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On the double-affine Bruhat order: the
ε = 1 conjecture and classification of covers

in ADE type

Dinakar Muthiah & Daniel Orr

Abstract For any Kac–Moody group G, we prove that the Bruhat order on the semidirect
product of the Weyl group and the Tits cone for G is strictly compatible with a Z-valued length
function. We conjecture in general and prove for G of affine ADE type that the Bruhat order
is graded by this length function. We also formulate and discuss conjectures relating the length
function to intersections of “double-affine Schubert varieties”.

1. Introduction
1.1. The Bruhat order and previous work. Let G be a Kac–Moody group, let
W be its Weyl group, and let T be the Tits cone of integral coweights. We can form
the semi-direct product WT = T oW , which will in general be a semi-group. In [3],
Braverman, Kazhdan, and Patnaik consider the case when G is untwisted affine type,
and they construct the Iwahori–Kac–MoodyHecke algebra for the group G = G(F )
where F is a non-archimedian local field. A key property of their construction is
that they need to restrict attention to functions supported on a subsemigroup (the
Cartan semigroup) G+ ( G. Then they show that the Iwahori-double cosets on G+

are exactly in bijection with the semi-group WT .
Additionally, they define a preorder on WT that we call the (double-affine) Bruhat

order ; they conjecture that this order is in fact a partial order. In [6], the first-named
author constructs a function

(1) `ε : WT → Z⊕ Zε

that is strictly compatible with the preorder, where Z⊕Zε is ordered lexicographically.
As a corollary, he proves that the double-affine Bruhat order is partial order. However,
many questions remained open. In particular, because the intervals in Z ⊕ Zε are
infinite in general, the results of [6] do not give strong finiteness results about the
order WT .
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1.2. Setting ε = 1. In [6, Question 5.10], the question is asked whether the com-
posed function (the length function)

(2) ` : WT → Z⊕ Zε→ Z,

obtained by setting ε = 1, is strictly compatible with the order on WT .
Let us briefly describe the “single-affine” situation, i.e. when G is finite-type and

simply-connected. In this case, WT coincides with the usual notion of affine Weyl
group, which by our simply-connected assumption is a Coxeter group. The order
defined by Braverman, Kazhdan, and Patnaik exactly recovers the usual affine Bruhat
order on this Coxeter group. Then, as explained in [6], the function ` : WT → Z exactly
recovers the usual Coxeter length function; in particular, it is strictly compatible with
the order.

In this paper, we give a positive answer to the above question.

Theorem 1.1 (Theorem 3.3 below). For any Kac–Moody group G, the length function
` is strictly compatible with the Bruhat order on WT .

Even more interesting than this positive answer is our method of proof and the
role that inversion sets play. To explain this, we briefly recall some of the ingredients
for the definition of the Bruhat order on WT . Let x ∈WT . To every positive real root
β for G and every n ∈ Z, there is an associated reflection element that we call sβ[n].
In general, sβ[n] /∈WT , but in the cases of interest, we will have xsβ[n] ∈WT . In this
case, by definition, x and xsβ[n] are comparable in the Bruhat order, and the order is
generated by such relations.

First we construct a set Inv++
x (sβ[n]), which is a certain subset of the inversion set

of sβ[n] (Inv++
x (sβ[n]) is defined in Section 3.2) and we prove that xsβ[n] > x if and

only if Inv++
x (sβ[n]) 6= ∅. Then, to prove our theorem we show that when xsβ[n] > x:

(3) `(xsβ[n])− `(x) = # Inv++
x (sβ[n]).

There is a similar statement when the inequality is reversed. To prove (3), we de-
velop a generalized notion of inversion set, and we relate `(x) to the inversion set
of x−1 (denoted Inv(x−1)) and `(xsβ[n]) to the inversion set of sβ[n]x

−1 (denoted
Inv(sβ[n]x

−1)). However, this relationship is very subtle because these inversion sets
are generally infinite and the function ` may take negative values. A particular man-
ifestation of the subtlety of this relationship is that, unlike for Weyl groups, elements
of different lengths may have identical inversion sets. Additionally, implicit in (3) is
the finiteness of Inv++

x (sβ[n]), which is not at all obvious.
What we show is that there is a canonically defined injection from Inv(x−1) to

Inv(sβ[n]x
−1), and we then construct a bijection between Inv++

x (sβ[n]) and the com-
plement of the image of this injection. We show that `(x) can be computed by per-
forming a weighted sum over certain finite subsets of Inv(x−1); similarly for `(xsβ[n]).
Finally, we need an analogue of the finite-type fact that 2ρ is the sum of positive
roots. Putting these various ingredients together we get (3).

1.3. Classifying covers. As a consequence, given x, y ∈WT with x < y, we know
that a chain between x and y can have at most `(y)−`(x) elements. A natural question
is whether this bound is always acheived. Equivalently, we can ask whether covers are
classified by the function `. Let us write xCy to denote that y covers x in the Bruhat
order. Then we conjecture the following.

Conjecture 1.2 (Conjecture 6.1 below). Let x, y ∈ WT , then x C y if and only if
x < y and `(x) = `(y)− 1.
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We note that in the single-affine situation this conjecture is true because it is true
for all Coxeter groups. In our double-affine situation those methods are not available.
However, in untwisted affine type ADE, we have a positive result.

Theorem 1.3 (Theorem 6.2 below). Conjecture 1.2 is true for G of untwisted affine
ADE type.

In untwisted affine ADE, using our explicit control of the pairings between roots
and coroots, we reduce the problem to a calculation that is essentially the case of
affine SL2. Then we verify the theorem in this situation by explicit computations.

1.4. Some remarks on further directions. Let G be an untwisted affine Kac–
Moody group, and let F = k((π)) be the field of formal Laurent series over a field k.
Let us take G = G(F ), and let G+ ( G be the Cartan semigroup as in [3]. Let I ⊂ G
be the Iwahori subgroup. Then we expect the quotient G+/I to be the k-points of the
“double-affine flag variety”. We expect the I-orbits on G+/I to be the “double-affine
Schubert cells”. By [3], we know that these I orbits are in bijection with WT . So we
expect the closure order on “double-affine Schubert cells” to be precisely the double-
affine Bruhat order. Unfortunately, in this double-affine situation we do not know how
to properly work with G+/I as object of algebraic geometry. So the statement about
the closure order is currently only a heuristic (or perhaps a definition). Of course, in
the single-affine case when G is finite-type, all of the above has precise meaning and
is well known.

In Section 8 we discuss some conjectures motivated by the above heuristics as well
as directions for further work. In particular, we write down the sets we expect to
be the transverse slices to one double-affine Schubert variety embedded in another.
Motivated by these transverse slices, we give a purely group-theoretic but conjectural
definition of the double-affine Bruhat order. We also discuss some further questions
that are more combinatorial in nature.

2. Notation
Let G be a Kac–Moody group, W its Weyl group, and ∆ the set of real roots of G.
Define the set of G-affine roots as

(4) ∆̃ = {β + nπ ∈ Z∆⊕ Zπ | β ∈ ∆, n ∈ Z}.
(When G is an affine Kac–Moody group, we will use the terminology “double-affine”
synonymously with G-affine.)

