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Semi-steady non-commutative crepant
resolutions via regular dimer models

Yusuke Nakajima

Abstract A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of
a 3-dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer
model gives a class of NCCRs called steady if and only if it is homotopy equivalent to a regular
hexagonal dimer model. Inspired by this result, we detect another nice property on NCCRs
that characterizes square dimer models. We call such NCCRs semi-steady NCCRs, and study
their properties.

1. Introduction
1.1. Overview and Motivations. The notion of non-commutative crepant reso-
lution (= NCCR) was introduced by Van den Bergh [41] (see also [42]). It is an
algebra derived equivalent to crepant resolutions for some singularities, and it gives
another perspective on Bondal–Orlov conjecture [6] and Bridgeland’s theorem [7].
For example, an NCCR of a quotient singularity is given by the skew group algebra
(see e.g., [26, 30, 41]), and if a given quotient singularity is d-dimensional Gorenstein
with d 6 3, the skew group algebra is derived equivalent to crepant resolutions of
such a singularity [8, 32]. NCCRs are also related with Cohen–Macaulay represen-
tation theory. Indeed, cluster tilting modules (or subcategories) give a framework to
study modules giving NCCRs (see e.g., [16, 26, 28, 30, 31]), and the present paper fol-
lows this viewpoint. Here, we recall the definition of NCCRs [41]. (For further details
concerning terminology used in this introduction, see later sections.)

Definition 1.1. Let R be a Cohen–Macaulay normal domain, and M be a non-zero
reflexive R-module. Let Λ := EndR(M). We say that Λ is a non-commutative crepant
resolution (= NCCR) of R or M gives an NCCR of R if Λ is a non-singular R-order,
that is, gl.dim Λp = dim Rp for all p ∈ SpecR and Λ is a maximal Cohen–Macaulay
R-module.

We refer to [30, Proposition 2.17] for several conditions that are equivalent to Λ is
a non-singular R-order. Also, the existence of NCCRs and their properties have been
studied in several papers e.g., [9, 11, 12, 14, 15, 23, 25, 29, 30, 31, 34, 38, 43] and
references therein.
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One of the interesting families of NCCRs is given by dimer models, and we will
mainly discuss such NCCRs in this paper. A dimer model is a finite bipartite graph
on the real two-torus. We define the quiver with potential (Q,WQ) as the dual of
a dimer model, and we then define the Jacobian algebra P(Q,WQ) which is the
path algebra with certain relations arising from the potential WQ. If a dimer model
satisfies the consistency condition (see Definition 3.3), then the center of P(Q,WQ) is
a 3-dimensional Gorenstein toric singularity and P(Q,WQ) gives an NCCR of such a
singularity. Conversely, for every 3-dimensional Gorenstein toric singularity R, there
exists a consistent dimer model giving R as the center of P(Q,WQ). Thus, every 3-
dimensional Gorenstein toric singularity admits an NCCR. For more details, see e.g.,
[5, 9, 25] and Section 3.

Although an NCCR does not necessarily exist for a given singularity in general,
the existence of an NCCR shows that it has at worst log-terminal singularities [18]
(see also [17, 39]). Furthermore, if we impose several conditions on NCCRs, then we
have more concrete singularities. Indeed, Iyama and the author introduced the notion
of steady NCCRs and splitting NCCRs in [27], and studied singularities admitting
steady splitting NCCRs. Here, we note the definition of steady and splitting NCCRs.

Definition 1.2. Let R be a Cohen–Macaulay normal domain, and M be a non-zero
reflexive R-module.

(1) We say that M is steady if M is a generator (that is, R ∈ addRM) and
EndR(M) ∈ addRM holds. We say that an NCCR EndR(M) is a steady
NCCR if M is steady.

(2) We say that M is splitting if M is a finite direct sum of rank one reflex-
ive modules. We say that an NCCR EndR(M) is a splitting NCCR if M is
splitting.

Using these notions, we see that the existence of a steady splitting NCCR character-
izes quotient singularities associated with finite abelian groups (see [27, Theorem 3.1]).
Restricting this result to NCCRs arising from consistent dimer models, we have the
following theorem. We note that NCCRs arising from consistent dimer models are
always splitting, thus we may not mention the splittingness in this theorem.

Theorem 1.3 (see [27, Corollary 1.7]). Let Γ be a consistent dimer model, R be the
3-dimensional complete local Gorenstein toric singularity associated with Γ, and k be
an algebraically closed field of characteristic zero. Then, the following conditions are
equivalent.

(1) R is a quotient singularity associated with a finite abelian group G ⊂ SL(3, k)
(i.e., R = SG where S = k[[x1, x2, x3]]). In particular, the cone defining R is
simplicial and hence R is Q-factorial.

(2) Γ is homotopy equivalent to a regular hexagonal dimer model (i.e., each face
of a dimer model is a regular hexagon).

(3) Γ gives a steady NCCR of R.

In this way, we could characterize a regular hexagonal dimer model, which is a
typical dimer model as we will see below, using the nice class of NCCRs. Thus, we
then ask the following.

Question 1.4. Can we characterize other dimer models by using NCCRs?

Since a dimer model is a bipartite graph on the real two-torus, the universal cover
of it gives rise to the one on the Euclidean plane, hence dimer models are closely
related with tilings of the Euclidean plane. A tiling (or tessellation) is a covering
of the Euclidean plane using one or more polygons without overlaps and gaps. A
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regular tiling is a tiling that is made up of congruent regular polygons and edge-to-
edge. Here, edge-to-edge means any two polygons intersect precisely along a common
edge, or have precisely one common point which is a vertex of a polygon, or have no
common points. It is well-known that regular polygons giving regular tilings are only
equilateral triangles, squares, or regular hexagons (see e.g., [20]).

Definition 1.5.We say that a dimer model Γ is regular if the underlying cell decom-
position of the universal cover of Γ is homotopy equivalent to a regular tiling.

Since we can not realize a regular tiling consisting of equilateral triangles as a
dimer model, a dimer model is regular if and only if it is homotopy equivalent to
a square dimer model or a regular hexagonal dimer model. Thus, we next consider
nice properties on NCCRs that characterize square dimer models. In this paper, in
order to give a partial answer to Question 1.4, we will introduce the notion of semi-
steady NCCRs, which is weaker than the steadiness. We then study basic properties
of semi-steady NCCRs, and as a result we show that the semi-steadiness actually
characterizes NCCRs arising from square dimer models (see Theorem 1.8 below). We
also mention that we have several examples of semi-steady NCCRs even if a given
singularity is not toric. (see Examples 2.7 and 2.8).

1.2. Semi-steady non-commutative crepant resolutions. In this subsection,
we introduce the notion of semi-steady NCCRs. Let R be a Cohen–Macaulay normal
domain. Since non-singular R-orders are closed under Morita equivalence (see e.g., [30,
Lemma 2.13]), we assume that a moduleM =

⊕n
i=1Mi giving an NCCR is basic, that

is, Mi’s are mutually non-isomorphic. In addition, since we will discuss memberships
of additive closures, we assume that R is complete local by [30, Proposition 2.26]. In
particular, the Krull–Schmidt condition holds in our situation.

We now recall that if M =
⊕n

i=0Mi is a steady module, then it implies
ei EndR(M) ∼= HomR(Mi,M) ∈ addRM for any i, where ei is the idempotent
corresponding to the summand Mi. On the other hand, the semi-steadiness allows
HomR(Mi,M) to be in addRM∗ as follows. Here, M∗ denotes the R-dual of M .

Definition 1.6. LetM =
⊕n

i=0Mi be the indecomposable decomposition of a reflexive
R-module M . We say that M =

⊕n
i=0Mi is semi-steady if M is a generator and

HomR(Mi,M) ∈ addRM or addRM∗ for all i = 0, . . . , n. In addition, we say that an
NCCR EndR(M) is a semi-steady NCCR if M is semi-steady.

We note that the condition “M is a generator” can be obtained from the condition
that HomR(Mi,M) ∈ addRM or addRM∗ for all i = 0, . . . , n in many cases (see
Lemma 2.1). Also, we may change the later condition to HomR(M,Mi) ∈ addRM or
addRM∗ for all i = 0, . . . , n when R is a normal domain (see Lemma 2.3). Further, we
can easily see that a steady module is a semi-steady module. In particular, the next
lemma follows from the definition and [27, Lemma 2.5(b)].

Lemma 1.7. Let M be a reflexive R-module. Then, M is steady if and only if M is
semi-steady and addRM = addRM∗ holds.

Considering semi-steady NCCRs, we can characterize square dimer models as fol-
lows. (For more details regarding terminologies, see Section 3.)

Theorem 1.8 (see Theorem 4.2 for more precise version). Let Γ be a consistent dimer
model. Suppose that R is the 3-dimensional complete local Gorenstein toric singularity
associated with Γ. Then, the following conditions are equivalent.

