

7. OTHER EXAMPLES

7.1. BINARY TREE DEFORMATIONS.

ExAMPLE 7.1. The lifted binary tree is shown on the left, where vertices can be
naturally labeled by bit strings: 0, 1, 10, 11, 100, 101,.... The graph BinWord with
the same set of vertices and rank function is shown on the right. In BinWord, an
element x covers y if y can be obtained from x by deleting a single digit from z, and
in addition, 1 covers 0. The lifted binary tree and Bin Word form a dual graded graph,
see [10, Example 2.4.1].

1000 1001 1010 1011 1100 1101 1110 1111 1000 1001 1010 1011 1100 1101 1110 1111

N/ N/ N/ \/ \ S SNT SN/
100 101 110 111 100 101 110 111

N N7 \10//&\ /
1 11

1 1

\ \
0 0

We form a Pieri deformation by interpreting the graph in the context of the ring
of quasisymmetric functions, QSym (see [27]). If we interpret “1” as L1, “10” as Lo,
“100” as L3, 11001 as Ly31, and so on, we see that x covers y in the graph on the
right exactly when = appears in the product L, - L, where L, is the fundamental
quasisymmetric function with the usual product. Let d be the operator that subtracts
1 from the rightmost number in the subscript or deletes the rightmost number if
it is 1. For example, d(L14) = Li3 and d(Ly421) = Li1s2. Then z covers y in the
graph on the left exactly when y = d(z). To form the Pieri deformation, we can let
f=Li+ Lyy + L1171 + -+ -. In other words, the multiplicity of the edge from x down
to y is the coefficient of x in y - (L1 + L1 +---).

110 111

100 101 110 111 100 101
N S N S N/ 4
10 11 10

1

0 0
Using A = QSym and d and f as defined above, it is easy to see that d(f) =
Ly + f = id + f. Using the Hopf algebra structure of QSym, it is clear that d is

a derivation by Lemma 3.4. Thus the resulting graph is a dual filtered graph by
Theorem 3.3.
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ExaMPLE 7.2. Consider the Hopf algebra of multi-quasisymmetric functions,
mQSym, defined in [15]. This Hopf algebra has a basis of multi-fundamental qua-
sisymmetric functions indexed by compositions, {Ea} Notice that a graph with
vertices indexed by {L,} has the same vertices as in Example 7.1. To define the
product, we first define the concept of a multiword. Let w = ujus . .. ux be a word. We
call w = wiws . .. wy, a multiword of u if there is a surjective and non-decreasing map
t: [m] — [k] so that w; = wuy(;). For example, 11335662 and 133335562 are multiwords
of 13562. Let u = ujusg...ux and v = v1vs...v; be two words, and assume that all
letters v; and u; are distinct. A word w = wiws ... wy, is a multishuffle of v and v if

(1) for any ¢ € [1,m — 1], w; # w;+1, and
(2) when restricted to alphabets v; and u;, w becomes a multiword of v and wu,
respectively.

For example, 1818373567627 is a multishuffle of 13562 and 87. If u or v contain
repeated letters, obtain the multishuffle by first replacing v and v with words with
distinct letters, taking the multishuffle product, and then replacing the letters in the
result with the original letters. For example, if multishuffling 121 with 1, we can
instead multishuffle 132 with 4 to get 1324 + 13242441342+ - - -, and then substitute
the original letters to get 1214 + 12111 + 11211 + - - -. Note that multiplicities may
occur in this case.

To multiply L, and IN/@, first choose words w, and wg such that the composition
of the descent set of u is o and of v is 8. For example, if & = (2,1) and 5 is (1), we
can choose w, = 231 and wg = 1. Say that w, is on [n] for some n € N, and let
wg[n] be the word obtained by adding n to each letter of wg. In the previous example,
wg[3] = 4. Now

Eaffﬂ = Z [N/C(w)a

where we sum over multishuffles of w, and wg[n] and C(w) is the composition associ-
ated to the descent set of word w. For example, IZ(QJ)E(D = z(g)g) +E(2,171) +Z~L(371) +
I~/(12121) + .-, where the terms shown correspond to multishuffles 2314, 2431, 2341,
4243141.