Let ∆+ ⊂ ∆ be the set of positive real roots of G. We call β + nπ ∈ ∆̃ positive
(and write β + nπ > 0) provided that β ∈ ∆+ and n > 0 or β ∈ −∆+ and n > 0;
otherwise we call β + nπ negative (and write β + nπ < 0). Let ∆̃+ be the subset of
positive elements of ∆̃.

For any β ∈ ∆+ and n ∈ Z, let us define
(5) β[n] = sgn(n) · (β + nπ) = sgn(n)β + |n|π,
where sgn : Z→ {±1} is the signum function:

(6) sgn(n) =
{

+1 if n > 0
−1 if n < 0.

Notice that β[n] always belongs to ∆̃+. Conversely, every element of ∆̃+ is of this
form for unique β ∈ ∆+ and n ∈ Z. We refer to β as the G-classical part of β[n].
(When G is an affine Kac–Moody group, we will use the terminology “single-affine”
synonymously with G-classical.)
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Let P be the coweight lattice of G and consider the semidirect product group
WP = P oW . We denote elements of WP by πµw where µ ∈ P and w ∈ W . The
group WP acts on the set ∆̃ via the formula:

(7) πµw(β + nπ) = w(β) + (n+ 〈µ,w(β)〉)π

where 〈 · , · 〉 is the canonical pairing between the coweight lattice and the root lattice
of G. We define the reflection sβ[n] corresponding to β[n] ∈ ∆̃+ as the following
element of WP :

(8) sβ[n] = πnβ
∨
sβ

where β∨ is the real coroot of G associated with β. The action of sβ[n] on affine roots
is then given by the usual formula

(9) sβ[n](γ[m]) = γ[m]− sgn(m) sgn(n)〈β∨, γ〉β[n].

For any x ∈ WP , we define the inversion set Inv(x) to be the subset of elements
of ∆̃+ made negative under the action of x. If x ∈ W , then this definition coincides
with the usual definition of inversion set (via the injection ∆+ ↪→ ∆̃+, β 7→ β[0]).

Let T ⊂ P be the Tits cone in the coweight lattice of G. Our main object of study
is WT = T oW , which is a subsemigroup of WP .

3. The length functions `ε and `

3.1. A height formula. Let ρ be the sum of fundamental weights of G (which we
have chosen once and for all). For any β ∈ ∆+, the height of the associated coroot
β∨ is ht(β∨) = 〈β∨, ρ〉, which is independent of the choice of ρ.

For any β ∈ ∆+, we define |sβ | : ∆+ → ∆+ via:

(10) |sβ |(γ) = |sβ(γ)| =
{
sβ(γ) if sβ(γ) > 0
−sβ(γ) if sβ(γ) < 0.

Proposition 3.1. Let β ∈ ∆+ and suppose that S ⊂ ∆+ is a finite subset containing
Inv(sβ) and closed under |sβ |. Then

(11) 2 · ht(β∨) =
∑
γ∈S
〈β∨, γ〉.

Proof. Let us consider those γ ∈ S such that γ /∈ Inv(sβ). For such γ, |sβ(γ)| = sβ(γ)
and 〈β, |sβ |(γ)〉 = −〈β, γ〉. So the γ-term cancels the |sβ(γ)|-term in the above sum
whenever γ /∈ Inv(sβ). Therefore:∑

γ∈S
〈β∨, γ〉 =

∑
γ∈Inv(sβ)

〈β∨, γ〉 =
〈
β∨,

∑
γ∈Inv(sβ)

γ

〉
.

By the definition of ρ, we can verify that (see, e.g. [5, Exercise 3.12]):

(12)
∑

γ∈Inv(w)

γ = ρ− w−1(ρ)

for any w ∈W . So we have:∑
γ∈S
〈β∨, γ〉 = 〈β∨, ρ− sβ(ρ)〉 = 〈β∨, ρ〉+ 〈β∨, ρ〉 = 2 · ht(β∨). �

More generally, for any µ ∈ P , we define 2 · ht(µ) = b〈µ, 2ρ〉c. Here b·c denotes the
“floor” function, i.e. for any x ∈ R, bxc is the unique integer such that 0 6 x−bxc < 1.
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Remark 3.2. For µ ∈ P , the quantity 〈µ, 2ρ〉 is a rational number which need not
be an integer in general. We apply the floor function for the psychological benefit of
allowing the length function defined in the next section to take on only integral values.
Otherwise, we would have to write ` : WT → Q, which gives the wrong impression
about the nature of `.

We will see that the invariant quantities we construct, i.e. those which are indepen-
dent of choice of ρ, will be the differences of lengths of elements that are comparable
in the Bruhat order. These differences will always be integral even if we omit the floor
function and allow the length to take on rational values. We note that in untwisted
affine cases, ρ can be chosen so that 〈µ, 2ρ〉 ∈ Z for all µ ∈ P .

For simplicity of notation, we shall assume below that 〈µ, 2ρ〉 ∈ Z and omit the
b·c, which can easily be added to the arguments below.

3.2. The length functions `ε. Let us recall the definition of the length function
`ε : WT → Z⊕ Zε from [6]. For πµw ∈WT , we define

(13) `ε(πµw) = 2 · ht(µ+) + ε ·
(
#{γ ∈ Inv(w−1) | 〈µ, γ〉 > 0}

−#{γ ∈ Inv(w−1) | 〈µ, γ〉 < 0}
)

where µ+ is the unique dominant translate of µ under the action W .
Let β[n] ∈ ∆̃+ be a G-affine root such that πµwsβ[n] ∈ WT . If πµw(β[n]) > 0,

then we declare that πµwsβ[n] > πµw in the Bruhat preorder. In [6], it is proved
that πµw(β[n]) > 0 is equivalent to `ε(πµwsβ[n]) > `ε(πµw), where Z⊕Zε is ordered
lexicographically. So the map `ε is strictly compatible with the order structure. In
particular, this implies that the Bruhat preorder is in fact a partial order.

3.3. Setting ε = 1. Let us define ` : WT → Z by composing `ε with the map
Z⊕Zε→ Z given by sending ε to 1. We will prove the following, which was conjectured
in [6]:

Theorem 3.3. The map ` is strictly compatible with the Bruhat order on WT and the
usual order on Z. That is, if x, y ∈WT , x 6 y and x 6= y, then `(x) < `(y).

This implies that all chains between two fixed elements of WT must be finite and
gives an explicit bound. In fact, we will prove the following stronger statement.

Theorem 3.4. Let πµw ∈WT and β[n] ∈ ∆̃+. Suppose πµwsβ[n] > πµw. Then:

(14) `(πµwsβ[n]) = `(πµw) + #
{
γ[m] ∈ Inv(sβ[n])

∣∣∣∣∣π
µw(γ[m]) > 0
and πµw(−sβ[n](γ[m])) > 0

}
.

In particular, the set {γ[m] ∈ Inv(sβ[n]) |πµw(γ[m]) > 0 and πµw(−sβ[n](γ[m])) > 0}
is finite.

For brevity, let us define

(15) Inv++
πµw(sβ[n]) =

{
γ[m] ∈ Inv(sβ[n])

∣∣∣∣∣π
µw(γ[m]) > 0
and πµw(−sβ[n](γ[m])) > 0

}
.

