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Towards a function field version of
Freiman’s Theorem

Christine Bachoc, Alain Couvreur & Gilles Zémor

Abstract We discuss a multiplicative counterpart of Freiman’s 3k − 4 theorem in the context
of a function field F over an algebraically closed field K. Such a theorem would give a precise
description of subspaces S, such that the space S2 spanned by products of elements of S satisfies
dim S2 6 3 dim S − 4. We make a step in this direction by giving a complete characterisation
of spaces S such that dim S2 = 2 dim S. We show that, up to multiplication by a constant field
element, such a space S is included in a function field of genus 0 or 1. In particular if the genus
is 1 then this space is a Riemann–Roch space.

1. Introduction
We are interested in linear analogues of addition theorems that occur in field exten-
sions F/K of a base field K. If S and T are finite-dimensional K-vector subspaces of
F , we denote by ST the K-linear span of the set of all products st, s ∈ S, t ∈ T . The
general purpose of this area of research is to characterise subspaces S and T whose
product ST has unusually small dimension: it is naturally inspired by one of the goals
of additive combinatorics which is to characterise subsets A,B of elements of a group
that have sumsets A+B of small cardinality, where A+B denotes the set of elements
a+ b, a ∈ A, b ∈ B.

The first significant result in this direction is arguably due to Hou, Leung and
Xiang [9] and generalises the classical addition theorem of Kneser [10]. It essentially
states that if dimST < dimS+ dimT − 1, then the space ST must be stabilised by a
non-trivial subfield of F . A welcome feature of Hou et al.’s theorem is that Kneser’s
original theorem can be recovered from it, so that it is not only a transposition to the
linear setting of its additive counterpart, but it can also be seen as a generalisation.
Hou’s Theorem was finally proved for all field extensions in [2], and also studied in
other algebras than field extensions [3, 11]. Linear versions of addition theorems were
also studied in the somewhat broader context of skew field extensions in [5]. Many
applications of the theory of products of spaces in the algebra Fn

q with componentwise
multiplication are discussed in [13].

A common feature of many of the above works is that they tend to focus on
highlighting the existence of finite dimensional subfields or subalgebras, whenever
dimST < dimS + dimT − 1. In contrast, in [1] field extensions F/K are studied
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where there are no subextensions of K in F (K is algebraically closed in F ) in which
case one always has dimST > dimS+dimT −1 whenever ST 6= F [5]. The goal of [1]
was to prove that the equality dimST = dimS + dimT − 1 essentially implies that
S and T have bases in geometric progression: this is a linear equivalent of Vosper’s
Theorem [18] which states that in a group of prime order, or more generally an abelian
group with no finite subgroups, |A + B| = |A| + |B| − 1 implies that A and B are
arithmetic progressions (with some degenerate cases ruled out). It is proved in [1]
that a linear version of Vosper’s theorem holds when the base field K is finite, and
for a number of other base fields, but not for every field K, even if it is assumed to be
algebraically closed in F . This theory of subspaces with products of small dimension
in field extensions has also recently found applications to coding theory in [14].

A particularly simple case for which a linear version of Vosper’s Theorem can be
derived from an addition theorem, is when the base field K is itself assumed to be
algebraically closed. The linear theorem then follows almost directly from considering
sets A and B of valuations of the field elements in S and T and arguing that A and
B must satisfy an addition theorem. From this perspective it becomes very natural
to ask what can be said of the structure of spaces S such that

(1) dimS2 = 2 dimS − 1 + γ

for increasing values of γ. We have switched to the symmetric situation S = T for the
sake of simplicity.

In the additive case, recall Freiman’s “3k − 4” Theorem [6], [17, Theorem 5.11],
which says that in a torsion-free abelian group,

|A+A| = 2|A| − 1 + γ

implies, when γ 6 |A| − 3, that A is included in an arithmetic progression of length
|A| + γ (i.e. A is a progression with at most γ missing elements). The full Freiman
Theorem, which extends the above 3k−4 version, is arguably a cornerstone of additive
combinatorics and has inspired a lot of subsequent work (see e.g. [17]). In this light,
tackling the characterisation of spaces satisfying (1) would be a welcome addition to
the burgeoning theory of space products in extension fields.

Candidates for spaces S satisfying (1) are of course subspaces (of codimension
at most γ) inside a space that has a basis in geometric progression. However, some
thought yields alternative spaces that do not have an additive analogue when γ > 1:
namely Riemann–Roch spaces L(D) of an algebraic curve of genus γ, which can be
seen to satisfy (1). It is tempting to conjecture that, in the case when the base field
K is algebraically closed, any space satisfying (1) with γ 6 dimS − 3 is, up to
multiplication by a constant, a subspace of codimension t inside a Riemann–Roch
space of an algebraic curve of genus g, with t+ g 6 γ. With this in mind, let us call
the quantity γ in (1) the combinatorial genus of S. In the present paper we make a
modest contribution towards this hypothesis by proving it in the case when γ = 1.

We will use a blend of combinatorial and algebraic methods. The paper is organised
as follows: Section 2 starts with a discussion of concrete examples of spaces with
small products. Section 3 recalls basic properties of valuations that will in particular
associate sets of integers with small sumsets to subspaces with products of small
dimension. Section 4 proves Theorem 4.2, an extension field version of “Freiman’s
Lemma” where the transcendence degree plays a role analogous to the rank of a set
of elements of a torsion-free abelian group. Section 5 introduces a lattice of subspaces
that we shall rely on heavily, and illustrates its usefulness by characterising spaces
with combinatorial genus equal to zero. Section 6 recalls basic properties of Riemann–
Roch spaces and states the paper’s main result, Theorem 6.3.
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Section 7 proves Theorem 6.3. Section 8 complements Theorem 6.3 by giving a
precise characterisation of those subspaces of Riemann–Roch spaces that have com-
binatorial genus equal to 1. Finally, Section 9 extends Theorems 4.2 and 6.3 to the
case when the base field is perfect rather than algebraically closed.

2. Motivating Examples
Let K be a field and consider the field F = K(x) of rational functions over K.
Suppose we want a K-vector subspace S of dimension k such that S2 has the smallest
possible dimension. A natural candidate is the space S generated by the geometric
progression 1, x, x2, . . . , xk−1 for which we have dimS2 = 2k − 1. We notice that the
set A of degrees of the rational functions (in this example polynomials in x) of S is
an arithmetic progression. More generally, the set of degrees of the functions in S2

must contain A + A, so that dimS2 > |A + A|. This remark may be used to claim
that if dimS2 is the smallest possible, namely 2k − 1, then |A+A| must be as small
as possible, which implies that A must be an arithmetic progression of integers, from
which it is fairly straightforward to deduce that S must have a basis of elements
in geometric progression. We will make the point below that this line of reasoning
extends to other extension fields F of K, provided we have valuations at our disposal
to generalise degrees of rational functions.

Next relax slightly the condition on dimS2 to dimS2 6 2k. To construct examples
of such spaces we may consider S in the rational function field K(x) generated by
1, x2, x3, . . . , xk. These spaces are directly inspired from the sets of integers A =
{0, 2, 3, . . . , k} such that |A + A| = 2|A|. However, we have additional examples of
such spaces that have no direct additive counterpart: take K to be the field of complex
numbers (say) and take F to be the algebraic extensionK(x, y) of the rational function
field K(x) where y satisfies the equation y2−x3 +x = 0. Now consider the space S of
dimension 5 generated by 1, x, y, x2, xy. It is readily checked that we have dimS2 =
2 dimS. The space S is an example of a Riemann–Roch space of the algebraic curve
of equation y2 − x3 + x = 0 which is elliptic or of genus 1. Our main result, namely
Theorem 6.3, will tell us that these two examples are in some sense generic. This has
motivated the following definition, and also the conjecture below:

Definition 2.1. Let K be a field and F be a K–algebra. Let S ⊂ F be a finite
dimensional K–subspace of F . The combinatorial genus of S is defined as the integer
γ such that

dimS2 = 2 dimS − 1 + γ.