Define the coproduct using the cuut coproduct of a word w: A(wiws...wg) =
TRWy ... W +WL QW ... W +WL QW3 ... W +WW2 QW2 ... W+ +W1... W&
Wi +wi ... wr ® F. Then let

A(Ly) = > Lewy ® Lequ.-

u®u’ in cuut(weq)

For example,

A(L(21)) = 2@ Lapy + Lty @ Lizpy + Ly @ Ly + Loy ® Ly
+ E(g) ® E(l) + I~/(271) ® E(l) + I~/(271) ® @

since
A(231):@@231—1—2@231+2®31+23®31+23®1+231®1+231®®.

Taking A to be mQSym with the basis {L4} indexed by compositions, we create
a dual filtered graph by taking f = L(;y and d = { o A with g = L(y). The first five
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ranks are shown below.

o -0 0 0o 0 0 0 0
22 211 13 121 112 1111 4 31 22 211 _13 121 112 1111

4 31
\/ \/ NN/ \ /

12 111 3 111
U\O/U U\Q/U N\
| |
0 0

This is a dual filtered graph by Theorem 3.3.
The following proposition shows that we have another instance of Mébius via Pieri
phenomenon, just like in the case of Young’s lattice.

PROPOSITION 7.3. The Pieri construction above is a Mobius deformation of the dual
graded graph in Example 7.1.

Proof. We can transform the poset BinWord from Example 7.1 into the poset of
subwords shown below by ignoring the first 1 in every word. In doing this, the element
@ in BinWord disappears, 1 becomes @ in the subword poset, 10 becomes 0, 11001
becomes 1001 and so on. With this change, x < y in BinWord exactly when x can be
found as a subword of y, ignoring the initial 1’s in each.

0o0 001 010 _ 011 __100 101 110 111

\ ST ST/

\%/
\/

Given a word y = y1y2...Yn, define its repetition set R(y) = {i : yi—1 = yi}.

An embedding of z in y is a sequence 1 < i1 < iy < -+ < i < n such that
T = Yi,Yiy - - - Yip,- 1t is & normal embedding if R(y) C {i1,i2,...,ix}. For two words,
x and y, let (y)n denote the number of normal embeddings of x in y. For example,
(1011010)n =1 and (1010) = 3. Now, from Theorem 1 in [3],

) = (eI (Y)

We show that the coefficient of Lg in Eai(l) is the number of normal embeddings
of « into S after viewing o and 3 as sequences of 0’s and 1’s and deleting the first 1
in each by showing the unique way to insert strings of alternating 1’s and 0’s into «
at a specific location to obtain # in the multishuffle. So, for example, the coefficient
of L(1111) in L(11)L(1) is zero since (111) = 0 and the coefficient of L(122) in L(12)L(1)

is 3 since (l(f(l)o)n =3.

Choose word w, on [n] and multishuffle it with n 4 1. We note that adding two 0’s
to a that are not separated by a 1 in « in the multishuffle means increasing the length
of an increasing segment of w, by two, which is impossible as adding n+ 1 to the end
of an increasing segment is the only way to increase its length, and the letters of w,

must stay in the same relative order in the multishuffle. Similarly for adding two 1’s
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to w,, that are not separated by a 0 in «. This agrees with the Mébius function since
there are no normal embeddings in this case, e.g. (1018(1)01)71 =

Suppose we want to insert a segment of alternating 1’s and 0’s in « in a place
with a 0 (if anything) on the left and a 1 (if anything) on the right. Let w, be
WIW3 . . . Wk—1WEW41 - - - Wy, where the wy and w41 correspond to the 1 and 0 of «
mentioned above. The only way to add an alternating sequence beginning with 0 is to
insert the string (n 4+ 1)wg(n + L)wg(n +1)... between wy and wgy1. The resulting

word,
wy ... wk_lwk(n + l)wk(n + 1)wk e Whg1 .- Why

is clearly a multishuffle of w, and n + 1. Similarly, to add an alternating sequence
beginning with 1, “delete” the wy from w and replace it with (n 4+ 1)wg(n + 1)wy
(n+1).... The resulting word,

wy ... wp—1(n+ Dwg(n + Dwg ... Wgg1 - Wy

is a multishuffle of w, and n + 1.

