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Khovanov’s Heisenberg category, moments
in free probability, and shifted symmetric

functions

Henry Kvinge, Anthony M. Licata & Stuart Mitchell

Abstract We establish an isomorphism between the center EndH′ (1) of the Heisenberg cat-
egory defined by Khovanov in [13] and the algebra Λ∗ of shifted symmetric functions defined
by Okounkov–Olshanski in [18]. We give a graphical description of the shifted power and Schur
bases of Λ∗ as elements of EndH′ (1), and describe the curl generators of EndH′ (1) in the lan-
guage of shifted symmetric functions. This latter description makes use of the transition and
co-transition measures of Kerov [10] and the noncommutative probability spaces of Biane [2]

1. Introduction
In [13], Khovanov introduces a graphical calculus of oriented planar diagrams and
uses it to define a linear monoidal category H′, which he proposes as a categorification
of the Heisenberg algebra. We denote by EndH′(1) the endomorphism algebra of the
monoidal unit in H′. The commutative algebra EndH′(1) is, by definition, the algebra
of closed oriented planar diagrams modulo the relations of the Khovanov graphical
calculus. In his study of morphism spaces of H′, Khovanov introduces two sets of
generators for EndH′(1): the clockwise curls {ck}k>0 and the counterclockwise curls
{c̃k}k>2. He then establishes algebra isomorphisms

EndH′(1) ∼= C[c0, c1, c2, . . . ] ∼= C[c̃2, c̃3, c̃4, . . . ],
and describes a recursion for expressing the clockwise and counterclockwise curls in
terms of each other. He then relatesH′ to representation theory by defining a sequence
of functors fH′k from H′ to bimodule categories for symmetric groups. A consequence
of the existence of these functors is the existence of surjective algebra homomorphisms,

fH
′

n : EndH′(1) −→ Z(C[Sn]),
from EndH′(1) to the center of the group algebra of each symmetric group. Based
in part on this, Khovanov suggests that there should be a close connection between
EndH′(1) and the asymptotic representation theory of symmetric groups. Further-
more, one might hope that EndH′(1) in fact gives a diagrammatic description of
some algebra of pre-existing combinatorial interest.
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The main goal of the current paper is to make precise the connection between
EndH′(1) and both the asymptotic representation theory of symmetric groups and
algebraic combinatorics. We do this by establishing an isomorphism between

ϕ : EndH′(1) −→ Λ∗,
where Λ∗ is the shifted symmetric functions of Okounkov–Olshanski [18]. (See The-
orem 5.3.) The algebra of shifted symmetric functions Λ∗ is a deformation of the
algebra of symmetric functions. As is the case for EndH′(1), there are surjective al-
gebra homomorphisms

f
Λ∗
n : Λ∗ −→ Z(C[Sn]),

to the center of the group algebra of each symmetric group. The isomorphism ϕ :
EndH′(1) −→ Λ∗ is canonical, in that it intertwines the homomorphisms fH′n and fΛ∗

n .
The isomorphism ϕ : EndH′(1) −→ Λ∗ allows us to give a graphical description

of several important bases of Λ∗. For example, the shifted power sum denoted p#
λ

in [18] appears in EndH′(1) as the closure of a permutation of cycle type λ. The
shifted Schur function s∗λ appears as the closure of a Young symmetrizer of type λ.
(See Theorem 5.4).

In the other direction, it is also reasonable to ask for a description of the image of
Khovanov’s curl generators ck and c̃k as elements of Λ∗. It turns out that the right
language for such a description is that of noncommutative probability theory. In [10],
Kerov introduces, for each partition λ, a pair of finitely supported probability mea-
sures on R; these probability measures are known as the transition and co-transition
measures, or sometimes as growth and decay. In work of Biane [2], these probability
measures appear as the compactly-supported measures associated to self-adjoint op-
erators on a noncommutative probability space, and as a result they are basic objects
of interest at the intersection of representation theory and noncommutative probabil-
ity theory. In particular, the moments and Boolean cumulants of the transition and
co-transition measures may be regarded as elements of Λ∗. In Theorem 5.5, we show
that the isomorphism ϕ takes Khovanov’s curl generators ck and c̃k to scalar multi-
ples of the kth moments of Kerov’s transition and co-transition measures. In fact, the
close relationship between the transition and co-transition measures themselves yields
two independent descriptions of the image of the curl generator ck: it is equal to a
scalar multiple of both the kth moment of the co-transition measure and the (k + 2)th
Boolean cumulant of the transition measure. The observation that the Boolean cumu-
lants of the transition measure are equal to the moments of the co-transition measure
is closely connected to the adjointness of induction and restriction functors between
representation categories of symmetric groups. A dictionary between several of the
bases of EndH′(1) and Λ∗ is given in Table 1 below.

The existence of a relationship betweenH′ and free probability, and indeed, much of
this paper, was anticipated by Khovanov in [13]. The relationship between generators
of EndH′(1) and the noncommutative probability spaces of [2] may be seen as a further
manifestation of the “planar structure” of free probability; the many connections
between noncommutative probability and other mathematical subjects with planar
structure are emphasized in the work of Guionnet, Jones and Shlyakhtenko [6].

In addition to the center of H′, another algebra of interest in the study of H′ is
its trace (or zeroth Hochschild homology). The trace of H′ is an infinite-dimensional
noncommutative algebra, which may be defined diagrammatically as the algebra of
diagrams on an annulus; the trace acts naturally on EndH′(1) by gluing annular
diagrams around planar ones. In [4], the trace of H′ is shown to be isomorphic to the
W1+∞ algebra of conformal field theory. An action of W1+∞ on Λ∗ appears to be well
known in the vertex algebra community, and such an action is constructed explicitly
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Λ∗ diagram in EndH′(1)

p#
λ

···
λ

s∗λ

···

dimLλ
1

Eλ

h∗k

···
E(k)

e∗k

···
E(1k)

pmk

k

pbk+2 = p#
1 qmk

k

Table 1. A dictionary between Λ∗ and diagrams in EndH′(1).

in the work of Lascoux–Thibon [14]. Thus the isomorphism ϕ : EndH′(1) −→ Λ∗ of
Theorem 5.3, together with the main result of [4], gives a purely planar realization,
via Khovanov’s graphical calculus, of Lascoux–Thibon’s construction.
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2. The symmetric group and its normalized character theory
We begin by establishing notation related to partitions and Young diagrams. Let Pn
be the set of partitions of n and

P :=
⋃
n>0
Pn.

For this section let λ = (λ1, λ2, . . . , λr) ∈ Pn and µ = (µ1, . . . , µt) ∈ Pk with n > k.
We assume that λ1 > · · · > λr > 0 and µ1 > · · · > µt > 0. When i > r (respectively
i > t) we understand that λi = 0 (resp. µi = 0). We use the following notation
throughout:

• n = λ1 + λ2 + · · ·+ λr =: |λ|.
• λ ∪ µ is the partition formed from the union of the parts of λ and µ.
• µ ⊆ λ if µi 6 λi for all i > 1. When this is the case, we write λ/µ for the

associated skew diagram.
• φk,n : Pk ↪→ Pn is the function defined by φk,n(µ) = µ ∪ 1n−k ∈ Pn.