Then Inv++
πµw(sβ[n]) contains at least one element, namely β[n]. Thus Theorem 3.4

implies Theorem 3.3.
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3.4. Some explicit formulas for length.

Proposition 3.5. For any µ ∈ T ,

(16) `(πµ) = 2 · ht(µ)−
∑

γ∈∆+:〈µ,γ〉<0

〈µ, 2γ〉.

Proof. Because µ is in the Tits cone, there is some w ∈W such that w(µ) is dominant.
Then, by definition, `(πµ) = 〈w(µ), 2ρ〉 = 〈µ, 2w−1(ρ)〉. Using (12), we obtain

(17) 2 · ht(µ)− `(πµ) = 2〈µ, ρ− w−1(ρ)〉 =
∑

η∈Inv(w)

〈µ, 2η〉

Suppose η ∈ Inv(w). Then 〈µ, η〉 = 〈w(µ), w(η)〉 6 0 because w(µ) is dominant and
w(η) is negative. Conversely, suppose γ ∈ ∆+ and 〈µ, γ〉 < 0. Then 〈w(µ), w(γ)〉 < 0,
which implies that w(γ) is negative. Therefore:

(18)
∑

η∈Inv(w)

〈µ, 2η〉 =
∑

γ∈∆+:〈µ,γ〉<0

〈µ, 2γ〉

Note that the set over which we are summing on the right is a subset of that on the
left, but the complement contributes zero to the sum. �

From the definition of ` and Proposition 3.5, we immediately obtain the following
formula for the length of an arbitrary element πµw ∈WT :

(19) `(πµw) = 2 · ht(µ) +
∑
η∈∆+


−〈µ, 2η〉 if 〈µ, η〉 < 0 and η /∈ Inv(w−1)
−〈µ, 2η〉 − 1 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
1 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 if 〈µ, η〉 > 0 and η /∈ Inv(w−1).

4. Maps between G-affine inversion sets
In order to prove Theorem 3.4, we need to introduce certain maps between inversion
sets.

4.1. The analogous problem for Weyl groups. We believe that the discussion
below is new even for Weyl groups, so let us first consider the analogous problem for
the Weyl group W of G. Let w ∈ W and β ∈ ∆+, and let us assume w(β) > 0, i.e.
wsβ > w in the Bruhat order. Then `(wsβ) > `(w). The problem that we wish to
consider is:

(1) Give an explicit injection ϕ : Inv(w−1) ↪→ Inv(sβw−1).
(2) Give an explicit bijection ψ between the complement of the image above and

the set {γ ∈ Inv(sβ) | w(γ) > 0 and w(ι(γ)) > 0}, where ι = −sβ .

4.1.1. A solution. The following gives a solution to the first part of the problem.

Proposition 4.1. Assume wsβ > w. Let η ∈ Inv(w−1). If sβw−1(η) < 0, then we
define ϕ(η) = η. If sβw−1(η) > 0, then we define ϕ(η) = sw(β)(η). This rule defines
an injection ϕ : Inv(w−1) ↪→ Inv(sβw−1).

Proof. Suppose sβw−1(η) > 0. We need to check that ϕ(η) ∈ Inv(sβw−1). Let us
write ζ = sw(β)(η) = ϕ(η). First, let us check that η > 0. We have assumed
that sβw−1(η) > 0, equivalently −sβw−1(η) < 0. We also have −w−1(η) > 0. So
−sβw−1(η) = sβ(−w−1(η)) = −w−1(η) − 〈β∨,−w−1(η)〉β. Because −w−1(η) > 0,
this is a negative root only if 〈β∨, w−1(η)〉 < 0. Now, let us compute sw(β)(η) =
η−〈w(β∨), η〉w(β). Because 〈w(β∨), η〉 = 〈β∨, w−1(η)〉 < 0 and w(β) > 0 by hypoth-
esis, we have sw(β)(η) > 0.
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Second, we compute sβw−1(ζ) = sβw
−1wsβw

−1(η) = w−1(η) < 0. So ϕ defines a
map from Inv(w−1) to Inv(sβw−1).

Finally, we check that ϕ is an injection. Let η, η̃ ∈ Inv(w−1). Suppose ϕ(η) = ϕ(η̃).
If the signs of sβw−1(η) and sβw

−1(η̃) are the same, then it is clear that η = η̃ by
the definition of ϕ. So let us assume sβw−1(η) < 0 and sβw−1(η̃) > 0. Then ϕ(η) = η
and ϕ(η̃) = sw(β)(η̃). Our assumption is then that η = sw(β)(η̃). But w−1(η) < 0,
while w−1sw(β)(η̃) = sβw

−1(η̃) > 0, a contradiction. �

We know that `(wsβ) = `(w) + #{γ ∈ Inv(sβ) | w(γ) > 0 and w(ι(γ)) > 0}
(here ι = −sβ). Therefore, it makes sense to ask for a natural bijection between the
complement of the image of ϕ and {γ ∈ Inv(sβ) | w(γ) > 0 and w(ι(γ)) > 0}.

Proposition 4.2. Let γ ∈ Inv(sβ) such that w(γ) > 0 and −wsβ(γ) > 0. Then define
ψ(γ) = w(γ). This defines an injection ψ : {γ ∈ Inv(sβ) | w(γ) > 0 and w(−sβ(γ)) >
0} ↪→ Inv(sβw−1).

Proof. Let γ be as in the statement. By assumption, we have w(γ) > 0, and
sβw

−1w(γ) = sβ(γ) < 0. So ψ(γ) ∈ Inv(sβw−1). Clearly ψ is injective. �

Proposition 4.3. The images of ϕ and ψ are disjoint.

Proof. Let γ ∈ Inv(sβ) such that w(γ) > 0 and −w(sβ(γ)) > 0. Then ψ(γ) = w(γ).
Let η ∈ Inv(w−1). Let us assume ψ(γ) = ϕ(η).

For the first case, suppose sβw−1 < 0. Then ϕ(η) = η. Our assumption is then
that η = w(γ), which implies w−1(η) = γ. This is a contradiction since w−1(η) < 0
while γ > 0.

For the second case, suppose sβw−1 > 0. Then ϕ(η) = sw(β)(η). Our assumption is
then sw(β)(η) = w(γ), which implies γ = sβw

−1(η) > 0. We also have the assumption
that −w(sβ(γ)) > 0, which translates to −η > 0, which is again a contradiction. �

Corollary 4.4.

(20) Inv(sβw−1) = imageϕ t imageψ

Proof. Both sides have the same cardinality by the length formula mentioned above;
this gives the proof immediately. However, we would like to give a proof that avoids
counting because the relevant sets need not be finite in the general G-affine case.

