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A bijective proof of Macdonald’s reduced
word formula

Sara C. Billey, Alexander E. Holroyd & Benjamin J. Young

Abstract We give a bijective proof of Macdonald’s reduced word identity using pipe dreams
and Little’s bumping algorithm. This proof extends to a principal specialization due to Fomin
and Stanley. Such a proof has been sought for over 20 years. Our bijective tools also allow us to
solve a problem posed by Fomin and Kirillov from 1997 using work of Wachs, Lenart, Serrano
and Stump. These results extend earlier work by the third author on a Markov process for
reduced words of the longest permutation.

1. Introduction
Macdonald gave a remarkable formula connecting a weighted sum of reduced words for
a permutation π with the number of terms in a Schubert polynomial Sπ(x1, . . . , xn).
For a permutation π ∈ Sn, let `(π) be its inversion number and let R(π) denote the
set of its reduced words. (See Section 2 for definitions.)

Theorem 1.1 (Macdonald [33, (6.11)]).Given a permutation π ∈ Sn with `(π) = p,
one has
(1)

∑
(a1,a2,...,ap)∈R(π)

a1 · a2 · · · ap = p! Sπ(1, . . . , 1).

For example, the permutation [3, 2, 1] ∈ S3 has 2 reduced words, R([3, 2, 1]) =
{(1, 2, 1), (2, 1, 2)}. The inversion number is `([3, 2, 1]) = 3, and the Schubert poly-
nomial Sπ(x1, x2, x3) is the single term x2

1x2. We observe that Macdonald’s formula
holds: 1 · 2 · 1 + 2 · 1 · 2 = 3! · 1.

In this paper, we give a bijective proof of Theorem 1.1. Such a proof has been sought
for over 20 years. It has been listed as an open problem in both [11] and [45]. Fomin
and Sagan have stated that they have a bijective proof, but that it is unpublished
due to its complicated nature; see [11]. Moreover, we give several generalizations as
discussed below. Our proof builds on the work of the third author on a Markov process
on reduced words for the longest permutation [49].

The Schubert polynomial Sπ can be expressed as a sum over reduced pipe dreams
(or RC graphs) corresponding to π, and its evaluation at (1, . . . , 1) is simply the
number of such pipe dreams. (See Section 2 for definitions, and [27, 3, 12, 10, 1] for
history and proofs.) Thus, the right side of (1) is the number of pairs (c, D), where
c = (c1, . . . , cp) is a word with 1 6 ci 6 i for each i, and D is a pipe dream for π.
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Figure 1. An example of the bijection M for π = [1, 4, 3, 2] where
the pair (a,b) is mapped to (c, D) with a = (2, 3, 2), b = (2, 1, 2),
c = (1, 1, 2), and D is the pipe dream in the top left corner of the
picture. Its transition chain is Y (D) = ((1, 3), (2, 2), (2, 2), (1, 1)).
Each vertical pair in the picture is also demonstrating the bijection
for a different permutation; note the permutations on the wires agree
on the vertical pairs.

A word c with this property is sometimes called a sub-staircase word. The left side
is the number of pairs (a,b) where a ∈ R(π) and b is a word satisfying 1 6 bi 6 ai
for each i = 1, . . . , p. Our bijection is between pairs (a,b) and (c, D) that satisfy
these conditions. The bijection and its inverse are presented in the form of explicit
algorithms. Moreover, both maps are uniform over the permutation π in the sense
that they have natural descriptions that explicitly involve only (a,b) (respectively,
(c, D)), and not π (although of course π can be recovered from a or D). Indeed, if
we interpret permutations π ∈ Sn as permutations of Z that fix all but finitely many
elements, then our maps do not even explicitly involve n.

The outline of the bijection is quite simple given some well-known properties of
Schubert polynomials, together with the bumping algorithm for reduced words. The
bumping algorithm is an important tool for studying reduced words, originally in-
troduced and developed by Little [31] and further studied by Garsia in [13]. These
properties and objects will be defined in Section 2.