(1) Γ is homotopy equivalent to a square dimer model (i.e., each face of the dimer
model is a square).
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(2) Γ is isoradial and gives a semi-steady NCCR of R that is not steady.
When this is the case, we also see that the toric singularity R corresponding to such
a dimer model is the one associated with a parallelogram.

Thus, we immediately have the following corollary by combining Theorems 1.3
and 1.8.

Corollary 1.9 (see Corollary 4.5).With the notation as above, the following condi-
tions are equivalent.

(1) The dimer model Γ is isoradial and gives a semi-steady NCCR of R.
(2) The dimer model Γ is homotopy equivalent to a regular dimer model.

The content of this paper is the following. First, we observe some basic properties of
semi-steady modules in Section 2. The remarkable thing is that a singularity admitting
a semi-steady NCCR has the typical class group (see Theorem 2.6). Since the main
purpose of this paper is to investigate NCCRs arising from dimer models, we review
some basic results regarding toric singularities and dimer models in Section 3. In
particular, we explain that how to construct splitting NCCRs using consistent dimer
models. After that, we prove Theorem 1.8 in Section 4. In Section 5, we give several
examples of semi-steady NCCRs arising from regular dimer models.

Notations and Conventions. Throughout this paper, we will assume that k is
an algebraically closed field of characteristic zero, and a commutative noetherian ring
R is complete local, thus the Krull–Schmidt condition holds (see the beginning of
Subsection 1.2).

In this paper, all modules are left modules, and we denote by modR the cate-
gory of finitely generated R-modules, by addRM the full subcategory consisting of
direct summands of finite direct sums of copies of M ∈ modR. We suppose that
M =

⊕n
i=0Mi always denotes the indecomposable decomposition of an R-module

M . When we consider a composition of morphism, fg means we firstly apply f then
g. With this convention, HomR(M,X) is an EndR(M)-module and HomR(X,M) is an
EndR(M)op-module. Similarly, when we consider a quiver, a path ab means a then b.

In addition, we denote by Cl(R) the class group of R. When we consider a divisorial
ideal (rank one reflexive R-module) I as an element of Cl(R), we denote it by [I].

2. Basic properties of semi-steady NCCRs
In this section, we present some basic properties of semi-steady modules.

We start this section with preparing some notions used in this paper. We denote the
R-dual functor by (−)∗ := HomR(−, R) : modR→ modR. We say that M ∈ modR is
reflexive if the natural morphism M → M∗∗ is an isomorphism. We denote by refR
the category of reflexive R-modules. For M ∈ modR, we define the depth of M as

depthRM := inf{i > 0 | ExtiR(R/m,M) 6= 0},

where m is the maximal ideal of R. We say that M is a maximal Cohen–Macaulay (=
MCM ) R-module if depthRM = dimR or M = 0. Furthermore, we say that R is a
Cohen–Macaulay ring (= CM ring) if R is an MCM R-module. We denote by CMR
the category of MCM R-modules.

Before moving to basic properties of semi-steady modules, we note some comments
concerning the definition of semi-steady modules.
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Lemma 2.1. Let R be a normal domain. Suppose that M =
⊕n

i=0Mi ∈ refR satis-
fies HomR(Mi,M) ∈ addRM or HomR(Mi,M) ∈ addRM∗ for all i. Then, M is a
generator if one of the following conditions is satisfied.

• R contains a field of characteristic zero,
• M has a rank one reflexive module as a direct summand.

In particular, if M is splitting, then M is a generator.

Proof. First, if R contains a field of characteristic zero, we have that R ∈
addR EndR(M) by [1, 5.6]. Thus, we have that R ∈ addR HomR(Mi,M) for
some i, and hence R ∈ addRM or addRM∗. If R ∈ addRM∗, then we have
that R = R∗ ∈ addRM∗∗ = addRM .

Next, we suppose that I is a rank one reflexive R-module such that I ∈ addRM .
Then, we have that R ∼= HomR(I, I) ∈ addRM or addRM∗. �

The following lemma is basic, and useful to investigate semi-steady modules.

Lemma 2.2. Let R be a normal domain. For any M,N ∈ refR, we have that

HomR(M,N)∗ ∼= HomR(N,M).

Proof. Consider a natural morphism ϕ : M∗ ⊗R N → HomR(M,N) (ϕ(f ⊗ y)(x) =
f(x)y for any x ∈M,y ∈ N), and this induces

ϕ∗ : HomR(M,N)∗ → (M∗ ⊗R N)∗ ∼= HomR(N,M∗∗) ∼= HomR(N,M).

We easily see that ϕ∗p is an isomorphism for any p ∈ SpecR with ht p = 1, and hence
ϕ∗ is also an isomorphism since both are reflexive (see e.g., [35, Lemma 5.11]). �

Next, we discuss the latter condition of the definition of semi-steady modules.

Lemma 2.3. Suppose that R is a normal domain. For a reflexive R-module M =⊕n
i=0Mi, we have that HomR(Mi,M) ∈ addRM or addRM∗ holds if and only if

HomR(M,Mi) ∈ addRM or addRM∗ holds.

Proof. If HomR(Mi,M) ∈ addRM (resp. addRM∗), then we have HomR(Mi,M)∗ ∈
addRM∗ (resp. addRM). By Lemma 2.2, we have HomR(Mi,M)∗ ∼= HomR(M,Mi) ∈
addRM∗ (resp. addRM). By the duality, the converse also holds. �

In what follows, we show basic properties of semi-steady modules (see also [27,
Lemma 2.5]). We remark that the converse of Lemma 2.4(1) is not true (see Exam-
ple 5.3).

Lemma 2.4. Suppose that R is a normal domain and M =
⊕n

i=0Mi ∈ refR is semi-
steady. Then, we have the following.

(1) We have that addR EndR(M) = addR(M ⊕M∗).
(2) M∗ is also a semi-steady R-module.

Proof.
(1) Since M is a generator, we have that M,M∗ ∈ addR EndR(M). In addition,

we have that EndR(M) ∈ addR(M ⊕M∗) by the definition of semi-steady
module.

(2) Clearly, M∗ is a generator. By Lemma 2.2, we have an isomorphism

HomR(M∗i ,M∗) ∼= HomR(M,Mi)∗∗ ∼= HomR(M,Mi) ∼= HomR(Mi,M)∗.

Therefore, HomR(M∗i ,M∗) ∈ addRM or addRM∗ for all i. �

Further, we discuss the number of direct summands in semi-steady modules.
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Lemma 2.5. Suppose that R is a normal domain and M =
⊕n

i=0Mi is a basic
semi-steady module that is not steady. We define the sets of subscripts I := {i |
HomR(Mi,M) ∈ addRM} and I∗ := {i | HomR(Mi,M) ∈ addRM∗}. Then, we have
the following.

(1) Let I (resp. I∗) be the number of elements in I (resp. I∗). Then, we have
that I = I∗.

(2) n+ 1 (= the number of direct summands in M) is an even number.

Proof.
(1) First, we have that M 6∼= M∗, because M is not steady (see Lemma 1.7).

Thus, there exists a direct summand Ms ∈ addRM such that Ms 6∈ addRM∗,
and hence we have that M∗s ∈ addRM∗ and M∗s 6∈ addRM . In the description

EndR(M) ∼=


HomR(M0,M0) HomR(M0,M1) · · · HomR(M0,Mn)
HomR(M1,M0) HomR(M1,M1) · · · HomR(M1,Mn)

...
...

. . .
...

HomR(Mn,M0) HomR(Mn,M1) . . . HomR(Mn,Mn)

 ,

the number of rows in which Ms (resp. M∗s ) appears is I (resp. I∗). By
Lemma 2.2, the number of columns in which Ms (resp. M∗s ) appears is I∗
(resp. I). Since M is basic, we have that I = I∗.

(2) Since n+ 1 = I + I∗, this follows from (1). �

We remark that if an R-moduleM satisfying the assumption in Lemma 2.5 is split-
ting, then the definition of I and I∗ can be replaced by I := {i | HomR(Mi,M) ∼= M}
and I∗ := {i | HomR(Mi,M) ∼= M∗} because M is basic and rankR HomR(Mi,M) =
rankRM for all i.

Next, we consider the class group Cl(R). We know that by [27, Proposition 2.8]
the class group of a CM normal domain having a steady splitting NCCR is a finite
abelian group. Thus, we consider a CM normal domain having a semi-steady splitting
NCCR that is not steady.

Theorem 2.6. Let R be a CM normal domain and assume that every rank one reflex-
ive R-module, whose class in Cl(R) is a torsion element, is an MCM R-module (e.g.,
R is a toric singularity). Suppose that M =

⊕n
i=0Mi is a basic R-module giving a

semi-steady splitting NCCR that is not steady. Then, Cl(R) ∼= Z× A where A is the
torsion subgroup and the order of A is equal to n+1

2 . In particular, Cl(R) contains a
torsion element if and only if n 6= 1.