Example 2.1. If µ = (3, 2, 1, 1, 1) ∈ P8 then φ8,10(µ) = (3, 2, 1, 1, 1, 1, 1) ∈ P10.

We freely identify µ ∈ P with its corresponding Young diagram, which we draw
using Russian notation (see Example 2.2). If is a cell in the ith row and jth column
of µ then the content of is defined to be the integer

cont( ) := j − i.
We say that a cell /∈ µ is i-addable with respect to µ if it has content i and adding
it to µ gives a Young diagram. We say that a cell ∈ µ is i-removable with respect
to µ if it has content i and removing it from µ gives a Young diagram. We call two
sequences a1, . . . , ad and b1, . . . , bd−1 interlacing when

a1 < b1 < a2 < · · · < ad−1 < bd−1 < ad.

The center of this pair of sequences is defined as the quantity (a1 + · · ·+ ad)− (b1 +
· · · + bd−1). Each Young diagram µ uniquely defines two integer valued interlacing
sequences a1, . . . , ad and b1, . . . , bd−1 where:

• a1, . . . , ad is the ordered list of all aj such that there exists an aj-addable cell
with respect to µ.
• b1, . . . , bd−1 is the ordered list of all bj such that there exists a bj-removable
cell with respect to µ.

From this description it is clear that a1, . . . , ad and b1, . . . , bd−1 are interlacing.

Example 2.2. Let µ = (4, 2, 1). Then µ yields the interlacing sequences
−3 < −1 < 1 < 4 and −2 < 0 < 3.

a4b3a3b2a2b1a1

43210−1−2−3
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Proposition 2.3 ([11]). If a1, . . . , ad and b1, . . . , bd−1 are the pair of interlacing se-
quences associated to a Young diagram then their center is 0. Conversely, any pair of
integer valued interlacing sequences with center 0 is associated to a Young diagram.

When µ ⊆ λ and λ/µ = , then we write µ↗ λ. In other words, µ↗ λ whenever
we can obtain λ from µ by adding a single cell. If a1, . . . , ad and b1, . . . , bd−1 are the
interlacing sequences associated to µ, then we denote by µ(i) the Young diagram that
we get by adding a cell of content ai, so that

cont(µ(i)/µ) = ai.

Similarly, we denote by µ(i) the Young diagram that we get by removing a cell of
content bi from µ, so that

cont(µ/µ(i)) = bi.

Note that µ(i) ↗ µ, while µ↗ µ(i).

Example 2.4. If µ = (4, 2, 1) as in Example 2.2, we have

(1)

µ(1) = (4, 2, 1, 1)
µ(2) = (4, 2, 2)
µ(3) = (4, 3, 1)
µ(4) = (5, 2, 1)

and
µ(1) = (4, 2)
µ(2) = (4, 1, 1)
µ(3) = (3, 2, 1).

Let Sn be the symmetric group. Sn is generated by Coxeter generators s1, . . . , sn−1
where si is the adjacent transposition (i, i+ 1). We identify C[S0] ∼= C. If g ∈ Sn has
cycle type λ ` n, then we write sh(g) := λ. For k 6 n, there is an embedding
Sk ↪→ Sn called the standard embedding which sends Sk to the subgroup generated by
s1, . . . , sk−1, which stabilizes {k + 1, . . . , n} pointwise. We extend this embedding by
linearity to get an embedding of group algebras which we denote by ιk,n : C[Sk] ↪→
C[Sn]. We write 1k for the identity element in C[Sk] so that ιk,n(1k) = 1n. We write
w0,n for the longest element of Sn by Coxeter length. w0,n is the product of disjoint
transpositions (1, n), (2, n− 1), (3, n− 2), . . . and in terms of Coxeter generators can
be written

w0,n = (s1s2 . . . sn−1)(s1s2 . . . sn−2) . . . (s1s2)(s1).
For λ ` n, let Lλ be the simple C[Sn]-module (the irreducible Sn representation)

corresponding to λ, Eλ ∈ Z(C[Sn]) its associated Young idempotent (or central idem-
potent), and χλ : C[Sn] → C its associated character. Abusing notation, we write
χλ(µ) for χλ(g) when sh(g) = µ (this notation is well-defined since χλ is a class func-
tion). The normalized character χ̃λ :

⊕
k6nC[Sk] → C associated to λ is defined so

that for x ∈ C[Sk],

(2) χ̃λ(x) := χλ(ιk,n(x))
dimLλ

= χλ(ιk,n(x))
χλ(1n) .

Let µ = (µ1, . . . , µt) ` k 6 n and set πµ = 1k if µ = (1k) and otherwise

πµ =
(
sk−1 . . . sk−µt+1

)
. . .
(
sµ1+µ2−1 . . . sµ1+1

)
·
(
sµ1−1 . . . s2s1

)
= (k, k − 1, . . . , k − µt + 1) . . . (µ1 + µ2, . . . , µ1 + 1) · (µ1, . . . , 2, 1) ∈ Sk.

We define
σµ,n := w−1

0,n(ιk,n(πµ))w0,n ∈ Sn.

Observe that σµ,n has cycle type φk,n(µ) and fixes 1, 2, . . . , n− k pointwise.

Algebraic Combinatorics, Vol. 2 #1 (2019) 53



H. Kvinge, A. M. Licata & S. Mitchell

Example 2.5. Let µ = (3, 2) ` 5, then

πµ = (s4)(s2s1) = (5, 4)(3, 2, 1)

and we see that sh(πµ) = µ. For n = 8,

σµ,8 = s4s6s7 = (4, 5)(6, 7, 8),

while for n = 10,
σµ,10 = (6, 7)(8, 9, 10).

The elements

{σ(1),n, σ(2),n, σ(3),n, . . . , σ(n),n} = {1n, sn−1, sn−2sn−1, . . . , s1s2 . . . sn−1}

are the minimal length left coset representatives of Sn−1 in Sn. We extend this ob-
servation in the following lemma.

Lemma 2.6. For k < n, the elements of the set

{σ(in),nσ(in−1),n−1 . . . σ(ik+1),k+1 | 1 6 ij 6 j }

are the minimal length left coset representatives of Sk in Sn. We denote this set by
LCnk .