Conjecture 2.2. Let K be an algebraically closed field and let F be an extension
field of K. Let S be a K-subspace of finite dimension in F such that K ⊂ S. Let the
combinatorial genus γ of S satisfy γ 6 dimS− 3. Then the genus g of the field K(S)
satisfies g 6 γ and there exists a Riemann–Roch space L(D) that contains S and such
that dimL(D) 6 dimS + γ − g.

The next section recalls some background on valuations with which we will derive
our first results on spaces with small combinatorial genus.

3. Function fields, valuations
We start by recalling some basic facts about valuations in function fields that will be
crucial to transferring additive statements to the extension field setting. We refer the
reader to [4, Chapter 6] for further details.
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LetK be a field, a function field in m variables over K is a field F which is a finitely
generated algebra of transcendence degree m. Equivalently it is a finite extension of
the field K(X1, . . . , Xm) of rational functions in m variables.

We recall that such fields have valuations that map F× to the elements of some
ordered group. Valuations are multiplicative, i.e. v(xy) = v(x) + v(y) and satisfy the
ultrametric inequality, v(x + y) > min{v(x), v(y)} with equality when v(x) 6= v(y).
The map v is extended to F with the convention v(0) =∞.

A valuation comes with a valuation ring O ⊂ F which is defined as the set of func-
tions of non-negative valuation, together with addition and multiplication inherited
from F . A valuation ring has a unique maximal ideal m equal to the set of elements of
positive valuation. The quotient O/m is called the residue field of the valuation ring.

Let S ⊆ F be a finite dimensional K–vector space of dimension n > 0. Given a
valuation v on F with residue field K, we denote by v(S) the set of valuations of the
non-zero elements of S. We recall the following classical result, and give a proof for
the sake of self–containedness.

Proposition 3.1. The set v(S) is finite and its cardinality equals dimS. Moreover,
there exists a basis (e1, . . . , en) of S such that

v(e1) > v(e2) > · · · > v(en) and {v(e1), . . . , v(en)} = v(S).
Such a basis is referred to as a filtered basis. In addition, S has a natural filtration

{0} ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn

such that
(2) min v(S1) > · · · > min v(Sn−1) > min v(S).
For every i = 1, . . . , n, the space Si is generated by e1, . . . , ei, but the filtration is
uniquely defined and does not depend on the choice of a filtered basis.

Proof. First notice that elements of F with distinct finite valuations are linearly
independent. Indeed, if x1, . . . , xk have distinct valuations, then so do a1x1, . . . , akxk

for non-zero ai ∈ K, since non-zero elements of K have valuation 0, so that v(a1x1 +
· · · + akxk) = min(v(x1), . . . , v(xk)) must be finite, meaning a1x1 + · · · + akxk must
be non-zero. This shows that |v(S)| 6 dimS.

Now let E be a subspace of S such that v(E) = v(S) and suppose E $ S. Let
x be an element of S r E with maximal valuation in {v(s), s ∈ S r E}. Let e ∈ E
be such that v(e) = v(x). Then, xe−1 ∈ O× and since the residue field is K, there
exists λ ∈ K such that xe−1 ≡ λ mod m. Therefore, x − λe has a valuation larger
than v(x), a contradiction. Therefore E = S, meaning that we have dimS = |v(S)|.
Choosing any n elements of S with distinct finite valuations yields a filtered basis.

Finally, the filtration S1 ⊂ · · · ⊂ Sn = S is iteratively constructed as follows,
Si−1 = {x ∈ Si | v(x) > min v(Si)}.

Note that this definition is independent of the choice of a filtered basis, however one
checks easily that Si−1 is spanned by e1, . . . , ei−1. This shows that the space Si−1 has
codimension 1 in Si and the sequence of inequalities (2) follows immediately from the
definition of the Si’s. �

The following lemma is elementary but fundamental to the study of the structure
of products S2 of small dimension. It enables us to involve theorems from additive
combinatorics.

Lemma 3.2. For any valuation v on F , and any K–subspace S,
(3) v(S) + v(S) ⊆ v(S2).
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Remark 3.3. Note that this inclusion is not necessarily an equality. For instance,
consider the subspace H ofK(x) of basis 1, x, x2, x3+ 1

x and the valuation v at infinity.
Then v(H) = {0,−1,−2,−3} while H2 = 〈 1

x , 1, x, x
2, . . . , x5, x6+ 1

x2 〉 whose valuation
set contains v(1/x) = 1 which is not in v(H) + v(H).

From now on and until the end of Section 8 (with a temporary exception in §6.1),
we suppose that the base field K is algebraically closed. Note that this assumption
entails that any valuation on F has residue field K, which will therefore enable us to
apply Proposition 3.1. Only in Section 9 will we consider what becomes of our results
when the base field K is not algebraically closed.

4. Transposing Freiman’s Lemma in field extensions
Recall the following result of Freiman [6], named “Freiman’s Lemma” by Tao and
Vu [17, Lemma 5.13].
Theorem 4.1. Let A be a finite subset of Rd such that no hyperplane of Rd contains
a translate of A. Then

|A+A| > (d+ 1)|A| − d(d+ 1)/2.
Let S be aK-vector space inside a field extension L of a fieldK. We remark that for

a non-zero element s of S, the field subextension K(Ss−1) of L is independent of the
choice of the element s. Let us call the transcendence degree of S the transcendence
degree of K(Ss−1) over K. Similarly, by the genus of S we will mean the genus of
the field extension K(Ss−1)/K (see Theorem 6.3 in Section 6.2).

We have the extension field analogue of Theorem 4.1.
Theorem 4.2. Let K be an algebraically closed field and let F ⊇ K be an extension
field of K. Let S be a K-vector subspace of F of finite dimension and of transcendence
degree d. Then

dimS2 > (d+ 1) dimS − d(d+ 1)/2.
The proof of Theorem 4.2 rests upon the following lemma.

Lemma 4.3. If F/K is a field extension over an algebraically closed field K, and if
x1, . . . , xd are K-algebraically independent elements of F such that F is an algebraic
extension of K(x1, . . . , xd), then there exists a valuation v of F , such that the asso-
ciated valuation ring has residue field isomorphic to K and such that the valuation
values v(x1), v(x2), . . . , v(xd) generate a group isomorphic to Zd.
Proof. It is standard to construct a valuation v from K(x1, x2, . . . , xd) to Zd such
that v(x1) = (1, 0, . . . , 0), v(x2) = (0, 1, . . . , 0), . . . , v(xd) = (0, . . . , 0, 1) and with
associated residue field isomorphic toK (see e.g. [4, Chapter 6, §3.4, Example 6]). This
valuation can then be extended to the whole of F [4, Chapter 6, §3.3, Proposition 5]
with its residue field necessarily becoming an algebraic extension of the original residue
field associated to v [4, Chapter 6, §8.1, Proposition 1]. Since K is algebraically
closed, the residue field associated to the extended valuation must therefore also be
isomorphic to K. �

Proof of Theorem 4.2. Without loss of generality we may suppose K ⊂ S and F =
K(S).