Proof. Let M0 = R. We define the set
M := {[M0], [M1], . . . , [Mn]}.

We know that Cl(R) is generated by [M0], . . . , [Mn] (see [27, Proposition 2.8(a)]).
First, we assume that Cl(R) is a finite group. For any rank one reflexive module N ,

we consider EndR(M ⊕N). Since Cl(R) is finite, [EndR(M ⊕N)] is a torsion element
in Cl(R), thus EndR(M ⊕ N) ∈ CMR by the assumption. By [30, Proposition 4.5],
this implies N ∈ addRM , hence we have that Cl(R) = M. Thus, we see that M is
steady by [27, Theorem 3.1], and hence we conclude Cl(R) is not a finite group.

Next we show that the rank of the free part of Cl(R) is one. Let I, I∗ be
the sets as in Lemma 2.5. If Cl(R) contains Z2, then we can take two elements
in M generating Z2. Let [M1], [M2] be such generators. Note that these are
not torsion. Since M is semi-steady, we have that HomR(M1,M) ∼= M or M∗.
If 1 ∈ I holds (i.e., HomR(M1,M) ∼= M), then −[M1] ∈ M. Further, since
M ∼= HomR(M1,M) ∼= HomR(M1,HomR(M1,M)), we also have that −2[M1] ∈ M.
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By repeating this argument, we have that −t[M1] ∈ M for any integer t > 1.
Since the number of elements in M is finite and [M1] is torsion-free, this is a
contradiction, thus we have that 1 ∈ I∗. Similarly, we also have that 2 ∈ I∗.
Therefore, we have that HomR(M1,M2),HomR(M2,M1) ∈ addRM∗, and this also
implies HomR(M1,M2),HomR(M2,M1) ∈ addRM . By this observation, we may
write [M2]− [M1] = [Ms] for some s ∈ [0, n]. If s ∈ I, then we have that

[HomR(Ms,HomR(M2,M1))] = [HomR(M2,M1)]− [Ms] = 2[M1]− 2[M2] ∈M.

If s ∈ I∗, then we have that
[HomR(HomR(M2,M1),Ms)] = [Ms]− [HomR(M2,M1)] = 2[M2]− 2[M1] ∈M.

In any case, we have that t[M1]− t[M2] ∈M for any non-zero integer t by repeating
the above argument. Since [M1], [M2] are torsion-free and generators of Z2, this con-
tradicts the finiteness of M. Therefore, we conclude Cl(R) ∼= Z × A where A is the
torsion subgroup.

Finally, we show that the order of A is equal to I = n+1
2 . (Recall that I is the

number of elements in I, and it is the same as that of elements in I∗.) Let [M1] be a
torsion-free element generating the free part of Cl(R). Clearly, 0 ∈ I holds. Further,
we see that 1 ∈ I∗ by the same argument as above. Next, for a subscript i ∈ I, we
may write HomR(Mi,Mj) ∼= Mk for some j, k ∈ [0, n]. In this situation, we have the
following claim:
(1) If j ∈ I∗, then we have that k ∈ I∗.

This follows from an isomorphism
HomR(Mk,M) ∼= HomR(HomR(Mi,Mj),M)

∼= HomR(HomR(Mi,Mj),HomR(Mi,M)) ∼= HomR(Mj ,M) ∼= M∗.

Since 1 ∈ I∗, we especially have that
(2) [M1]− [Mi] = [Mk],
for some i ∈ I, k ∈ I∗, and easy to see that this equation induces a bijection between
I and I∗. (Note that 0 ∈ I corresponds to 1 ∈ I∗.) Thus, the torsion subgroup A is
generated by [Mi]’s with i ∈ I.

Let N be a rank one reflexive module, whose class is [N ] =
∑
i∈I ti[Mi]. Since

[Mi]’s are torsion elements, we may assume ti ∈ Z>0. For i ∈ I, we see that M ∼=
HomR(Mi,M) ∼= HomR(Mi,HomR(Mi,M)), and hence we may write [M1]−2[Mi] =
[M`] for some ` ∈ [0, n]. Furthermore, we have that ` ∈ I∗ using the claim (1). By
repeating this argument, we have that [M1] − [N ] = [Mm] with m ∈ I∗. A bijection
induced by (2) asserts that there exists i′ ∈ I such that [N ] = [Mi′ ]. Therefore, we
have that A = {[Mi] | i ∈ I}, especially |A| = I. �

We give some examples of semi-steady NCCRs below. In particular, semi-steady
NCCRs are well understood for the two dimensional case (see Proposition 2.9).

Example 2.7. Consider the 3-dimensional simple singularity R = k[[x, y, u, v]]/(x2 +
y2n + u2 + v2) of type A2n−1. It is well known that R is of finite CM representation
type (see e.g., [44, Chapter 12]), and the finitely many MCM R-modules are R, two
modules I, I∗ with rank one, and (n−1) modules N1, . . . , Nn−1 with rank two. Then,
modules giving NCCRs of R are only R⊕ I and R⊕ I∗ (see [12, Proposition 2.4], [14,
Example 3.6]). We easily see that they are semi-steady, but not steady.

Example 2.8.We consider a complete local cAn-singularity R = k[[x, y, u, v]]/(f−uv)
where f ∈ m = (x, y). Let f = f1 . . . fn be a decomposition of f into prime elements in
k[[x, y]]. (Note that some elements fi might be the same element.) We consider a subset

Algebraic Combinatorics, Vol. 2 #2 (2019) 179



Y. Nakajima

I ⊂ {1, . . . , n}, and set fI =
∏
i∈I fi. Further, we define the ideal TI := (u, fI) ⊂ R.

For each ω ∈ Sn, we consider the maximal flag which is a sequence of subsets:

Iω1 = {ω(1)} ⊂ Iω2 = {ω(1), ω(2)} ⊂ · · · ⊂ Iωn−1 = {ω(1), ω(2), . . . , ω(n− 1)}.

If fi 6∈ m2 for all i, then modules giving NCCRs of R are precisely

Tω := R⊕
n−1⊕
j=1

TIω
j

where ω ∈ Sn (see [31, Theorem 5.1]) and clearly all NCCRs are splitting.
Furthermore, by using results in [31, Section 5], we can show the following:
(1) R has a steady NCCR if and only if f = fn1 . In this case, maximal flags are

only
{1} ⊂ {1, 1} ⊂ · · · ⊂ {1, 1, . . . , 1︸ ︷︷ ︸

n−1

},

and this gives a unique steady splitting NCCR. Further, R is isomorphic
to the invariant subring under the action of the cyclic group generated by
diag(1, ζn, ζ−1

n ) where ζn is a primitive n-th root of unity, and it is the poly-
nomial extension of a 2-dimensional An−1-singularity.

(2) R has a semi-steady NCCR that is not steady if and only if f = fa1 f
a
2 where

n = 2a. In this case, the following two maximal flags give semi-steady NCCRs
that are not steady.

{1} ⊂ {1, 2} ⊂ {1, 1, 2} ⊂ {1, 1, 2, 2} ⊂ · · · ⊂ {1, 1, . . . , 1︸ ︷︷ ︸
a

, 2, 2, . . . , 2︸ ︷︷ ︸
a−1

},

{2} ⊂ {1, 2} ⊂ {1, 2, 2} ⊂ {1, 1, 2, 2} ⊂ · · · ⊂ {1, 1, . . . , 1︸ ︷︷ ︸
a−1

, 2, 2, . . . , 2︸ ︷︷ ︸
a

}.

Proposition 2.9. Let R be a 2-dimensional complete local normal domain containing
an algebraically closed field of characteristic zero. Then, the following conditions are
equivalent.

(1) R is a quotient singularity associated with a finite group G ⊂ GL(2, k) (i.e.,
R = SG where S = k[[x1, x2]]).

(2) R has a steady NCCR.
(3) R has a semi-steady NCCR.
(4) R has an NCCR.
(5) R is of finite CM representation type, that is, R has only finitely many non-

isomorphic indecomposable MCM R-modules.
When this is the case, modules giving NCCRs of R are additive generators of CMR.

Proof. (2) ⇒ (3) ⇒ (4) is clear. Therefore the assertion follows from [27, Proposi-
tion 4.2]. �

3. NCCRs arising from dimer models
In this section, we present several results concerning dimer models. In particular, we
will show that a splitting NCCR of a 3-dimensional Gorenstein toric singularity is
obtained from a consistent dimer model. For more results regarding dimer models, we
refer to [5] and references quoted in this section.
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3.1. Preliminaries on toric singularities. We start this subsection with recall-
ing some basic facts concerning toric singularities. For more details, see e.g., [10, 13].