Proof. LetGn−2 ⊂Gn−1 ⊂Gn be a sequence of nested groups and {g(n−1)
1 , . . . , g

(n−1)
tn−1

}
and {g(n)

1 , . . . , g
(n)
tn } be a collection of left coset representatives of Gn−2 in Gn−1 and

Gn−1 in Gn respectively. Then {g(n)
i2
g

(n−1)
i1

| 1 6 i1 6 tn−1 and 1 6 i2 6 tn} is
a collection of left coset representatives of Gn−2 in Gn. This fact can be extended
inductively to calculate the left coset representatives of Gk in Gn for any nested
sequence Gk ⊂ Gk+1 ⊂ · · · ⊂ Gn when a collection of left coset representatives of
Gi−1 in Gi is known for k+ 1 6 i 6 n. The lemma then follows from the observation
that

{σ(ij),j | 1 6 ij 6 j} = {σ(1),j , σ(2),j , . . . , σ(j),j}
= {1j , sj−1, sj−2sj−1, . . . , s1s2 . . . sj−1}

is a collection of left coset representatives of Sj−1 in Sj . �

We note that |LCnk | = (n � n− k), where the falling factorial power is defined as

(3) (x � j) =
{
x(x− 1) . . . (x− j + 1), if j = 1, 2, . . .
1, if j = 0.

Example 2.7. We have

LC4
3 = {14, s3, s2s3, s1s2s3},
LC3

2 = {13, s2, s1s2},

and

LC4
2 = {14, s3, s2s3, s1s2s3,

s2, s3s2, s2s3s2, s1s2s3s2,

s1s2, s3s1s2, s2s3s1s2, s1s2s3s1s2}.
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2.1. The center of C[Sn]. For µ ` k 6 n, set

Cµ,n :=
∑
g∈Sn,

sh(g)=φk,n(µ)

g.

The elements {Cµ,n}µ`n are a basis for the center of the symmetric group algebra,
Z(C[Sn]). We write zµ,n for the size of the centralizer of an element in Sn with cycle
type φk,n(µ). Note that when µ ` n, then zµ,n = zµ.

Definition 2.8. For µ = (µ1, . . . , µt) ` k 6 n, set

(4) Aµ,n :=
∑

g∈LCn
n−k

gσµ,ng
−1.

Aµ,n is called the normalized conjugacy class sum associated to µ in C[Sn].

Alternatively, Aµ,n may be written as

(5) Aµ,n =
∑

(i1, . . . , iµ1) . . . (ik−µt+1, . . . , ik)

where this sum is taken over all distinct k-tuples (i1, . . . , ik) of elements from
{1, 2, . . . , n}. From (5) a counting argument shows that

(6) Aµ,n = zµ,n
(n− k)!Cµ,n.

It follows from (6) that Aµ,n ∈ Z(C[Sn]).

Example 2.9. Let k 6 n. When µ = (k) ` k, then z(k),n = k(n− k)! so that

A(k),n = kC(k),n.

The elements Aµ,n are important in the study of the asymptotic character theory
of symmetric groups [12]. They also appear in connection with the algebra of partial
permutations [8]. If µ ` k 6 n and λ ` n then

(7) χ̃λ(Aµ,n) = (n � k)χ
λ(φk,n(µ))
dimLλ

.

The following is well-known.

Proposition 2.10. When restricted to Z(C[Sn]), the normalized character χ̃λ is an
algebra homomorphism from Z(C[Sn]) to C.

Z(C[Sn]) is also generated by symmetric polynomials in the Jucys–Murphy ele-
ments {Ji}16i6n ⊆ C[Sn], where

J1 = 0, and Jk = (1, k) + (2, k) + · · ·+ (k − 1, k), 2 6 k 6 n.

Written in terms of the Coxeter generators

(8) Jk =
k−1∑
i=1

si . . . sk−2sk−1sk−2 . . . si.

2.2. The transition measure and co-transition measure. In this section we
recall the notion of transition and co-transition measures, also known as growth and
decay, respectively. Assume that λ ` n and let a1, . . . , ad and b1, . . . , bd−1 be the
interlacing sequences associated to λ. Recall that λ(1), . . . , λ(d) are the partitions of
n + 1 such that cont(λ(i)/λ) = ai, while λ(1), . . . , λ(d−1) are the partitions of n − 1
such that cont(λ/λ(i)) = bi.
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For 1 6 i 6 d, the transition probabilities for λ are defined as

pqλ(λ(i)) := dim(Lλ(i))
(n+ 1) dim(Lλ) .

The transition measure pωλ is then the probability measure on R defined by

(9) pωλ :=
d∑
i=1

pqλ(λ(i))δai

where δai is the Dirac delta measure with support on ai ∈ R. Dually, for 1 6 i 6 d−1
the co-transition probabilities of λ are

qqλ(λ(i)) := dim(Lλ(i))
dim(Lλ)

and the co-transition measure qωλ is

(10) qωλ :=
d−1∑
i=1

qqλ(λ(i))δbi .

These probability measures were first investigated by Kerov ([10, 11]). They are fun-
damental tools in the study of the asymptotic representation theory of symmetric
groups. For example, in [11] Kerov shows that

(11)
d∑
i=1

pqλ(λ(i))
z − ai

= (z − b1) . . . (z − bd−1)
(z − a1) . . . (z − ad−1)(z − ad)

and

(12) z − |λ|
d−1∑
i=1

qqλ(λ(i))
z − bi

= (z − a1) . . . (z − ad−1)(z − ad)
(z − b1) . . . (z − bd−1) .

The kth moment associated to the transition measure pωλ is given by

pmk(λ) =
d∑
i=1

aki pqλ(λ(i))

while the kth moment associated to the co-transition measure qωλ is given by

qmk(λ) =
d−1∑
i=1

bki qqλ(λ(i)).

Consider the series

xMλ(z) :=
∞∑
k=0

pmk(λ)z−k−1 and |Mλ(z) := z −
∞∑
k=0
|λ|qmk(λ)z−k−1.

Lemma 2.11. For λ ∈ P
(13) xMλ(z) = ( |Mλ(z))−1.

Proof. This follows directly from equations (11), (12) and Lemma 5.1 in [11]. �

Boolean cumulants linearize convolution of probability measures under the notion of
Boolean independence [19]. The most convenient way to define the boolean cumulants
{pbk(λ)}k>1 associated to pωλ in our case is as the coefficients on the multiplicative
inverse of xMλ(z). We write

(14) pBλ(z) = z −
∞∑

k=−1

pbk+2(λ)z−k−1 = ( xMλ(z))−1
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(for the equivalence of this definition and other analytic definitions see Section 2
of [19]). Given Lemma 2.11 this definition immediately implies the following proposi-
tion.

Proposition 2.12. Let λ ∈ P and k > 0, then pb1(λ) = 0 and

(15) pbk+2(λ) = |λ|qmk(λ).

Remark 2.13. The equality (14) can be rewritten as

(16)
k∑
i=1

pmk−i(λ)pbi(λ) = pmk(λ).

For general information about the relationship between moments, Boolean cumu-
lants, and other families of cumulants see [1].

There is a more algebraic approach to the transition measure due to Biane [2]. Let

prn−1 : C[Sn]→ C[Sn−1] ⊂ C[Sn]

be the projection map defined on Sn by

prn−1(g) =
{
g if g ∈ C[Sn−1]
0 otherwise.