Let x1, . . . , xd be d algebraically independent elements of F . Choose for v a val-
uation given by Lemma 4.3. Then, since the residue field associated to v is K, by
Proposition 3.1 we know that dimS = |v(S)| and dimS2 = |v(S2)|. From (3) we have
dimS2 > |v(S) + v(S)| and Theorem 4.1 now gives us

|v(S) + v(S)| > (d+ 1)|v(S)| − d(d+ 1)/2 = (d+ 1) dimS − d(d+ 1)/2
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which proves the theorem. �

Consequence. When one considers a space S,K ⊂ S ⊂ F , with dimS2 6 3 dimS−
4, and F = K(S), then F is a function field in one variable. In particular, from [16,
Theorem 1.1.16], every valuation on F is discrete and its set of values is Z.

For the rest of this article we will assume this setting, namely a sufficiently small
combinatorial genus γ, so that the transcendence degree of S can only be equal to
1. The term function field will consequently always mean from now on function field
in one variable. Since the multiplicative properties of S that we wish to study are
invariant by multiplication by a constant non-zero element, it will also be convenient
to systematically assume 1 ∈ S, so that K(S) is a function field (in one variable).

5. Products of spaces, the lattice of subspaces and
characterising spaces with combinatorial genus γ = 0

In order to study the structure of a product set S2, the lattice of subspaces that
we introduce below will be particularly useful. Its structure will enable us to almost
immediately characterise spaces with the smallest possible combinatorial genus.

5.1. The lattice of subspaces. Let (e1, . . . , en) be a filtered basis of the space S
relative to a valuation v. Consider the sequence of subspaces introduced in Proposi-
tion 3.1

S1 ⊂ S2 ⊂ · · · ⊂ Sn = S

where Si denotes the subspace of S generated by e1, . . . , ei. We will refer to this
sequence of spaces as the filtration of S relative to v.

Since dimensions of spaces are unchanged by multiplication by a constant element,
we may assume e1 = 1 and S1 = K. It will be useful to consider the lattice of sub-
spaces of S2 consisting of the products of subspaces SiSj and ordered by inclusion,
as represented on Figure 1. We will consider directed edges between SiSj and SiSj+1
and between SiSj and Si+1Sj , and label both edges by a weight defined as the codi-
mension of SiSj inside SiSj+1 and Si+1Sj respectively. We will make several times
the argument that the sum of weights on two directed paths that lead from the same
initial vertex to the same terminal vertex must be the same because they both equal
the codimension of the initial subspace inside the terminal subspace. Notice also that
all weights must be positive because the valuation set of an initial subspace must
be strictly smaller than the valuation set of the corresponding terminal subspace: in-
deed, eiej+1 is an element of minimal valuation of SiSj+1 that cannot belong to SiSj

because the minimum of v(SiSj) is attained by eiej , and similarly for Si+1Sj .
The following lemma states that when two edges that fall into the same terminal

vertex both have weight 1, then the initial vertices correspond to the same subspace.

Lemma 5.1. Suppose the spaces SiSj+1 and Si+1Sj both have codimension 1 inside
Si+1Sj+1, then SiSj+1 = Si+1Sj.

Proof. Let U = {s ∈ Si+1Sj+1, v(s) > min v(Si+1Sj+1)}. We have that U $ Si+1Sj+1
and U is a subspace containing both SiSj+1 and Si+1Sj which must therefore all have
the same dimension and be equal. �

5.2. The structure of S when γ = 0. Like in the previous subsection we assume
that e1 = 1, and we moreover set x = e2.

Lemma 5.2. Suppose all directed edges lying on any path from S1 to SiSj, 2 6 i, have
weight 1. Then for every k, 2 6 k 6 j, the space Sk is generated by 1, x, x2, . . . , xk−1.
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K = S2
1 S1S2 S1S3 S1S4 S1S5

S2
2 S2S3 S2S4 S2S5

S2
3 S3S4 S3S5

S2
4 S4S5

S2
5

Figure 1. the lattice of subspaces

Proof. Proceed by induction on k. Suppose the result is proved for k and prove it for
k + 1 6 j. By applying Lemma 5.1 to S1Sk+1 and S2Sk inside S2Sk+1, we obtain
Sk+1 = 〈1, x〉Sk meaning that Sk+1 is generated by (1, x, x2, . . . , xk). �

As an immediate corollary we obtain the following theorem, which is proved in [1]
in more generality. Its proof illustrates the usefulness of the subspace lattice described
above.

Theorem 5.3. Let K be an algebraically closed field, and let S be a finite-dimensional
K-vector space lying in a field extension F of K. If dimS2 = 2 dimS − 1 then S has
a basis in geometric progression, i.e. of the form (a, ax, ax2, . . . , axn−1).

Proof. Replacing S by e−1
1 S reduces to the case e1 = 1. Because the codimension of

K in S2 is 2 dimS − 2 and is equal to the length of any path from K to S2 in the
lattice, we have that every edge must be of weight 1. The result therefore follows from
Lemma 5.2. �

We now turn to Riemann–Roch spaces that provide more spaces of low combina-
torial genus γ.

6. Divisors, Riemann–Roch spaces, and characterising spaces
with combinatorial genus γ = 1

6.1. Divisors and Riemann–Roch spaces on function fields. We quickly re-
call some basic notions on the theory of the function fields in one variable (or equiv-
alently of algebraic curves). For further details, we refer the reader to [16] or to [7]
for a more geometric point of view. In the present subsection, in order to introduce
some notions that will also be useful in the more general setting of Section 9, we do
not assume that K is algebraically closed.

Let F be a function field over K such that K is algebraically closed in F . Fol-
lowing [16, Chapter I], let us call a place P of F the maximal ideal of a valuation
ring. Valuations, valuation rings, places are interchangeable notions in the sense that
any one unambiguously defines the others. Informally, a place captures the concept of
“point” of the associated algebraic curve. For a place P we denote by vP the (unique)
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associated discrete valuation. The degree degP of a place P is the dimension over K
of its residue field O/P . It is always finite and equal to 1 when K is algebraically
closed.

A divisor on F is an element of the free abelian group generated by the places of
F . Thus it is a formal Z–linear combination of places. Given a function f ∈ F×, the
divisor of f is defined as

(f) :=
∑

P place of F

vP (f)P.

The group of divisors is partially ordered as follows: given a divisor G = g1P1 + · · ·+
gmPm, we have G > 0 if g1, . . . , gm > 0. Next G > H if G−H > 0. The degree of the
divisor G is defined as

degG = g1 degP1 + · · ·+ gm degPm.

Given a divisor D of F , the Riemann–Roch space L(D) is defined as
L(D) := {f ∈ F | (f) +D > 0} ∪ {0}.

The dimension of this space is given by the famous Riemann–Roch theorem [16,
Theorem 1.5.15]. In particular it satisfies:

If degD > 2g − 2 then dimL(D) = deg(D) + 1− g
where g denotes the genus of the field F (see [16, Definition 1.4.15] for a definition).

Two divisors D, D′ are said to be linearly equivalent which we denote by D ∼ D′ if
D′ = D+(f) for some function f ∈ F×. Such an equivalence induces an isomorphism
between the Riemann–Roch spaces which is explicit:

L(D′) −→ L(D)
s 7−→ fs.

In short L(D) = f · L(D′).
The following well-known result due to Mumford gives an explicit formula for the

product of Riemann–Roch spaces.

Theorem 6.1 ([12, Theorem 6]). Let D, D′ be two divisors of a function field F of
genus g over an algebraically closed field K. Suppose that degD > 2g and degD′ >
2g + 1. Then

L(D)L(D′) = L(D +D′).

In particular, combining the Riemann–Roch theorem with Theorem 6.1, one has
that in a function field of genus g, for any divisor D of degree larger than 2g + 1,
the space L(D) has combinatorial genus γ = g. This has in particular motivated
Definition 2.1.

