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Towards a uniform subword complex
description of acyclic finite type cluster

algebras

Sarah B. Brodsky & Christian Stump

Abstract It has been established in recent years how to approach acyclic cluster algebras of
finite type using subword complexes. We continue this study by uniformly describing the c-
and g-vectors, and by providing a conjectured description of the Newton polytopes of the F -
polynomials. We moreover show that this conjectured description would imply that finite type
cluster complexes are realized by the duals of the Minkowski sums of the Newton polytopes
of either the F -polynomials or of the cluster variables, respectively. We prove this conjectured
description to hold in type A and in all types of rank at most 8 including all exceptional types,
leaving types B, C, and D conjectural.

1. Introduction
Let (W,S) be a finite crystallographic Coxeter system of rank n equipped with a fixed
root system Φ, and let c ∈W be a (standard) Coxeter element. It is well established
how to associate to this data a cluster algebra A(W, c) of finite type with principal
coefficients. We refer to Sections 2.1, 2.2 and 2.3 for detailed definitions and references.

Let u(x,y) = p(x,y)/m(x) ∈ A(W, c) be a cluster variable for a polynomial p(x,y)
and a monomial m(x). Sending u(x,y) to the exponent vector of m(x) is a bijection
between cluster variables in A(W, c) and almost positive roots in Φ. This means in
particular that the denominator m(x) uniquely determines the cluster variable u(x,y).
Even though this bijection is well-studied, to the best of our knowledge there has not
been any successful attempt to describe the numerator p(x,y) from that perspective.
This is, no explicit and non-iterative construction of the numerator of the cluster
variable solely from its denominator for general finite type cluster algebras is known.
The main aim of this paper is to

start the program of uniformly describing cluster variables in finite
type cluster algebras in terms of combinatorial data from root systems.
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Towards such a description, we follow the recently introduced subword complex
approach to finite type cluster algebras which we recall in Sections 2.4 and 2.5. These
subword complexes were originally considered by A. Knutson and E. Miller in the
context of Gröbner geometry of Schubert varieties in [11, 12]. Their appearance in
the context of finite type cluster algebras was established by C. Ceballos, J.-P. Labbé,
V. Pilaud and the second author in various collaborations. In particular, they establish

• a description of the cluster complex of the cluster algebra [3, Theorem 2.2],
• a vertex and facet description of its polytopal realization [19, Theorem 6.4],
• a proof that the barycenter of this realization equals the barycenter of the
corresponding permutahedron [20, Theorem 1.1],

• an explicit description of the principal parts of the exchange matrices of the
clusters [19, Theorem 6.20],

• an explicit description of the d-vectors with respect to any initial seed (in-
cluding cyclic seeds) [4, Corollary 3.4].

In the present paper, we extend this viewpoint by providing several constructions
in terms of subword complexes towards uniformly describing further data of clus-
ter variables and cluster seeds purely in terms of the combinatorial data from root
systems.

All the following results can be found in detail in Section 2.6. We show in Theo-
rem 2.9 that the c-vectors of a cluster seed of the cluster algebra A(W, c) are given
by the root configuration of subword complexes defined in (3), and deduce in Corol-
lary 2.10 that the g-vectors are given by the weight configuration of subword com-
plexes defined in (4), We then start the development of uniformly describing the
F -polynomials for A(W, c) in Conjectures 2.12 and 2.13 by conjecturally providing all
their monomials and in particular their Newton polytopes. Both conjectures are then
proven in type A and in all types of rank at most 8 including all exceptional types, see
Theorems 2.14 and 2.16, leaving the other classical types B, C, and D conjectural. A
combinatorial description of the coefficients of the monomials of the F -polynomials
would therefore be the last step to provide a complete combinatorial description of
the cluster algebra as it is well known how to recover the cluster variables from the
g-vectors and the F -polynomials as we recall in Proposition 2.19. We then show in
Theorem 2.20 that this conjectured description of the F -polynomials would imply
that the c-associahedron is given by the Minkowski sum of the Newton polytopes of
the F -polynomials and of the cluster variables, respectively.

Before we provide detailed definitions, examples and the main constructions in Sec-
tion 2, we finish this introduction with three remarks about directly related previous
work by other authors.
Remark 1.1. As we will later use, R. Schiffler gave in [25] an explicit description of
the cluster variables of type An via T -paths on triangulations of the regular (n+ 3)-
gon, and G. Musiker and R. Schiffler generalized that description in [16] to cluster
variables for cluster algebras associated to unpunctured surfaces with arbitrary coef-
ficients. Together with L. Williams, they extended in [17] the results also to arbitrary
surfaces, allowing punctures. We refer to Section 4 for further details. We note that
their combinatorial model for punctured surfaces might possibly be used to prove
our combinatorial description of the Newton polytopes of F -polynomials for type D
cluster complexes.
Remark 1.2. In her PhD thesis, T. Tran provides a case-by-case description of the
F -polynomials in the classical types (A, B, C, and D) using root system data, see [27,
Theorem 4.16]. In these types, her case-by-case results give explicit formulas for the F -
polynomials. That approach is very different from the approach here in the sense that
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the description there is not uniform, while we conjecture a uniform description of their
Newton polytopes in Conjecture 2.12. Moreover, [27, Theorem 4.16] does not provide
any indication how such a description should lead to F -polynomials in the exceptional
types, or towards a uniform description that does not treat every classification type
individually. We again note that this combinatorial model for classical types might
possibly be used to prove our combinatorial description of the Newton poltytopes of
F -polynomials.

Remark 1.3. N. Reading and D. Speyer provide in [23] a general combinatorial
framework for acyclic cluster algebras to obtain information about exchange matrices,
and c- and g-vectors, see Remarks 2.8 and 2.11 for details. As we will discuss in
those remarks, both approaches are closely related. The two main differences are that
our approach has not been extended beyond finite types (see also [24]), while their
approach only uses (their versions of) the root and the coroot configurations, but does
not (seem to) provide information about F -polynomials and cluster variables.

2. Definitions and main results
In this section, we first recall the needed notions from finite root systems, from cluster
algebra theory, and from the theory of subword complexes and their relations to finite
type cluster algebras. The main results of this paper are then presented in Section 2.6,
accompanied with a detailed example.

2.1. Root systems. Let (W,S) be a finite crystallographic Coxeter system acting
essentially on a Euclidean vector space V of dimension n with inner product 〈 · | · 〉, we
refer to [10, Part II] for definitions of Coxeter systems and their geometric representa-
tions. Let ∆ = {αs : s ∈ S} be a choice of simple roots and set ∆∨ = {α∨s : s ∈ S} to
be the simple coroots. We then have that α∨s = 2αs/ 〈αs |αs 〉, that the Cartan matrix
A = (ast)s,t∈S is given by ast = 〈αt |α∨s 〉, and that s(αt) = αt − astαs. The funda-
mental weights ∇ = {ωs : s ∈ S} and fundamental coweights ∇∨ = {ω∨s : s ∈ S}
are the bases dual to the simple coroots and to the simple roots, respectively. That
is, 〈ωs |α∨t 〉 = 〈αs |ω∨t 〉 = δs=t. It is then easy to verify that

αs =
∑
t∈S

atsωt, α∨t =
∑
s∈S

atsω
∨
s ,(1)

and that moreover, s(ωt) = ωt − δs=tαs for s ∈ S.
Let c ∈ W be a (standard) Coxeter element for (W,S); i.e. c = s1 . . . sn is the

product of all elements in S in some order, and fix the reduced word c = s1 . . . sn of c.
We then often write αi = αsi , α∨i = α∨si

, ωi = ωsi , and ω∨i = ω∨si
to avoid double

indices. Denote by L = Z∆ the Z-lattice spanned by ∆, by L+ the nonnegative span
Z>0∆, and by L− = −L+ the nonpositive span. We call β ∈ L sign-coherent if
β ∈ L+tL−. Denote moreover by Φ = W (∆) =

{
w(αs) : w ∈W, s ∈ S

}
⊆ L+tL−

the root system for (W,S), by Φ+ = Φ ∩ L+ the positive roots, and by Φ>−1 =
Φ+ t −∆ ⊆ Φ the almost positive roots. The set of reflections in W is denoted by

R =
{
wsw−1 : w ∈W, s ∈ S

}
.

The map from Φ to R given by sending β = w(αs) ∈ Φ to sβ = wsw−1 ∈ R is
two-to-one and restricts to a bijection between Φ+ and R. We often use the letter
N = |Φ+| = |R|, so that n+N = |Φ>−1|.

Example 2.1. Let W be the symmetric group A2 = S3 with simple transpositions

S =
{
τ1 = (12), τ2 = (23)

}
,
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Coxeter element c = τ1τ2 = (123), simple roots

∆ = {α1 = (1,−1, 0), α2 = (0, 1,−1)},

and fundamental weights

∇ = {ω1 = (1, 0, 0), ω2 = (1, 1, 0)}.

As this example lives in the space R3/R(1, 1, 1), we have that

α1 = 2ω1 − ω2, α2 = 2ω2 − ω1,

in agreement with (1).

2.2. Coxeter elements and skew-symmetrizable Cartan matrices. For sim-
ple reflections s 6= t, we have that ast = 0 if and only if st = ts. We can thus think of
the Coxeter element c as an acyclic orientation of the corresponding Coxeter diagram
by orienting an edge s→ t if s comes before t in the given reduced word c = s1s2 . . . sn
(or, equivalently, in all reduced words for c). It is indeed the case that this mapping
yields a one-to-one correspondence between Coxeter elements and acyclic orientations
of the Coxeter diagram, and that the reduced words for a Coxeter element are given
by all linear extensions of this orientation. The reason we work with the particular
word c = s1 . . . sn is that it will later simplify several notations, both in the indexing
of variables, and in the definition of subword complexes (see Section 2.4).

For a given such orientation of the Coxeter diagram, define the skew-symmetrizable
matrix Mc = (bst)s,t∈S by

bst =


−ast if s→ t,

ast if s← t,

0 else.
(2)

2.3. Cluster algebras and cluster complexes. To a skew-symmetrizable Car-
tan matrix Mc, one may associate an initial (cluster) seed

(
M̃c,x,y

)
, where M̃c is

the exchange matrix
[Mc
1n

]
with principal part Mc and extended part 1n an identity

matrix, and where x = (x1, . . . , xn) are the cluster variables (the cluster of the seed),
and y = (y1, . . . , yn) are the frozen variables (the coefficients of the seed). Cluster
seeds may now be mutated in directions 1, . . . , n, we refer to Section 3 for the techni-
cal definitions of cluster mutations. The cluster algebra A(W, c) = A(M̃c) is then the
subalgebra of the ring of rational functions generated by all cluster variables obtained
from the cluster variables in the initial seed by mutations, we refer to [6, 7, 8] for
all needed background on cluster algebras. In the present context, one should think
of the variables xk and yk as being indexed by αk for 1 6 k 6 n, so they are in
particular indexed in a way that is consistent with the order of the simple reflections
in the given Coxeter element c.