In the context of probability theory, prn−1 is sometimes known as the conditional
expectation.

Proposition 2.14. For λ ` n,

(17) pmk(λ) = χ̃λ[prn(Jkn+1)]

and

(18) pbk+2(λ) = |λ|qmk(λ) = χ̃λ

(
n∑
i=1

si . . . sn−1J
k
nsn−1 . . . si

)
.

Proof. The statement of (17) appears in [3, Section 4]. A detailed proof is given in
Theorem 9.23 of [7]. To get (18) note that since characters are class functions,

χ̃λ

(
n∑
i

si . . . sn−1J
k
nsn−1 . . . si

)
= |λ|χ̃λ(Jkn).

As Jn eigenspaces, Lλ decomposes as

Lλ ∼=
d−1⊕
i=1

Lλ(i)

with Lλ(i) corresponding to eigenvalue bi [21]. Hence,

|λ|χ̃λ(Jkn) = |λ|
d−1∑
i=1

dim(λ(i))bki
dim(λ) = |λ|qmk(λ) = pbk+2(λ). �

Proposition 2.14 is related to the fact that we are working in a noncommutative
probability space (that is, a von Neumann algebra equipped with a normal faithful
trace). In our case the algebra is End(Lλ) ⊗Mn+1(C) and pωλ then arises from the
distribution of a self-adjoint element in this algebra (see Proposition 3.3 in [2]).
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3. Symmetric functions and shifted symmetric functions
In order to define the algebra of shifted symmetric functions, we first recall the classical
symmetric functions. Let Λn be the algebra of symmetric polynomials over C in
x1, . . . , xn. This algebra is graded by polynomial degree. Recall that for n > 0 there
is a homomorphism
(19) Λn+1 → Λn
given by setting xn+1 = 0 in Λn+1. One can define the algebra of symmetric functions
as the projective limit Λ = lim←−Λn taken in the category of graded algebras. We recall
three collections of algebraically independent generators of Λ:

• elementary symmetric functions e1, e2, e3, . . . ,
• complete homogeneous symmetric functions h1, h2, h3, . . . ,
• power sum symmetric functions p1, p2, p3, . . .

For {fk}k>1 equal to any of these three sets of generators and λ = (λ1, . . . , λr) we
write fλ := fλ1 . . . fλr . We denote the basis of Schur functions by {sλ}λ∈P . We refer
the reader to [16] and [20] for background on Λ.

Let Λ∗n be the algebra of polynomials over C in x1, . . . , xn, which become symmetric
in the new variables x′i = xi − i. This algebra is filtered by polynomial degree. In
analogy to Λn+1, setting xn+1 = 0 in Λ∗n+1 gives a homomorphism
(20) Λ∗n+1 → Λ∗n
which respects the filtration. Using (20), set

Λ∗ := lim←−Λ∗n,
where this limit is taken in the category of filtered algebras. Λ∗ is called the algebra
of shifted symmetric functions.

Because Λ∗ is filtered, we can consider the associated graded algebra gr(Λ∗).

Proposition 3.1 ([18, Proposition 1.5]). gr(Λ∗) is canonically isomorphic to Λ.

Remark 3.2. It is noted in Remark 1.7 of [18] that we may also view Λ∗ as a de-
formation of Λ. Let Λ∗n(θ) be the algebra of polynomials in x1, . . . , xn which are
symmetric in the new variables x′i = xi+ c− iθ for 1 6 i 6 n and where c ∈ C. Define
Λ∗(θ) = lim←−Λ∗n(θ). Then Λ∗(0) = Λ and Λ∗(1) = Λ∗. In fact for all θ 6= 0, Λ∗(θ) ∼= Λ∗.

3.1. Bases of Λ∗. In [18] Okounkov and Olshanski introduced a remarkable basis
for Λ∗ called the shifted Schur functions. Let λ = (λ1, . . . , λn) be a partition with
λ1 > · · · > λn > 0 (note that here we allow components of a partition to be zero).
The shifted Schur polynomial in n variables, indexed by λ is the ratio of two n × n
determinants,

(21) s∗λ(x1, . . . , xn) = det[(xi + n− i � λj + n− j)]
det[(xi + n− i � n− j)] ,

where 1 6 i, j 6 n and (x � k) is defined in (3). This polynomial belongs to Λ∗n. It is
shown in [18] that
(22) s∗λ(x1, . . . , xn, 0) = s∗λ(x1, . . . , xn).
This implies that for fixed λ, letting n→∞ gives a well-defined element s∗λ of Λ∗. The
elements {s∗λ}λ∈P ∈ Λ∗ are called the shifted Schur functions and form a basis for Λ∗.
There is a linear map Λ∗ → gr(Λ∗) ∼= Λ which sends f ∈ Λ∗ to its top homogeneous
component which is an element of Λ. Under this map

s∗λ 7→ sλ
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or alternatively,
(23) s∗λ = sλ + l.o.t.
where l.o.t. means lower order terms in polynomial degree.

In analogy to the classical case, the elementary shifted functions can be defined as
e∗k := s∗(1k), while the complete shifted functions can be defined as h∗k := s∗(k). More
explicitly:

e∗k(x1, x2, . . . ) =
∑

16i1<···<ik<∞
(xi1 + k − 1)(xi2 + k − 2) . . . xik

and
h∗k(x1, x2, . . . ) =

∑
16i16···6ik<∞

(xi1 − k + 1)(xi2 − k + 2) . . . xik .

Let F be the linear isomorphism F : Λ → Λ∗ which sends sλ 7→ s∗λ. Define the
element p#

λ ∈ Λ∗ to then be

(24) p#
λ := F (pλ),

where pλ is the power sum symmetric function. The elements p#
λ are one of several

shifted analogues of the power sums. For λ ` n, the transition coefficients between
the power-sum and Schur bases are given by the character tables of the symmetric
group (see [20]):

pλ =
∑
µ`n

χµ(λ)sµ.

It follows directly from definition (24) that

(25) p#
λ =

∑
µ`n

χµ(λ)s∗µ.

Note also that by (23) and (25),

(26) p#
λ = pλ + l.o.t.

Since the power symmetric functions p1, p2, . . . are algebraically independent and
generate Λ, it follows from Proposition 3.1 and (26) that p#

1 , p
#
2 , . . . are algebraically

independent and generate Λ∗. Similarly, since {pλ}λ∈P is a basis for Λ, {p#
λ }λ∈P is a

basis for Λ∗. For more properties of the basis {p#
λ } see [9].

Remark 3.3. Let λ = (λ1, . . . , λr) ` n. While it is true that in Λ, pλ1 . . . pλr = pλ, in
general

p#
λ1
. . . p#

λr
6= p#

λ .

However, by (26)
p#
λ1
. . . p#

λr
= p#

λ + l.o.t.