If instead we insert the alternating string in a place of o with a 1 on the left and
a 0 on the right, we only need to consider strings beginning with 0 as the 1 at the
beginning of the string can be added as in the previous case. To insert an alternating
string beginning with 0, we must insert the segment (n + 1)wg(n + 1)wy ... between
wy, and w41 of wy.

If we insert the alternating string in place of a with 0’s to the left and right, we
only need to consider strings that begin with 1. To do this, delete the wj from w and
insert the segment (n + 1)wg(n 4+ 1)wy ... between wyi_1 and wy41.

If we insert the alternating string in place of a with 1’s to the left and right,
we only need to consider strings that begin with 0. To do this, insert the segment
(n+ Dwk(n+ 1wy ... between wy, and wy41. O

7.2. POIRIER—REUTENAUER DEFORMATIONS.

EXAMPLE 7.4. The SYT-tree has as vertices standard Young tableaux, and standard
Young tableau T; covers standard Young tableau Ty if T5 is obtained from 77 by
deleting the box with largest entry. It is shown below on the left. It is dual to the
Schensted graph, which is shown on the right.

The Schensted graph is constructed using RSK insertion. A standard Young tableau
Ty covers Ty if T7 appears in the product of T5 with the single-box standard tableau,
where multiplication of standard Young tableaux is as follows. Suppose 77 and T3
are standard Young tableaux with row words row(77) on [n] and row(7%) on [m],
respectively. Then let T - T» be the sum of tableaux obtained by first lifting row(7})
to [n 4+ m] in all ways that preserve relative order and then RSK inserting the corre-

sponding lifting of row(7%). For example, in multiplying by itself, we would get
the sum of (P(12) <— 3) < 4, (P(13) < 2) <4, P((14) < 2) < 3, (P(23) < 1) < 4,
(P(24) «+ 1) «+ 3, and (P(34) + 1) « 2.
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—
w

=

2]

/H
=

Let f=T1+T5+ T3+, where T; is the one-row tableau with row reading word
123 ..., and create a Pieri deformation by adding edges to the Schensted graph so
that ag(T;, Tj) is the coefficient of T; in T - f.

1[3]

=

o

P
=

To see that this gives a dual filtered graph, take A to be the algebra of standard
Young tableaux with multiplication as defined above. Note that A is dual to the
Poirier—Reutenauer Hopf algebra [22]. Take d to be the operator that deletes the box
with the largest entry, and notice that T; covers Ty in SYT-tree exactly when d(T7) =
T5. The operator d is a derivation by Lemma 3.4 using the fact that A(T) = > (u®v),
where we sum over words u and v such that row(T) is a shuffle of v and v. Lastly, it
is easy to see that d(f) = &+ f. Thus by Theorem 3.3, we have a dual filtered graph.

EXAMPLE 7.5. Take A to be the K-theoretic Poirier-Reutenauer bialgebra (KPR)
defined in [21] with a basis of K-Knuth classes of initial words (i.e. words containing

only 1,2,...,n for some n) on N. The K-Knuth relations are as follows:
pp=p for all p
Pap = qpq for all ¢, p

pgs = qps and spq = sqp for p < s < gq

See [7] for details on this relation.
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Multiplication of two classes [w1] and [ws] is done by shuffling each pair of elements,
one from [wi] and one from [wy[n]], where w; is a word on n and ws[n] is obtained by
adding n to each letter in wy, and writing the result as a sum of classes. For example,

[12] - [312] = [53124] + [51234] + [35124] + [351234] + [53412] + [5351234].

The coproduct is similarly defined by taking the sum of the coproduct, A(wy ... wy) =
FRW ... wk~+std(wy)@std(ws ... wg)++ - -+ std(wy ... wg_1wg)+std(wy ... w,) VL,
of each element in the class and writing the result as a sum of classes. Here, std(w)
sends w to the unique word with the same relative order using all letters {1,2,...,n}
for some n. For example, std(13375) = 12243. Using this, we compute,

A(12]) = el 2] + 1] @ [1] + [1] @ [12] + [12] @ [1] + [12] @ [2]-

Letting g = [1] and f = [1], we create a Pieri construction using Theorem 3.3. The
partial dual filtered graph is shown below. The first five ranks are shown completely,
and there are a few additional elements shown in the graph on the right to illustrate
all elements that cover [212]. To see that there is an upward edge from [3412] to
[3124], we first notice that 34124 € [3124] and that 3412® 1 appears in the coproduct
of 34124.