It is known that every cluster variable u(x,y) ∈ A(W, c) is a Laurent polynomial
in the ring Z[x±1

1 , . . . , x±1
n ; y1, . . . , yn], i.e. u(x,y) = p(x,y)/m(x) where p(x,y) is

a polynomial in x,y with integer coefficients and m(x) is a monomial in x, see [8,
Proposition 3.6]. The d-vector d(u) of u(x,y) is the exponent vector of the denomi-
nator monomial m(x), i.e. d(u) = (d1, . . . , dn) for m(x) = xd1

1 . . . xdn
n and should be

thought of as a vector in the basis ∆, i.e.

d(u) = d1α1 + · · ·+ dnαn.

Under this identification, it is shown in [7, Theorem 1.9] and [28], that the map
u 7→ d(u) is a bijection between cluster variables in A(W, c) and almost positive

Algebraic Combinatorics, Vol. 1 #4 (2018) 548



Finite type cluster algebras from subword complexes

roots Φ>−1 where one sets d(u) = −αi ∈ −∆ for u(x,y) = xi. We will regularly use
this bijection in indexing objects. For example, we denote by

Fu(y) = Fβ(y) = u(1,y) = p(1,y)
the F -polynomial associated to u(x,y) ∈ A(W, c) and to β ∈ Φ>−1 with d(u) = β. As
Fβ(y) = 1 for β ∈ −∆, one usually considers F -polynomials only for positive roots
β ∈ Φ+. We also denote by g(u) = g(β) = (g1, . . . , gn) the g-vector given by the
exponent vector of u(x, 0). For reasons that will become clear later, we consider the
g-vector to live inside the weight space, i.e. g(u) = g1ω1 + · · ·+ gnωn.

For the course of this paper, it will be natural to consider the vector notation in the
exchange matrices inside the root space: we think of any exchange matrix M̃ =

[Mpr

Mex

]
of a cluster seed of A(W, c) with cluster (u1, . . . , un) as being indexed as follows. Row
and column i of Mpr are both indexed by the almost positive root d(ui). Equally,
column i of Mex is indexed by this almost positive root, while row i of Mex is indexed
by the simple root αi. The c-vector c(M̃, u) = c(M̃, β) with β = d(u) inside this cluster
seed is then given by the column vector of Mex in the column indexed by the almost
positive root β, written as a linear combination of the simple roots,

c(M̃, u) = c(M̃, β) = [Mex]α1,βα1 + · · ·+ [Mex]αn,βαn.

Every cluster seed is uniquely determined by its cluster, and the cluster complex
of A(W, c) is the simplicial complex with ground set being the set of cluster vari-
ables, and with facets being the clusters. Cluster complexes of finite type with the
initial seed coming from a bipartite Coxeter element (i.e. those where every vertex
in the corresponding orientation of the Coxeter diagram is either a sink or a source)
were studied and completely described in terms of compatibility of d-vectors in [7].
Polytopal realizations of the cluster complex of type A(W, c) were first obtained by
F. Chapoton, S. Fomin, and A. Zelevinsky in [5] for bipartite Coxeter elements, and
by C. Hohlweg, C. Lange, and H. Thomas in [9] for general Coxeter elements.

For later comparison, we provide the following well understood running example
of type A2 with principal coefficients. This example has to be treated with caution as
it does not show several difficulties that appear in types other than An, as here we
have that Newton polytopes of F -polynomials have no inner lattice points, and all
their monomials appear with coefficient 1.

Example 2.2. The five cluster seeds and the dual cluster complex are given by
0 1
-1 0
1 0
0 1

{
x1, x2

}
{
y1, y2

}

0 -1
1 0
-1 1
0 1

{
x2+y1

x1
, x2

}
{

1
y1
, y1y2

}
0 -1
1 0
1 0
0 -1

{
x1,

x1y2+1
x2

}
{
y1,

1
y2

}

0 1
-1 0
-1 0
0 -1

{
x1y1y2+x2+y1

x1x2
, x1y2+1

x2

}
{

1
y1
, 1
y2

}
0 -1
1 0
-1 0
-1 1

{
x1y1y2+x2+y1

x1x2
, x2+y1

x1

}
{

1
y1y2

, y2
}

where we refer to (6), (7), (8) on page 559 for the definition how to mutate exchange
matrices, cluster variables and frozen variables.
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Observe that between the two clusters
{
x2+y1
x1

, x2
}
and

{
x1y1y2+x2+y1

x1x2
, x2+y1

x1

}
we

switched the position of the common variable in the sense that the two columns and
the first two rows of the mutation matrices switched. As mentioned, we prefer to
think of the columns and rows being indexed by almost positive roots and simple
roots rather than such a linear listing. The cluster variables, their d- and g-vectors,
and F -polynomials are thus given by

u(x,y) d(u) ∈ Φ>−1 g(u) Fu(y)

x1 = 1
x−1

1
−α1 ω1 1

x2 = 1
x−1

2
−α2 ω2 1

x2+y1
x1

α1 ω2 − ω1 y1 + 1
x1y1y2+x2+y1

x1x2
α1 + α2 −ω1 y1y2 + y1 + 1

x1y2+1
x2

α2 −ω2 y2 + 1

2.4. Subword complexes. Let Q = q1 . . . qm be a word in the simple system S
and let ρ ∈W . The subword complex SC(Q, ρ) is the simplicial complex of (positions
of) letters in Q whose complement contains a reduced word of ρ. These complexes
were introduced by A. Knutson and E. Miller in [11], we refer to Example 2.24 on
page 557 for a detailed example for ρ = w◦ ∈ W being the longest element. Observe
that SC(Q, ρ) is pure by construction with ground set [m] = {1, . . . ,m} given by the
indices of letters in Q. Its facets thus all have the same size and we consider them as
sorted lists of integers, written in set notation. This is, I = {i1 < · · · < in} is a facet
of SC(Q, ρ) if and only if the word q1 . . . q̂i1 . . . q̂in . . . qm, with the letters qi1 , . . . , qin
omitted, is a reduced word for ρ ∈W .

Recall the following fundamental observation about subword complexes. It explains
in all later constructions the independence of the chosen reduced word c = s1 . . . sn of
the Coxeter element c.

Lemma 2.3 ([3, Proposition 3.8]). Let Q′ be a word in S that coincides with Q up to
commutations of consecutive letters that commute in W . Then SC(Q, ρ) ∼= SC(Q′, ρ),
and the isomorphism is given by the natural identification between letters in Q and
in Q′.

In this paper, we are only interested in the case that ρ = w◦ ∈ W is the unique
longest element with respect to the weak order, and Q being one specific word con-
structed from the Coxeter element c. We thus write SC(Q) for SC(Q, w◦) and assume
that Q does indeed contain a reduced word for w◦. This immediately implies that
SC(Q) is a simplicial sphere, see [11, Theorem 3.7]. Define Ig and Iag to be the lexi-
cographically first and last facets of SC(Q), respectively. These are called the greedy
facet and the antigreedy facet.

For Q = q1 . . . qm, associate to any facet I of the subword complex SC(Q) a root
function r(I, · ) : [m] → W (∆) and a weight function w(I, · ) : [m] → W (∇) defined
by

r(I, k) = ΠQ[k−1]rI(αqk
) and w(I, k) = ΠQ[k−1]rI(ωqk

),

where ΠQX denotes the product of the simple reflections qx ∈ Q, for x ∈ X, in
the order given by Q. For later convenience, we as well define the coroot function
r∨(I, · ) : [m]→W (∆∨) and a coweight function w∨(I, · ) : [m]→W (∇∨) by

r∨(I, k) = ΠQ[k−1]rI(α∨qk
) and w∨(I, k) = ΠQ[k−1]rI(ω∨qk

).
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Observe that it is immediate from this definition that all of these functions are
invariant under the isomorphism given in Lemma 2.3. The root function (and, equiv-
alently, the coroot function) locally encodes the flip property in the subword complex:
each facet adjacent to I in SC(Q) is obtained by exchanging an element i ∈ I with
the unique element j /∈ I such that r(I, j) ∈ {±r(I, i)}. If i < j such a flip is called
increasing, and it is called decreasing otherwise. Observe that the greedy facet and the
antigreedy facet are the unique facets such that every flip is increasing and decreas-
ing, respectively. After this exchange, the root function and the weight function are
updated by an application of sr(I,i) as recalled in Lemma 3.2 below. The root and the
coroot functions are used to define the root configuration and the coroot configuration
of the facet I as the ordered multisets

R(I) =
{{

r(I, i) : i ∈ I
}}
, R∨(I) =

{{
r∨(I, i) : i ∈ I

}}
.(3)

Similarly, the weight and the coweight functions are used to define the weight
configuration and the coweight configuration

W(I) =
{{

w(I, i) : i ∈ I
}}
, W∨(I) =

{{
w∨(I, i) : i ∈ I

}}
.(4)

By ordered multiset we simply mean the ordered tuple written in set notation. For
later convenience, we denote by

r(I, i)j =
〈

r(I, i)
∣∣ω∨j 〉

the coefficient of αj in the root r(I, i).
Next, the weight function is used to define the brick vector of I as

B(I) =
∑
k∈[m]

w(I, k),

and the brick polytope of Q is defined to be the convex hull of the brick vectors of all
facets of the subword complex SC(Q),

B(Q) = conv
{

B(I) : I facet of SC(Q)
}
.

It is shown in [19] that the brick polytope B(Q) is the Minkowski sum of a family of
Coxeter matroid polytopes in the sense of [1].

Theorem 2.4 ([19, Proposition 1.5]). For any word Q in S of length m containing a
reduced word for w◦ we have that

B(Q) =
∑

k∈[m]
B(Q, k)

where B(Q, k) = conv
{

w(I, k) : I facet of SC(Q)
}
.