3.2. Λ∗ as functions on P. Let Fun(P,C) be the algebra of functions from P
to C with pointwise multiplication. Viewing µ = (µ1, . . . , µt) ` k as the sequence
(µ1, . . . , µt, 0, 0, . . . ), we can evaluate f ∈ Λ∗ on µ by setting
(27) f(µ) = f(µ1, . . . , µt, 0, 0, . . . ).
Since (µ1, . . . , µt, 0, 0, . . . ) has only a finite number of nonzero values, it is clear
that (27) is well-defined. In fact f is uniquely defined by its values on P. Thus Λ∗
may be realized as a subalgebra of Fun(P,C). This fact is used repeatedly en route
to establishing many of the fundamental results about shifted symmetric functions
in [12] and [18].
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For λ = (λ1, . . . , λr) ` n and α a cell in the Young diagram corresponding to λ
with coordinates (i, j), the hook length of α is defined as h(α) := λi − j + λ′j − i+ 1,
where λ′ = (λ′1, . . . , λ′λ1

) is the partition conjugate to λ. Set H(λ) as the product of
all hooklengths in λ,

H(λ) :=
∏
α∈λ

h(α).

The following is known as the “Characterization Theorem” of [17].

Theorem 3.4. For µ ` k, s∗µ is the unique element of Λ∗ such that deg(s∗µ) 6 k and

s∗µ(λ) = δµλH(µ)

for all λ ∈ P such that |λ| 6 |µ|.

This theorem along with (25) then give the following proposition.

Proposition 3.5 ([18]). For µ ` k, λ ` n,

(28) p#
µ (λ) =

{
(n�k)

dimLλ
χλ(φk,n(µ)) k 6 n

0 otherwise.

Remark 3.6. We will later use the fact that p#
1 = x1 + x2 + · · · = p1, so that

p#
1 (λ) = |λ| for all λ ∈ P.

In Section 2.2 we introduced the moments {pmk(λ)} (resp. {qmk(λ)}) of the tran-
sition measure (resp. co-transition measure) associated to a partition λ and the cor-
responding Boolean cumulants {pbk(λ)}. We can interpret all of these as elements of
Fun(P,C) via

λ
xmk7−−→ pmk(λ), λ

|mk7−−→ qmk(λ), and λ
pbk7−→ pbk(λ).

Henceforth we omit the partition argument from pmk, qmk, and pbk in cases where we
want to emphasize that we are considering these as elements of Fun(P,C).

Proposition 3.7 ([15, Theorem 6.4]). As elements of Fun(P,C), pmk and pbk belong
to Λ∗.

Remark 3.8. In [15] Section 5, Lassalle shows that with the appropriate alphabet Aλ
(which is specific to each partition λ),

(29) pmk(λ) = hk(Aλ) and pbk(λ) = (−1)k−1ek(Aλ).

4. The Heisenberg category H′

In [13], Khovanov defines an additive C-linear monoidal category H′ which we will call
the Heisenberg category. The objects in H′ are generated by two objects Q+ and Q−.
Following the notation of [13], we denote Qε1 ⊗ · · ·⊗Qεm by Qε where ε = ε1 . . . εm is
a finite sequence of pluses and minuses. The unit object, 1, corresponds to the empty
sequence Q∅.

The collection of morphisms HomH′(Qε, Qε′), for two sequences ε and ε′ is the C-
vector space spanned by planar diagrams modulo some local relations. The diagrams
are oriented compact 1-manifolds immersed in the strip R× [0, 1], modulo rel bound-
ary isotopies. The endpoints of the 1-manifolds are located at {1, . . . ,m} × {0} and
{1, . . . , n}×{1}, where m and n are the lengths of ε and ε′, respectively. Further, the
orientation of the 1-manifolds at the endpoints must match the signs in the sequences
ε and ε′. Triple intersections are not allowed.
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Example 4.1. The diagram

− − +

− + − − +

is a morphism from Q−−+ to Q−+−−+.

The composition of two morphisms is achieved by stacking diagrams. The local
relations for diagrams are:

= = −(30)

= 1 = 0(31)

= =

.

(32)

The relations (30) and (31) are motivated by the Heisenberg relation pq = qp+ 1,
while the relations (32) are motivated by the symmetric group relations.

It is convenient to denote a right curl by a dot on a strand, and a sequence of d
right curls by a dot with a d next to it:

• :=

,

•d :=
•
•
•
•

d dots

.

Using relations (30)–(32) it can be shown that a dot can be moved across intersec-
tion points, according to the following “dot-sliding relations” [13]:

• =
•

+
,

•
= • +

.
This observation easily generalizes to

(33) •k =
•k

+
k−1∑
i=0

• •i k − 1− i
,
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(34)
•k

= •k +
k−1∑
i=0

• •i k − 1− i
.

Another consequence of relations (30)–(32) are the “bubble moves” [13]:

(35) •k = •k + (k+1) •k −
k−2∑
i=0

(k - i -1) • k-i-2 •i
,

(36) •k = •k −
k−2∑
i=0

(k -i -1) •i • k-i-2

.
Note that relations (32) imply that there is a homomorphism Tn : C[Sn] →

EndH′(Q+n) which sends

Tn
sk

.

. . . . . .

k-1 strands n-k-1 strands

Diagrammatically, for x ∈ C[Sn] we set

Tn(x) =:

· · ·

x

.

n strands

The appearance of the group algebra C[Sn] as endomorphisms in H′ is responsible
for the connection between H′ and the representation theory of symmetric groups.

4.1. The endomorphism algebra EndH′(1). The center of H′ is EndH′(1), that
is, the algebra of endomorphisms of the monoidal unit object 1. Diagrammatically, the
algebra EndH′(1) is the commutative C-algebra spanned by all closed diagrams, with
multiplication given by juxtaposition of diagrams. The algebra structure of EndH′(1)
was determined by Khovanov in [13]. Let C[c0, c1, c2, . . . ] be the polynomial algebra
in countably many indeterminants {ci}i>0.
Theorem 4.2 ([13, Proposition 3]). The map ψ0 : C[c0, c1, . . . ] → EndH′(1) which
sends

(37) ck

ψ0
k

is an algebra isomorphism.
Henceforth we will freely identify ck with its image in EndH′(1). Another natural

set of diagrams to consider are the counterclockwise-oriented circles with k right-twist
curls on them. Set
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c̃k :=

k

.

It follows from the relations in (31) that c̃0 = 1 and c̃1 = 0.

Lemma 4.3 ([13, Proposition 2]). For k > 0,

(38) c̃k+1 =
k−1∑
i=0

ck−1−ic̃i.

Another class of elements in EndH′(1) we consider are those arising from the closure
of permutations (that is, closures of morphisms in the image of Tn). We define

· · ·

k =

k strands

···

.

For λ = (λ1, . . . , λr) ` n, let

(39)

· · ·

λ :=

···

· · · λrλ1

then we define

αλ :=
···

λ

with αk := α(k).
Lemma 4.4 below shows that we could replace the permutation in (39) by the

image under Tn of any g ∈ Sn such that sh(g) = λ. We choose (39) because it will be
convenient for later calculations.