Let N ∼= Zd be a lattice, and M := HomZ(N,Z) be the dual lattice of N. Let
NR := N⊗ZR and MR := M⊗ZR. We denote an inner product by 〈 , 〉 : MR×NR → R.
In addition, let

σ := Cone(v1, . . . , vn) = R>0v1 + · · ·+ R>0vn ⊂ NR

be a strongly convex rational polyhedral cone generated by v1, . . . , vn ∈ Zd where
n > d. Suppose that this system of generators is minimal. For each generator, we
define the linear form λi(−) := 〈−, vi〉, and denote λ(−) := (λ1(−), . . . , λn(−)). We
consider the dual cone σ∨:

σ∨ := {x ∈ MR | 〈x, y〉 > 0 for all y ∈ σ}.
Then, we consider the m-adic completion of a toric singularity

R := k[[σ∨ ∩M]] = k[[ta1
1 . . . tad

d | (a1, . . . , ad) ∈ σ∨ ∩M]],
where m is the irrelevant maximal ideal. In our setting, R is a d-dimensional CM
normal domain, and it is known that R is Gorenstein if and only if there exists
x ∈ σ∨ ∩ Zd such that λi(x) = 1 for all i = 1, . . . , n (see e.g., [10, Theorem 6.33]).

For each u = (u1, . . . , un) ∈ Rn, we define

T(u) := {x ∈ M ∼= Zd | (λ1(x), . . . , λn(x)) > (u1, . . . , un)}.
Then, we define the divisorial ideal T (u) generated by all monomials whose exponent
vector is in T(u). Clearly, we have that T (u) = T (puq) where puq = (pu1q, . . . , punq),
thus we will assume u ∈ Zn in the rest of this paper. In general, a divisorial ideal
of R takes this form. In addition, for u,u′ ∈ Zn, T (u) ∼= T (u′) as an R-module if
and only if there exists y ∈ M such that ui = u′i + λi(y) for all i = 1, . . . , n (see [10,
Corollary 4.56]). Thus, we have the exact sequence:

0→ Zd λ(−)−−−→ Zn → Cl(R)→ 0,
we especially have the following.

Lemma 3.1. The class group Cl(R) is isomorphic to Zn/λ(Zd). In particular, the rank
of the free part of Cl(R) is n− d.

In this paper, we will investigate 3-dimensional Gorensitein toric singularities, thus
we can take the hyperplane z = 1 so that generators v1, . . . , vn lie on this (i.e., the third
coordinate of vi is 1). Hence, we have the lattice polygon ∆ ⊂ R2 on this hyperplane.
Conversely, for a given lattice polygon ∆ in R2, we define the cone σ∆ ⊂ R3 whose
section on the hyperplane z = 1 is ∆. Then, the toric singularity R = k[[σ∨∆ ∩ Z3]]
associated with such a cone is Gorenstein in dimension three. In the rest of this paper,
we call R obtained by the above manner the toric singularity associated with ∆, and
call ∆ the toric diagram of R. We note that unimodular transformations of ∆ in R2

do not change the associated toric singularity up to isomorphism, thus we will discuss
toric diagrams up to unimodular transformations.

3.2. Dimer models and quivers with potentials. A dimer model (or brane
tiling) is a polygonal cell decomposition of the real two-torus T := R2/Z2, whose
nodes and edges form a finite bipartite graph. Therefore, we color each node either
black or white, and each edge connects a black node to a white node. For a dimer
model Γ, we denote the set of nodes (resp. edges, faces) of Γ by Γ0 (resp. Γ1, Γ2).
We also obtain the bipartite graph Γ̃ on R2 induced via the universal cover R2 → T,
hence we call Γ̃ the universal cover of a dimer model Γ. For example, the left hand
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side of Figure 1 is a dimer model where the outer frame is the fundamental domain
of the torus T, and this is a regular dimer model.

As the dual of a dimer model Γ, we define the quiver QΓ associated with Γ. Namely,
we assign a vertex dual to each face in Γ2, an arrow dual to each edge in Γ1. The
orientation of arrows is determined so that the white node is on the right of the
arrow. For example, the right hand side of Figure 1 is the quiver obtained from the
dimer model on the left. (Note that common numbers are identified in this figure.)
Sometimes we simply denote the quiver QΓ by Q. We denote the set of vertices by Q0
and the set of arrows by Q1. We consider the set of oriented faces QF as the dual of
nodes on a dimer model Γ. The orientation of faces is determined by its boundary, that
is, faces dual to white (resp. black) nodes are oriented clockwise (resp. anti-clockwise).
Therefore, we decompose the set of faces as QF = Q+

F tQ
−
F where Q+

F , Q
−
F denote the

set of faces oriented clockwise and that of faces oriented anti-clockwise respectively.

01 1

2

2

2

2

3

3

Figure 1. Dimer model and the associated quiver

We define the maps h, t : Q1 → Q0 sending an arrow a ∈ Q1 to the head of a and
the tail of a respectively. A nontrivial path is a finite sequence of arrows a = a1 . . . ar
with h(a`) = t(a`+1) for ` = 1, . . . , r − 1. We define the length of path a = a1 . . . ar
as r (> 1), and denote by Qr the set of paths of length r. We consider each vertex
i ∈ Q0 as a trivial path ei of length 0 where h(ei) = t(ei) = i. We extend the maps
h, t to the maps on paths, that is, t(a) = t(a1), h(a) = h(ar) for a path a = a1 . . . ar.
We say that a path a is a cycle if h(a) = t(a). In addition, we denote the opposite
quiver of Q by Qop. That is, Qop is obtained from Q by reversing all arrows. Hence,
we obtain the opposite quiver associated with the original dimer model by replacing
white nodes by black nodes and vice versa.

For a quiver Q, the complete path algebra is defined as

k̂Q :=
∏
r>0

kQr

where kQr is the vector space with a basisQr. The multiplication is defined as a·b = ab
(resp. a · b = 0) if h(a) = t(b) (resp. h(a) 6= t(b)) for paths a, b. We extend this
multiplication linearly. Further, we set mQ :=

∏
r>1 kQr. For a subset U ⊆ k̂Q, we

define the mQ-adic closure of U as U :=
⋂
n>0(U + mnQ).

Next, we define a potential. We denote by [kQ, kQ] the k-vector space generated
by all commutators in kQ and set the vector space kQcyc := kQ/[kQ, kQ], thus kQcyc
has a basis consisting of cycles in Q. We denote by (kQcyc)r the subspace of kQcyc
spanned by cycles of length at least r. We call an element W ∈ (kQcyc)2 a potential,
and call a pair (Q,W ) a quiver with potential (= QP).

For each face f ∈ QF , we associate the small cycle ωf ∈ (kQcyc)2 obtained as
the product of arrows around the boundary of f . For the quiver Q associated with a
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dimer model, we define the potential WQ as

WQ :=
∑
f∈Q+

F

ωf −
∑
f∈Q−

F

ωf .

For each face f ∈ QF , we choose an arrow a ∈ ωf and consider h(a) as the
starting point of the small cycle ωf . Then, we may write eh(a)ωfeh(a) := a1 . . . ara
with some path a1 . . . ar. We define the partial derivative of ωf with respect to a by
∂ωf/∂a := a1 . . . ar. We note that ∂ωf/∂a = 0 if ωf does not contain the arrow a.
Extending this derivative linearly, we also define ∂WQ/∂a for any a ∈ Q1. Then, we
consider the closure of the two-sided ideal J(WQ) := 〈∂WQ/∂a | a ∈ Q1〉. We define
the complete Jacobian algebra of a dimer model as

P(Q,WQ) := k̂Q/J(WQ).
We say that a node of a dimer model is bivalent if the number of edges incident to

that node is two. In the rest, we assume that our dimer model has no bivalent nodes.
If there are bivalent nodes, we remove them as shown in [24, Figure 5.1], because this
operation does not change the Jacobian algebra up to isomorphism.

3.3. Consistency condition and NCCRs. In this subsection, we impose the extra
condition so-called “consistency condition” on dimer models. Under this assumption,
a dimer model gives an NCCR of a 3-dimensional Gorenstein toric singularity (see
Theorem 3.9).

We need the notion of zigzag paths to introduce the consistency condition.

Definition 3.2.We say that a path on a dimer model Γ is a zigzag path if it makes
a maximum turn to the right on a white node and a maximum turn to the left on a
black node.

We also consider the lift of a zigzag path to the universal cover Γ̃. (Note that a
zigzag path on the universal cover is either periodic or infinite in both directions.) For
example, zigzag paths of the dimer model given in Figure 1 are shown in Figure 2.
By using this notion, we introduce the consistency condition. In the literature, there
are several conditions that are equivalent to the following definition (see [2, 24]).

Definition 3.3 (see [24, Definition 3.5]).We say that a dimer model is consistent if
(1) there is no homologically trivial zigzag path,
(2) no zigzag path on the universal cover has a self-intersection,
(3) no pair of zigzag paths on the universal cover intersect each other in the same

direction more than once. That is, if a pair of zigzag paths (z, w) on the
universal cover has two intersections a1, a2 and z points from a1 to a2, then
w point from a2 to a1.