2.5. Cluster complexes as subword complexes. For the Coxeter element c
with fixed reduced word c = s1 . . . sn, the Coxeter-sorting word (or c-sorting word)
ρ(c) of an element ρ ∈ W is given by the lexicographically first subword of c∞ that
is a reduced word for ρ. In particular, w◦(c) is the lexicographically first subword
of c∞ that is a reduced word for the longest element w◦ ∈ W . Observe that the
word ρ(c) does also depend on the chosen reduced word. But instead, one should
think of this sorting word as being associated to the Coxeter element c and being
defined up to commutations of consecutive commuting letters. The notion of c-sorting
words was defined by N. Reading in [22] and plays a crucial role in the combinatorial
descriptions of finite type cluster algebras and in particular in the description of
cluster complexes in terms of subword complexes. The main results in [3] provides the
following description of the combinatorics of the cluster complex of A(W, c), where
we observe from Lemma 2.3 that the subword complex does not depend on the chosen
reduced word for c.
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Theorem 2.5 ([3, Theorem 2.2]). The cluster complex of the cluster algebra A(W, c)
is isomorphic to the subword complex SC

(
cw◦(c)

)
.

We thus refer to SC
(
cw◦(c)

)
as the c-cluster complex. We moreover remark that

the abstract simplicial complex SC
(
cw◦(c)

)
does not depend on the chosen Coxeter

element c, while its combinatorics in the sense of root and weight functions does
depend on c. This is, SC

(
cw◦(c)

) ∼= SC(c′w◦(c′)) for any two Coxeter elements c
and c′ with reduced words c and c′, respectively, see [3, Theorem 2.6].

One identifies positions in cw◦(c) and almost positive roots by sending the kth

letter sk (1 6 k 6 n) of the initial copy of c = s1 . . . sn to the negative simple root
−αk = −αsk

, and the kth letter qk (1 6 k 6 N) of w◦(c) = q1 . . . qN to the positive
root q1 . . . qk−1(αqk

). See Lemma 3.2(1) on page 560 that this indeed is a bijection,
and observe that this equals in the natural way the root function of the greedy facet.
In symbols, this is for 1 6 k 6 N

q1 . . . qk−1(αqk
) = r(Ig, n+ k).(5)

That identification yields the isomorphism in Theorem 2.5 by sending a cluster
to the positions inside the word cw◦(c) corresponding to the almost positive roots
of the d-vectors of the cluster. To make this explicit, we use the following notation.
Let I = {i1 < · · · < in} be a facet of the cluster complex SC

(
cw◦(c)

)
. We then denote

by S(I) =
(
M̃(I),u(I), f(I)

)
with

M̃(I) =
[
Mpr(I)
Mex(I)

]
u(I) =

(
ui1(I), . . . , uin(I)

)
f(I) =

(
fi1(I), . . . , fin(I)

)
the cluster seed of A(W, c) corresponding to I under the given isomorphism between
cluster variables, almost positive roots, and positions in the word cw◦(c). The columns
of M̃(I) are then also indexed by the positions i1, . . . , in of I as are the rows of Mpr(I),
while the rows of Mex(I) are indexed by the positions 1, . . . , n (which are the positions
of the greedy facet Ig = {1, . . . , n}). We also denote by c(I, i) the c-vector coming
from column i ∈ I of Mex(I), and by g(I, i) the g-vector of the entry ui(I).

Polar polytopal realizations of the cluster complex were first obtained by F. Cha-
poton, S. Fomin, and A. Zelevinsky in [5]. C. Hohlweg, C. Lange, and H. Thomas then
constructed in [9] a generalization depending on a Coxeter element c, that reduces
for bipartite c to the construction in [5]. As one obtains for type An classical con-
structions of associahedra, such polytopal realizations are called c-associahedra. The
subword complex approach and the brick polytope construction provide an explicit
and straightforward construction of these.

Theorem 2.6 ([19, Theorem 4.9]). The cluster complex of A(W, c) is realized by the
polar of the brick polytope B

(
cw◦(c)

)
.

This polytopal realization turns out to be equal to the construction in [9] up to a
translation, see [19, Corollary 6.10]. Its main advantage is that it provides a vertex
description that yields a very simple proof of Theorem 2.6. This construction lives
inside the weight space, while its natural translation by B(Iag) lives inside the root
space. We will conjecturally see in Conjecture 2.12 that this is closely related to the
F -polynomials also “living inside the root space”.

Next, we recall how the indexing of the principal part of the exchange matrix is
chosen, and why one can think of it as a matrix of scalars.
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Theorem 2.7 ([19, Theorem 6.40]). Let I be a facet of SC
(
cw◦(c)

)
. The principal

part of the exchange matrix M̃(I) is then given for i, j ∈ I by

[Mpr(I)]ij =


−
〈

r(I, j)
∣∣ r∨(I, i)

〉
if i < j,〈

r(I, j)
∣∣ r∨(I, i)

〉
if i > j,

0 if i = j.

Observe that one could directly express this as well in terms of the skew-symmetric
bilinear form defined by Equation (2).

The following remark starts to clarify the connection between the subword com-
plex approach to finite type cluster algebras and the approach using N. Reading and
D. Speyer’s combinatorial frameworks [23].

Remark 2.8. The central structures in their combinatorial frameworks are the labels
and colabels. It follows from [19, Proposition 6.20] that the labels in finite types are
the root configurations defined in (3), and we obtain by duality that the colabels in
finite types are the coroot configurations also defined in (3). Given this connection in
finite types, we immediately obtain that Theorem 2.7 is the same description of the
principal part of the exchange matrix as given in [23, Theorem 3.25]. See Remark 2.11
below for the relation of the subword complex approach and [23, Theorem 3.26].

2.6. Main results. In this section, we provide and discuss the main results, we refer
to the end of this section for a detailed example. The first result of this paper shows
the close relationship between the c-vectors in finite type cluster algebras and the
root function of the corresponding subword complex.

Theorem 2.9. Let I be a facet of the c-cluster complex SC
(
cw◦(c)

)
corresponding to

the seed S(I) in the cluster algebra A(W, c). Then the columns of Mex(I) are given
by the root configuration, i.e.

c(I, i) = r(I, i)
for all i ∈ I. In particular, c(I, i) ∈ Φ is sign-coherent and {c(I, i) : i ∈ I} forms a
lattice basis of the root lattice.

We will prove this theorem in Section 3. To emphasize the similarity of this result
with Theorem 2.7, we rewrite this result in terms of the frozen variables and the
extended part of the mutation matrix as a matrix of scalars and obtain fi(I) =
y

r(I,i)1
1 . . . y

r(I,i)n
n , which means that the extended part of the exchange matrix M̃(I)

is given for i ∈ Ig and j ∈ I by
[Mex(I)]ij =

〈
r(I, j)

∣∣w∨(Ig, i)
〉
.

This explains why we think of the columns of Mex(I) as being indexed by the almost
positive roots in a facet, while we think of the rows as being indexed by the simple
roots.

Corollary 2.10. In the situation of Theorem 2.9, we also obtain that the g-vectors
are given by the weight configuration,

g(I, i) = w(I, i)
for all i ∈ I. In particular, {g(I, i) : i ∈ I} forms a lattice basis of the weight lattice.

Proof. Given a cluster algebra A(W, c) as considered in Theorem 2.9, it was proven
in [18, Theorem 1.2] that the g-matrix, whose columns consist of the g-vectors of
A(W, c), is equal to the transpose inverse of the c-matrix, whose columns consist of
the c-vectors of A(W, c).
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This fact along with Theorem 2.9 tells us that the g-vectors form the dual basis
to the coroot configuration, see also [23, Section 3.1]. The statement thus follows
with a stronger version of Lemma 3.2(5) below which was established in [19, Proposi-
tion 6.6]. �

As an example, one may compare the g-vectors displayed in Example 2.2 with the
weight configuration displayed in Example 2.24.

Remark 2.11. We have seen in Remark 2.8 how the description of the mutation
matrix through subword complexes relates to the description through N. Reading and
D. Speyer’s combinatorial frameworks. Indeed, Theorem 2.9 is the subword complex
counterpart of [23, Theorem 3.26]. Theorem 2.9 is then the same as Theorem 3.26(1)
and (2), and Corollary 2.10 implies Theorem 3.26(3) and (4). We also remark that [23,
Theorem 5.39] provides a way of computing the g-vectors in finite types using their
combinatorial framework. Theorem 3.26(5) then states that all F -polynomials in finite
type have constant term 1, this follows by the same argument via [8, Proposition 5.6].

We have now seen how to obtain properties from the root and coroot configu-
rations, and also from the weight configuration. Indeed, we have not used the root
and coroot functions outside of the facets to derive information. This does not seem
very surprising in light of Lemma 3.2(1) which recalls that the root function on the
complement of a given facet is always the complete set of positive roots.

Next, we look at properties of the cluster algebra that can be studied using the
weight function, this time outside of a given facet. Indeed, we will see that we can
conjecturally obtain further desired information about the cluster algebra from this
weight function, see Conjecture 2.12, Corollaries 2.17 and 2.18, and Theorem 2.20
below.

To state the main conjecture of this paper, we define the Newton polytope of an
F -polynomial Fβ(y) as the convex hull of its exponent vectors in the root basis ∆.
That is,

Newton
(
Fβ(y)

)
= conv

{
λ1α1 + · · ·+ λnαn : yλ1

1 . . . yλn
n monomial in Fβ(y)

}
.

Conjecture 2.12. Let Fβ(y) be the F -polynomial associated to the positive root β
for the cluster algebra A(W, c). Let k be the unique index k ∈ {n+ 1, . . . , n+N} such
that r(Ig, k) = β associated to β in Equation (5). Then

Newton
(
Fβ(y)

)
= conv

{
w(I, k)− w(Iag, k) : I facet of SC

(
cw◦(c)

)}
.

We moreover conjecture that knowing the Newton polytope of an F -polynomial
Fβ(y) in a finite type cluster algebra is enough to recover all monomials in Fβ(y).

Conjecture 2.13. The exponent vectors of the monomials of the F -polynomial Fβ(y)
are given by all lattice points inside its Newton polytope,{

λ1α1 + · · ·+ λnαn : yλ1
1 . . . yλn

n monomial in Fβ(y)
}

= Newton
(
Fβ(y)

)
∩ L+.

We emphasize that we currently do not have an explicit conjecture what the coeffi-
cients of the monomials look like—it is planned to investigate this in future research.

Theorem 2.14. Conjectures 2.12 and 2.13 hold for A(W, c) with W of type An.

This theorem will be proved in Section 4 by relating it to the combinatorial model
of type An cluster algebras of R. Schiffler [25] using its description given by G. Musiker
and R. Schiffler in [16].