In Figures 7.1 and 7.2, K-Knuth equivalence classes of words are represented by
an increasing tableau. Note that there may be more than one increasing tableau in
any given class.

7.3. MALVENUTO-REUTENAUER DEFORMATIONS.

EXAMPLE 7.6. Figure 7.3 shows dual graphs where vertices are permutations. On
the left, a permutation o covers « if 7 is obtained from ¢ by deleting the rightmost
number (in terms of position in the permutation) and standardizing. On the right,
a permutation o covers 7 if 7 is obtained from o by deleting the largest number in
the permutation. There are other similar constructions, which can be found in [10,
Example 2.6.8].

Consider the Hopf algebra of permutations with the shuffle product and coproduct
defined by A(w) = > std(u) ® std(v), where the concatenation of v and v is w and
std(w) sends w to the unique permutation with the same relative order. For example,
std(1375) = 1243. Take d to be the operator that deletes the rightmost letter of the
permutation. Then we see that a;j(v,w) is the coefficient of v in d(w). We create a
Pieri deformation by letting f =14 12+ 123 + - -+ and as(v,w) be the coefficient of
win f-v. Clearly d(f) = @ + f, and we use Lemma 3.4 to see that d is a derivation.
It then follows from Theorem 3.3 that the resulting graph is a dual filtered graph.
This dual filtered graph is shown in Figure 7.3.

EXAMPLE 7.7. We next describe a K-theoretic analogue of the Malvenuto—
Reutenauer Hopf algebra. For details, see [15]. A small multi-permutation or
m-permutation of [n] is a word w in the alphabet 1,2,...,n such that no two
consecutive letters in w are equal. Now let the small multi-Malvenuto—Reutenauer
Hopf algebra, mMR be the free Z-module of arbitrary Z-linear combinations of multi-
permutations. Recall the definition of the multishuffle product from Example 7.2.
Given two m-permutations w = w; ... w and v = uy ...u;, define their product to
be the multishuffle product of w with u[n], where w contains exactly the numbers
1,2,...,nand u[n] = (u1 + n)(uz +n)...(u +n).

Let st(w) send a word w to the unique m-permutation u of the same length such
that w; < wj if and only if u; < u; for each 1 < 4,5 < I(w). Define the coproduct in
mMR by A(w) = st(A(w)), where A(w) is the cuut coproduct defined in Example 7.2.
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N
[1]2]3]

[1]2]4]

CEE

R )

FIGURE 7.1. The upward-oriented edges of the Pieri construction of
KPR as described in Example 7.5.
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1[2]3]

Fi1GURE 7.2. The downward-oriented edges of the Pieri construction
of KPR as described in Example 7.5.
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321 213 312 231 132 123 321 213 312 231 132 123

N2V PN

N\ N

16} 16}
321 213 312 231 132 123 321 213 312 231 132 123

N

N\ : \@/

%] %]

21

21

Ficure 7.3. The top row shows the dual graded graph with permu-
tations for vertices as described in Example 7.6. The bottom row is
the corresponding Pieri deformation.

Usingg=1,d=&0A, and f = 1, we form the dual filtered graph partially shown
below. Notice that d(wy ... wg) =wy ... wi +wy ... wE—1, s0 d(f) =+ f.

O -0 0 0O 0 0O 0 0
121 123 132 312 213 231 321 212 121 123 132 312 213 231 321 212

NNV

12 21 12 1
U\l()/U \1/
’ ’

7.4. STAND-ALONE EXAMPLES.

EXAMPLE 7.8. There is another graph with the same set of vertices as the Young—
Fibonacci lattice called the Fibonacci graph. The vertices of the Fibonacci graph are
words on the alphabet {1,2}, or snakeshapes, and a word w is covered by w’ if w’
is obtained from w by adding a 1 at the end or by changing any 1 into a 2. In the
graph that is dual to the Fibonacci graph, w is covered by w’ if w is obtained from w’
by deleting a 1, and the multiplicity of the edge between w and w’ is the number of
ways to delete a 1 from w’ to get w. The pair form a dual graded graph shown below,
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see [10, Example 2.3.7], where the numbers next to the edges denote multiplicity.
1111 211 121 112 22 1111 211 121 112 22