Finally recall that, over an algebraically closed field K, a function field F has
genus 0 if and only if it is a purely transcendental extension F = K(x) of K. In
such an extension, the space generated by the functions 1, x, x2, . . . , xn is equal to the
Riemann–Roch space L(nP∞) where P∞ is the place at infinity. We remark that the
statement of Theorem 5.3 is equivalent to saying that a space S has combinatorial
genus γ = 0 if and only if it has genus 0 and is equal to a Riemann–Roch space
L(D) = aL(nP∞) for a divisor D = nP∞ − (a) and a function a.

6.2. Statement of the main theorem. Until the end of Section 8, the base field
K is supposed to be algebraically closed.

Our main purpose is to classify spaces over K with combinatorial genus 1. That is
to say, given a finitely generated field F over K we want to understand the structure
of K–spaces S ⊆ F such that dimS2 = 2 dimS. As remarked at the end of Section 4,
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we know from Theorem 4.2 that the transcendence degree of S must be equal to 1, so
that, assuming without loss of generality 1 ∈ S, F is a function field (in one variable).

With the case γ = 1 in mind, we recall for future reference its additive analogue:

Proposition 6.2.A subset A of the integers, |A| > 4, is such that |A+ A| = 2|A| if
and only if it is of the form A = a + {0, 2d, 3d, . . . , (n − 1)d, nd} for some integer a
and some non-zero d: in other words, writing A as an increasing sequence, it is an
arithmetic progression with a missing element after the first position (positive d) or
before the last position (negative d).

Indeed, Freiman’s 3k− 4 Theorem applied to the case |A+A| = 2|A| gives that A
is an arithmetic progression with a single missing element, which is then easily seen
to be necessarily at an extreme end of the progression. Proposition 6.2 is also true
in the integers modulo a prime p, provided |A+ A| 6 p− 2, see [8] (and is therefore
necessarily true in Z).

To generate a space S such that γ = 1, Proposition 6.2 suggests naturally to take
a basis of the form xa, a ∈ A, where A is such that |A + A| = 2|A|. Such a space is
a subspace of codimension 1 inside a space with a basis in geometric progression, i.e.
inside a Riemann–Roch space of genus 0.

Alternatively, Theorem 6.1 tells us that Riemann–Roch spaces of genus 1 will also
give us spaces with combinatorial genus equal to 1.

Our main result states, broadly speaking, that the two constructions above cover
all possible cases:

Theorem 6.3. Let K be an algebraically closed field and F be a function field over
K. Let S ⊆ F , 1 ∈ S, be a space of finite dimension n > 4 and combinatorial genus
γ = 1. Then S has genus 0 or 1. Moreover,

• if S has genus 1 then S = L(D) for D a divisor of degree n,
• if S has genus 0, then S is a subspace of codimension 1 inside a space L(D)
for D a divisor of degree n.

We remark that in the genus g = 0 case, all subspaces of codimension 1 inside an
L(D) space do not necessarily have combinatorial genus γ equal to 1. For instance
the space S = 〈1, x, x3, x4〉 has codimension 1 in a Riemann Roch space of a field
of genus 0, while it has combinatorial genus 2. We postpone to Section 8 the precise
characterisation of such subspaces which is slightly more involved than in the additive
case given by Proposition 6.2.

7. Proof of Theorem 6.3
7.1. Overview. Since the proof of the theorem is somewhat lengthy, we give an
outline.

As we have argued before, we may always assume that 1 ∈ S, and that F = K(S).
We start by fixing an arbitrary place P and an associated P -filtered basis which,
possibly after replacing S by a multiplicative translate s−1S, is of the form

e1 = 1, e2 = x, e3 = y, . . . , en

with valuations in decreasing order vP (1) = 0 > vP (x) > vP (y) > · · · > vP (en).
Next we define (Section 7.2) the divisor DU of a space U to be the smallest divisor

such that the Riemann–Roch space L(DU ) contains U . Our strategy will be to study
closely the chain of divisors DSi

for the filtration (Si) of S relative to P . Our goal
will be to show that Si is either equal to L(DSi

) or of codimension 1 inside L(DSi
),

for all i > 2.
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We will consider closely the lattice of subspaces introduced in Section 5.1 and
exploit the fact that most of its edges are of weight 1. A crucial intermediate result
will be Lemma 7.10 which will tell us that the divisor increments DSi+1 −DSi must
all be equal to DS3 −DS2 , except possibly for one index i, that we call the P -index
of S, which is the unique index i for which dimSiSi+1 > dimS2

i + 1. Sections 7.3
and 7.4 build up material leading up to Section 7.5 which derives Lemma 7.10.

Section 7.6 considers next the algebraic equations satisfied by x and y. We will
show that F = K(S) = K(x, y) and that F must be of genus g 6 1. We then turn to
determining the sequence (DSi) exactly. Lemma 7.10 tells us that when the P -index
equals 2, the divisors DS2 and DS3 determine the whole sequence. In Section 7.7 we
show that in this case we must have DS2 = P + Q and DS3 = 2P + Q for some
place Q (possibly equal to P ), so that the whole sequence of divisors must take
the form 0, P + Q, 2P + Q, 3P + Q, . . . , (n − 1)P + Q. Section 7.8 deals with the
remaining case, for which it is shown that the sequence of divisors must be of the
form 0, P, 2P, . . . , (n− 2)P, (n− 1)P +Q.

7.2. Minimum valuations, the divisor of a space. The following lemma is
straightforward:

Lemma 7.1. Let U, V be two finite dimensional K–spaces in F . Let v be a valuation
on F . Then, min v(UV ) = min v(U) + min v(V ).

Note that min v(U) = 0 for all valuations v on F but finitely many of them. This
justifies the following:

Definition 7.2.We denote by DU the divisor

DU :=
∑

P place of F

−min vP (U)P.

This is the smallest divisor D such that U ⊆ L(D).

7.3. Separation.

Definition 7.3 (Separation).Given a finite dimensional K-space U ⊂ F and two
distinct places P1 and P2, one says that U separates P1 and P2 if there exists f1, f2 ∈
U such that

(1) vPi
(fi) = min vPi

(U) for i ∈ {1, 2};
(2) for i 6= j ∈ {1, 2}, vPi(fj) > min vPi(U).

Given a K-space U ⊂ F and a place P , let UP := {u ∈ U | vP (u) > min vP (U)}.
Such a space has codimension 1 in U and the notion of separation of two distinct
places can be reformulated as follows.

Lemma 7.4. The space U separates two distinct places P,Q if and only if UP 6= UQ.

A first example of spaces having a good property of separation are Riemann–Roch
spaces. The following statement is classical, we provide a proof for the sake of self-
containedness.

Lemma 7.5. Let F be a function field of genus g and let D be a divisor of F such that
degD > 2g. Then the space L(D) separates any two places P and Q.

Proof. Since deg(D) > 2g, we have as a consequence of the Riemann–Roch Theorem
dimL(D −Q) = dimL(D)− 1
dimL(D − P ) = dimL(D)− 1

dimL(D − P −Q) = dimL(D)− 2.
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Indeed, all the considered divisors have degree greater than 2g−2. If we set U = L(D)
we get UP 6= UQ and conclude using Lemma 7.4. �

The next lemma deals with separation in products of spaces.

Lemma 7.6. Let U, V ⊆ F be two K-spaces and P,Q two places of F . Then, UV
separates P and Q if and only if U or V separates P and Q.

Proof. Let us suppose first that U separates P and Q. Let a ∈ U be such that vP (a) =
min vP (U) and vQ(a) > min vQ(U). Let b ∈ V be such that vP (b) = min vP (V ). We
have ab ∈ (UV )Q r (UV )P , hence UV separates P and Q.