Suppose θ ∈ Inv(sβw−1), then there are three cases.
Case 1: if w−1(θ) < 0, then let η = θ, and we have ϕ(η) = η = θ.
Case 2: if w−1(θ) > 0 and sw(β)(θ) > 0, then let η = sw(β)(θ). Then w−1(η) =
sβw

−1(θ) < 0, and sβw−1(η) = w−1(θ) > 0. So we have ϕ(η) = sw(β(η) = θ.
Case 3: if w−1(θ) > 0 and sw(β)(θ) < 0, then let γ = w−1(θ). Then sβ(γ) =
sβw

−1(θ) < 0. So γ ∈ Inv(sβ). We have w(γ) = θ > 0 and −w(sβ(γ)) = −sw(β)(θ) >
0. So ψ(γ) = w(γ) = θ. �

4.2. The statements in the G-affine case. We can immediately generalize our
solution to the G-affine case. Let πµw ∈WT and let β[n] ∈ ∆̃+ be a positive G-affine
root such that:

• πµwsβ[n] ∈WT
• πµw(β[n]) > 0

The constructions and proofs of the previous subsection carry over without change
once we substitute πµw for w and β[n] for β. The explicit translations are as follows:
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Proposition 4.5. For each η[m] ∈ Inv(w−1π−µ) define:

(21) ϕ(η[m]) =
{
η[m] if sβ[n]w

−1π−µ(η[m]) < 0
πµwsβ[n]w

−1π−µ(η[m]) if sβ[n]w
−1π−µ(η[m]) > 0.

This defines an injection ϕ : Inv(w−1π−µ) ↪→ Inv(sβ[n]w
−1π−µ).

Proposition 4.6. For each γ[m] ∈ Inv++
πµw(sβ[n]), define ψ(γ[m]) = πµw(γ[m]). Then

this defines an injection:
(22) ψ : Inv++

πµw(sβ[n]) ↪→ Inv(sβ[n]w
−1π−µ)

Proposition 4.7. The images of ϕ and ψ are disjoint.

Corollary 4.8.
Inv(sβ[n]w

−1π−µ) = image(ϕ) t image(ψ)(23)

5. Some results on inversion sets and proof of Theorem 3.4
5.1. Explicit computation of G-affine inversion sets. By direct computa-
tion, one finds that
(24)

Inv(w−1π−µ) =

η[m] ∈ ∆̃+

∣∣∣∣∣∣∣∣∣


〈µ, η〉 6 m < 0 if 〈µ, η〉 < 0 and η /∈ Inv(w−1)
〈µ, η〉 < m < 0 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
0 6 m 6 〈µ, η〉 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 6 m < 〈µ, η〉 if 〈µ, η〉 > 0 and η /∈ Inv(w−1)

 .

Remark 5.1. By comparing (24) to (19), one is able to give a natural heuristic ex-
planation for the definition of the length function on WT similar to that given in [5,
§2.11]. This is obtained by formally replacing 2ρ in the quantity 2 · ht(µ) of (19) by
the infinite expression

∑
η∈∆+ η. Combining this with the second (finite) summand

of (19) produces an infinite divergent sum whose terms correspond exactly to the
elements of Inv(w−1π−µ). Thus one should think of the length function as a suitable
finite “renormalization” of this divergent sum.

Let S ⊂ ∆+ be a finite subset of the positive real roots of G, and let us define
InvS(w−1π−µ) = {η[m] | η ∈ S and η[m] ∈ Inv(w−1π−µ)}.

Then InvS(w−1π−µ) is finite and we have:

(25) # InvS(w−1π−µ) =
∑
η∈S

|〈µ, η〉|+

−1 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
+1 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 otherwise

 .

5.2. Finiteness of Inv++
πµw(sβ[n]).

Theorem 5.2. Let us assume that πµw and β[n] are as in Section 4.2, i.e.
πµw(β[n]) > 0 and πµwsβ[n] ∈WT . Then the set Inv++

πµw(sβ[n]) is finite.

Proof. By Proposition 4.6, we can identify this set with its image under the map ψ.
By the proof of Corollary 4.4, we can identify the image of ψ with the set of positive
G-affine real roots θ[m] such that:

• sβ[n]w
−1π−µ (θ[m]) < 0

• w−1π−µ (θ[m]) > 0
• πµwsβ[n]w

−1π−µ (θ[m]) < 0
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By (24), to show that Inv++
πµw(sβ[n]) is finite it suffices to show that only finitely many

θ can occur.
For the first condition, we compute:

sβ[n]w
−1π−µ (θ[m]) = πnβ

∨
sβw

−1π−µ (θ[m])

= πnβ
∨

sgn(m)
(
sβw

−1(θ) + (m− 〈µ, θ〉)π
)

= sgn(m)
(
sβw

−1(θ) + (m− 〈µ, θ〉 − n〈w(β∨), θ〉)π
)

= sgn(m)
(
sβw

−1(θ) + (m− 〈µ+ nw(β∨), θ〉)π
)
.

For the second condition:
w−1π−µ (θ[m]) = sgn(m)(w−1(θ) + (m− 〈µ, θ〉)π).

For the third condition:
πµwsβ[n]w

−1π−µ (θ[m]) = πµw sgn(m)
(
sβw

−1(θ) + (m− 〈µ+ nw(β), θ〉)π
)

= sgn(m)πµ(sw(β)(θ) + (m− 〈µ+ nw(β∨), θ〉)π)
= sgn(m)(sw(β)(θ)+(m−〈µ+nw(β∨), θ〉+〈µ, sw(β)(θ)〉)π).

Because µ+ nw(β∨) ∈ T by assumption, 〈µ+ nw(β∨), θ〉 > 0 for almost all θ. As
we are interested in proving finiteness of the set of θ that occur, we can go ahead and
assume 〈µ + nw(β∨), θ〉 > 0. Then the first condition necessitates that m > 0. The
second condition requires that 〈µ, θ〉 6 m.

To handle the third condition, we compute:
〈µ+ nw(β∨), θ〉 − 〈µ, sw(β)(θ)〉 = 〈µ, θ〉+ n〈w(β∨), θ〉 − 〈µ, θ〉+ 〈µ,w(β)〉〈w(β∨), θ〉

= (n+ 〈µ,w(β)〉)〈w(β∨), θ〉.
We see that the third condition necessitates that m 6 (n+ 〈µ,w(β)〉)〈w(β∨), θ〉. Note
that n+ 〈µ,w(β)〉 does not depend on θ.

The second and third conditions imply that 〈µ, θ〉 6 m 6 (n+〈µ,w(β)〉)〈w(β∨), θ〉.
Since

µ− (n+ 〈µ,w(β)〉)w(β∨) = sw(β)(µ+ nw(β∨)),
there exist m in this range if and only if 〈sw(β)(µ+ nw(β∨)), θ〉 6 0. By assumption,
µ + nw(β∨) ∈ T and hence ν = sw(β)(µ + nw(β∨)) ∈ T . The set of θ such that
〈ν, θ〉 < 0 therefore must be finite. While 〈ν, θ〉 = 0 is possible for infinitely many θ,
we can have θ[m] ∈ Inv++

πµw(sβ[n]) in this case only if sw(β)(θ) < 0. Since Inv(sw(β)) is
finite, we have our result. �

5.3. Putting it all together.

Proof of Theorem 3.4. Let S ⊂ ∆+ be a finite subset of the positive real roots of G
such that:

(1) S is invariant under |sw(β)|
(2) S contains Inv(sw(β)) and Inv(w−1)
(3) S contains all η such that there exists m such that η[m] ∈ image(ψ).
(4) S contains η such that 〈µ, η〉 < 0.
(5) S contains η such that 〈µ+ nw(β∨), η〉 < 0.

The fact that such an S exists follows from the finiteness of Inv++
πµw(sβ[n]) and the

assumption that µ, µ + nw(β∨) ∈ T . Let us define Sc = ∆+\S. Then Sc is also
invariant under |sw(β)|.