Remark 2.15. The combinatorial model for F -polynomials for cluster algebras from
punctured surfaces can as well be used to provide the F -polynomials for type D
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cluster complexes via the description given for example by C. Ceballos and V. Pilaud
in [4]. We expect that constructions similar to those we use in Section 4 to derive
Theorem 2.14 can as well be given to prove Conjecture 2.12 in type D. We plan to
also further investigate this explicit combinatorial approach.

Theorem 2.16. Conjectures 2.12 and 2.13 hold for A(W, c) with W being of rank at
most 8. In particular, they hold in all exceptional types.

Proof. This was obtained via explicit computer explorations(1). �

Given Theorems 2.14 and 2.16, the two conjectures remains at this point open in
types B, C, and D. Whenever Conjecture 2.12 holds, we obtain very simple combi-
natorial proofs of many properties of finite type cluster algebras that were already
conjectured in [8]. Since then, all those properties were proven in acyclic finite types,
but often using rather intricate machinery, while the proofs here are elementary once
the needed combinatorial properties of subword complexes are established. We refer
to [23, Section 3.3] and in particular the table at the end of that section for references
to proofs of these properties.

The first two corollaries describe how to obtain properties of the F -polynomial from
Conjecture 2.12, and we then describe what is missing to obtain the actual cluster
variables from the root and the weight function.

Corollary 2.17 ([8, Conjecture 7.17]). Assume that Conjecture 2.12 holds for
A(W, c). For any β ∈ Φ+, we then have that the F -polynomial Fβ(y) has a unique
monomial of maximal degree whose exponent vector equals β, and such that any of
its monomials divides this monomial of maximal degree.

Proof. This directly follows from Lemmas 3.6 and 3.7 below. First, Conjecture 2.12
implies that Fβ(y) has a monomial with exponent vector given by w(Ig, k)−w(Iag, k)
where k be the unique index k ∈ {n+1, . . . , n+N} such that r(Ig, k) = β. Lemma 3.7
then shows that the exponent vector of this monomial is r(Ig, k) = β. Any given facet I
of SC

(
cw◦(c)

)
is obtained from the greedy facet Ig by a sequence of increasing flips,

and the antigreedy facet Iag is obtained from I again by a sequence of increasing flips.
Lemma 3.6 thus shows that every monomial of Fβ(y) divides the monomial given by
w(Ig, k)−w(Iag, k). Observe here that we can deduce this property for all monomials
in Fβ(y) from the same property for the monomials corresponding to the vertices of
the Newton polytope of Fβ(y). �

Using [8, Proposition 7.16], we can now also deduce how to compute the g-vector
from the F -polynomial, and indeed from the weight function alone.

Corollary 2.18 ([8, Conjecture 6.11]). Assume that Conjecture 2.12 holds for
A(W, c). For any β ∈ Φ+, we then have that the g-vector g(β) is given by

g(β) = max
(
Fβ(x̂)

)
− β

where x̂ = (x̂1, . . . , x̂n) with x̂i =
∏
j x
−[Mc]ji

j , and max(Fβ(x̂)) denotes the compone-
nentwise maximum of the exponent vectors of the monomials in Fβ(x̂). Moreover,
this maximum is obtained when only considering exponent vectors of monomials that
correspond to vertices of Newton

(
Fβ(y)

)
.

(1)The computations were performed using sage-8.2. The development was supported by the
project “Combinatorial and geometric structures for reflection groups and groupoids” within the
German Research Foundation priority program “Algorithmic and experimental methods in Algebra,
Geometry, and Number Theory”. The code and examples are available upon request.
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Observe that one usually uses tropical notation to express max
(
Fβ(x̂)

)
as briefly

used in the second paragraph of Section 3 below. We chose to show it in the present
form for simplicity in the given context.

Proof of Corollary 2.18. The equality follows from Corollary 2.17 via [8, Proposi-
tion 7.16]. The following simple fact about polytopes implies that it is enough to
consider vertices of the Newton polytope. Let P ⊆ Rn be a polytope, and let P̂ is the
image of P under a linear map ϕ : Rn → R. Then the maximum of P̂ is obtained at
a vertex of P . This is,

max P̂ = max {ϕ(v) : v vertex of P} .

Applying this observation to every component yields the desired restriction to vertices
of the Newton polytope. �

To state the main implication of the conjecture, we recall in the following propo-
sition how to recover the cluster variable from the g-vector and the F -polynomial.

Proposition 2.19 ([8, Corollary 6.3]). For any β ∈ Φ+, we have that the cluster
variable uβ(x,y) is given by

uβ(x,y) = xg1
1 . . . xgn

n Fβ(ŷ),

where we use the g-vector g(β) = (g1, . . . , gn) and where we set ŷ = (ŷ1, . . . , ŷn) with
ŷi = yix̂

−1
i = yi ·

∏
j x

[Mc]ji

j .

Theorem 2.20. Let W be a finite crystallographic Coxeter group acting on a vector
space V , and let c ∈W be a Coxeter element. Assume that Conjecture 2.12 holds for
A(W, c). Then the c-associahedron B

(
cw◦(c)

)
coincides up to translation with the two

Minkowski sums
•
∑
β∈Φ+ Newton

(
Fβ(y)

)
⊂ V , or

•
∑
β∈Φ+ Newton

(
uβ(x,y)

)
⊂ ϕ(V ) ⊂ V ⊕ V

for a suitable affine embedding ϕ of V into V ⊕ V .

Proof. The first description in terms of the F -polynomials follows from the Min-
kowski decomposition of any brick polytope into Coxeter matroid polytopes recalled
in Theorem 2.4.

The second description then in terms of the cluster variables follows from the
description in terms of the F -polynomials using Proposition 2.19 as this shows that
the cluster variables depend affinely on the y-variables, so that∑

β

Newton
(
uβ(x,y)

)
⊆ V ⊕ V

indeed lives inside the affine embedding ϕ(V ) ⊆ V ⊕V given in Proposition 2.19. �

Remark 2.21. For the linear Coxeter element c = (1, . . . , n + 1) in type An, this
description is equivalent to the description given by A. Postnikov in [21], see Corol-
lary 8.2 and the following two paragraphs(2). There, it is shown in this case that the
Minkowski sum of the Newton polytopes of the F -polynomials is exactly the realiza-
tion given by J.-L. Loday in [15].

(2)We thank Vincent Pilaud for pointing out this connection.
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Theorem 2.20 immediately suggests the following conjecture. Let A(M̃) be a finite
type cluster algebra with principal coefficients and possibly cyclic initial seed (M̃,x,y).
Define the M̃-associahedron to be the Minkowski sum of the Newton polytopes of the
F -polynomials of the cluster algebra. This is the sum∑

Newton
(
F(y)

)
⊂ V,

ranging over all F -polynomial F(y) of A(M̃).

Conjecture 2.22. All M̃-associahedra of a given finite type have the same combi-
natorial type, i.e. they all have the same face lattice. In particular, the duals of the
M̃-associahedra realize the cluster complex.

In light of Proposition 2.19, one could use instead cluster variables in this definition
for cluster algebras with principal coefficients. Indeed, this conjecture would even
make sense (in a slightly weaker form) in infinite types. Taking the Minkowski sum
corresponds to taking the finest common coarsening of the normal fans; one could
thus also consider the finest (infinite) coarsening of the normal fans of the Newton
polytopes of the F -polynomial in infinite types.

Remark 2.23. The description of the M̃-associahedron using the finest coarsening
of the normal fans of the Newton polytopes of the cluster variables was already con-
jectured by D. Speyer and L. Williams in [26, Conjecture 8.1] via the language of
tropical geometry. They consider the variety of a cluster algebra A(M̃) of finite type
and the positive part of its tropicalization and conjecture that whenever the finite
type mutation matrix M̃ has full rank (which is the case for principal coefficients),
the common refinement of the normal fans of the Newton polytopes of the cluster
variables should be the fan given by the cluster complex of A(M̃) as the d-vector fan.
Thus, Theorem 2.20 would imply their conjecture in the case of acyclic finite type
cluster algebras with principal coefficients.

The conjecture further states that if the mutation matrix does not have full rank,
then the common refinement of the normal fans of the Newton polytopes of the cluster
variables should be a coarsening of the fan dual to the cluster complex of A(M̃).
C. Ceballos, J.-P. Labbé, and the first author proved this conjecture in type D4 in [2].

After having presented the results of this paper, we explain them in great detail in
the example of type A2.

Example 2.24. This example shows the root and the weight function of type A2,
together with the construction of the c-cluster complex SC

(
cw◦(c)

)
. It is presented in

order to emphasize the close similarity to the type A2 cluster algebra in Example 2.2.
The word Q = cw◦(c) is given by

q1q2 q3q4q5 = τ1τ2︸︷︷︸
c

τ1τ2τ1︸ ︷︷ ︸
w◦(c)

,

and the facets of SC
(
cw◦(c)

)
are

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}.
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The following table records the root function of SC
(
cw◦(c)

)
indexed both by almost

positive roots and positions in the word cw◦(c):

−α1 −α2 α1 α1 + α2 α2
I 1 2 3 4 5

Ig = {1, 2} α1 α2 α1 α1 + α2 α2
(1,−1, 0) (0, 1,−1) (1,−1, 0) (1, 0,−1) (0, 1,−1)

{2, 3} α1 α1 + α2 −α1 α1 + α2 α2
(1,−1, 0) (1, 0,−1) (−1, 1, 0) (1, 0,−1) (0, 1,−1)

{3, 4} α1 α1 + α2 α2 −α1−α2 α2
(1,−1, 0) (1, 0,−1) (0, 1,−1) (−1, 0, 1) (0, 1,−1)

Iag = {4, 5} α1 α1 + α2 α2 −α1 −α2
(1,−1, 0) (1, 0,−1) (0, 1,−1) (−1, 1, 0) (0,−1, 1)

{1, 5} α1 α2 α1 + α2 α1 −α2
(1,−1, 0) (0, 1,−1) (1, 0,−1) (1,−1, 0) (0,−1, 1)

Observe that the root configuration of a facet I (indicated in grey) written in simple
roots coincides with the c-vectors of the corresponding cluster seed in Example 2.2.
E.g. the facet I = {3, 4} corresponds to the cluster seed where the d-vectors are
the almost positive roots

(
α1, α1 + α2

)
. It has root configuration

(
α2,−α1 − α2

)
which corresponds to the two c-vectors c(I, 3) = α2 and c(I, 4) = −α1 − α2. This
phenomenon is explained in all finite types in Theorem 2.9.