Conversely, suppose that neither U nor V separates P and Q. Let u ∈ U and v ∈ V
be such that

U = UP ⊕Ku and V = VP ⊕Kv.
Then,

UV = (UPVP + uVP + UP v) +Kuv.

Clearly (UPVP +uVP +UP v) ⊆ (UV )P and since (UPVP +uVP +UP v) has codimension
at most 1 in UV we conclude that

(UPVP + uVP + UP v) = (UV )P .

By assumption, we have UP = UQ and VP = VQ and hence

(UV )P = UQVQ + uVQ + UQv = (UV )Q

so UV does not separate P and Q either. This concludes the proof. �

7.4. The lattice of subspaces and the P -index of a space. For the remainder
of Section 7, P is a fixed arbitrary place of F = K(S). We choose a filtered basis
(e1, . . . , en) where, having replaced S by e−1

1 S if necessary, we have set e1 = 1. We
consider the filtration S1 ⊂ S2 ⊂ · · · ⊂ Sn = S associated to P , together with the
lattice of subspaces SiSj introduced in Section 5.1 and illustrated in Figure 1. Recall
that the weight of an edge V → W is given by the codimension of V in W . In the
case dimS2 = 2 dimS we have:

Lemma 7.7.All edges lying on a directed path from S2
1 to S2

n = S2 have weight 1
except for an edge which has weight 2.

Proof. The path has 2n − 2 edges, while dimS2
1 = 1 and dimS2

n = dimS2 = 2n,
therefore the codimension of S2

1 in S2
n, which is also the sum of weights on the path,

equals 2n− 1. Remembering that weights are at least 1, the result follows. �

Lemma 7.8. In the subspace lattice, every vertical edge from SiSj to Si+1Sj has
weight 1 for i > 2.

Proof. If not, then such an edge has weight 2, which implies that every edge on the
sublattice of directed paths from S2

1 to SiSj has weight 1 by Lemma 7.7. But then,
Lemma 5.2 implies that Sj has a basis in geometric progression, which in turn implies
that dimS2

j = 2 dimSj − 1, meaning that all edges on the sublattice of paths from
S2

1 to S2
j have weight 1, a contradiction. �

Since any path from S2
1 to S2

n has exactly one edge of weight 2 (Lemma 7.7),
Lemma 7.8 implies that all horizontal edges SiSj → SiSj+1 of weight 2 occur for a
common index j, that we call the P–index of the space S. Summarising:
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S2
2 S2S3 S2S4 S2S5 S2S6

S2
3 S3S4 S3S5 S3S6

S2
4 S4S5 S4S6

S2
5 S5S6

S2
6

1 1 2 1
1

1

1

1

1 2 1

2 1

1

1

1

1

1 1

1

Figure 2. n = 6 and j0 = 4 for the P -index

Lemma 7.9. There is an index j0, called the P -index of S, such that dim(SiSj0+1)−
dim(SiSj0) = 2 for every i = 2, . . . , j0.

The above statement is illustrated on Figure 2.
We will see later that there are only two possible values for the P -index, namely

j0 = 2 and j0 = n− 1.

7.5. Changing the valuation. A single valuation vP may not be enough to de-
scribe sufficiently the spaces Si, and it will be useful to involve alternative valuations.
We now argue that some information obtained from a valuation vP may be “trans-
ferred” and hence provide some information with respect to another valuation vQ.
When all weights are equal to 1 on the sublattice from SiSj to Si+1Sj+1, i.e. in
the situation illustrated on Figure 3, we have already observed (Lemma 5.1) that

SiSj

Si+1Sj

SiSj+1

Si+1Sj+1

1

1

1

1

Figure 3. weights are equal to 1

SiSj+1 = Si+1Sj .
From this equality, we conclude that for any place Q, we have

vQ(SiSj+1) = vQ(Si+1Sj),

and hence, thanks to Lemma 7.1,

(4) −min vQ(Sj+1) + min vQ(Sj) = −min vQ(Si+1) + min vQ(Si).

Applying (4) when i = 2 yields the following useful lemma.
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Lemma 7.10. For every j > 2 that differs from the P -index j0 of S, we have DSj+1 −
DSj = DS3 −DS2 .

We now turn to determining the genus of F .

7.6. The genus of the ambient field. We prove first that F = K(S) is in fact
generated by the subspace S3.

Lemma 7.11.We have F = K(S3).

Proof. For any i > 1, we have

Si−1Si = S2
i−1 + Si−1ei.

Lemma 7.7 asserts dim(SiSi−1) − dimS2
i−1 6 2. Moreover, if i > 4, dimSi−1 > 3

and hence the intersection S2
i−1 ∩ Si−1ei is non-zero. Consequently, ei ∈ K(Si−1).

Therefore F = K(Sn) = K(Sn−1) = · · · = K(S3). �

Remembering that e1 = 1, and that we use the notation x = e2 and y = e3,
Lemma 7.11 says that F = K(x, y). Our next goal will be to determine the genus of
F and for this, we will identify an equation of lowest degree satisfied by x and y: its
degree will determine the genus of F .

Proposition 7.12. The field F has genus less than or equal to 1.

Proof. Depending on the value of the P–index being greater than 2 or equal to 2,
we have either dimS2S3 = 4 or dimS2S3 = 5. Moreover, S2S3 is generated by
(1, x, x2, xy, y).

If dimS2S3 = 4 then we get a linear relation between 1, x, x2, xy, y which imme-
diately shows that y ∈ K(x) and consequently that F = K(x) and has genus 0. We
note that we have found an irreducible quadratic relation between x and y, meaning
that F is the function field of a plane irreducible conic.

If dimS2S3 = 5, then 1, x, x2, xy, y are linearly independent over K; the sub-
space S2

3 , which is generated by (1, x, y, x2, xy, y2) and has dimension 6, does also not
produce an algebraic relation between x and y. We need to go to S3S4, which is of
dimension 7 and is generated by (1, x, y, e4, x

2, xy, xe4, y
2, ye4). It entails the existence

of two independent relations

e4L1(x, y) = Q1(x, y)(5)
e4L2(x, y) = Q2(x, y)(6)

where L1, L2 are linear polynomials and Q1, Q2 are quadratic polynomials. Moreover,
the linear polynomials L1, L2 are nonzero since dimS2

3 = 6 and hence, there is no
quadratic polynomial vanishing on x, y. By eliminating e4 we get

(7) L1(x, y)Q2(x, y) = L2(x, y)Q1(x, y).

The polynomial L1Q2 − L2Q1 is nonzero because the relations (5) and (6) are inde-
pendent. This polynomial has degree at most 3 and, since dimS2

3 = 6, there is no
quadratic relation relating e1, x, y, which asserts that the degree is exactly 3. There-
fore, the genus of F is either 0 (if the curve of equation L1Q2−L2Q1 has a singularity)
or 1, as a consequence of Bézout’s Theorem [7]. �

Summary. Writing S2 = 〈1, x〉 and S3 = 〈1, x, y〉, we may distinguish three cases.
(1) dimS2S3 = 4. In this situation, F = K(x) and there is an irreducible qua-

dratic polynomial Q such that Q(x, y) = 0.
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(2) dimS2S3 = 5 and there is a cubic relation

L1(x, y)Q2(x, y)− L2(x, y)Q1(x, y) = 0

such that the corresponding projective plane curve is singular.
(3) dimS2S3 = 5 and there is a cubic relation

L1(x, y)Q2(x, y)− L2(x, y)Q1(x, y) = 0

such that the corresponding projective plane curve is smooth.
Cases (1) and (2) correspond to the genus 0 case. Case (3) correspond to the genus 1
case.