Let us also observe that if η[m] ∈ Inv(w−1π−µ), then ϕ(η[m]) = η[m] or ϕ(η[m]) =
|sw(β)|(η)[p] for some integer p. This implies, that ϕ restricts to a map:

ϕ : InvSc(w−1π−µ)→ InvSc(sβ[n]w
−1π−µ).
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By the third condition that S must satisfy, we see that this map must be a bijection.
We deduce that

# Inv++
πµw(sβ[n]) = # image(ψ) = # InvS(sβ[n]w

−1π−µ)−# InvS(w−1π−µ).

It remains to compute the right-hand side of the previous formula and show that
it is equal to the difference `(πµw)− `(πµwsβ[n]). By (25), we have:

# InvS(w−1π−µ) =
∑
η∈S

|〈µ, η〉|+

−1 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
+1 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 otherwise

.
Let us write sβ[n]w

−1π−µ = πnβ
∨
sβw

−1π−µ = sβw
−1π−(µ+nw(β∨)). Also by (25), we

have:

# InvS(sβ[n]w
−1π−µ) = # InvS(sβw−1π−(µ+nw(β∨)))

=
∑
η∈S

|〈µ+ nw(β∨), η〉|+


−1 if 〈µ+ nw(β∨), η〉 < 0 and η ∈ Inv(sβw−1)
+1 if 〈µ+ nw(β∨), η〉 > 0 and η ∈ Inv(sβw−1)
0 otherwise

.
Using the length formulas, we have:

`(πµw)

= 2 · ht(µ) +
∑
η∈∆+


−〈µ, 2η〉 if 〈µ, η〉 < 0 and η /∈ Inv(w−1)
−〈µ, 2η〉 − 1 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
1 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 if 〈µ, η〉 > 0 and η /∈ Inv(w−1)

= 2 · ht(µ)−
∑
η∈S
〈µ, η〉+

∑
η∈S

|〈µ, η〉|+

−1 if 〈µ, η〉 < 0 and η ∈ Inv(w−1)
+1 if 〈µ, η〉 > 0 and η ∈ Inv(w−1)
0 otherwise


= 2 · ht(µ)−

∑
η∈S
〈µ, η〉+ # InvS(w−1π−µ).

The second equality follows by the fourth and second conditions on S. Similarly, using
the fifth and second conditions, we can compute:

(26) `(πµ+nw(β∨)wsβ)

= 2 · ht(µ+ nw(β∨))−
∑
η∈S
〈µ+ nw(β∨), η〉+ # InvS(sβ[n]w

−1π−µ).

By Proposition 3.1 and the first two conditions on S, we have 2 · ht(w(β∨)) =∑
η∈S〈w(β∨), η〉.
Therefore:

`(πµ+nw(β∨)wsβ)− `(πµw) = # InvS(sβ[n]w
−1π−µ)−# InvS(w−1π−µ)

= # Inv++
πµw(sβ[n]).

This completes the proof. �
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6. Classification of covers
6.1. General conjecture. For x, y ∈WT , let us write xC y to indicate a covering
relation, i.e. xC y if and only x < y and {z | x < z < y} = ∅.

By the definition of the order, a necessary condition for x C y is that y = xsβ[n]
for some G-affine real root β[n]. Motivated by the well-known characterization of
covering relations for the Bruhat order on a Coxeter group, we make the following:

Conjecture 6.1. We have xC y if and only x < y and `(y) = `(x) + 1.

Below we will give a positive answer to this question when G is of untwisted affine
ADE type. We will proceed by explicitly computing with G-affine (or double-affine)
roots.

6.2. Explicit description of double-affine roots when G is untwisted
affine. Let G0 be a finite-type Kac–Moody group, and let G be the untwisted
affinization of G0. Let us write δ for the minimal imaginary root for G. Now we refer
to G-affine roots as double-affine roots.

Let β be a positive root for G0. Then for every pair (r, n) ∈ Z2, we define
(27) β[r, n] = σ(r, n)(β + rδ + nπ)
where the sign σ(r, n) ∈ {±1} is defined to make the above expression a positive
double-affine root. Explicitly, we define

(28) σ(r, n) =
{

+1 if n > 0 or n = 0 and r > 0
−1 if n < 0 or n = 0 and r < 0.

One immediate benefit of this indexing is the following simple formula:

(29) sβ[r,n] = πnrδπnβ
∨
trβ

∨
sβ .

6.2.1. The action of reflections. Let us compute
sβ[r,n](β[s,m]) = β[s,m]− 2σ(s,m)σ(r, n)β[r, n](30)

= σ(s,m)(β + sδ +mπ − 2(β + rδ + nπ))
= −σ(s,m)(β + (2r − s)δ + (2n−m)π)
= −σ(s,m)σ(2r − s, 2n−m)β[2r − s, 2n−m].

Therefore, we have
(31) |sβ[r,n]|(β[s,m]) = β[2r − s, 2n−m].
That is, we can say that the action of |sβ[r,n]| on pairs of integers indexing double-
affine real roots β[s,m] is exactly 180◦ rotation about the point (r, n). In particular
this is true for the map ι, which is the restriction of |sβ[r,n]| to Inv(sβ[r,n]).

6.2.2. The action of arbitrary x on double-affine roots. Let x ∈ WT . Then we can
write
(32) x = π`Λ0πµtνw

where ` > 0, µ and ν are finite coweights for G0, and w ∈WG0 (the finite Weyl group
associated to G0).

Then:
x(β[s,m])(33)

= π`Λ0πµtνw(β[s,m])
= σ(s,m)(w(β) + (s+ 〈ν, w(β)〉)δ + (m+ 〈µ,w(β)〉) + `(s+ 〈ν, w(β)〉))π).
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Let us write a = −〈ν, w(β)〉 and b = −〈µ,w(β)〉. Then (33) is equal to:

(34) σ(s,m)(w(β) + (s− a)δ + (m− b) + `(s− a))π)

=
{
σ(s,m) ·σ(s− a,m− b+ `(s− a)) ·w(β)[s− a,m− b+ `(s− a)], w(β)> 0
σ(s,m) ·σ(a− s, b−m+ `(a− s)) · (−w(β))[a− s, b−m+ `(a− s)], w(β)< 0.

6.3. Untwisted affine ADE. We will prove the following:

Theorem 6.2. Let G0 be a simply-laced finite-type Kac–Moody group (i.e. ADE type).
Let G be its untwisted affinization. Then Conjecture 6.1 is true for G.

Let us write ( · , · ) for the Weyl-invariant Euclidean inner product on the root space
of G0 such that all roots have squared length equal to 2. Then for any pair β and θ
of positive roots for G0, we have:
(35) 〈β∨, θ〉 = (β, θ).
Below, we will abuse notation and simple write 〈β, θ〉 for the pairing (β, θ).

The following well-known fact is crucial for our argument.

Lemma 6.3. Let θ and β be distinct positive roots for G0 which is finite-type ADE.
Then:
(36) 〈β, θ〉 ∈ {−1, 0, 1}.