Similarly, the following table records the weight function of SC
(
cw◦(c)

)
:

−α1 −α2 α1 α1 +α2 α2
I 1 2 3 4 5 B(I)

Ig = {1, 2} ω1 ω2 ω1 ω2 ω2 − ω1 ω1 + 3ω2
(1, 0, 0) (1, 1, 0) (1, 0, 0) (1, 1, 0) (0, 1, 0) (4, 3, 0)

{2, 3} ω1 ω2 ω2 − ω1 ω2 ω2 − ω1 −ω1 + 4ω2
(1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 1, 0) (0, 1, 0) (3, 4, 0)

{3, 4} ω1 ω2 ω2 − ω1 −ω1 ω2 − ω1 −2ω1 + 3ω2
(1, 0, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (0, 1, 0) (2, 4, 1)

Iag = {4, 5} ω1 ω2 ω2 − ω1 −ω1 −ω2 −ω1 + ω2
(1, 0, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (0, 0, 1) (2, 3, 2)

{1, 5} ω1 ω2 ω1 ω1 − ω2 −ω2 3ω1 − ω2
(1, 0, 0) (1, 1, 0) (1, 0, 0) (1, 0, 1) (0, 0, 1) (4, 1, 2)

This yields that the brick polytope is given by

B
(
cw◦(c)

)
= conv

{
430, 340, 241, 232, 412

}
= conv{ω1}+ conv{ω2}+ conv{ω1, ω2 − ω1}

+ conv{ω2,−ω1, ω1 − ω2}+ conv{ω2 − ω1,−ω2}.

There are multiple things to be observed in this table which are conjec-
tured/explained in this paper. First, the weight configuration I (again indicated
in grey) written in fundamental weights coincides with the g-vectors of the corre-
sponding cluster seed in Example 2.2. E.g. the facet {3, 4} has weight configuration
(ω2 − ω1,−ω1) which corresponds to the two g-vectors g(α1) = (−1, 1) = ω2 − ω1
and g(α1 + α2) = (−1, 0) = −ω1. This phenomenon is explained in all finite types
in Corollary 2.10. Moreover, the weights inside a column are all equal within the
entries inside the facets (the entries in grey) and these weights also coincide with the
weight in the row of the antigreedy facet. This will be explained in Lemma 3.5 and
the following paragraph.
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Next, and most importantly, one shifts all weights inside a column by the weight in
the row of the antigreedy facet Iag and expresses the result in terms of the simple roots
to obtain in each column the exponent vectors of the monomials in the F -polynomials
for the corresponding cluster variable:

−α1 −α2 α1 α1 + α2 α2 B(I)− B(Iag)
Ig = {1, 2} 0 0 α1 α1 + α2 α2 2α1 + 2α2

{2, 3} 0 0 0 α1 + α2 α2 α1 + 2α2
{3, 4} 0 0 0 0 α2 α2

Iag = {4, 5} 0 0 0 0 0 0
{1, 5} 0 0 α1 α1 0 2α1

1 1 1 1 1
Fβ(y) y1 y1 y2

y1y2

We prove this phenomenon in type An, while we only conjecture generalizations
thereof in general finite types which we verify in low ranks including all exceptional
types.

Additional support for this conjecture is that the following properties of the
columns perfectly match known properties of F -polynomials and hold for general
finite type c-cluster complexes:

(1) When shifting all weights inside the columns by the entries of the antigreedy
facet Iag, all entries inside the facets become 0 and the row of the greedy
facet Ig coincides with the row of Ig for the table of the root function in the
positions corresponding to the positive roots (while the simple negative roots
become 0 in this table), see Lemma 3.7.

(2) Every other entry is obtained from the entry of the greedy facet Ig (the
antigreedy facet Iag) by subtracting (adding) simple roots, see Lemma 3.6.

The first item corresponds to the facts that F -polynomials have constant term 1
and a monomial with exponent vector equal to the d-vector, and the second item
corresponds to the fact that this monomial is the unique monomial of highest degree
and is divided by every other monomial in the F -polynomial.

3. Proof of Theorem 2.9
In this section, we prove Theorem 2.9 and also provide several auxiliary results for
general finite type c-cluster complexes, which will be used in Section 4 to show the
close relationship between F -polynomials and weight functions in type An.

We start with recalling cluster mutations on cluster seeds. Let S =
(
M̃,u, f

)
with

M̃ =
[Mpr

Mex

]
be a cluster seed as above. Given that we have indexed columns of M̃

and the rows of Mpr both by the d-vectors of the cluster variables u = (u1, . . . , un),
we now mutate S at β ∈ Φ>−1 such that β = d(ui). The seed mutation µi = µβ in
direction β defines a new seed µi(S) = (M̃′,u′, f ′) defined by the following exchange
relations, written for better readability in the indices {1, . . . , n} of {u1, . . . , un} rather
than in their d-vectors:

• The entries of M̃′ = (b′k`) are given by

b′k` =


−bk` if k = i or ` = i

bk` + bkibi` if bki > 0 and bi` > 0
bk` − bkibi` if bki < 0 and bi` < 0
bk` otherwise.

(6)
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• The cluster variables u′k of the cluster u′ = {u′1, . . . , u′n} are given by u′k = uk
for k 6= i and

u′i =
fi
∏
u

max{bki,0}
k +

∏
u

max{−bki,0}
k

(fi ⊕ 1)ui
(7)

• The frozen variables f ′` of the coefficients f ′ = {f ′1, . . . , f ′n} are given by

f ′` =
{
f−1
i if ` = i

f`f
max{bi`,0}
i (fi ⊕ 1)−bi` if ` 6= i.

(8)

As usual, we use the tropical notation ⊕ in Equations (7) and (8), which is defined
for monomials by

(∏
i y
ai
i

)
⊕
(∏

i y
bi
i

)
=
∏
i y

min{ai,bi}
i . It is worthwhile to compare

this with the notation used in Corollary 2.18.
A direct consequence of the definition is the following description of the frozen

variables.

Lemma 3.1 ([8, Eq. (2.13)]). The frozen variables are given by

fi = y
[Mex]1i

1 . . . y[Mex]ni
n .

To prove Theorem 2.9, we will show that the entries in the root configuration
behave as the c-vectors described in the matrix mutation in Equation (6). In order to
properly set this up, it is convenient to extract the coefficient of αj in the root r(I, i)
using the inner product with the fundamental coweights, so that we aim to show that[

Mex(I)
]
ji

= r(I, i)j =
〈

r(I, i)
∣∣ω∨j 〉 .(9)

The argument follows the same lines as the proof of Theorem 2.7 in [19]. We
frequently make use of the following properties of the root and the weight function.

Lemma 3.2 ([3, Lemma 3.3 & Lemma 3.6], [19, Lemma 3.3, Lemma 4.4 & Propo-
sition 6.6]). Let I and J be two adjacent facets of the subword complex SC(Q) with
I r i = J r j. Then

(1) The map r(I, · ) : k 7→ r(I, k) is a bijection between the complement of I
and Φ+.

(2) The position j is the unique position in the complement of I for which r(I, j) ∈
{±r(I, i)}. Moreover, r(I, j) = r(I, i) ∈ Φ+ if i < j, while r(I, j) = −r(I, i) ∈
Φ− if j < i.

(3) The map r(J, · ) is obtained from r(I, · ) by

r(J, k) =
{
sr(I,i)(r(I, k)) if min{i, j} < k 6 max{i, j},

r(I, k) otherwise.
(4) The map w(J, · ) is obtained from w(I, · ) by

w(J, k) =
{
sr(I,i)(w(I, k)) if min{i, j} < k 6 max{i, j},
w(I, k) otherwise.

(5) For k ∈ I, we have for k′ ∈ I with k′ 6= k that
〈 r(I, k′) |w(I, k) 〉 = 0

and we have for k′ /∈ I that{
〈 r(I, k′) |w(I, k) 〉 > 0 if k′ > k,
〈 r(I, k′) |w(I, k) 〉 6 0 if k′ < k.

We first show that (9) holds for the initial seed, and second that it is preserved
under mutations.
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Proposition 3.3. Let Ig be the greedy facet of SC
(
cw◦(c)

)
. Then[

Mex(Ig)
]
ji

= r(Ig, i)j .

Proof. This is the case as both sides are clearly equal to
〈
αi
∣∣ω∨j 〉 = δi=j . �

Proposition 3.4. Let I, J be two faces of SC
(
cw◦(c)

)
with I r i = J r j, and let

k ∈ I r i and ` ∈ {1, . . . , n}. Then r(J, j) = −r(I, i) and

r(J, k)` =


r(I, k)` + r(I, i)` ·

[
Mpr(I)

]
ik

if r(I, i)` > 0,
[
Mpr(I)

]
ik
> 0,

r(I, k)` − r(I, i)` ·
[
Mpr(I)

]
ik

if r(I, i)` 6 0,
[
Mpr(I)

]
ik
6 0,

r(I, k)` otherwise.

Proof. The property that r(J, j) = −r(I, i) holds in general for facets I r i = J r j in
subword complexes. It is a direct consequence of Lemma 3.2(2).

It thus remains to show that r(J, k)` is obtained from r(I, k)` as described. For
simplicity, observe that we can assume that i < j as every facet of any subword
complex SC(Q) can be obtained from the greedy facet by a sequence of increasing
flips. This implies, again by Lemma 3.2(2), that r(I, i) ∈ Φ+ and thus r(I, i)` > 0.
Even though this is not needed, we note that the case of a decreasing flip i > j could
also be computed in the exact same way.

The first case is k ∈ {i+ 1, . . . , j − 1}. It follows from [19, Lemma 6.43] that also[
Mpr(I)

]
ik
> 0. And, as desired, we obtain

r(J, k)` =
〈

ΠQ[k]rJ(αqk
)
∣∣ω∨` 〉

=
〈

ΠQ[i]rI · qi
(
ΠQ[i,k]rI(αqk

)
) ∣∣ω∨` 〉

=
〈

ΠQ[i]rI ·
(

ΠQ[i,k]rI(αqk
)−

〈
ΠQ[i,k]rI(αqk

)
∣∣α∨qi

〉
αqi

) ∣∣∣ω∨` 〉
=
〈

ΠQ[k]rI(αqk
)
∣∣ω∨` 〉− 〈ΠQ[i,k]rI(αqk

)
∣∣α∨qi

〉
·
〈

ΠQ[i]rI(αqi
)
∣∣ω∨` 〉

= r(I, k)` + r(I, i)` ·
[
Mpr(I)

]
ik
,

where, as before, we write cw◦(c) = q1 . . . qn+N . The first and the last equalities are
the definitions together with Theorem 2.7. The second equality is obtained as we do
the flip from i ∈ I to j ∈ J , the third equality is the definition of the application of
the simple reflection qi to ΠQ[i,k]rI(αqk

), and the fourth equality is the linearity of
the inner product.