In order to finish the proof of Theorem 6.3, it remains to compute the divisor DS ,
as defined in 7.2. For this, we will first determine DS2 and DS3 , and then, iteratively
compute DSi

for i 6 n.

7.7. The P -index is equal to 2. In this subsection, we treat the case of the P -
index being equal to 2, which amounts to dimS2S3 = 5. We have already proved that
x and y satisfy an equation of degree 3; in the next lemma we show that moreover
this equation has a specific form.

Lemma 7.13. The field F = K(x, y) has degree 2 over K(x) and the equation satisfied
by x and y is of the form

(8) y2 +B(x)y + C(x) = 0

where degB 6 2 and degC 6 3.

Proof. The field F is generated by x and y and the proof of Proposition 7.12 has
shown that there is a relation G(x, y) = 0 of degree 3. Suppose that G(x, y) contains
a term in y3 and write G(x, y) as

G(x, y) = y3 +A(x)y2 +B(x)y + C(x) = 0

where degA 6 1, degB 6 2 and degC 6 3. By construction, we have vP (y3) <
vP (xy2) < vP (x2y) < vP (x3) so vP (y3) < vP (A(x)y2 + B(x)y + C(x)) which is in
contradiction with G(x, y) = 0. So the equation has the form A(x)y2+B(x)y+C(x) =
0. With a similar reasoning we can see that moreover A(x) must be a constant.

It remains to rule out the case when A(x) = 0, which would mean that y ∈ K(x)
and F = K(x). Let us assume we are in this case and reach a contradiction. Because
vP (x) < 0, P = P∞ is the place at infinity of K(x) and vP (x) = −1. In particular
DS2 = L(P ). Regarding y, we know that vP (y) < vP (x) so the only possibility is
vP (y) = −2 because of the structure of vP (S) which contains {0,−1}: indeed, recall
from Proposition 6.2 that it can have a missing element only after its first or before
its last value and since n > 4 the value before the smallest value of vP (S) cannot
be vP (y). According to Lemma 7.5, S2 separates P and any other place Q 6= P ;
according to Lemma 7.6, so does S2S4. But S2S4 = S2

3 from Lemma 5.1 which entails
that also S3 separates P and Q. So y cannot have a pole at Q, which leaves the only
possibility y = D(x) for some polynomial D with deg(D) = 2. But this situation is
not compatible with the condition that dimS2S3 = 5. �

Proposition 7.14.When dimS2S3 = 5, there is a place Q, possibly equal to P , such
that, for all i = 2, . . . , n,

DSi
= (i− 1)P +Q.
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Proof. We first focus on determining the divisors of S2 and S3. Because vP (x) < 0,
the place P is above the place at infinity of K(x), that we will denote P∞. Since
K(x, y) has degree 2 over K(x) by Lemma 7.13, we have from [16, Chapter 3] that
P∞ decomposes in F = K(x, y) either as 2P (the ramified case) or as P + Q where
Q 6= P (the split case). For any other place R /∈ {P,Q}, the valuation vR(x) is non
negative, and we have therefore DS2 = 2P in the ramified case and DS2 = P +Q in
the split case. We now focus on determining DS3 . From (8) the valuation vR(y) can
only be non negative for any place R /∈ {P,Q}, so we are left with determining the
valuation at P and Q of y.

We now view K(x, y) as an algebraic extension of K(y) instead of an extension of
K(x). We remark that P , respectively P and Q in the split case, are also the places
above the place at infinity of K(y). So, since [K(x, y) : K(y)] 6 3, we also know
from [16, Chapter 3] that vP (y) > −3, and, in the split case, that vP (y) + vQ(y) >
−3. Taking account of this, we see that in the ramified case 2P we necessarily have
vP (x) = −2 and vP (y) = −3, and so, DS2 = 2P and DS3 = 3P .

In the split case P + Q, i.e. vP (x) = vQ(x) = −1, we can conclude so far that
vP (y) = −2 or −3. But the case vP (y) = −3 would create a forbidden hole in vP (S)
that contains {vP (1) = 0, vP (x) = −1} (because not in first or last position). So
the only possibility is vP (y) = −2. Now since vP (y) + vQ(y) > −3 we must have
vQ(y) > −1. So DS2 = P +Q and DS3 = 2P +Q.

Finally, to obtain DSi
= (i− 1)P +Q for i > 4 we apply Lemma 7.10. �

In the case when dimS2S3 = 5, the above proposition concludes the proof of
Theorem 6.3. Indeed, in the case when F is of genus 1, Riemann–Roch theorem tells
us that S must coincide with the space L((n− 1)P +Q). In the genus 0 case, S is of
codimension 1 inside L((n− 1)P +Q).

7.8. The P -index is greater than 2, or the plane conic case. If S2S3 has
dimension 4, then recall that F = K(x) and that Lemma 5.2 implies that Si is
generated by (1, x, . . . , xi−1) for every i, 2 6 i 6 k, where k is the P -index of S; in
other words, in this range, Si = L((i− 1)P ) where P = P∞ is the place at infinity of
K(x).

Lemma 7.15.We have DSk+1 = kP +Q for some place Q possibly equal to P .

Proof. Let z be such that Sk+1 = Sk +Kz with z of minimum P -valuation in Sk+1.
We already know that vP (Sk+1) is either an arithmetic progression or an arithmetic
progression with a missing element, in other words either vP (z) = −k or vP (z) =
−(k + 1).

Consider first the case vP (z) = −(k + 1). Consider the product S3Sk+1 which
must be of dimension (k + 1) + 3. The space S3 is generated by 1, x, x2 and we have
vP (S3Sk+1) ⊃ {vP (xk), vP (z), vP (xz), vP (x2z)} so that

vP (S3Sk+1) = {0,−1,−2, . . . ,−(k − 1),−k,−(k + 1),−(k + 2),−(k + 3)}.

Since xk = xxk−1 and xk+1 = x2xk−1 are contained in S3Sk+1, we have that S3Sk+1
contains the subspace generated by the geometric progression 1, x, x2, . . . , xk+1, which
is equal to the subspace of S3Sk+1 of functions of P -valuation > −(k + 1), because
this must be a space of dimension k + 2 = dimS3Sk+1 − 2. Since vP (z) = −(k + 1),
the function z must belong to the aforementioned subspace, meaning that z is a
polynomial in x of degree k + 1, in other words Sk+1 ⊂ L((k + 1)P ).

Consider now the remaining case vP (z) = −k. The set vP (Sk+1) is now the arith-
metic progression {0,−1, . . . ,−k} and we have DSk+1 = kP + D for some positive
divisor D. Consider again the product S3Sk+1 and let U be the subspace of those
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elements of S3Sk+1 that have a valuation at P greater than the minimum, namely
−k − 2 = vP (z) + vP (x2). We have that U has codimension 1 in S3Sk+1 (Proposi-
tion 3.1) i.e., dimU = k + 3. Note also that U contains 1, x, . . . , xk+1, so that there
exists u ∈ U of positive P -valuation, such that u, 1, x, . . . , xk+1 is a basis of U . Now
since vP (z) = −k, we have z ∈ U and
(9) z = Pk(x) + λu, λ ∈ K
with Pk(x) a polynomial in x of degree at most k. Note that we must have λ 6= 0
otherwise, since vP (z) = −k, z is a polynomial of degree k in x contradicting that
dimS3Sk+1 = k + 4. The equality (9) implies therefore that α ∈ K is a pole of
z if and only if it is a pole of u. For such a pole α, we have (x − α)z ∈ U since
vP ((x− α)z) = −(k + 1), hence

(x− α)z = Qk+1(x) + µu, µ ∈ K
for Qk+1(x) a polynomial in x of degree at most k + 1. This implies that µ = 0
otherwise the left hand side and the right hand side would not have the same α-
valuation. This proves that z has a pole of order 1 at α and simultaneously that z
cannot have a pole at β for β 6= α. Therefore z has a single pole of order 1 besides
P∞. �

We conclude with the following statement.