In order to prove Theorem 6.2, we need to show that for x ∈ WT and β[r, n] a
double-affine real root, xC xsβ[r,n] implies # Inv++

x (sβ[r,n]) = 1. Let us suppose that
x→ xsβ[r,n], and `(xsβ[r,n])− `(x) > 1; we will show that xsβ[r,n] is not a cover of x.
This will be accomplished in Propositions 6.5 and 7.1.

Given double-affine roots β[r, n] and θ[s,m] in ADE type, let us define:
(37) 〈β[r, n], θ[s,m]〉 = σ(r, n)σ(s,m)〈β, θ〉
We then have the following lemma, which one verifies directly using (29).

Lemma 6.4. For double-affine roots β[r, n] and θ[s,m] in ADE type we have
(38) sβ[r,n](θ[s,m]) = θ[s,m]− 〈θ[s,m], β[r, n]〉β[r, n].

Proposition 6.5. Suppose G0 is simply-laced, x→ xsβ[r,n], and `(xsβ[r,n])−`(x) > 1.
Suppose further, there exist some finite root θ such that θ 6= β and a pair (s,m) ∈ Z2

such that:
(39) θ[s,m] ∈ Inv++

x (sβ[r,n])
Then xsβ[r,n] is not a cover of x.

Proof. We claim that
(40) x→ xsθ[s,m] → xsβ[r,n]sθ[s,m] → xsβ[r,n]

is a chain in the Bruhat order.
The relations x → xsθ[s,m] and xsβ[r,n]sθ[s,m] → xsβ[r,n] follow from θ[s,m] ∈

Inv++
x (sβ[r,n]). So we just need to prove xsθ[s,m] → xsβ[r,n]sθ[s,m].
First, we claim that sθ[s,m](β[r, n]) > 0. We know sβ[r,n](θ[s,m]) < 0 and

(41) sβ[r,n](θ[s,m]) = θ[s,m]− 〈θ[s,m], β[r, n]〉β[r, n]
by Lemma 6.4. This implies:
(42) 〈θ[s,m], β[r, n]〉 > 0
By Lemma 6.3, we must have:
(43) 〈θ[s,m], β[r, n]〉 = 1
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So we compute:
sθ[s,m](β[r, n]) = β[r, n]− 〈β[r, n], θ[s,m]〉θ[s,m](44)

= β[r, n]− θ[s,m]
= −sβ[r,n](θ[s,m]) > 0

Here we use the fact that 〈θ[s,m], β[r, n]〉 = 〈β[r, n], θ[s,m]〉.
Let us compute xsβ[r,n]sθ[s,m] = xsθ[s,m]sθ[s,m]sβ[r,n]sθ[s,m] = xsθ[s,m]ssθ[s,m](β[r,n]).

Because we have shown that sθ[s,m](β[r, n]) > 0, xsθ[s,m] → xsβ[r,n]sθ[s,m] if and only
if xsθ[s,m]sθ[s,m](β[r, n])) = x(β[r, n]) is positive; this is exactly our initial hypothesis.

�

Therefore, we are now reduced to the “rank-one” case when x → xsβ[r,n],
`(xsβ[r,n]) − `(x) > 1, and all elements of Inv++

x (sβ[r,n]) are of the form β[s,m] for
some (s,m) ∈ Z2. We will handle this in the next section.

7. The rank-one case
Let us consider x, β, and a pair (r, n) ∈ Z2 as above, and let us suppose that

x(β[r, n]) > 0(45)
`(xsβ[r,n])− `(x) > 1(46)

and all double-affine roots in Inv++
x (sβ[r,n]) are of the form β[s,m] for some (s,m) ∈

Z2. The second condition is equivalent by Theorem 3.4 to:
(47) # Inv++

x (sβ[r,n]) > 1.
To complete the proof of Theorem 6.2, we must prove:

Proposition 7.1. The element xsβ[r,n] is not a cover of x.

Let us first make the following simplifying assumptions:
• w(β) > 0
• σ(r, n) > 0

The other situations are handled by arguments similar to what we present below. We
will divide the proof into the following cases.
Case 1: σ(r, n− 1) = −1
Case 2: n > 0 and β[r, n− 1] ∈ Inv++

x (sβ[r,n])
Case 3: n > 0 and β[r, n− 1] /∈ Inv++

x (sβ[r,n])

Remark 7.2. Supposing that σ(r, n) = 1 and plotting the pairs (r, n) such that
x(β[r, n]) > 0, we get a polyhedral region corresponding to the condition:

σ(r − a, n− b+ `(r − a)) > 0(48)
Case 2 above corresponds to the “interior” of that region, while Cases 1 and 3 corre-
spond to the “boundary” of that region.

We will use the following, which is evident from (34):

Lemma 7.3. For all i, j > 0:
(49) x(β[r + i, n+ j]) > 0.

7.1. Case 1: σ(r, n− 1) = −1. There are three subcases.

7.1.1. Subcase: r = 0. This subcase does not occur because r = 0 implies that n = 0
and that # Inv++

x (sβ[r,n]) = 1.
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7.1.2. Subcase: r > 0. In this subcase n = 0. We must have
(50) β[r − 1, n] ∈ Inv++

x (sβ[r,n])

because otherwise # Inv++
x (sβ[r,n]) = 1. In this case,

(51) x→ xsβ[r−1,n] → xsβ[r−1,n]sβ[−1,n] → xsβ[r,n]

is a three-term chain.

Proof. For the first term of the chain, we have x(β[r − 1, n]) > 0 by assumption.
For the second term, we compute

(52) xsβ[r−1,n](β[−1, n]) = x(β[2r − 1, n]) > 0
because of Lemma 7.3 and the fact that r > 1.

Finally, for the third term, we compute:
xsβ[r−1,n]sβ[−1,n](β[0, n]) = xsβ[r−1,n]sβ[−1,n]sβ[0,n](−β[0, n])(53)

= xsβ[r,n](−β[0, n]) = x(β[2r, n]) > 0. �

7.1.3. Subcase: r < 0. Note that this subcase implies that n = 1. Let us state some
lemmas.

Lemma 7.4. In this subcase, if
(54) # Inv++

x (sβ[r,1]) > 1
then either
(55) β[r − 1, 1] ∈ Inv++

x (sβ[r,1])
or:
(56) β[2r, 2] ∈ Inv++

x (sβ[r,1]).

Lemma 7.5. Let us make the assumptions of this subcase. Suppose
(57) # Inv++

x (sβ[r,1]) > 1
and:
(58) β[r − 1, 1] /∈ Inv++

x (sβ[r,1])
Then r = −1, and by the previous lemma:
(59) β[−2, 2] ∈ Inv++

x (sβ[r,1]).

Subsubcase: β[r − 1, 1] ∈ Inv++
x (sβ[r,1]). Let us choose c > 0 to be the largest integer

such that:
(60) x(β[r − c, 1]) > 0
Then we claim that
(61) x→ xsβ[r−c,1] → xsβ[r−c,1]sβ[r,1] → xsβ[r,1]

is a three-term chain.

Proof. We have x(β[r − c, 1]) > 0 by construction.
For the second term, we have

(62) xsβ[r−c,1](β[r, 1]) = x(−β[r − 2c, 1]) > 0
because 2c > c.