Here, we remark that two zigzag paths are said to intersect if they share an edge (not
a node).

We also introduce isoradial dimer models which are stronger than consistent ones.

Definition 3.4 ([33, Theorem 5.1], see also [19, 36]).We say that a dimer model Γ
is isoradial (or geometrically consistent) if

(1) every zigzag path is a simple closed curve,
(2) any pair of zigzag paths on the universal cover share at most one edge.

By Figure 2 below, we see that the dimer model given in Figure 1 is isoradial, thus
it is consistent in particular. In general, we can easily see that regular dimer models
are isoradial.

Algebraic Combinatorics, Vol. 2 #2 (2019) 183



Y. Nakajima

Figure 2. Examples of zigzag paths

Next, we introduce the notion of perfect matchings. In general, every dimer model
does not necessarily have a perfect matching. If a dimer model is consistent, then it
has a perfect matching and every edge is contained in some perfect matchings (see
e.g., [25, Proposition 8.1]).

Definition 3.5.A perfect matching (or dimer configuration) on a dimer model Γ is
a subset P of Γ1 such that each node is the end point of precisely one edge in P. A
perfect matching on Γ̃ is also defined naturally via the universal cover R2 → T.

For each edge contained in a perfect matching on Γ, we give the orientation from a
white node to a black node. We fix a perfect matching P0. For any perfect matching P,
the difference of two perfect matchings P−P0 forms a 1-cycle, and hence we consider
such a 1-cycle as an element in the homology group H1(T) ∼= Z2. Then, we obtain
finitely many elements in Z2 corresponding to perfect matchings on Γ, and define the
lattice polygon ∆ as the convex hull of them. We call ∆ the perfect matching polygon
(or characteristic polygon) of Γ. Although this lattice polygon depends on a choice of
a fixed perfect matching, it is determined up to translations. We say that a perfect
matching P is extremal if the lattice point corresponding to the 1-cycle P − P0 lies
at a vertex of ∆. If a dimer model is consistent, then there exists a unique extremal
perfect matching corresponding to a vertex of ∆ (see e.g., [9, Corollary 4.27], [25,
Proposition 9.2]). Thus, we can give a cyclic order to extremal perfect matchings
along the corresponding vertices of ∆ in the anti-clockwise direction. In addition,
we say that two extremal perfect matchings are adjacent if they are adjacent with
respect to a given cyclic order. For example, P1, . . . ,P4 shown in Figure 3 are extremal
perfect matchings on the dimer model given in Figure 1 corresponding to vertices
(1, 0), (0, 1), (−1, 0), (0,−1) respectively, where P0 is a fixed perfect matching.

P0 P1 P2 P3 P4

Figure 3. Extremal perfect matchings

Then, we discuss a relationship between the perfect matching polygon and zigzag
paths. Since we can consider a zigzag path z as a 1-cycle on T, it determines the
homology class [z] ∈ H1(T) ∼= Z2. We call this element [z] ∈ Z2 the slope of z. If a
dimer model is consistent, a zigzag path does not have a self-intersection, and hence
the slope of each zigzag path is a primitive element. Then, we have the following
correspondence.
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Proposition 3.6 (see e.g., [25, Section 9], [4, Corollary 2.9]). There exists a one to one
correspondence between the set of slopes of zigzag paths on a consistent dimer model
and the set of primitive side segments of the perfect matching polygon. Precisely, let
v, v′ ∈ Z2 be end points of a primitive side segment, then there exists a zigzag path
whose slope coincides with v − v′.

Moreover, zigzag paths having the same slope arise as the difference of two extremal
perfect matchings that are adjacent.

Furthermore, by this correspondence, we can also give a cyclic order to the set of
slopes of zigzag paths. Thus, we say that a pair of zigzag paths have adjacent slopes
if their slopes are adjacent with respect to a given cyclic order. This cyclic order
is essential in the definition of properly ordered dimer models written below. It is
known that a dimer model is properly ordered if and only if it is consistent (see [24,
Proposition 4.4]).

Definition 3.7 (see [21, Section 3.1]).We say that a dimer model is properly or-
dered if

(1) there is no homologically trivial zigzag path,
(2) no zigzag path on the universal cover has a self-intersection,
(3) no pair of zigzag paths with the same slope have a common node,
(4) for any node on the dimer model, the natural cyclic order on the set of zigzag

paths touching that node coincides with the cyclic order determined by their
slopes.

We can also characterize isoradial dimer models in terms of slopes of zigzag paths.

Proposition 3.8 (see [9, Propostion 3.12]).A dimer model is isoradial if and only if
the following conditions hold.

(1) No zigzag path on the universal cover has a self-intersection,
(2) Let z and z′ be zigzag paths on the universal cover. If [z], [z′] ∈ H1(T) are

linearly independent, then they intersect in precisely one arrow.
(3) Let z and z′ be zigzag paths on the universal cover. If [z], [z′] ∈ H1(T) are

linearly dependent, then they do not intersect.

In the rest of this subsection, we present a construction of modules giving NCCRs
of 3-dimensional Gorenstein toric singularities.

By the dual point of view, we consider a perfect matching as a function on Q1.
Namely, for each arrow a ∈ Q1 and each perfect matching P, we define the perfect
matching function:

(3) P(a) =
{

1 if the edge corresponding to a is in P
0 otherwise.

When we consider the oppositely directed arrow a∗ ∈ Qop for a ∈ Q1, we define
P(a∗) = −P(a).

Let Γ be a consistent dimer model, whose perfect matching polygon is ∆. We
consider the 3-dimensional Gorenstein toric singularity R associated with ∆. That
is, the toric diagram of R is the perfect matching polygon ∆. Let P1, . . . ,Pn be the
extremal perfect matchings on Γ ordered cyclically. For i, j ∈ Q0, let aij be a path
from i to j (i.e., h(aij) = j and t(aij) = i). We define the divisorial ideal of R
associated with aij as

Taij
:= T (P1(aij), . . . ,Pn(aij)).

This ideal depends on only the starting point i and the ending point j, whereas a path
is not unique. Namely, let aij , bij be paths from i to j, then we have that Taij

∼= Tbij
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(see e.g., [37, Lemma 3.7]). Thus, we simply denote it by Tij . Using this divisorial
ideal, we obtain an NCCR of R as follows.

Theorem 3.9 (see e.g., [3, 9, 25]). Suppose that (Q,WQ) is the QP associated with a
consistent dimer model Γ and P(Q,WQ) is the complete Jacobian algebra. Let R :=
Z(P(Q,WQ)) be the center of P(Q,WQ). Then, R is a 3-dimensional complete local
Gorenstein toric singularity, whose toric diagram coincides with the perfect matching
polygon of Γ. Furthermore, we have that

P(Q,WQ) ∼= EndR

( ⊕
j∈Q0

Tij

)
,

for each vertex i ∈ Q0 and this is a splitting NCCR of R.

Remark 3.10.Here, we give a few more remarks on Theorem 3.9:
(1) Since T i :=

⊕
j∈Q0

Tij contains R ∼= Tii as a direct summand for any fixed
vertex i ∈ Q0, we have that Tij ∈ CMR for any i, j ∈ Q0. Furthermore, we
see that T i is basic (i.e., Tij ’s are mutually non-isomorphic).

(2) An isomorphism in Theorem 3.9 can be established by sending each arrow
j → k in Q to an irreducible morphism Tij → Tik in EndR(T i). Here, we say
that a morphism Tij → Tik is irreducible in EndR(T i) if it does not factor
through Ti` with ` 6= j, k. Evidently, irreducible morphisms from Tij to Tik
generate HomR(Tij , Tik) as an R-module.

(3) Let ei be the idempotent corresponding to i ∈ Q0. Then,

T i ∼= HomR

(
Tii,

⊕
j∈Q0

Tij

)
∼= eiP(Q,WQ).

Furthermore, since T ∗ij ∼= Tji, we have that

P(Q,WQ) ∼= EndR(T i) ∼= EndR((T i)∗) ∼= P(Qop,WQop).

In this manner, we obtain a 3-dimensional complete local Gorenstein toric sin-
gularity R and its splitting NCCR from a consistent dimer model. On the other
hand, for every 3-dimensional Gorenstein toric singularity R associated with ∆, there
exists a consistent dimer model whose perfect matching polygon coincides with ∆
(see [21, 25]). Thus, by combining these results, we have the following corollary. We
remark that a consistent dimer model giving an NCCR of R is not unique in general.

Corollary 3.11. Every 3-dimensional Gorenstein toric singularity admits a splitting
NCCR which is constructed from a consistent dimer model.

4. Semi-steady NCCRs arising from dimer models
In the previous section, we saw that every 3-dimensional complete local Gorenstein
toric singularity admits NCCRs. In this section, we study splitting NCCRs arising
from consistent dimer models that are semi-steady, and discuss a relationship with
regular dimer models.

First, we note a basic property of semi-steady NCCRs arising from consistent dimer
models.