The second case is k /∈ {i, . . . , j}. It follows from [19, Lemma 6.43] that
[
Mpr

]
ik
6 0,

while r(I, i)` > 0. And indeed, the flip from i to j does not effect the root function
at k by Lemma 3.2(3), and we obtain that r(I, k)` = r(J, k)`, as desired. �

We are now in the situation to deduce Theorem 2.9.

Proof of Theorem 2.9. It follows from Equation (6) and Proposition 3.4 that[
Mex(I)

]
`k

= r(I, k)` =⇒
[
Mex(J)

]
`k′

= r(J, k′)`
for I r i = J r j and either (k, k′) = (i, j) or k = k′ 6= i. As Proposition 3.3 provides
the equality for the initial mutation matrix, we obtain

[
Mex(I)

]
`i

= r(I, i)` for all
i ∈ I.

The property of the sign-coherence then follows as R(I) ⊆ Φ for all facets I, and
the fact that R(I) forms a basis of the root space is a direct consequence of its iterative
description. �

After this calculation, we present several general lemmas about cluster complexes
that we then use in Section 4 in type An to deduce Theorem 2.14.
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Lemma 3.5. Let I, J be two facets of SC
(
cw◦(c)

)
with k ∈ I ∩ J . Then w(I, k) =

w(J, k).

Proof. This is a direct consequence of Lemma 3.2(4) and (5) and the observation that
all facets of SC

(
cw◦(c)

)
containing k are connected by flips (see [19, Corollary 3.11]).

(Indeed, this property of the weight function was already used in the proof of [19,
Proposition 6.8].) To see this, assume that k ∈ I r i = J r j. The first part of
Lemma 3.2(4) shows how the weight w(J, k) is obtained from w(I, k) by applying
sr(I,i) and the first part of (5) implies that w(I, k) is contained in the hyperplane
fixed by sr(I,i), implying

w(J, k) = sr(I,i)(w(I, k)) = w(I, k). �

This lemma implies as well that w(I, i) = w(Iag, i) for any facet I and any i ∈ I.
If i ∈ Iag, this follows immediate. Otherwise, this follows from the observation that
one can construct a facet I ′ with i ∈ I ′ being minimal. Lemma 3.5 then implies that
w(I, i) = w(I ′, i) and Lemma 3.2(4) implies that w(I ′, i) = w(Iag, i). We do not make
further use of this additional information.

We next recall the following lemma.

Lemma 3.6 ([19, Lemma 4.5]). Let Iri = Jrj with i < j be two facets of SC
(
cw◦(c)

)
.

For any k ∈ {1, . . . , n+N} we then have

w(J, k) = w(I, k)− λr(I, i) for some λ ∈ Z>0 and r(I, i) ∈ Φ+.

In particular, w(I, k)− w(J, k) ∈ L+.

Proof. This is a direct consequence of Lemma 3.2(4) and (5). �

The following lemma has not been considered before and will serve as the starting
point of understanding F -polynomials in terms of the weight function.

Lemma 3.7. For k ∈ {n+ 1, . . . , n+N}, we have that

w(Ig, k)− w(Iag, k) = r(Ig, k).

Observe that, as we have seen in Equation (5) on page 552, this is also closely
related to the bijection relating cluster algebras and subword complexes.

Proof of Lemma 3.7. Starting with the greedy facet Ig, we flip the first position as
long as we can without flipping into position k to obtain a facet I. Observe that
along these flips, the facet always consists of a consecutive sequence of the n simple
reflections. We therefore obtain, up to commutations of consecutive commuting letters,
that I = {k − n, . . . , k − 1} and

w(Ig, k) = w(I, k).

By the same argument, we flip the last position in Iag until we flip into position k to
obtain a facet J . Again up to commutations of consecutive commuting letters, we get
that J = {k, . . . , k + n− 1} and

w(Iag, k) = w(J, k) = w(J ′, k).

Here J ′ is the facet obtained from J by again flipping in J the last position n−1 times
so that, up to commutations, we have J ′ = {k− n+ 1, . . . , k}. The second equality is
thus a direct consequence of Lemma 3.5 as k ∈ J ∩ J ′. With these observations, we
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finally obtain for w◦(c) = q1 . . . qN that

w(Ig, k)− w(Iag, k) = w({k − n, . . . , k − 1}, k)− w({k − n+ 1 . . . , k}, k)
= q1 . . . qk−1(ωqk

)− q1 . . . qk(ωqk
)

= q1 . . . qk−1(ωqk
)− q1 . . . qk−1(ωqk

− αqk
)

= q1 . . . qk−1(αqk
)

= r(Ig, k). �

We refer to the last table in Example 2.24 for an example of this correspondence
in type A2.

4. Proof of Theorem 2.14
Before we recall the construction for the F -polynomials of type An to prove The-
orem 2.14, we set the needed notations. The Coxeter group W is the symmetric
group Sn+1 acting on Rn+1/R(1, . . . , 1), whose simple system S is the set of simple
transpositions S = {τ1, . . . , τn} for τi = (i, i + 1) interchanging ei and ei+1. Thus,
the Coxeter element c is given by the product of all simple transpositions in some
order. The simple roots are moreover given by ∆ = {ei − ei+1 : 1 6 i 6 n}, the pos-
itive roots by Φ+ = {ei − ej+1 : 1 6 i 6 j 6 n}, and the fundamental weights by
∇ = {e1 + · · ·+ ei : 1 6 i 6 n}. We refer to Example 2.24 on page 557 for these
notations in type A2.

For consecutive simple transpositions, we write τi < τi−1 if τi appears to the left
of τi−1 in c, and τi > τi−1 if τi appears to the right of τi−1. We say that an element
τi1 . . . τim is a prefix of c if there is a reduced word c for c beginning with τi1 , . . . , τim . If
all τi1 , . . . , τim are inside the interval {τi, τi+1, . . . , τj} for i 6 j, we moreover say that
it is a prefix of c restricted to {τi, . . . , τj} if the prefix property holds after removing all
letters not in {τi, . . . , τj} from c. As an example, consider c = τ1τ3τ2 = τ3τ1τ2 ∈ S4.
The prefixes of c are −, τ1, τ3, τ1τ3 = τ3τ1, τ1τ3τ2, and the prefixes of c restricted to
{τ1, τ2} are −, τ1, τ1τ2.

4.1. F -polynomials from T -paths. R. Schiffler derived in [25] an explicit formula
for the cluster variables of type An via T-paths. These are certain paths on the di-
agonals of triangulations of a regular (n + 3)-gon. G. Musiker and R. Schiffler then
extended that description and obtained in [16] an explicit formula for cluster variables
in a similar fashion for cluster algebras with principal coefficients associated to un-
punctured surfaces. Together with L. Williams, they extended in [17] the results also
to arbitrary surfaces, allowing punctures. In this section, we review that construction
for type An to establish the needed notions to relate the description to the weight
function in order to derive Theorem 2.14. To present their results in a convenient way,
we follow [16, Section 5] as they directly work with principal coefficients, except that
we use slightly simplified notions of T -paths.

Let T be a triangulation of a regular (n + 3)-gon, with boundary diagonals (or
edges) labelled by B1, . . . , Bn+3 and with proper diagonals labelled by τ1, . . . , τn. An
example can be found in Figure 1(a); we use A,B,C, . . . instead of B1, B2, B3, . . .
and 1, 2, 3, . . . instead of τ1, τ2, τ3, . . . in examples for better readability.

Let γ /∈ T be another proper diagonal connecting non-adjacent vertices va and vb,
oriented from va to vb. Denote the intersection points of γ with the diagonals in T
along its orientation by p1, . . . , pd, and the corresponding diagonals in T by t1, . . . , td.
Let γk denote the segment of γ from point pk to point pk+1, where we use p0 = va
and pd+1 = vb. Each γk lies in exactly one triangle 4k, and we orient the diagonal tk
in T by the orientation induced from the counterclockwise orientation of 4k. Note
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(a) (b)

Figure 1. A path in a triangulation of the 7-gon.

that if one considers the opposite path γ−1 from vb to va, then the segment γi would
become γd+1−i and ti would become td+1−i. Moreover, the induced orientations of
all tk would change.

A T -path ζ from va to vb in T is a path ζ = (ζ1, . . . , ζ2d+1) in T where each ζi
is either a diagonal in T or a boundary edge and which uses the oriented diagonals
in the even positions, i.e. ζ2k = tk for 1 6 k 6 d. Observe that such a T -path is
uniquely determined by the directions in which the diagonals t1, . . . , td in the even
position are followed. If the direction of ζ coincides along the diagonal tk with the
direction induced by the counterclockwise orientation of the triangle 4k, we write
that ζ travels tk in positive direction, and it travels tk in negative direction otherwise.
It is not hard to see that there is always a unique T -path that travels all tk’s in
positive direction. We call this path the greedy T -path, and denote it by ζg. Similarly,
we denote by ζag the antigreedy T -path that travels all tk’s in negative direction. (Note
that these appeared in [16] as α̃P+ and α̃P− in the paragraph before Theorem 5.1.)
For instance, the greedy T -path in Figure 1(b) is (F, 2, 3, 3, 3, 4, B) and the antigreedy
T -path is (1, 2, 2, 3, 4, 4, A).

We say that two T -paths ζ and ζ ′ are flipped if ζ and ζ ′ only differ in two odd
positions 2k−1 and 2k+1 for some k. In other words, tk is the unique diagonal which
is traveled by ζ and ζ ′ in opposite directions, while all others are traveled in the
same direction. We thus also say that tk is flipped between ζ and ζ ′. In Figure 1(b),
flipping ζ6 = t3 in the T -path (F, 2, 3, 3, 3, 4, B) yields the T -path (F, 2, 3, 3, C, 4, A).

To a T -path ζ = (ζ1, . . . , ζ2d+1), one associates the monomial m[ζ] given by the
product of variables y` such that ζ2k = tk = τ` is traveled in positive direction. For in-
stance, the greedy T -path ζg = (F, 2, 3, 3, 3, 4, B) yields the monomial m[ζg] = y2y3y4,
while the antigreedy T -path ζag = (1, 2, 2, 3, 4, 4, A) yields m[ζag] = 1. Moreover, all
monomials obtained from T -paths for the diagonal γ in the example are given by

ζ m[ζ]

F2+3 3+3 4+B y2y3y4

F2+3 3+C4−A y2y3

1 2−G3+3 4+B y3y4

1 2−G3+C4−A y3

1 2−2 3−4 4−A 1
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where we labelled the even steps ζ2k = tk for 1 6 k 6 d with a “+” if it is traveled in
positive direction and with a “−” if it is traveled in negative direction. Also observe
how m[ζ] changes under flips. If ti is flipped between ζ and ζ ′ then m[ζ] = m[ζ ′] · y`
if ti = τ` is traveled in ζ in positive direction (and thus ζ ′ in negative direction).