Proposition 7.16. The P–index k of S equals n− 1.

Proof. In the case when Q = P in Lemma 7.15, since the set of P -valuations can only
be an arithmetic progression with a hole in the last position, we must have k = n−1.
We may therefore suppose that Q 6= P .

Suppose towards a contradiction that k 6 n− 2. The space Sk is a Riemann–Roch
space. Hence, from Lemma 7.5, Sk separates P with any place Q 6= P of F . Therefore,
from Lemma 7.6 so does SkSk+2. On the other hand Sk+1 does not separate P and
Q and hence, again applying Lemma 7.6, S2

k+1 does not separate them either. This is
a contradiction since, from Lemma 7.10, SkSk+2 should be equal to S2

k+1. �

As a conclusion, in this situation, S is a subspace of codimension 1 of a Riemann–
Roch space of the form L((n− 1)P +Q) where Q is a place, possibly equal to P .

8. Further description of spaces with genus 0 and combinatorial
genus 1

Theorem 6.3 gives a complete characterisation of spaces S of genus 1 with combina-
torial genus γ = 1 by saying that they are exactly Riemann–Roch spaces. However, in
the case when the genus of the field F is 0, it only says that γ = 1 implies that S is of
codimension 1 inside a Riemann–Roch space: but not all subspaces of codimension 1
inside an L(D) space have combinatorial genus 1, so this raises the question of exactly
which subspaces have γ = 1. The following theorem gives a precise answer.

Theorem 8.1. Let S be of genus g = 0 and of combinatorial genus γ = 1. Then, up
to multiplication by a constant, S has a basis of one of the following two types:

(1) 1, t, t2, . . . , tn−2, (t+ α)tn−1,
(2) 1, (t+ α)t, (t+ α)t2, . . . , (t+ α)tn−2, (t+ α)tn−1

for some function t and some constant α ∈ K.

Before proving Theorem 8.1 we introduce an intermediate result. The proof of
Theorem 6.3 has shown that S (after replacing it by a suitable multiplicative translate
s−1S) is such that 1 ∈ S and S ⊂ L((n−1)P+Q) where P is the initial arbitrary place
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of F = K(S) and Q is some place that may or may not be equal to P . The following
proposition states that there always is a choice of P for which we have Q = P .

Proposition 8.2. There exists a place P and a function s ∈ S such that s−1S ⊂
L(nP ).

Proof. We start with an arbitrary choice of P so that we may suppose 1 ∈ S and
S ⊂ L((n − 1)P + Q) with Q 6= P . Since the action of PGL(2,K) on places is 3-
transitive, we may choose a function t for which F = K(t) and such that P and Q,
viewed over K(t), are the place at infinity and the place at zero respectively. In other
words L((n− 1)P +Q) is the space of Laurent polynomials of the form

(10) f(t) = a−1

t
+ a0 + a1t+ a2t

2 + · · ·+ an−1t
n−1.

Since S has codimension 1 inside L((n − 1)P + Q), there exist coefficients λ−1,
λ0, . . . , λn−1 in K, such that S consists of the space of functions (10) satisfying

(11) λ−1a−1 + λ0a0 + · · ·+ λn−1an−1 = 0.

If λ−1 = 0 then 1
t ∈ S so that 1 ∈ tS and tS ⊂ L(nP ) and we are finished. Suppose

therefore λ−1 6= 0. We claim there exists a ∈ K such that the function (t− a)n ∈ tS.
Indeed, expanding the expression (t− a)n as

(t− a)n = a−1 + a0t+ · · ·+ an−1t
n

we see that the quantity λ−1a−1 + · · · + λn−1an−1 is a polynomial in a of degree
exactly n, which has roots in K since K is algebraically closed. For such an a we get
that (11) is satisfied. Now since tS consists only of polynomials in t, equivalently in
t− a, we have that the space 1

(t−a)n tS contains 1 and is included in L(nPa) where Pa

is the place at a. �

Proof of Theorem 8.1. Applying Proposition 8.2, we may suppose 1 ∈ S ⊂ L(nP )
and, without loss of generality, that P is the place at infinity overK(t): in other words,
S consists of a space of polynomials, of degree at most n, and including constants.
The space S must contain a polynomial of degree n, otherwise, because dimS = n,
S would be equal to the space L((n− 1)P ) and we would have dimS2 = 2 dimS − 1,
contradicting γ = 1. Since S contains constants we have that the set of degrees d(S)
of the elements of S is included in the arithmetic progression {0, 1, . . . , n}, and since
we may find at most 2n different degrees in S2, Proposition 6.2 implies that

(1) either d(S) = {0, 1, 2, . . . n− 3, n− 2, n},
(2) or d(S) = {0, 2, 3, . . . n− 2, n− 1, n}.

In case 1, we have that S contains as a subspace the space of all polynomials of degree
at most n−2, and also a polynomial of degree n. This gives the existence of the basis
of type (i) mentioned by the theorem. It remains to deal with case 2 for which there
exists a basis of S of the form

1, p2, p3, . . . , pn

where pi is a polynomial of degree i in the variable t. Consider the sequence of sub-
spaces

S1 = K ⊂ S2 ⊂ · · · ⊂ Sn = S

where Si = Si−1 + Kpi for i > 2. We shall prove by induction on k that for k =
3, 4, . . . , n, the space Sk has, possibly after changing the variable t, a basis of the
form 1, (t + α)t, . . . , (t + α)tk−1, yielding the desired basis of S for k = n. Write the
Euclidean division of p3 by p2,

p3 = (t+ a)p2 + bt+ c
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where we have set the leading coefficients of p2 and p3 equal to 1. By replacing if
needed be p2 by p2 + b and p3 by p3 + ab − c we see that we may suppose that p2
divides p3. Without loss of generality (change the variable t to t−β, β ∈ K), we may
suppose that one of the roots of p2 is 0, so that p2 = (t + α)t for some constant α,
and we have that S3 has a basis of the required form, possibly after adding to p3 a
scalar multiple of p2.

Suppose now that Sk has a basis of the required form, 3 6 k 6 n− 1, and consider
Sk+1 = Sk +Kpk+1. Without loss of generality suppose pk+1 has no constant term, i.e.
is divisible by t (replacing pk+1 by pk+1 + c, c ∈ K, does not change the space Sk+1).
Let Tk be the subspace of S2 consisting of all polynomials in t of degree at most k+1.
Now the set of degrees of S2 is 0, 2, 3, . . . , 2n, which implies that Tk cannot be equal
to the whole space of polynomials of degree at most k + 1 so that dimTk 6 k + 1.
Notice also that Tk contains

(12) 1, (t+ α)t, (t+ α)t2, . . . , (t+ α)tk−1

which are all in Sk by the induction hypothesis, and Tk contains also

(t+ α)2tk−1 = (t+ α)t× (t+ α)tk−2.

Since dimTk 6 k+1, a basis of Tk is therefore given by (12) together with (t+α)2tk−1.
Now pk+1 ∈ Tk, so that it decomposes over the above basis, and since pk+1 has no
constant term, we have just proved that it is a multiple of (t+ α)t, which shows the
existence of a basis of Sk+1 of the required form. �

Theorem 8.1 shows in particular that there always exists a valuation v, for which the
set of valuations v(S) of a space of genus 0 and combinatorial genus 1 is an arithmetic
progression with a missing element (after the first or last position). In contrast, the
set of valuations for an arbitrary v will typically be an arithmetic progression. We
now make the remark that when g = 1 and γ = 1, there also always exists a valuation
v for which v(S) is an arithmetic progression with a missing element.