Lemma 4.4. Suppose that g1, g2 ∈ Sn are conjugate, so that sh(g1) = sh(g2). Then

···
g1 =

···
g2

.
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Proof. We use the fact that g1 = h−1g2h for some h ∈ Sn. Replacing g1 by h−1g2h,
we slide h around the closed diagram to cancel it with h−1,

···
g1

···

h−1

g2

h

= =
···

g2

.

�

Remark 4.5. In [13] Khovanov also studies H, the Karoubi envelope (or idempotent
completion) of H′. It is H which conjecturally categorifies the Heisenberg algebra.
Since taking the Karoubi envelope of a category does not change its center, all the
results we prove about EndH′(1) also hold for EndH(1).

4.2. Diagrams as bimodule homomorphisms. In order to establish an isomor-
phism between EndH′(1) and Λ∗, we will make use of a family of representations of
the monoidal category H′ constructed in [13].

Recall that for algebras A and B, M is an (A,B)-bimodule if it is a left A-module
and a right B-module, and the actions of A and B are compatible. To describe the
representations H′, we start by setting some notation for (C[Sk1 ],C[Sk2 ])-bimodules.
All inclusions are assumed to be the standard ones ιk,n : C[Sk] → C[Sn] introduced
in Section 2. Suppose that k1, k2 6 n. We write:

• (n) for C[Sn] considered as a (C[Sn],C[Sn])-bimodule.
• (n)k2 for C[Sn] considered as a (C[Sn],C[Sk2 ])-bimodule.
• k1(n) for C[Sn] considered as a (C[Sk1 ],C[Sn])-bimodule.
• k1(n)k2 for C[Sn] considered as a (C[Sk1 ],C[Sk2 ])-bimodule.

Let S ′ be the category whose objects are compositions of induction and restriction
functors of symmetric groups. We write

Indn+1
n := IndSn+1

Sn
and Resn+1

n := ResSn+1
Sn

.

Since induction from Sn to Sn+1 is given by tensoring on the left by (n + 1)n and
restriction from Sn+1 to Sn is given by tensoring on the left by n(n+ 1), the objects
in S ′ can be reinterpreted as (C[Sk1 ],C[Sk2 ])-bimodules for k1, k2 > 0. Most of our
calculations will use this interpretation.

Example 4.6. One object in S ′ is the composition
(40) Res5

4 ◦ Ind5
4 ◦ Ind4

3 ◦Res4
3 .

In the language of bimodules, this is the (C[S4],C[S4])-bimodule

4(5)4(4)3(4).

The morphisms in S ′ are certain natural transformations of these compositions (or,
equivalentely, certain bimodule homomorphisms). Like H′, morphisms in S ′ can be
presented diagrammatically as oriented compact 1-manifolds immersed in R × [0, 1].

Algebraic Combinatorics, Vol. 2 #1 (2019) 64



Khovanov’s Heisenberg category and Λ∗

Unlike H′, in S ′ we label the regions of the strip R× [0, 1] by non-negative integers, so
that if there is an upwards oriented line separating two regions and the right region
is labeled by n, then the left region must be labeled by n+ 1. The diagram

nn+ 1

denotes the identity endomorphism of the induction functor Indn+1
n or alternatively

the identity endomorphism of the bimodule (n+ 1)n.
If there is a downward oriented line separating two regions and the right is labeled

by n+ 1 then the left must be labeled by n. The diagram

n+ 1n

denotes the identity endomorphism of the restriction functor Resn+1
n or alternatively

the identity endomorphism of the bimodule n(n+ 1).
The bimodule maps associated to the four cups and caps are:

n n+1 , (n+ 1)n(n+ 1)→ (n+ 1), g ⊗ h 7→ gh, g, h ∈ Sn+1,(41)

nn+1 , (n)→ n(n+ 1)n, g 7→ g, g ∈ Sn,(42)

n+1 n , n(n+ 1)n → (n), g 7→ prn(g) =
{
g g(n+ 1) = n+ 1
0 otherwise,

(43)

n+1n , (n+ 1)→ (n+ 1)n(n+ 1),(44)

where (44) is determined by the condition that

1n+1 7→
n+1∑
i=1

sisi+1 · · · sn ⊗ sn · · · si+1si =
∑

g∈LCn+1
n

g ⊗ g−1.

Finally, the upward crossing is the bimodule map

(45) n , (n+ 2)n → (n+ 2)n, g 7→ gsn+1, g ∈ Sn+2.

Any diagram that has a region labeled with a negative number is set to 0. It is
shown in [13] that all diagrams are compatible with isotopy.

Remark 4.7. Closed diagrams in S ′ with outside region labeled by n corre-
spond to (C[Sn],C[Sn])-bimodule endomorphisms of (n). The algebra of such
bimodule endomorphisms is isomorphic to Z(C[Sn]) via the map which sends
f ∈ End(C[Sn],C[Sn])(C[Sn]) to f(1n). In this way closed diagrams in S ′ may be
regarded as elements of the center of the appropriate group algebra.

Khovanov shows that the diagrams in S ′ satisfy the defining relations for mor-
phisms in H′. As a result, given an endomorphism of H′, after labeling the far right
region by a non-negative integer, one obtains a well-defined bimodule homomorphism
in S ′. For example, using the bimodule definitions of cups and caps (41)–(44) we can
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compute that the clockwise-oriented curl generator c0 maps to multiplication by n+1
when we label the outside region with n+ 1:

(46) n

n + 1

= n+ 1.

In other words, the endomorphism c0 ∈ EndH′(1) becomes the scalar n + 1 in
Z(C[Sn+1]).
S ′ is the direct sum of categories

S ′ =
∞⊕
k=0
S ′k,

where S ′k contains all objects such that induction or restriction starts at Sk (i.e. the
rightmost region of the diagram is labeled by k). There are functors fH′k : H′ → S ′k
such that the object ε1ε2 . . . εn is taken to a composition of induction and restriction
functors with + sent to Indi+1

i and − sent to Resii−1 where i in each case is determined
by the requirement that induction/restriction begin from Sk. fH

′

k takes a diagram from
H′ to S ′k by labeling regions so that the rightmost region is labeled with a k and then
interpreting the diagram as an element of S ′k.

Example 4.8. fH′5 : H′ → S ′5 takes

(+ +−+−) fH
′

57−−−−−→ Ind6
5 ◦ Ind5

4 ◦Res5
4 ◦ Ind5

4 ◦Res5
4,

(−+ +) fH
′

57−−−−−→ Res7
6 Ind7

6 Ind6
5 .

In the remainder of this section we calculate the image of a number of important
diagrams in H′ under the functors fH′k .

Lemma 4.9 ([13, Section 4]). The diagram
n-1

n-2
n

is the endomorphism of (n)n−1 which is right multiplication by Jn.