Lemma 4.1. Let R be a 3-dimensional complete local Gorenstein toric singularity.
If a consistent dimer model Γ gives a semi-steady NCCR of R, then there exists a
generator M such that EndR(M) ∼= P(QΓ,WQΓ) and eiP(QΓ,WQΓ) ∼= M or M∗ for
any i ∈ Q0. In particular, for all i ∈ Q0, eiP(QΓ,WQΓ) gives a semi-steady NCCR
of R.
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Proof. By Theorem 3.9, we have a basic splitting generator M such that
P(QΓ,WQΓ) ∼= EndR(M), and there exists a one-to-one correspondence between
direct summands in M and vertices in QΓ. Thus, we may write M =

⊕
i∈(QΓ)0

Mi.
Then, for each idempotent ei corresponding to a vertex i ∈ (QΓ)0, we have that
eiP(QΓ,WQΓ) ∼= HomR(Mi,M). By the definition of semi-steady module, we have
that HomR(Mi,M) ∈ addRM or addRM∗ for any i. Since M is basic, we have the
assertion by the maximality of modules giving NCCRs (see [30, Proposition 4.5]).
The last assertion follows from Lemma 2.4(2). �

Now, we state the main theorem in this paper.

Theorem 4.2. Let R be a 3-dimensional complete local Gorenstein toric singularity,
Γ1, . . . ,Γn be consistent dimer models associated with R. Then, the following condi-
tions are equivalent.

(1) R is a toric singularity associated with a parallelogram (i.e., the toric diagram
of R is a parallelogram).

(2) There exists a consistent dimer model Γi that is homotopy equivalent to a
square dimer model.

(3) There exists an isoradial dimer model Γi giving a semi-steady NCCR of R
that is not steady.

When this is the case, an isoradial dimer model Γ gives a semi-steady NCCR of R
that is not steady if and only if Γ is homotopy equivalent to a square dimer model.

Remark 4.3. Even if R is a toric singularity associated with a parallelogram, there
exists a consistent dimer model that does not give a semi-steady NCCR of R (see
Example 5.2). On the other hand, a consistent dimer model associated with a quotient
singularity by a finite abelian group is unique (up to homotopy equivalence), and it is
homotopy equivalent to a regular hexagonal dimer model, and gives a steady NCCR
(see Theorem 1.3).

Proof of Theorem 4.2. To show (1) ⇒ (2), we construct a consistent dimer model
whose perfect matching polygon coincides with the toric diagram of R. There are
several methods for constructing it (see e.g., [21, 25]). To achieve our purpose, the
operation in [22] is effective. In what follows, we will construct a consistent dimer
model giving the parallelogram shown in Figure 4 by using such an operation. (We
can easily generalize this method for other parallelograms.)

0

Figure 4.

0

Figure 5.

Hanany–Vegh algorithm for a parallelogram [22].
(1) Consider primitive vectors orthogonal to each primitive side segments of the

given polygon (see Figure 5).
(2) Consider curves on the two-torus T whose homology classes coincide with the

above vectors, and write such curves on T according to the following rules:
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(a) They induce a cell decomposition of T.
(b) Each curve intersects with other curves transversely and has a finite

number of intersections.
(c) No three curves intersect in the same point.
(d) Tracing along each curve, we see that its intersections with other curves

occur with alternating orientations. (For example, it is crossed from right
to left and then left to right.)

We call a resulting figure an admissible position (see Figure 6).
(3) After these processes, we have three kinds of quadrangles that are oriented

clockwise, anti-clockwise and alternately:

(4) Draw white (resp. black) nodes in quadrangles oriented clockwise (resp. anti-
clockwise).

(5) Connect white nodes to black ones facing each other across intersections of
curves.

(6) Then, we obtain a square dimer model shown in Figure 7. We can check that
this is isoradial, thus consistent in particular.

Figure 6. Figure 7.

Note that curves in an admissible position correspond to zigzag paths of the result-
ing consistent dimer model with the opposite direction. Thus, the correspondence in
Proposition 3.6 asserts that the given parallelogram coincides with the perfect match-
ing polygon by rotating 90 degrees in the positive direction. Thus, we have the same
lattice polygon up to unimodular transformations.

Using the same argument, we can obtain a dimer model that is homotopy equivalent
to a square dimer model for an arbitrary parallelogram.

Next, we show (2) ⇒ (3). Let Γ be a dimer model associated with a given toric
singularity R, and suppose that Γ is homotopy equivalent to a square dimer model.
Thus, the universal cover of Γ takes the form shown in Figure 8, and Figure 9 is the list
of zigzag paths on the universal cover. (They continue infinitely in both directions.)
Since these zigzag paths determine four distinct slopes, the toric diagram of R is a
quadrangle by Proposition 3.6. In addition, by observing these zigzag paths, we see
that Γ is isoradial.

Let (Q,WQ) be the QP (Q,WQ) associated with Γ. By Theorem 3.9, an MCM
R-module

eiP(Q,WQ) ∼= HomR

(
Tii,

⊕
j∈Q0

Tij

)
∼=
⊕
j∈Q0

Tij
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Figure 8. The universal cover of a square dimer model

Figure 9. Zigzag paths on a square dimer model

gives an NCCR of R for all i ∈ Q0. Since we know that the toric diagram ∆ of R
is a quadrangle, let u1, . . . , u4 ∈ Z2 be vertices of ∆, and we assume that these are
ordered cyclically along ∆. Since Γ is consistent, there exists a unique extremal per-
fect matching, corresponding to each vertex. We denote extremal perfect matchings
corresponding to u1, . . . , u4 by P1, . . . ,P4 respectively. Here, we recall that each mod-
ule Tij can be constructed from the perfect matching functions of extremal ones (see
Subsection 3.3). In our situation, extremal perfect matchings P1, . . . ,P4 are of the
form shown in Figure 10, because differences of adjacent extremal perfect matchings
induce zigzag paths.

Now, we fix a vertex k ∈ Q0, and let M := ekP(Q,WQ) ∼=
⊕

j∈Q0
Tkj . In the

following, we show HomR(Tki,M) ∼= M or M∗ for any i ∈ Q0, and this means M
is semi-steady. We divide faces of a dimer model into gray faces and white faces as
shown in Figure 11, then vertices of Q are also divided into two parts. We denote
by Qg

0 (resp. Qw
0 ) the subset of Q0 consisting of vertices corresponding to gray (resp.

white) faces. We assume that the fixed vertex k ∈ Q0 is in Qg
0, and fix a path akj

starting from k ∈ Qg
0 to j ∈ Q0 for all j. (Note that module Tkj does not depend
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P1 P2

P3 P4

Figure 10. Extremal perfect matchings of a square dimer model

Figure 11.

k

j

k′

j′

Figure 12.

on a choice of akj .) By the form of extremal perfect matchings, it is easy to see that
for any ` ∈ Qg

0 we can find a path starting from ` that evaluates to the same perfect
matching function as akj . Therefore, we have that M =

⊕
j∈Q0

Tkj ∼=
⊕

j∈Q0
T`j

for any ` ∈ Qg
0. In order to investigate a module

⊕
j∈Q0

T`j with ` ∈ Qw
0 , we again

consider the fixed vertex k ∈ Qg
0 and paths akj . Then, we shift the vertex k ∈ Qg

0
to the right adjacent vertex. The shifted vertex is in Qw

0 , and denote it by k′ ∈ Qw
0 .

In addition, we denote by bk′j′ the path shifted from akj for any j. (Figure 12 is an
example of paths akj and bk′j′ .) In particular, bk′j′ ’s are paths on Qop, hence we have
that

ek′P(Q,WQ) ∼= ek′P(Qop,WQop) ∼=
⊕

j′∈Qop
0

T (Pop
1 (bk′j′), . . . ,Pop

4 (bk′j′)),

where Pop
1 , . . . ,Pop

4 are extremal perfect matchings on Qop corresponding to vertices
u1, . . . , u4 of ∆. Thus, we have that⊕

j∈Q0

Tk′j ∼= ek′P(Q,WQ) ∼=
⊕
j∈Q0

T (P1(akj), . . . ,P4(akj))∗ ∼= M∗
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by Lemma 4.4 below. By the same argument used in the case of Qg
0, we have that

M∗ ∼=
⊕

j∈Q0
Tk′j ∼=

⊕
j∈Q0

T`j for any ` ∈ Qw
0 . Consequently, we see that M is

semi-steady. Furthermore, since Γ is not a regular hexagonal dimer model, this is not
steady by Theorem 1.3, and hence we have the desired conclusion.