Denote by ∼ the linear equivalence of divisors, and recall that G ∼ H means that
L(G) = fL(H) for some function f .

Lemma 8.3. Let E be an elliptic curve and G be a divisor on E of degree d. Then,
there exists a point R of E such that G ∼ dR.

Proof. Let G = r1P1 + · · · + rsPs. Denote by ⊕ the group law on the elliptic curve.
Let P = r1P1 ⊕ · · · ⊕ rsPs. From [15, Proposition III.3.4], we get G − dO ∼ P − O
where O is the zero element of the group of points of E.

Over an algebraically closed field the group of points of E is divisible (see [15,
Theorem 4.10(a)]), hence there exists R ∈ E such that P = dR. Therefore:

G− dO ∼ d(R−O) =⇒ G ∼ dR. �

Remark 8.4. According to the proof, the point R may not be unique since it can be
replaced by the point R ⊕ T where T is a d–torsion point. Thus, if d is prime to the
characteristic of K there are d2 possibilities for R.

Consequently, S is of the form fL(nR) for some place R and some nonzero
function f . It is well–known that the sequence of valuations of a space L(nR) is
{0,−2,−3, . . . ,−n}, which can be easily derived from the Riemann–Roch Theorem.
Multiplication by f only translates the sequence of valuations.
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9. Function fields over non-algebraically closed fields
In this section we generalise Theorems 4.2, 5.3 and 6.3 to non-algebraically closed,
perfect fields K. Recall that a field K is called perfect if all algebraic extensions of K
are separable.

Theorem 9.1. Let K be a perfect field and let F ⊇ K be an extension field of K
such that K is algebraically closed in F . Let S be a K-vector subspace of F of finite
dimension and of transcendence degree d. Then

dimS2 > (d+ 1) dimS − d(d+ 1)/2.

Proof. Let K ′ be an algebraic closure of K and F ′ = K ′(S) be defined inside the
algebraic closure of F . It holds that any K-linearly independent elements of F are
also K ′-linearly independent in F ′. ([16, Proposition III.6.1](1)). Therefore dimK S =
dimK′ K ′S and dimK S2 = dimK′ K ′S2, and the theorem is proved by arguing that
the transcendence degree of S is the same over K ′ as over K, and that therefore

dimK′ K ′S2 > (d+ 1) dimK′ K ′S − d(d+ 1)/2

by applying Theorem 4.2. �

We remark that the above proof has only used that any finite extension of K is
generated by a single element, so that Theorem 9.1 actually holds in this somewhat
more general case.

Theorem 9.2. Let K be a perfect field, algebraically closed in an extension field F .
Let S ⊆ F , 1 ∈ S, be a space of finite dimension n and combinatorial genus γ.

(1) If n > 3 and γ = 0, then S has genus 0 and S = L(D) for D a divisor of
degree n− 1.

(2) If n > 4 and γ = 1 then S has genus 0 or 1. Moreover,
(a) if S has genus 1 then S = L(D) for D a divisor of degree n,
(b) if S has genus 0, then S is a subspace of codimension 1 inside a space

L(D) for D a divisor of degree n.

Before proving Theorem 9.2, let us remind the reader of some basic facts concerning
algebraic extensions of function fields that we need to call upon. We refer the reader
to [16, Chapter III] for more background. Let F ′/K ′ be an algebraic extension of
F/K, meaning that F ′ ⊃ F is an algebraic extension and that K ′ ⊃ K. Recall that if
P is a place of F and P ′ a place of F ′ such that P = F ∩P ′, P is said to lie under P ′
and P ′ to lie over P . One writes P ′|P to mean that P ′ lies over P . For any place P
of F , there always exists at least a place P ′ over P ([16, Proposition III.1.7]), and for
any such P and P ′ there exists ([16, Proposition III.1.4]) an integer e = e(P ′|P ) > 1
such that vP ′(x) = e · vP (x) for any x ∈ F . The positive integer e(P ′|P ) is called the
ramification index of P ′ over P . The conorm, with respect to F ′/F , of a place P of
F is defined as the divisor:

ConF ′/F (P ) =
∑
P ′|P

e(P ′|P )P ′.

The conorm extends to divisors D =
∑

P αPP of F through the formula

ConF ′/F (D) =
∑

P

αPConF ′/F (P ).

(1)The context of the proposition is that of functions fields of one variable, but its proof applies
verbatim to arbitrary field extensions.

Algebraic Combinatorics, Vol. 1 #4 (2018) 519



Christine Bachoc, Alain Couvreur & Gilles Zémor

Proof of Theorem 9.2. Without loss of generality assume F = K(S). Let K ′ be the
algebraic closure of K and let F ′ = K ′(S) be defined inside the algebraic closure of
F . We note that such an extension F ′/F is unramified ([16, Theorem III.6.3(a)]),
meaning that e(P ′|P ) = 1 for any place P in F and any P ′ above it.

As remarked at the end of the proof of Theorem 9.1, K-linearly independent ele-
ments of F are alsoK ′-linearly independent in F ′, therefore dimK S = dimK′ K ′S and
dimK S2 = dimK′(K ′S)2, so that K ′S has combinatorial genus γ. Next, Theorems 5.3
(case γ = 0) and 6.3 (case γ = 1) apply to K ′S in the extension F ′/K ′.

Recall (Definition 7.2) that

DS =
∑

P, place of F

−min vP (S)P

is such that L(DS) is the Riemann–Roch space in F of smallest dimension that
contains S. By [16, Theorem III.6.3(b)], F/K and F ′/K ′ have the same genus g. It
remains therefore only to prove that

(13) dimK L(DS) = dimK′ L(DK′S).

Let P be any place in the support of DS , For any place P ′ above P we have vP ′(s) =
e(P ′|P )vP (s) = vP (s) (since F ′/F is unramified), therefore P ′ appears in the support
of DK′S . Furthermore, vP ′(s) = vP (s) for every s ∈ S, so that

min
s∈S

vP (s) = min
s∈S

vP ′(s) = min
x∈K′S

vP ′(x)

since any K ′-linear combination of elements of S has a P ′-valuation at least equal to
mins∈S vP ′(s). Therefore, the coefficient in DK′S of every place P ′ above P equals
exactly the coefficient of P in DS .

Since any place P ′ of F ′ has a unique place P lying under it in F , we deduce that
we have

ConF ′/F (DS) = DK′S

from which (13) follows by [16, Theorem III.6.3(d)]. �

We conclude by remarking that when K is not algebraically closed, statement (1)
of Theorem 9.2 is the correct generalisation of Theorem 5.3. Indeed, there exist spaces
S of combinatorial genus 0 in extensions F/K, where K is algebraically closed in F ,
and such that S does not have a basis in geometric progression. One such example,
given in [1], is obtained by considering the field F = Q(x, y), where Q denotes the
rational field, and y is algebraic over Q(x) such that y2 + x2 + 1 = 0. We have that
Q is algebraically closed in F , and in the extension F/Q, the space S generated by
1, x, y has combinatorial genus 0 but can be seen not to have a basis in geometric
progression. The space S is however equal to a Riemann–Roch space L(P ), where
P is a place of degree 2. When one extends the base field Q to the complex field
C, we have that CS has the basis t−1, 1, t, where t = x + iy,t−1 = −x + iy. Hence
CS = L(P0 + P∞), where P0 and P∞ are the places at 0 and at ∞ in CF = C(t),
and are the two places that lie above P in CF .

Finally, we remark that the argument spelt out in the proof of Theorem 9.2 shows
that if Conjecture 2.2 holds, then it also holds for perfect base fields.
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