In the first step, we give a modification of Little’s bumping algorithm that also
acts on pipe dreams, and use it to give a bijective interpretation to the Lascoux–
Schützenberger transition equation for Schubert polynomials. Essentially the same
construction has been given by Buch [20, p. 11]. The key idea is to iteratively ap-
ply the corresponding transition map to D until we reach the empty pipe dream,
while recording a sequence of instructions that encode which inversions/insertions are
needed in order to reverse the process. We call the resulting sequence a transition
chain, denoted Y (D).

Next we apply the bumping algorithm on reduced words and their wiring diagrams,
using the reverse of the transition chain Y (D) to provide instructions. The word c
tells us where to insert new crossings; when adding the ith new crossing it should
become the cith entry in the word. The height of the added crossing is determined
by placing its feet on the wire specified by the corresponding step of the transition
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chain. Each new crossing is immediately pushed higher in value, initiating a Little
bump. The result is a reduced wiring diagram for π corresponding to a reduced word
a = (a1, a2, . . . , ap). If we keep track of how many times each column is pushed in the
bumping processes, we obtain a word b = (b1, . . . , bp) of the same length such that
ai > bi for all i, as required. See Figure 1 for an illustration of the algorithm. It turns
out that each step is reversible.

Our bijective proof extends to a q-analog of (1) that was conjectured by Macdonald
and subsequently proved by Fomin and Stanley. To state this formula, let q be a
formal variable. Define the q-analog of a positive integer k to be [k] = [k]q := 1 +
q + q2 + · · · + qk−1. The q-analog of the factorial k! is defined to be [k]! = [k]q! :=
[k][k − 1] · · · [1]. (We use the blackboard bold symbol ! to distinguish it from the
ordinary factorial, and the symbol q for the formal variable to avoid notation conflicts.)
For a = (a1, a2, . . . , ap) ∈ R(π), define the co-major index to be the sum of the ascent
locations:

comaj(a) :=
∑

16i<p:
ai<ai+1

i.

Theorem 1.2 (Fomin and Stanley [12]).Given a permutation π ∈ Sn with `(π) = p,
one has

(2)
∑

a=(a1,a2,...,ap)∈R(π)

[a1] · [a2] · · · [ap] qcomaj(a) = [p]!Sπ(1, q, q2, . . . , qn−1).

Continuing with the example π = [3, 2, 1], we observe that the q-analog formula
indeed holds: [1] · [2] · [1]q+[2] · [1] · [2]q2 = (1+q)q+(1+q)2q2 = (1+q+q2)(1+q)q =
[3]! ·S[3,2,1](1, q, q2).

In 1997, Fomin and Kirillov published a further extension to Theorem 1.2. They
interpreted the right side of the formula in terms of reverse plane partitions, and asked
for a bijective proof. See Theorem 7.2. Using our methods together with results of
Lenart [30], and Serrano and Stump [41, 42], we provide a bijective proof.

We want to comment briefly on how the bijections in this paper were found. We
were fully aware of Little’s bumping algorithm so we hoped it would play a role.
Many details of the exact formulation we describe here were found through extensive
experimentation by hand and by computer. Experimentally, we found the transition
chains to be the key link between a bounded pair and its image under M . As the
proof was written up, we chose to suppress the dependence on the transition chains
in favor of clearer descriptions of the maps.

The outline of the paper is as follows. In Section 2, we give the notation and back-
ground information on reduced words, Schubert polynomials, Little bumps, etc. The
key tool for our bijection comes from the Transition Equation for Schubert polyno-
mials. We give a bijective proof of this equation in Section 3. In Section 4, we extend
the Transition Equation to bounded pairs, by which we mean pairs (a,b) satisfy-
ing 1 6 bi 6 ai, as discussed above. In Section 5, we spell out the main bijection
proving Theorem 1.1. The principal specialization of Macdonald’s formula given in
Theorem 1.2 is described in Section 6, along with some interesting properties of the
co-major index on reduced words. In Section 7, we discuss the Fomin–Kirillov theo-
rems and how our bijection is related to them. Finally, in Section 8 we discuss some
intriguing open problems and other formulas related to Macdonald’s formula.
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2. Background
2.1. Permutations. We recall some basic notation and definitions relating to per-
mutations which are standard in the theory of Schubert polynomials. We refer the
reader to [27, 33, 34] for more information.