Finally, we will show (3)⇒ (1). Let Γ be an isoradial dimer model giving a semi-
steady NCCR of R that is not steady. By combining Theorem 2.6 and Lemma 3.1, we
see that the toric diagram of R is a quadrangle. By the correspondence in Proposi-
tion 3.6, there are four slopes [z1], [z2], [z3], [z4] of zigzag paths corresponding to side
segments of the toric diagram of R, and we suppose that these are ordered cycli-
cally with this order. Let Zi be the set of zigzag paths having the same slope [zi]
for i = 1, 2, 3, 4. Here, we recall that zigzag paths having the same slope arise as the
difference of two extremal perfect matchings that are adjacent (see Proposition 3.6).
Thus, let P1,P2,P3,P4 be extremal perfect matchings, and suppose that zigzag paths
in Zi can be obtained as the difference Pi−Pi−1 where P0 := P4. Since Γ is isoradial,
it is properly ordered, and hence slopes of zigzag paths factoring through the same
node of Γ differ from each other. Therefore, the number of edges incident to the same
node is 3 or 4. (Note that Γ does not have bivalent nodes.)

We now assume that the toric diagram of R is not a parallelogram. Then, at
least one of pairs of slopes ([z1], [z3]), ([z2], [z4]) are linearly independent. We may
assume that [z1] and [z3] are linearly independent. Thus, by Proposition 3.8 there is
an intersection E ∈ Γ1 of z ∈ Z1 and z′ ∈ Z3. We denote the white (resp. black)
node that is an endpoint of E by wE (resp. bE). Then, the number of edges incident
to wE , which will be called the valency of wE , must be 3 and zigzag paths factoring
through wE are z, z′ and the one contained in Z4 because Γ is properly ordered (see
Figure 13). Also, the same properties hold for the node bE . By Proposition 3.6, the
edges that are intersections of z (resp. z′) and a zigzag path in Z4 are contained in
P4 (resp. P3). Since each small cycle ω satisfies Pi(ω) = 1 for all i = 1, . . . , 4, the edge
E is contained in both P1 and P2.

z ∈ Z1z′ ∈ Z3

w′ ∈ Z4 w ∈ Z4

Figure 13. Zigzag paths
around the intersection E

α

β

γ δ
a1

a2

a3

a4

a5

Figure 14. The arrows
around wE and bE

Let (Q,WQ) be the QP associated with Γ. Thus, P := P(Q,WQ) is a semi-steady
NCCR of R that is not steady. Let α, β, γ, δ be vertices of Q appearing around wE , bE
and a1, . . . , a5 be arrows between these vertices as shown in Figure 14. Thus, these
arrows give divisorial ideals Ta1 = T (1, 1, 0, 0), Ta3 = Ta4 = T (0, 0, 1, 0), and Ta2 =
Ta5 = T (0, 0, 0, 1). Thus, we see that

eαP ∼= (eβP ⊗R Ta1)∗∗, eγP ∼= (eαP ⊗R Ta3)∗∗

eδP ∼= (eαP ⊗R Ta5)∗∗, eβP ∼= (eγP ⊗R Ta2)∗∗ ∼= (eδP ⊗R Ta4)∗∗.

Let v′1, . . . , v′4 ∈ Z2 be the vertices of the toric diagram of R corresponding to
P1, . . . ,P4 respectively. Let vi := (v′i, 1) for i = 1, . . . , 4. Then, the cone σ generated
by v1, . . . , v4 defines R. Let Di := [T (δi1, . . . , δi4)] ∈ Cl(R) for i = 1, . . . , 4, where δij
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is the Kronecker delta. Thus, we have [Ta1 ] = D1 + D2, [Ta3 ] = [Ta4 ] = D3, [Ta2 ] =
[Ta5 ] = D4. By Lemma 3.1, these satisfy
(4) v1D1 + v2D2 + v3D3 + v4D4 = 0.

By Lemma 4.1, there is a splitting generator M =
⊕

i∈Q0
Mi such that P ∼=

EndR(M) and eiP ∼= M or M∗ for any i ∈ Q0. Let M := {[Mi] ∈ Cl(R) | i ∈ Q0}.
If (M ⊗R I)∗∗ ∼= M holds for a divisorial ideal I, then we have [I] ∈ M because M
is a generator. Using the above isomorphism again, we have 2[I] ∈ M. Repeating
this argument, we see that [I] is a torsion element in Cl(R) because of the finiteness
of M. Here, we assume that D4 is torsion in Cl(R), and hence there is a positive
integer a such that aD4 = 0 in Cl(R). By Lemma 3.1, the equation aD4 = 0 can be
obtained by the relation (4). Thus, for the 3× 3 matrix V := (v1 v2 v3), there exists a
unimodular matrix U such that one of rows of UV is the zero vector. This means that
sa1 + tb1 = sa2 + tb2 = sa3 + tb3 for some (0, 0)6=(s, t) ∈ Z2 where vi = t(ai, bi, 1). We
easily see that it is impossible to take such (s, t) because the lattice points v′1, v′2, v′3
do not lie on the same line in R2. Thus, D4 is not torsion in Cl(R). By a similar
argument, we also see that D3 is not torsion. By these observations, we have

eαP 6∼= eγP, eαP 6∼= eδP, eβP 6∼= eγP, eβP 6∼= eδP.
If eαP ∼= M , then we have that eβP ∼= M, eγP ∼= M∗ and eδP ∼= M∗, and hence

M∗ ∼= eγP ∼= (eαP ⊗R Ta3)∗∗ ∼= (M ⊗R Ta3),(5)
M ∼= eβP ∼= (eδP ⊗R Ta4)∗∗ ∼= (M∗ ⊗R Ta4).(6)

Let M∗ := {[M∗i ] = −[Mi] ∈ Cl(R) | i ∈ Q0}. Then, by (5) we have D3 ∈ M∗.
Using (6), we then have 2D3 ∈ M. Since D3 is not torsion, we can repeat these
arguments infinitely, but this contradicts the finiteness ofM. Even if eαP ∼= M∗, we
have the same conclusion by a similar argument. Therefore, the toric diagram of R is
a parallelogram. �

In order to complete the proof of Theorem 4.2, we requre the following lemmas.

Lemma 4.4.With the notation as in the proof of Theorem 4.2 (2)⇒ (3), we have that
T (Pop

1 (bk′j′), . . . ,Pop
4 (bk′j′)) ∼= T (P3(bk′j′),P4(bk′j′),P1(bk′j′),P2(bk′j′))

∼= T (P1(akj), . . . ,P4(akj))∗

for each j ∈ Q0.

Proof. Let z be a zigzag path on Γ. By replacing white nodes with black ones and vice
versa, we have Γop and the associated quiver Qop. Then, −z is a zigzag path on Γop.
Considering slopes of zigzag paths, we see that extremal perfect matchings on Γop

corresponding to vertices u1, . . . , u4 are P3,P4,P1,P2 respectively by Proposition 3.6.
Therefore, we obtain the first isomorphism.

Next, we consider the operation of shifting a path akj to bk′j′ . By this operation,
an arrow evaluating on P1 will shift to that on −P3. Similarly, an arrow evaluating
on P2,P3,P4 will shift to that on −P4,−P1,−P2 respectively. Therefore, we obtain
the second isomorphism. �

By combining this theorem with Theorem 1.3, we obtain a characterization of dimer
models that are homotopy equivalent to regular dimer models in terms of NCCRs.

Corollary 4.5.With the notation as Theorem 4.2, the following conditions are
equivalent.

(1) Γ is isoradial and gives a semi-steady NCCR of R.
(2) Γ is homotopy equivalent to a regular dimer model.
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When this is the case, the toric diagram of R is a triangle or parallelogram.

5. Examples
We end this paper by giving several examples.

Example 5.1 (See also [27, Corollary 1.7 and Example 1.8], [40]). The following
figures are a consistent dimer model that is homotopy equivalent to a regular hexag-
onal dimer model, and the associated quiver. Here, the red area denotes the fun-
damental domain of the two-torus. This quiver coincides with the McKay quiver of
G = 〈diag(ω, ω2, ω4)〉 where ω is a primitive 7-th root of unity, and the complete
Jacobian algebra is isomorphic to the skew group ring S ∗G where S := k[[x1, x2, x3]].
Furthermore, the center of the complete Jacobian algebra is the quotient singularity
R = SG. By Theorem 1.3, this dimer model gives a steady NCCR of R, which is
EndR(S) ∼= S ∗G.

5
3

6

2

1

4

0

1

4

0

3

6

2

1

1

5

0

Example 5.2.Next, we consider the square dimer model given in Figure 1. For sim-
plicity, we denote the complete Jacobian algebra associated with this dimer model
by A. Then, the center of A is the 3-dimensional Gorenstein toric singularity R =
k[[σ∨ ∩ Z3]] defined by the cone σ:

σ = Cone{v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1, 0, 1), v4 = (0,−1, 1)}.