For the third term, we have
(63) xsβ[r,1] = xsβ[r−c,1]sβ[r,1]sβ[r+c,1]
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and we compute

xsβ[r−c,1]sβ[r,1](β[r + c, 1]) = xsβ[r−c,1]sβ[r,1]sβ[r+c,1](−β[r + c, 1])(64)
= xsβ[r,1](−β[r + c, 1]) = x(β[r − c, 1])

which is positive by construction. �

Subsubcase: r = −1, β[r − 1, 1] /∈ Inv++
x (sβ[r,1]), and β[−2, 2] ∈ Inv++

x (sβ[r,1]).
By the assumption that β[−2, 2] ∈ Inv++

x (sβ[r,1]), we also have:

(65) β[0, 0] ∈ Inv++
x (sβ[r,1])

In this subsubcase, we claim that

(66) x→ xsβ[0,0] → xsβ[0,0]sβ[1,−1] → xsβ[−1,1]

is a three-term chain.

Proof. We have x(β[0, 0]) > 0 by assumption.
For the second term, we calculate:

(67) xsβ[0,0](β[1,−1]) = x(β[−1, 1]) > 0.

For the third term, we have

(68) xsβ[0,0]sβ[1,−1]sβ[0,0] = xsβ[−1,1]

and:

�(69) xsβ[0,0]sβ[1,−1](β[0, 0]) = xsβ[−1,1](−β[0, 0]) = x(β[−2, 2]) > 0.

7.2. Case 2: n > 0 and β[r, n− 1] ∈ Inv++
x (sβ[r,n]). In this case,

(70) x→ xsβ[r,n−1] → xsβ[r,n−1]sβ[r,−1] → xsβ[r,n]

is a chain in the Bruhat order.

Proof. Because x(β[r, n− 1]) > 0, we have:

(71) x→ xsβ[r,n−1].

For the second term of the chain, we compute

(72) xsβ[r,n−1](β[r,−1]) = x(β[r, 2n− 1)]) > 0

because n > 1 and Lemma 7.3.
Finally, for the third term of the chain, we compute that

(73) xsβ[r,n−1]sβ[r,−1]sβ[r,0] = xsβ[r,n]

and:

xsβ[r,n−1]sβ[r,−1](β[r, 0]) = xsβ[r,n−1]sβ[r,−1]sβ[r,0](−β[r, 0])(74)
= xsβ[r,n](−β[r, 0]) = x(β[r, 2n]) > 0. �
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7.3. Case 3: n > 0 and β[r, n− 1] /∈ Inv++
x (sβ[r,n]). For this to occur, what fails is

that:
(75) x(β[r, n− 1]) < 0
Equivalently, by (34),
(76) σ(r, n− 1) · σ(r − a, n− 1− b+ `(r − a)) < 0
However, since
(77) x(β[r, n]) > 0
we have:
(78) σ(r, n) · σ(r − a, n− b+ `(r − a)) > 0
By our assumption that σ(r, n) > 0, we have σ(r − a, n− b+ `(r − a)) = 1.

Because Case 1 handles σ(r, n−1) = −1, we may assume σ(r, n−1) = σ(r, n) = 1.
With this assumption, we have
(79) σ(r − a, n− 1− b+ `(r − a)) = −1
and
(80) σ(r − a, n− b+ `(r − a)) = +1

Proposition 7.6. Given the assumptions of this case, Inv++
x (sβ[r,n]) lies on the line

of slope −` passing through (r, n).

Proof. Case: r − a = 0. This case does not happen because:
(81) # Inv++

x (sβ[r,n]) = 1.
Case: r − a > 0. In this case, we must have:
(82) n− 1− b+ `(r − a) = −1.
That is, the line through (r, n) and (a, b) has slope −`. Using the involution on
Inv++

x (sβ[r,n]), we see that β[r̃, ñ] ∈ Inv++
x (sβ[r,n]) only if (r̃, ñ) lies on this line passing

through (r, n) and (a, b), which has slope −`.
Case: r − a < 0. In this case, we must have
(83) n− 1− b+ `(r − a) = 0.

First, let us consider when b > 0. Therefore, n = 1+ b− `(r−a). Because r−a < 0
and b > 0, we therefore have n > `. Hence β[r + 1, n− `] ∈ Inv++

x (sβ[r,n]).
Let us now consider when b < 0. Suppose β[r̃, ñ] ∈ Inv++

x (sβ[r,n]). Using the
involution on Inv++

x (sβ[r,n]), we may assume:
(84) ñ− n+ `(r̃ − r) 6 0
Because
(85) n− 1− b+ `(r − a) = 0
we have:
(86) ñ− 1− b+ `(r − a) + `(r̃ − r) 6 0.
Therefore:
(87) ñ− 1− b+ `(r̃ − a) 6 0.

Because
(88) − `(r̃ − a) > ñ− 1− b

Algebraic Combinatorics, Vol. 2 #2 (2019) 212



On the double-affine Bruhat order

and ñ > 0 and b < 0, we have
(89) − `(r̃ − a) > 0
which implies:
(90) r̃ − a > 0

Requiring x(β[r̃, ñ]) > 0 is equivalent to:
(91) σ(r̃ − a, ñ− b+ `(r̃ − a)) > 0.

So if r̃ − a < 0, we must have
(92) ñ− b+ `(r̃ − a) > 0
which implies (using (86)) that
(93) ñ− b+ `(r̃ − a) = 1.

If r̃ − a = 0, then we have to handle this case separately. Then we have
(94) 0 6 ñ− b 6 1
which implies ñ = 0 and b = 1. We therefore still have:
(95) ñ− b+ `(r̃ − a) = 1.
Using (85), we conclude
(96) ñ+ `r̃ = n+ `r

that is, (r̃, ñ) lies on the line of slope −` passing through (r, n). �

Lemma 7.7. Suppose σ(r, n) > 0 and x(β[r, n]) > 0. Suppose d > 0 and σ(r + d,
n− d`) > 0. Then x(β[r + d, n− d`]) > 0.

Let c be the largest integer such that x(β[r + c, n − c`]) > 0; by Proposition 7.6
and (47) we have c > 1. By Lemma 7.7, β[r + c, n− c`] ∈ Inv++

x (sβ[r,n]). Then:
(97) x→ xsβ[r+c,n−c`] → xsβ[r,n]sβ[r+c,n−c`] → xsβ[r,n]

is a three-term chain.

Proof. For the first term, we have x(β[r + c, n− c`]) > 0 by assumption.
For the second term, we calculate:

(98) xsβ[r,n]sβ[r+c,n−c`] = xsβ[r+c,n−c`]sβ[r+c,n−c`]sβ[r,n]sβ[r+c,n−c`]

Because of our conditions defining c, we have:
sβ[r+c,n−c`](β[r, n]) = −σ(r, n)σ(r + 2c, n− 2c`)β[r + 2c, n− 2c`](99)

= β[r + 2c, n− 2c`].
Therefore

(100) xsβ[r+c,n−c`] → xsβ[r,n]sβ[r−c,n−c`]

if and only if:
(101) xsβ[r+c,n−c`](β[r + 2c, n− 2c`]) > 0.
We have sβ[r+c,n−c`](β[r + 2c, n− 2c`]) > 0, hence:
(102) xsβ[r+c,n−c`](β[r + 2c, n− 2c`]) = x(β[r, n]) > 0.