Let Sn be the symmetric group of all permutations π = [π(1), . . . , π(n)] of
{1, . . . , n}. An inversion of π ∈ Sn is an ordered pair (i, j), such that i < j and
π(i) > π(j). The length `(π) is the number of inversions of π. We write tij for the
transposition which swaps i and j, and we write si = ti,i+1 (1 6 i 6 n − 1). The si
are called simple transpositions; they generate Sn as a Coxeter group. Composition
of permutations is defined via πτ(i) := π(τ(i)).

An alternate notation for a permutation π ∈ Sn is its Lehmer code, or simply its
code, which is the n-tuple

(L(π)1, L(π)2, . . . , L(π)n)

where L(π)i denotes the number of inversions (i, j) with first coordinate i. Note,
0 6 L(π)i 6 n− i for all 1 6 i 6 n. The permutation π is said to be dominant if its
code is a weakly decreasing sequence.

2.2. Reduced words. A word is a k-tuple of integers. The ascent set of a word
a = (a1, . . . , ak) is {i : ai < ai+1} ⊆ {1, . . . , k − 1}. The descent set of a is the
complement.

Let π ∈ Sn be a permutation. A word for π is a word a = (a1, . . . , ak) such that
1 6 ai < n and

sa1sa2 . . . sak = π.

If k = `(π), then we say that a is a reduced word for π. The reduced words are precisely
the minimum-length ways of representing π in terms of the simple transpositions. For
instance, the permutation [3, 2, 1] ∈ S3 has two reduced words: (1,2,1) and (2,1,2). The
empty word () is the unique reduced word for the identity permutation [1, 2, . . . , n] ∈
Sn.

Write R(π) for the set of all reduced words of the permutation π. The set R(π)
has been extensively studied, in part due to interest in Bott–Samelson varieties and
Schubert calculus. Its size has an interpretation in terms of counting standard tableaux
and the Stanley symmetric functions [27, 31, 44].

Define the wiring diagram for a word a = (a1, . . . , ak) as follows. First, for 0 6 t 6
k, define the permutation πt ∈ Sn at time t by

πt = sa1sa1 · · · sat .

So π0 is the identity, while πk = π. The i-wire of a is defined to be the piecewise linear
path joining the points (π−1

t (i), t) for 0 6 t 6 k. We will consistently use “matrix
coordinates” to describe wiring diagrams, so that (i, j) refers to row i (numbered
from the top of the diagram) and column j (numbered from the left). The wiring
diagram is the union of these n wires. See Figure 2 for an example.

For all t > 1, observe that between columns t− 1 and t in the wiring diagram for
a, precisely two wires i and j intersect. This intersection is called a crossing. One can
identify a crossing by its column t. We call at the row of the crossing at column t.
When the word a is reduced, the minimality of the length of a ensures that any two
wires cross at most once. In this case, we can also identify a crossing by the unordered
pair of wire labels that are involved, i.e. the pair {πt(at), πt(at+1)}.