Proof. The right twist curl can be written as the composition of a cup, a crossing,
and a cap.

n-1

Algebraic Combinatorics, Vol. 2 #1 (2019) 66



Khovanov’s Heisenberg category and Λ∗

Applying the endomorphism to 1n gives

1n 7→
n−1∑
i=1

si · · · sn−2 ⊗ sn−2 · · · si 7→
n−1∑
i=1

si · · · sn−2sn−1 ⊗ sn−2 · · · si

7→
n−1∑
i=1

si · · · sn−2sn−1sn−2 · · · si = Jn

where the equality holds by (8). �

Lemma 4.10. Let k 6 n:
(1) The diagram

n-k
n-1

n

corresponds to the bimodule homomorphism (n)→ (n)n−k(n) which sends

1n 7→
∑

g∈LCn
n−k

g ⊗ g−1.

(2) Let µ ` k and x1, x2 ∈ (n). The diagram

µ

n-k
n n

corresponds to the bimodule homomorphism (n)n−k(n) → (n)n−k(n) which
sends

x1 ⊗ x2 7→ x1σµ,n ⊗ x2.

Proof.
(1) We can factor the diagram in part (1) of the lemma into a vertically stacked

composition of k (Sn, Sn)-bimodule homomorphisms which we label f1, f2,
. . . , fk on the right below

(n)

(n)n-1(n)

(n)n-1(n-1)n-2(n-1)n-1(n)

...

(n)n-1 . . .n-k+2 (n-k+2)n-k+1(n-k+2)n-k+2 . . .n-1 (n)

(n)n-1 . . .n-k+1 (n-k+1)n-k(n-k+1)n-k+1 . . .n-1 (n)

...

. . . . . .

f1

f2

fk

n

n-1

n-2

n-k

.
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The homomorphism corresponding to f1 sends

1n
f17−→

∑
g∈LCn

n−1

g ⊗ g−1

and for 2 6 i 6 k, and x(j), y(j) ∈ C[Sj ], the homomorphism corresponding
to fi sends

x(n) ⊗ · · · ⊗ x(n−i+2) ⊗ y(n−i+2) ⊗ · · · ⊗ y(n)

7→
∑

g∈LCn-i+1
n−i

x(n) ⊗ · · · ⊗ x(n−i+2) ⊗ g ⊗ g−1 ⊗ y(n−i+2) ⊗ · · · ⊗ y(n).

Noting that the final (Sn, Sn)-bimodule in the composition above is isomor-
phic to (n)n−k(n) by the map which sends

x(n) ⊗ · · · ⊗ x(n-k+1) ⊗ y(n-k+1) ⊗ · · · ⊗ y(n)

7→ x(n) . . . x(n-k+1) ⊗ y(n-k+1) . . . y(n)

we get that the composition of f1, . . . ,fk sends

1n 7→
∑

g(n)∈LCn
n−1

· · ·
∑

g(n-k+1)∈LCn-k+1
n−k

g(n) . . . g(n-k+1) ⊗ (g(n-k+1))-1 . . . (g(n))-1

=
∑

g∈LCn
n−k

g ⊗ g−1.

(2) For simplicity we let µ = (k). The calculation for arbitrary µ easily generalizes
from this case. As in part (1) of the proof, we factor the diagram in part (2)
into a vertically stacked composition of diagrams

· · · · · ·

f1

f2

fk−1

··
·

n-k

n

with corresponding (Sn, Sn)-bimodule endomorphisms of (n)n−k(n) labeled
by f1, f2, . . . , fk−1. In particular, reading left to right the diagram for fi con-
sists of k upward pointing strands on the left with the (k − i)th strand and
(k − i + 1)th strand crossed, and k downward pointing strands on the right.
The region to the right of the crossing is labeled by n− k+ i− 1, the regions
above and below are labeled by n− k+ i, and the region to the left is labeled
by n−k+i+1. In order to use (45) to apply fi to element x′1⊗x′2 ∈ (n)n−k(n),
we use the isomorphism

(47)
(n)n-k(n) ∼→ (n)n-k+i+1(n−k+i+1)n-k+i-1(n−k+i−1)n-k(n)
x′1 ⊗ x′2 7→ x′1 ⊗ 1n-k+i+1 ⊗ 1n-k+i-1 ⊗ x′2.

Applying fi via (45) gives

x′1 ⊗ 1n-k+i+1 ⊗ 1n-k+i-1 ⊗ x′2
fi7−→ x′1 ⊗ sn-k+i ⊗ 1n-k+i-1 ⊗ x′2
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and using the inverse of (47) we obtain x′1sn-k+i ⊗ x′2 ∈ (n)n−k(n). Starting
with x1 ⊗ x2 ∈ (n)n−k(n) and using this procedure we calculate

fk−1 ◦ · · · ◦ f2 ◦ f1(x1 ⊗ x2) = x1sn-k+1sn-k+2 . . . sn-1 ⊗ x2

= x1σ(k),n ⊗ x2. �

Lemma 4.11. As elements of Z(C[Sn]):

(1) fH
′

n (ck) =
n∑
i=1

si · · · sn−1J
k
nsn−1 · · · si,

(2) fH′n (c̃k) = prn(Jkn+1).

(3) fH′n (αµ) =
{
Aµ,n if |µ| 6 n
0 otherwise.

Proof. (1)–(2) are found in [13, Section 4] and can be computed from the definitions
of cups and caps and Lemma 4.9. To compute (3), we can decompose the diagram for
αµ into three vertically stacked diagrams

···

µ

.

n-kn

f1

f2

f3

Using Lemma 4.10 we see that the homomorphisms f1 and f2 map

1n
f17−→

∑
g∈LCn

n−k

g ⊗ g−1 f27−→
∑

g∈LCn
n−k

gσµ,n ⊗ g−1.

Then (41) implies that f3 sends∑
g∈LCn

n−k

gσµ,n ⊗ g−1 f37−→
∑

g∈LCn
n−k

gσµ,ng
−1 = Aµ,n. �

5. The isomorphism ϕ : EndH′(1) −→ Λ∗

In this section we establish the algebra isomorphism EndH′(1) ∼= Λ∗. The proof is
somewhat analogous to Ivanov and Kerov’s proof of a related isomorphism connecting
shifted symmetric functions to the representation theory of symmetric groups (see [8,
Theorem 9.1]).

In [13, Section 4], Khovanov defines a grading on EndH′(1) by setting
(48) deg(c0) := 0, and deg(ck) := k + 1, for k > 1.
We will consider the increasing filtration induced by this grading. A relationship
between the elements {ck}k>0 and {αk}k>1 is then given in terms of this filtration as
follows.

Proposition 5.1. For any k > 1,
αk = ck−1 + l.o.t.
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Proof. This follows from repeated application of the dot sliding moves (33)–(34) and
bubble sliding move (35). Notice that with each application of these moves, we get a
single term from the same filtered part plus additional terms of lower degree. �

Since the elements c0, c1, . . . are algebraically independent generators of EndH′(1),
we immediately obtain the following.