For this singularity, we have that Cl(R) ∼= Z×Z/2Z, and hence each divisorial ideal is
represented by T (a, b, 0, 0) where a ∈ Z, b ∈ Z/2Z. By Theorem 4.2, A is a semi-steady
NCCR of R (that is not steady). More precisely, we have that

eiA ∼= R⊕ T (0, 1, 0, 0)⊕ T (1, 1, 0, 0)⊕ T (−1, 0, 0, 0),
ejA ∼= R⊕ T (1, 0, 0, 0)⊕ T (1, 1, 0, 0)⊕ T (2, 1, 0, 0),

for i = 0, 2 and j = 1, 3 (see [37, Subsection 5.2]). Further, we have that (eiA)∗ ∼= ejA,
and these give semi-steady NCCRs of R that are not steady. However, there exists
another consistent dimer model associated with R written below, and this is not
homotopy equivalent to a regular dimer model. Thus, this does not give semi-steady
NCCRs. A similar example is also found in [37, Subsection 5.11].

Example 5.3. If M is a semi-steady module, we have that addR EndR(M) =
addR(M ⊕M∗) (see Lemma 2.4(1)), but the converse is not true as follows.
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Let R be the 3-dimensional complete local Gorenstein toric singularity defined by
the cone σ:

σ = Cone{v1 = (0, 1, 1), v2 = (−1, 0, 1), v3 = (0,−1, 1), v4 = (1,−1, 1)}.

In this situation, we have that Cl(R) ∼= Z, and each divisorial ideal is represented
by T (a, 0, 0, 0) where a ∈ Z. By the results in [37, Subsection 5.3], we see that M =
R ⊕ T (1, 0, 0, 0) ⊕ T (2, 0, 0, 0) ⊕ T (3, 0, 0, 0) gives an NCCR of R. Furthermore, we
have that addR EndR(M) = addR(M ⊕M∗), but we can check M is not semi-steady.

Acknowledgements. The author would like to thank the anonymous referees for valu-
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References
[1] M. Auslander, Rational singularities and almost split sequences, Trans. Am. Math. Soc. 293

(1986), no. 2, 511–531.
[2] R. Bocklandt, Consistency conditions for dimer models, Glasg. Math. J. 54 (2012), no. 2, 429–

447.
[3] , Generating toric noncommutative crepant resolutions, J. Algebra 364 (2012), 119–147.
[4] , Toric systems and mirror symmetry, Compos. Math. 149 (2013), no. 11, 1839–1855.
[5] , A dimer ABC, Bull. Lond. Math. Soc. 48 (2016), no. 3, 387–451.
[6] A. Bondal and D. Orlov, Derived categories of coherent sheaves, in Proceedings of the Interna-

tional Congress of Mathematicians (Beijing, 2002). Vol.D II: Invited lectures, Higher Education
Press, 2002, pp. 47–56.

[7] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632.
[8] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived

categories, J. Am. Math. Soc. 14 (2001), no. 3, 535–554.
[9] N. Broomhead, Dimer model and Calabi-Yau algebras, Mem. Am. Math. Soc. 215 (2012),

no. 1011.
[10] W. Bruns and J. Gubeladze, Polytopes, rings and K-theory, Springer Monographs in Mathe-

matics, Springer, 2009.
[11] R.-O. Buchweitz, G. J. Leuschke, and M. Van den Bergh, Non-commutative desingularization

of determinantal varieties I, Invent. Math. 182 (2010), no. 1, 47–115.
[12] I. Burban, O. Iyama, B. Keller, and I. Reiten, Cluster tilting for one-dimensional hypersurface

singularities, Adv. Math. 217 (2008), no. 6, 2443–2484.
[13] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics,

vol. 124, American Mathematical Society, 2011.
[14] H. Dao, Remarks on non-commutative crepant resolutions of complete intersections, Adv. Math.

224 (2010), no. 3, 1021–1030.
[15] H. Dao, E. Faber, and C. Ingalls, Noncommutative (Crepant) Desingularizations and the Global

Spectrum of Commutative Rings, Algebr. Represent. Theory 18 (2015), no. 3, 633–664.
[16] H. Dao and C. Huneke, Vanishing of Ext, cluster tilting modules and finite global dimension of

endomorphism rings, Am. J. Math. 135 (2013), no. 2, 561–578.
[17] H. Dao, O. Iyama, R. Takahashi, and C. Vial, Non-commutative resolutions and Grothendieck

groups, J. Noncommut. Geom. 9 (2015), no. 1, 21–34.
[18] H. Dao, O. Iyama, R. Takahashi, and M. Wemyss, Gorenstein modifications and Q-Gorenstein

rings, 2016, https://arxiv.org/abs/1611.04137.
[19] R. J. Duffin, Potential theory on a rhombic lattice, J. Comb. Theory 5 (1968), 258–272.
[20] B. Grünbaum and G. C. Shephard, Tilings and patterns, W. H. Freeman and Company, 1987.
[21] D. R. Gulotta, Properly ordered dimers, R-charges, and an efficient inverse algorithm, J. High

Energy Phys. (2008), no. 10, 014 (31 pages).
[22] A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007),

no. 10, 029 (35 pages).
[23] A. Higashitani and Y. Nakajima, Conic divisorial ideals of Hibi rings and their applications to

non-commutative crepant resolutions, 2017, https://arxiv.org/abs/1702.07058.
[24] A. Ishii and K. Ueda, A note on consistency conditions on dimer models, RIMS Kôkyûroku

Bessatsu B24 (2011), 143–164.
[25] , Dimer models and the special McKay correspondence, Geom. Topol. 19 (2015), 3405–

3466.
[26] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82.

Algebraic Combinatorics, Vol. 2 #2 (2019) 194

https://arxiv.org/abs/1611.04137
https://arxiv.org/abs/1702.07058


Semi-steady NCCRs via regular dimer models

[27] O. Iyama and Y. Nakajima, On steady non-commutative crepant resolutions, J. Noncommut.
Geom. 12 (2018), no. 2, 457–471.

[28] O. Iyama and I. Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau alge-
bras, Am. J. Math. 130 (2008), no. 4, 1087–1149.

[29] O. Iyama and M. Wemyss, On the Noncommutative Bondal-Orlov Conjecture, J. Reine Angew.
Math. 683 (2013), 119–128.

[30] , Maximal modifications and Auslander-Reiten duality for non-isolated singularities,
Invent. Math. 197 (2014), no. 3, 521–586.

[31] , Reduction of triangulated categories and maximal modification algebras for cAn sin-
gularities, J. Reine Angew. Math. 738 (2018), 149–202.

[32] M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras,
Math. Ann. 316 (2000), no. 3, 565–576.

[33] R. Kenyon and J. M. Schlenker, Rhombic embeddings of planar quadgraphs, Trans. Am. Math.
Soc. 357 (2005), no. 9, 3443–3458.

[34] G. J. Leuschke, Non-commutative crepant resolutions: scenes from categorical geometry, in
Combinatorics and Homology, Progress in Commutative Algebra, vol. 1, de Gruyter, 2012,
pp. 293–361.

[35] G. J. Leuschke and R. Wiegand, Cohen-Macaulay Representations, Mathematical Surveys and
Monographs, vol. 181, American Mathematical Society, 2012.

[36] C. Mercat, Discrete Riemann surfaces and the Ising model, Commun. Math. Phys. 218 (2001),
no. 1, 177–216.

[37] Y. Nakajima, Mutations of splitting maximal modifying modules: The case of reflexive polygons,
Int. Math. Res. Not. (2017), https://doi.org/10.1093/imrn/rnx114.

[38] Š. Špenko and M. Van den Bergh, Non-commutative resolutions of quotient singularities for
reductive groups, Invent. Math. 210 (2017), no. 1, 3–67.

[39] J. T. Stafford and M. Van den Bergh, Noncommutative resolutions and rational singularities,
Mich. Math. J. 57 (2008), 659–674.

[40] K. Ueda and M. Yamazaki, A note on dimer models and McKay quivers, Commun. Math. Phys.
301 (2011), no. 3, 723–747.

[41] M. Van den Bergh, Non-Commutative Crepant Resolutions, in The Legacy of Niels Henrik Abel,
Springer, 2004, pp. 749–770.

[42] , Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3,
423–455.

[43] M. Wemyss, Flops and Clusters in the Homological Minimal Model Program, Invent. Math. 211
(2018), no. 2, 435–521.

[44] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Soci-
ety Lecture Note Series, vol. 146, Cambridge University Press, 1990.

Yusuke Nakajima, Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS,
The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
E-mail : yusuke.nakajima@ipmu.jp

Algebraic Combinatorics, Vol. 2 #2 (2019) 195

https://doi.org/10.1093/imrn/rnx114
mailto:yusuke.nakajima@ipmu.jp

	1. Introduction
	1.1. Overview and Motivations
	1.2. Semi-steady non-commutative crepant resolutions
	Notations and Conventions

	2. Basic properties of semi-steady NCCRs
	3. NCCRs arising from dimer models
	3.1. Preliminaries on toric singularities
	3.2. Dimer models and quivers with potentials
	3.3. Consistency condition and NCCRs

	4. Semi-steady NCCRs arising from dimer models
	5. Examples
	References