/ / ' 2 / /
1~ 217 12 11 21 12
/ ) /
11 2 11 2
/ 2
1 1
%] %]

We construct a Pieri deformation of this dual graded graph by adding downward-
oriented edges so that in the resulting set of downward-oriented edges, there is an
edge from w’ to w for every way w can be obtained from w’ by deleting at least one
1. For example, there are six edges from 1111 to 11 since there are six ways to delete
two 1’s from 1111 to obtain 11.

1111 211 121 112 22 1111 211 121 112 22

/ 2 /
11 217 12 21|/ 12
/ 4 /
1 2 2
1
%] %)

THEOREM 7.9. The resulting graph is a dual filtered graph.

Proof. Consider an algebra structure on words in alphabet {1, 2} with shuffle product,
as in [10]. Consider d to be the operator that changes any 2 into a 1 or deletes the
last digit if it is 1. According to [10, Lemma 2.3.9], d is a derivation such that the
coefficient of v in d(w) is the multiplicity a1(v,w) for the Fibonacci graph. Take
f=14+114111+4---. It is easy to see that d(f) = id + f and that the coefficient
of w in fv is the multiplicity as(v,w). Thus, Theorem 3.3 applies, and the statement
follows. O

ExXAMPLE 7.10. The dual filtered graph on the polynomial ring shown below is that
mentioned in Section 1.2. We take U to be multiplication by x and D = edr — 1. It
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is easy to check that DU — UD = D + I, so the result is a dual filtered graph.

x® x®

8. ENUMERATIVE THEOREMS VIA UP-DOWN CALCULUS

Let @ be the minimal element of a dual filtered graph satisfying DU—-UD = 1+ D. Let
T(n, k) be the number of ways n labeled objects can be distributed into k& nonempty
parcels. We have

T(n,k) =k! S(n,k),
where S(n, k) is the Stirling number of the second kind.

THEOREM 8.1. For any dual filtered graph, the coefficient of @ in D*U™(@) is T'(n, k).

Proof. We think of replacing the fragments DU inside the word by either UD, D, or
1. This way the initial word gets rewritten until there is no DU in any of the terms:

Dk:Un _ DkflUDUnfl +DkUn71 _’_DkrflUnfl — .

Only the terms of the form U? that appear at the end can contribute to the coeffi-
cient we are looking for, since D(@) = 0. Among those, only the terms U = 1 can
contribute. Thus, we are looking for all the terms where D’s and U’s eliminated each
other.

It is easy to see that each D eliminates at least one U, and each U must be
eliminated by some D. The number of ways to match D’s with U’s in this way is
exactly T'(n, k). O

Let f* be the number of increasing tableaux of shape A. Let g be the number
of set-valued tableaux of shape A and content 1,...,n. Let F(n) denote the Fubini
number, or ordered Bell number - the number of ordered set partitions of [n].
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COROLLARY 8.2. We have

> g =F(n).

IAI<n

Proof. The left side is clearly the coefficient of @ in (D + D? + --- + D")U™(2). It
remains to note that Y, T'(n, k) = F(n). O

This is the analogue of the famous Frobenius—Young identity. Of course, this also
follows from bijectivity of Hecke insertion. The advantage of our proof is that a similar
result exists for any dual filtered graph.

The following result is analogous to counting oscillating tableaux.

THEOREM 8.3. For any dual filtered graph the coefficient of @ in (D+U)™ (D) is equal
to the number of set partitions of [n] with parts of size at least 2.

Proof. As before, the desired coefficient is equal to the number of ways for all D’s to
eliminate all U’s via the commutation relation. Each factor in the product

(D+U)D+U)---(D+U)

thus either eliminates one of the factors to the right of it or is eliminated by a factor
to the left. Grouping together such factors, we get a set partition with parts of size at
least 2. On the other hand, any such set partition corresponds to a choice of D in the
first factor of each part and of U’s in the rest. Thus, it corresponds to term 1 after
such D’s eliminate such U’s. The statement follows. 0
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