Corollary 5.2. The elements α1, α2, . . . are algebraically independent generators of
EndH′(1).

For any λ ` n, composing fH′n with the normalized character χ̃λ gives a map

(χ̃λ ◦ fH
′

n ) : EndH′(1)→ C

and allows us to define a homomorphism ϕ : EndH′(1)→ Fun(P,C). Specifically, for
x ∈ EndH′(1), we write

[ϕ(x)](λ) := (χ̃λ ◦ fH
′

n )(x).
Combining Lemma 4.11.3 with (7) implies that for µ ` k

(49) [ϕ(αµ)](λ) =
{

(n�k)
dimLλ

χλ(φk,n(µ)) if k 6 n
0 otherwise.

Theorem 5.3. The map ϕ induces an algebra isomorphism EndH′(1) → Λ∗ ⊆
Fun(P,C) with

αµ
ϕ7−→ p#

µ .

Proof. Let λ ` n. ϕ is an algebra homomorphism because fH′n is a homomorphism
from EndH′(1) to Z(C[Sn]) and χ̃λ is a homomorphism when restricted to Z(C[Sn]).
By Proposition 3.5 and (49), αµ maps to p#

µ . Since the {p
#
k }k>1 (respectively {αk}k>1)

are algebraically independent generators of Λ∗ (resp. EndH′(1)), ϕ must be an iso-
morphism. �

Note that Theorem 5.3 along with Lemma 4.4 imply that when µ ` n,

(50)
···

Cµ,n = n!
zµ,n

···
µ

ϕ
n!
zµ,n

p#
µ .

For λ ` n recall that Eλ is the Young idempotent associated to λ.

Theorem 5.4. The isomorphism ϕ sends

dimLλ

1
s∗λ.

ϕ···

Eλ
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Proof. Recall that (
1

dimLλ

)
Eλ =

∑
µ`n

χλ(µ)
n! Cµ,n

(see for example [16]), while

s∗λ =
∑
µ`n

χλ(µ)
zµ,n

p#
µ .

The result then follows from (50). �

The previous theorems gave graphical realizations of some important bases of Λ∗.
Now we go the other way, and describe Khovanov’s curl generators c̃k and ck as
elements of Λ∗. It is this description that makes an explicit connection between H′
and the transition and co-transition measures of Kerov.

Theorem 5.5. The isomorphism ϕ sends:
(1) c̃k 7→ pmk ∈ Λ∗,
(2) ck 7→ p#

1 qmk = pbk+2 ∈ Λ∗.

Proof. Let λ ` n, then from Lemma 4.11 and Proposition 2.14 we have

[ϕ(c̃k)](λ) = χ̃λ(prn(Jkn+1)) = pmk(λ)

and

[ϕ(ck)](λ) = χ̃λ

(
n∑
i=1

si · · · sn−1J
k
nsn−1 · · · si

)
= p#

1 (λ) qmk(λ) = pbk+2(λ). �

Remark 5.6. In [5], Farahat and Higman used the inductive structure of symmetric
groups to construct a C-algebra known as the Farahat–Higman algebra KC (see also
[16, Example 24, Section I.7]). It follows from, for example [8], that there is an algebra
isomorphism KC ∼= Λ∗, and the functors fH′n can also be used to give a direct iso-
morphism between EndH′(1) and KC. So in principle all of the appearances of shifted
symmetric functions in the previous sections could be rephrased in the language of
the Farahat–Higman algebra.

Remark 5.7. Theorem 5.5 and Remark 3.8 together imply that the recursive rela-
tionships for {pmk} and {pbk} in Remark 2.13 and {ck} and {c̃k} in Lemma 4.3 are
both consequences of the well-known relationship between the elementary and homo-
geneous symmetric functions:

k∑
i=0

(−1)ieihn−i = 0.

Example 5.8. In Λ∗ we have p#
(2)p

#
(2) = p#

(2,2) + 4p#
(3) + 2p#

(1,1). In EndH′(1) the local
relations can be used to compute the corresponding equation:

= + 4 + 2

.

Algebraic Combinatorics, Vol. 2 #1 (2019) 71



H. Kvinge, A. M. Licata & S. Mitchell

5.1. Involutions on EndH′(1). In [13], Khovanov introduced three involutive
autoequivalences on H′. Only one of these, which we denote as ξ, acts non-
trivially on EndH′(1) where it gives an involutive algebra automorphism. For
D ∈ HomH′(Qε1 , Qε2), ξ is defined so that

ξ(D) := (−1)c(D)D

where c(D) is the total number of dots and crossings in the diagram. Thus, in
EndH′(1):

ck
ξ7−−−−→ (−1)kck,(51)

c̃k
ξ7−−−−→ (−1)k c̃k,(52)

αk
ξ7−−−−→ (−1)k−1αk.(53)

In Section 4 of [18], Okounkov and Olshanski identified an involutive algebra auto-
morphism I : Λ∗ → Λ∗ which acts on f ∈ Λ∗ such that for λ ∈ P,

[I(f)](λ) = f(λ′),

where λ′ is the conjugate partition to λ. In particular

I(s∗λ) = s∗λ′ ,(54)
I(e∗k) = h∗k,(55)

I(p#
k ) = (−1)k−1p#

k .(56)

Proposition 5.9. The involution ξ on EndH′(1) coincides with the involution I on
Λ∗.

Proof. This follows from the fact that {αk}k>1, (respectively {p#
k }k>1) generate

EndH′(1) (resp. Λ∗), ϕ(αk) = p#
k , and a comparison of (53) and (56). �

5.2. A graphical construction of the action of W1+∞ on Λ∗. In [4], the
trace Tr(H′) (or zeroth Hochschild homology) of H′ is shown to be isomorphic as an
algebra to a quotient of the W-algebra W1+∞. Like the center EndH′(1), which is the
algebra of closed planar diagrams, the trace Tr(H′) has a purely graphical description,
as the space of annular diagrams modulo Khovanov’s local diagrammatic relations.
More precisely, the underlying vector space of Tr(H′) is isomorphic to the span of
annular diagrams, where an annular diagram f̃ is by definition a diagram obtained
by taking an endomorphism f ∈ EndH′(X) for some object X ∈ H′, and closing it
up to the right in an annulus. The multiplication in Tr(H′) is given by gluing annuli
around one another:

× =

.
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The action of Tr(H′) on EndH′(1) then acquires a graphical description: given an
annular diagram f̃ ∈ Tr(H′) and a closed planar diagram g ∈ EndH′(1), the closed
planar diagram f̃g ∈ EndH′(1) is given by inserting a planar neighborhood of the
closed diagram g into the middle of the annulus:

× =

.

Thus, via the isomorphisms

EndH′(1) ∼= Λ∗, Tr(H′) ∼= W1+∞

of Theorem 5.3 and [4], respectively, we obtain a purely graphical construction of
the action of W1+∞ on Λ∗. Such an action was first considered by Lascoux–Thibon
in [14].
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