As we have noted above, the orientations of the tk’s depend on the orientation of γ,
while the monomial m[ζ] does not depend on this orientation, but only on the two
unordered endpoints {va, vb}. This combinatorial model now provides a description
of the F -polynomials for the cluster algebra where the initial datum is the fixed given
triangulation T of a regular (n+ 3)-gon. It is well-known that F -polynomials for this
cluster algebra are indexed by (unoriented) diagonals γ /∈ T , see [16].

Theorem 4.1 ([16, Theorem 5.1]). Let T be a triangulation of the regular (n+3)-gon,
and let γ /∈ T with endpoints {va, vb}. The F -polynomial Fγ(y) of γ is then given by

Fγ(y) =
∑

m[ζ],

where the sum ranges over all T -paths ζ from va to vb.

Next, we recall how to associate a triangulation Tc of the regular (n+ 3)-gon to a
Coxeter element c in type An.

(1) Pick a fixed vertex of the (n+3)-gon, labelled v1, and draw an edge connecting
the two vertices adjacent to v1. Label the new edge by τ1.

(2) For each i = 2, . . . , n, label the vertex{
clockwise if τi < τi−1

counterclockwise if τi > τi−1

from vi−1 by vi, draw an edge connecting the two vertices adjacent to vi and
different from vi−1, and label the new edge τi.

An example of type A3 with c = τ1τ3τ2 is shown in Figure 2. Moreover, the trian-
gulation in Figure 1 corresponds to the Coxeter element c = τ3τ2τ1τ4 in type A4.

Lemma 4.2. Let c be a Coxeter element in type An, and let 1 6 i 6 j 6 n. Then
there is a unique diagonal γ /∈ Tc that crosses exactly the diagonals labelled by
τi, τi+1, . . . , τj, and every diagonal not in Tc can be obtained this way.

Proof. The triangulations that can be obtained (up to rotational symmetry) from a
Coxeter element by the procedure are exactly the triangulations that do not have
inner triangles, i.e. no triangles for which all three sides are proper diagonals. As the
diagonals are labelled consecutively, the statement follows. �

Example 4.3. Figure 2 shows for c = τ1τ3τ2 in type A3 and each positive root
β = ei − ej+1, the unique diagonal γ /∈ Tc crossing the diagonals τi, . . . , τj , and all
Tc-paths for this γ.

We have the following corollary of the above Theorem 4.1, which we will then use
to deduce Theorem 2.14.

Corollary 4.4. Let c be a Coxeter element in type An, let β = ei−ej+1 be a positive
root, and let γ /∈ Tc be the unique diagonal crossing exactly the diagonals labelled
τi, . . . , τj in Tc. Let the endpoints of γ be {va, vb}. The F -polynomials for the cluster
algebra A(W, c) associated to β is then given by

Fβ(y) =
∑

m[ζ],

where the sum ranges over all T -paths ζ from va to vb.
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β e1 − e2 e3 − e4 e1 − e4

γ

Tc-paths
E1+C

D1−2
2 3+A

F3−B

E1+1 2+3 3+B

E1+C2−F3+B

D1−2 2−F3+B

E1+C2−2 3−A
D1−2 2−2 3−A

Fβ(y) y1 + 1 y3 + 1 y1y2y3 + y1y3 + y3 + y1 + 1
β e2 − e4 e1 − e3 e2 − e3

γ

Tc-paths
1 2+3 3+B

C2−F3+B

C2−2 3−A

E1+1 2+3
E1+C2−F
D1−2 2−F

1 2+3
C2−F

Fβ(y) y2y3 + y3 + 1 y1y2 + y1 + 1 y2 + 1

Figure 2. Tc-paths for c = τ1τ3τ2 in type A3.

Proof. This follows from the well known connection between A(W, c) and the trian-
gulation Tc described above. �

Example 4.5. For c = τ1τ3τ2 in type A3, Figure 2 also provides all Fβ(y) for β ∈ Φ+

using the construction of Tc-paths.

We finally need the following proposition regarding possible flips in triangulations
with respect to a Coxeter element c.

Proposition 4.6. Let Tc be the triangulation associated to a Coxeter element c, and
let γ /∈ Tc be the unique diagonal oriented from va to vb which crosses exactly the
diagonals τi, . . . , τj in this order. Then for any prefix τi1 . . . τim of c restricted to
{τi, . . . , τj}, one can flip the diagonals labelled τi1 , . . . , τim in this order in the anti-
greedy Tc-path from va to vb. Moreover, every Tc-path from va to vb is obtained this
way for a unique prefix.

Proof. We explicitly describe the four possible restrictions for directions in which Tc-
paths can travel. To this end, consider the situation that ti−1 and ti are oriented
towards their shared vertex in Tc, or, equivalently, that τi < τi−1 (see the path for
e2 − e4 in Figure 2). Then, any Tc-path ζ from va to vb

• that travels the diagonal ζ2i−2 = ti−1 in positive direction must also travel
ζ2i = ti in positive direction, and

• that travels the diagonal ζ2i = ti in negative direction must also travel ζ2i−2 =
ti−1 in negative direction.
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The situation where ti−1 and ti are oriented away from their shared vertex in Tc,
or, equivalently, that τi > τi−1 is the same with the roles of positive and negative
direction interchanged (see the path for e1 − e3 in Figure 2).

Clearly, these are the only restrictions on Tc-paths. This means that a given se-
quence of orientations of the ti’s corresponds to a Tc-path if and only if these restric-
tions are satisfied. It then directly follows that every Tc-path is uniquely obtained
from the antigreedy Tc-path ζag (which travels all the diagonals in negative direction)
by flipping diagonals labelled τi1 , . . . , τim in this order for a prefix τi1 . . . τim of c re-
stricted to {τi, . . . , τj}, as desired. Observe here that if one considers two different
words for the same prefix, then both sequences of flips yield the same Tc-path, as
expected. �

We refer to Figure 2 for several examples, and also to Example 4.8 below for two
concrete computations.

Corollary 4.7. In the situation of Corollary 4.4, we have that

Fβ(y) =
∑

yi1 . . . yim

where the sum ranges over all prefixes τi1 . . . τim of c restricted to {τi, . . . , τj}.

Proof. Proposition 4.6 implies that Fβ(y) =
∑
m[ζi1,...,im ] where the sum ranges over

all prefixes of c restricted to {τi, . . . , τj}. Moreover, the resulting T -path ζi1,...,im is
obtained from the antigreedy T -path ζag by flipping all the diagonals τi1 , . . . , τim
in this order. The definition of m[ζ] thus implies that m[ζi1,...,im ] = yi1 . . . yim , as
desired. �

Example 4.8. Following the two examples of the two positive roots e1 − e4 = α1 +
α2 + α3 and e1 − e3 = α1 + α2 in type A3 with c = τ1τ3τ2 above, we obtain that the
prefixes of c are −, τ1, τ3, τ1τ3, τ1τ3τ2 yielding

Fe1−e4(y) = 1 + y1 + y3 + y1y3 + y1y2y3,

and that the prefixes of c restricted to {τ1, τ2} are −, τ1, τ1τ2 yielding
Fe1−e3(y) = 1 + y1 + y1y2.

Both cases can be checked in Figure 2.

4.2. F -polynomials from subword complexes. We now use Corollary 4.7 to
obtain the F -polynomials from the weight vectors of SC

(
cw◦(c)

)
by providing the

analogous property of the weight vectors in Theorem 4.12. We start with the following
explicit description of all different weights w(I, k) that occur for the various facets
for a fixed position k. For 1 6 i 6 j 6 n, consider the positive root ei − ej+1. We
have seen in Lemma 3.2 that there is a unique k ∈ {n + 1, . . . , n + N} such that
r(Ig, k) = ei − ej+1, and we have then seen in Lemma 3.7 that

w(Ig, k)− w(Iag, k) = r(Ig, k) = ei − ej+1.(10)
This yields the following lemma.

Lemma 4.9. We have
w(Ig, k) = (ε1, . . . , εi−1, 1, εi+1, . . . , εj , 0, εj+2, . . . , εn+1)(11)

w(Iag, k) = (ε1, . . . , εi−1, 0, εi+1, . . . , εj , 1, εj+2, . . . , εn+1)(12)

for fixed εi ∈ {0, 1} with i ∈ {1, . . . , n+ 1}r {i, j + 1}.

Proof. This follows from (10) as all W -orbits of fundamental weights in type An
consist of (0, 1)-vectors. �
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α1 α3 α1+α2+α3 α2 + α3 α1 + α2 α2
I 4 5 6 7 8 9

Ig = {1, 2, 3} (1, 0, 0, 0) (1, 1, 1, 0) (1, 1, 0, 0) (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1)
{1, 2, 9} (1, 0, 0, 0) (1, 1, 1, 0) (1, 0, 1, 0) (0, 0, 1, 0) (1, 0, 1, 1) (0, 0, 1, 1)
{1, 3, 5} (1, 0, 0, 0) (1, 1, 0, 1) (1, 1, 0, 0) (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1)
{1, 5, 7} (1, 0, 0, 0) (1, 1, 0, 1) (1, 0, 0, 1) (0, 0, 0, 1) (1, 1, 0, 1) (0, 1, 0, 1)
{1, 7, 9} (1, 0, 0, 0) (1, 1, 0, 1) (1, 0, 0, 1) (0, 0, 0, 1) (1, 0, 1, 1) (0, 0, 1, 1)
{2, 3, 4} (0, 1, 0, 0) (1, 1, 1, 0) (1, 1, 0, 0) (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1)
{2, 4, 8} (0, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 0) (0, 1, 0, 0) (0, 1, 1, 1) (0, 1, 0, 1)
{2, 8, 9} (0, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 0) (0, 0, 1, 0) (0, 1, 1, 1) (0, 0, 1, 1)
{3, 4, 5} (0, 1, 0, 0) (1, 1, 0, 1) (1, 1, 0, 0) (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1)
{4, 5, 6} (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1) (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1)
{4, 6, 8} (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1) (0, 1, 0, 0) (0, 1, 1, 1) (0, 1, 0, 1)
{5, 6, 7} (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1) (0, 0, 0, 1) (1, 1, 0, 1) (0, 1, 0, 1)
{6, 7, 8} (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1) (0, 0, 0, 1) (0, 1, 1, 1) (0, 1, 0, 1)

Iag = {7, 8, 9} (0, 1, 0, 0) (1, 1, 0, 1) (0, 1, 0, 1) (0, 0, 0, 1) (0, 1, 1, 1) (0, 0, 1, 1)

Figure 3. The weights of the facets appearing in the unique short-
est chain of increasing flips from the greedy to the antigreedy facet
for c = τ1τ3τ2 in type A3.