For the third-term, we need:
(103) xsβ[r,n](β[r − c, n− c`]) < 0.

But this follows from β[r − c, n− c`] ∈ Inv++
x (sβ[r,n]). �
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This completes the proof of Proposition 7.1 and hence Theorem 6.2.

8. Further questions
Although we have developed the Bruhat order on WT and the length function in
a combinatorial fashion, we expect both to have geometric and group-theoretic rel-
evance. In this section we will describe some questions and conjectures about this
perspective.

Let G be an untwisted affine Kac–Moody group with positive and negative Borel
subgroups B and B−, and let k be a finite field. Likely we can relax these hypothesis
to G being general Kac–Moody and k being an arbitrary field, but we retain these
assumptions so that we can directly cite [3]. Let F = k((π)), the field of formal
Laurent series over k, and let O = k[[π]] be the ring of integers in F . Let G = G(F ),
let K = G(O), and let I = {g ∈ K | g ∈ B(k) mod π}. Let G+ ⊂ G(F ) be the
Cartan semi-group, i.e. the locus where the Cartan decomposition holds (see [3, 6]
for the details). Furthermore we have a set-theoretic (not homomorphic) embedding
WT ⊂ G+ that is uniquely specified up to right multiplication by I. Then we have
the following decomposition of G+ (see [3, Proposition 3.4.2 and Lemma 3.4.3]).

Proposition 8.1. We have an equality of subsets:

(104) G+ =
⊔

x∈WT

IxI

Rephrasing this, the I-orbits on G+/I are exactly indexed by WT .

8.1. Double-affine Schubert cells. If we momentarily consider the single-affine
case of G being finite type, then G+/I is precisely the k-points of the (single) affine
flag variety, and the I orbits on G+/I are precisely the (single) affine Schubert cells.
And the (single) affine Bruhat order exactly describes the closure order on affine
Schubert cells.

So following that, we will define G+/I to be the k-points of the double-affine flag
variety and we will define the I orbits on G+/I to be the double-affine Schubert cells.
Following the single-affine heuristic, let us make the following definition.

Definition 8.2. Let us define the closure of a double-affine Schubert cell Ix · I/I by:

(105) Ix · I/I =
⊔
y6x

Iy · I/I

We will call sets of the form Ix · I/I double-affine Schubert varieties.

Question 8.3. Can we define G+/I as an algebro-geometric object so that for-
mula (105) coincides with the closure in the Zariski topology?

8.2. Transverse slices. One can easily see that Ix · I/I is an infinite set for most
x ∈ WT , so there is no chance that Ix · I/I is equal to the k-points of a finite-type
k-scheme. Moreover, because the Bruhat order on WT is not bounded below, it seems
unlikely that Ix · I/I is an ind-scheme of ind-finite type. Unfortunately, it seems that
giving G+/I a geometric structure will be of comparable difficulty to the problem of
giving a geometric structure to the semi-infinite flag variety [4].

However, what seems more reasonable is to work with a transverse slice to a given
double-affine Schubert variety Iy · I/I inside another Ix · I/I, where y 6 x. To define
these objects (at the level of k-points), we need to introduce two other subgroups of
G. Let K∞ = G(k[π−1]) and let I∞ = {g ∈ K∞ | g ∈ B−(k) mod π−1}.
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Definition 8.4. Let x, y ∈ WT . Then let us define the transverse slice to Iy · I/I
inside Ix · I/I as:

(106) Ix · I/I ∩ I∞y · I/I.

Conjecture 8.5. Let x, y ∈WT . Then

(107) Ix · I/I ∩ I∞y · I/I 6= ∅

if and only if x 6 y.

We can also drop the closure, and make the following group theoretic conjecture

Conjecture 8.6. Let x, y ∈WT . Then
(108) Ix · I/I ∩ I∞y · I/I 6= ∅

if and only if x 6 y.

A positive answer to this conjecture would give a purely group-theoretic definition
of the Bruhat order without having to discuss closures.

Question 8.7. Let x 6 y. Give the transverse slice Ix · I/I ∩ I∞y · I/I the structure
of a finite-type affine scheme.

Following the situation in the single-affine case, we expect the transverse slice
Ix · I/I ∩ I∞y · I/I to have dimension `(y) − `(x). Unfortunately, we do not cur-
rently know how to make that precise. However, we can make the following precise
conjecture.

Conjecture 8.8. Let x 6 y. Then there exists a polynomial Rx,y ∈ Z[v] of degree
`(y)− `(x) independent of k such that
(109) #(Ix · I/I ∩ I∞y · I/I) = Rx,y(q)
where q is the cardinality of k.

8.3. 2-dimensional phenomena. Because an untwisted affine Kac–Moody group is
itself constructed as a central extension of a loop group of a finite-type group, the p-
adic group G is a sort of double loop group. However, the two loops play very different
roles in the discussion above. So a natural question is to understand G+/I from a
purely 2-dimensional point of view where the two loops play symmetric roles.

In the single-affine case, the loop group perspective gives rise to a well-understood
relationship between the affine flag variety and spaces of bundles on an algebraic
curve. Therefore, in the double-affine case, we expect there should be a relationship
with bundles on an algebraic surface.

Question 8.9. Describe G+/I and/or the transverse slices Ix · I/I ∩ I∞y · I/I in
terms of bundles on an algebraic surface.

If one considers the double-affine Grassmannian G+/K instead of G+/I, a candi-
date definition for transverse slices to K-orbit closures is given in terms of bundles on
an algebraic surface by Braverman and Finkelberg in [2]. Even in that case, however,
a precise bijection with the group-theoretic slice is unknown.

On a combinatorial level, this double loop phenemonena manifests itself in the fact
that WT contains two copies of the coroot lattice of the finite-type group. The first
copy lies in W , and the second copy arises because the Tits cone T roughly looks like
the coroot lattice times the semi-group of natural numbers. Therefore 2-dimensional
phenonemena from this point of view would be any non-trivial symmetry arising from
interchanging these two lattices.
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8.4. Some combinatorial questions.

8.4.1. Deodhar’s inequality. Recall that ∆̃+ denotes the set of positive double-affine
real roots.

Conjecture 8.10. Suppose x, y, z ∈WT with x 6 y 6 z. Then we have the following
inequality:
(110) #{β[n] ∈ ∆̃+ | x 6 ysβ[n] 6 z} > `(z)− `(x).

In finite and single-affine cases, the above inequality is a conjecture of Deodhar that
has since been proved by many authors. Although the statement is purely combina-
torial, many of the proofs are intimately related to singularities of Schubert varieties
and transverse slices. In our double-affine situation, we hope that a proof of this
conjecture will shed some light on the geometry of transverse slices.

8.4.2. Generalizing Coxeter group theory. The theory of Coxeter groups and Bruhat
orders is very rich. Although we are slowly developing analogues of many results for
WT and its Bruhat order, there are still many Coxeter-theoretic results that have not
yet been generalized (see the book by Björner and Brenti [1] for a nice exposition of
many of these results). Below we list some problems that we think would be useful
generalizations.

• Develop an analogue of reduced expressions and the subword criterion for the
Bruhat order.

• Develop weak order.
• Develop a theory of Poincaré series.
• Develop a notion of parabolic sub-semigroups.
• Prove shellability results.
• Classify short intervals.
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