Using this observation, one explicitly obtains these weights for a given Coxeter
element c as described next.

Proposition 4.10. In the situation of Lemma 4.9, we have the following properties
of the εi’s (where the cases in (2) are only considered either if i > 1, or if j < n,
respectively):

(1) ε1 = · · · = εi−1 and εj+2 = · · · = εn+1;

(2) εi−1 =
{

0 if τi−1 < τi

1 if τi−1 > τi
and εj+2 =

{
0 if τj+1 < τj+2

1 if τj+1 > τj+2;

(3) for i < ` 6 j, ε` =
{

1 if τ`−1 < τ`

0 if τ`−1 > τ`.

Proof. One can flip the letters in the initial copy of c inside cw◦(c) from right to left
to obtain a sequence of increasing flips from Ig to Iag. (We indeed obtain exactly
the shortest sequences of increasing flips from the greedy to the antigreedy facet.)
As the root configuration of Ig is given by all simple roots {e1 − e2, . . . , en − en+1},
Lemma 3.2(3) implies that along the above sequence of flips from Ig to Iag, every
pattern (ε`, ε`+1) of consecutive indices of w(Ig, k) is updated exactly once (where
we set εi = 1 and εj+1 = 0 as in (11). Moreover, Lemma 3.6 implies that along this
procedure, either ε` = ε`+1 and the application of τ` does not change the weight, or
(ε`, ε`+1) = (1, 0), and this application moves the 1 in position ` into position ` + 1.
As such a move is not reversible again by Lemma 3.6, we directly obtain the second
property. The first property is obtained with the additional observation that those
entries coincide in Ig and in Iag. The last property finally follows with the observation
that every τ` for i 6 ` 6 j must indeed move a 1 one position to the right to obtain Iag
from Ig this way. �

Example 4.11. We again consider c = τ1τ3τ2 in type A3. Figure 3 shows all weights
w(I, k) in this case, the weights for Ig and Iag can be computed as described in
Lemma 4.9 and Proposition 4.10.
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To state the main observation towards the proof of Theorem 2.14, define the fol-
lowing set of weights as an “interval” in the weights,

Int
(
w(Ig, k), w(Iag, k)

)
=
{
ω ∈W (∇) : w(Ig, k)− ω, ω − w(Iag, k) ∈ L+} .

Using this notion, we deduce the following theorem from Proposition 4.10, for which
we need one additional observation. We may flip from the greedy to the antigreedy
facet in SC

(
cw◦(c)

)
in n flips. For a fixed expression c = s1 . . . sn, these flips are

exactly given by sequences of flips in positions in, . . . , i1 such that c = si1 . . . sin . We
denote by I the set of facets of SC

(
cw◦(c)

)
that lie on such a shortest sequence of

increasing flips and remark that I is given by construction by all facets I that are
obtained from Ig by flipping suffixes of the Coxeter element c, compare Example 4.13.

Theorem 4.12. We then have for k ∈ {1, . . . , n+N} that{
w(I, k) : I facet of SC

(
cw◦(c)

)}
= {w(I, k) : I ∈ I} .

Proof. The first inclusion in
{w(I, k) : I ∈ I} ⊆

{
w(I, k) : I facet of SC

(
cw◦(c)

)}
⊆ Int

(
w(Ig, k), w(Iag, k)

)
.

is trivial, while the second is a direct consequence of Lemma 3.6 as every facet lies on
a (not necessarily shortest) sequence of increasing flips from the greedy to the anti-
greedy facet. On the other hand, Proposition 4.10 implies that {w(I, k) : I ∈ I} =
Int
(
w(Ig, k), w(Iag, k)

)
as follows. For r(Ig, k) = ei − ej+1, we have that the interval

Int
(
w(Ig, k), w(Iag, k)

)
is given by starting with w(Ig, k) and replacing consecutive

pattern (ε`, ε`+1) = (1, 0) by (0, 1) in all possible ways so that every consecutive
pattern (ε`, ε`+1) with i 6 ` 6 j is modified exactly once. Now observe that Propo-
sition 4.10(3) gives that (ε`, ε`+1) = (1, 0) in w(Ig, k) if and only if τ`−1 < τ` > τ`+1
for i < ` < j and τ` > τ`+1 for ` = i and τ`−1 < τ` for ` = j. This means that the
possible ways to replace consecutive patterns (ε`, ε`+1) = (1, 0) by (0, 1) in w(Ig, k) is
given by doing this replacements at all indices corresponding to suffixes of the Coxeter
element c when restricted to τi, . . . , τj . �

Example 4.13. In the example in Figure 3, we have two shortest chains

{1, 2, 3} {1, 2, 9}
{1, 7, 9}

{2, 8, 9}
{7, 8, 9}

of facets from Ig = {1, 2, 3} to Iag = {7, 8, 9} (corresponding to the two reduced words
c = τ1τ3τ2 = s1s2s3 = s2s1s3). As highlighted in Figure 3 one observes that these
weights indeed yield the complete desired intervals.

To clarify the procedure in the previous proof, we also give a larger example in
type A8 with c = τ3τ7τ2τ4τ5τ6τ8τ1 Let β = e1−e9 = α1 + · · ·+α8, so i = 1 and j = 8.
For the appropriate k with r(Ig, k) = β, we have according to Proposition 4.10 that

w(Ig, k) = (1, 0, 0, 1, 1, 1, 0, 1, 0)
w(Iag, k) = (0, 0, 0, 1, 1, 1, 0, 1, 1).

As expected, one obtains Int
(
w(Ig, k), w(Iag, k)

)
by replacing consecutive pattern

(ε`, ε`+1) = (1, 0) by (0, 1) at every index 1 6 ` 6 8 exactly once (so that the 1 in
position 8 goes to position 9, the 1 in position 6 goes to position 8 and so on). Now,
the three indices 1, 6, 8 are exactly the initial positions ` such that (ε`, ε`+1) = (1, 0)
and as well the three indices that τ` is a suffix of c. The suffix corresponding to above
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expresssion for c yields that we are allowed to flip positions 1, 8, 6, 5, 4, 2, 7, 3 in this
order.Y

Given this theorem, we obtain indeed all weights of facets of SC
(
cw◦(c)

)
.

Proof of Theorem 2.14. Let A(W, c) be the cluster algebra of type An for a given
Coxeter element c, and let β = ei− ej+1 be a positive root. By Corollary 4.7, we have
that

Fβ(y) =
∑

yi1 . . . yim

where the sum ranges over all prefixes τi1 . . . τim of c restricted to {τi, . . . , τj}. Let k
be the unique index such that r(Ig, k) = β. We aim to show that this sum is also given
by
∑

yγ where the sum ranges over all γ in{
w(I, k)− w(Iag, k) : I ∈ I

}
expressed in the root basis ∆. Together with Theorem 4.12, this implies Conjec-
ture 2.12 for A(W, c). Conjecture 2.13 is then trivial as all exponent vectors of mono-
mials in Fβ(y) are (0, 1)-vectors in type A.

By construction, the set I in Theorem 4.12 is obtained from the greedy facet Ig
by flipping all possible sequences of suffixes of the Coxeter element c. Let i1, . . . , in
be such that c = τi1 . . . τin , and let Im be the facet obtained from Ig by flipping the
letters in, in−1, . . . , im in this order. Then flipping the letter in in Ig yields In, flipping
the letter im in Im+1 yields Im and I1 = Iag. Moreover,
(13) r(Ig, im) = r(Im+1, im) = αim

because Ig and Im+1 coincide until position im. This means that w(Im+1, k)−w(Im, k)
is either 0 or αim . Since w(Ig, k) − w(Iag, k) = r(Ig, k), this implies that w(Im, k) −
w(Iag, k) is obtained from r(Ig, k) by replacing all 1’s by 0’s in positions {im, . . . , in}.
This is because every position that is 1 in r(Ig, k) must become 0 within the sequence
Ig, In, . . . , I1 = Iag of increasing flips, and (13) means that the only flip that may
modify a position 1 6 a 6 n is the flip of the index im with im = a.

In total, this gives that
∑

yγ ranging over all γ ∈ {w(I, k)− w(Iag, k) : I ∈ I}
equals

∑
yβ/(yi1 . . . yim) ranging over all suffixes of c restricted to {τi, . . . , τj}. The

later is clearly equal to the desired sum expression for Fβ(y). �

The given description of the F -polynomials in type An has the consequence that
there is a generalization of Loday’s realization of the classical associahedron mentioned
in Remark 2.21 to all c-associahedra of type An.

Corollary 4.14. The type An c-associahedron is given by∑
conv{ei1 + · · ·+ eim}

where the sum ranges over all pairs 1 6 i 6 j 6 n and each convex hull is over all
prefixes im . . . i1 of the Coxeter element c restricted to {τi, . . . , τj}.

We remark that C. Lange obtained in [13] a different Minkowski decomposition
of the c-associahedron into sums and differences of simplicies. We refer to [13, Theo-
rem 4.3] and also to [14, Section 4] for details.

Example 4.15. We have seen that the prefixes of c = τ1τ3τ2 are given by
−, τ1, τ3, τ1τ3, τ1τ3τ2,

so that we obtain that the associahedron is given by

conv{000, 100}+ conv{000, 100, 110}+ conv{000, 100, 001, 101, 111}
+ conv{000, 010}+ conv{000, 001, 011}+ conv{000, 001}
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where the summands correspond to the intervals {τi, . . . , τj} for 1 6 i 6 j 6 3 in the
order {τ1}, {τ1, τ2}, {τ1, τ2, τ3}, {τ2}, {τ2, τ3}, {τ3}. For example, the second summand
is given by the convex hull of {000, 100, 110}. These are the different indicator vectors
of prefixes −, τ1, τ1τ2 of c where the letter τ3 is deleted.
Acknowledgements. We thank the anonymous referees for a detailed reading of the
manuscript and for several suggestions improving the presentation. The second au-
thor also thanks Vincent Pilaud, Nathan Reading, and Hugh Thomas for inspiring
discussions about finite type cluster algebras and their combinatorics.
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