Note that the terms row and column have slightly different meaning when we refer
to a crossing versus a wire. The upper left corner of a wiring diagram is at (1, 0).
When we say a crossing in row i column j it means the intersection of the crossing is
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Figure 2. The wiring diagram for the reduced word
(4, 3, 5, 6, 4, 3, 5) ∈ R([1, 2, 6, 5, 7, 3, 4]) annotated in three dif-
ferent ways: with the intermediate permutations πt, the left-labeling,
and the right-labeling. The crossings in columns 2 and 6 are both at
row 3.

at (i+ 1
2 , j−

1
2 ). When we say wire r is in row i at column j, we mean that πj(i) = r,

so that the r-wire passes through the point (i, j).
Observe that for i < j, wires π(i) and π(j) cross in the wiring diagram for a ∈ R(π)

if and only if π(i) > π(j). This occurs if and only if (i, j) is an inversion of π, which
in turn is equivalent to the wire labels (π(j), π(i)) being an inversion of π−1. Many
of the arguments below depend on the positions of the inversions for π not for π−1.
Reversing any word for π gives a word for π−1. Thus, if we label the wires 1, 2, 3, . . .
in increasing order down the right side of a wiring diagram instead of the left, then
the corresponding wires travel right to left, and appear in the order π−1 down the
left side. Thus, the i-wire and the j-wire cross in the right-labeled wiring diagram for
a ∈ R(w) if and only if (i, j) is an inversion of π.

The wiring diagrams shown on the first row of Figure 1 are all right-labeled wiring
diagrams. For example, the word (1, 3, 2) corresponding to the second wiring diagram
from the left is a reduced word for the permutation [2, 4, 1, 3] = [3, 1, 4, 2]−1.

2.3. Bounded bumping algorithm. Little’s bumping algorithm [31], also known
as a “Little bump”, is a map on reduced words. It was introduced to study the de-
composition of Stanley symmetric functions into Schur functions in a bijective way.
Later, the Little algorithm was found to be related to the Robinson–Schensted–Knuth
map [32] and the Edelman–Greene map [18]; it has been extended to signed permu-
tations [2], affine permutations [25], and the subset of involutions in Sn [17]. The key
building block of our bijective proofs is an enhancement of Little’s algorithm which we
call the bounded bumping algorithm. We describe it below, after setting up notation.
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Definition 2.1. Let a = (a1, . . . , ak) be a word. Define the decrement-push,
increment-push, deletion and insertion of a at column t, respectively, to be

P−
t a = (a1, . . . , at−1, at − 1, at+1, . . . , ak);

P+
t a = (a1, . . . , at−1, at + 1, at+1, . . . , ak);

Dta = (a1, . . . , at−1, at+1, . . . , ak);
I x
t a = (a1, . . . , at−1, x, at, . . . , ak).

In [49], the notation P↑ was used to represent P−, and P↓ was used to represent
P+ based on the direction of a crossing in the wiring diagram.

Definition 2.2. Let a be a word. If Dta is reduced, then we say that a is nearly
reduced at t.

The term “nearly reduced” was coined by Lam [24, Chapter 3], who uses “t-marked
nearly reduced”. Words that are nearly reduced at t may or may not also be reduced;
however, every reduced word a is nearly reduced at some index t. For instance, a
reduced word a of length k is nearly reduced at 1 and at k.

In order to define the bounded bumping algorithm, we need the following lemma,
which to our knowledge first appeared in [31, Lemma 4], and was later generalized to
arbitrary Coxeter systems by Lam and Shimozono using the strong exchange prop-
erty. The statement can also be checked for permutations by considering the wiring
diagram.

Lemma 2.3 ([25, Lemma 21]). If a is not reduced, but is nearly reduced at t, then a
is nearly reduced at exactly one other column t′ 6= t. In the wiring diagram of a, the
two wires crossing in column t cross in exactly one other column t′.

Definition 2.4. In the situation of Lemma 2.3, we say that t′ forms a defect with t
in a, and write Defectt(a) = t′.

A crucial point is that the definitions of “reduced”, “nearly reduced”, and the Defect
map make sense even if we are given only the word a, but not the corresponding
permutation π ∈ Sn, nor even its size n. Indeed, we can take n to be any integer
greater than the largest element of a; it is easily seen that the three notions coincide
for all such n. An alternative, equivalent viewpoint is to interpret all our permutations
as permutations of Z+ := {1, 2, . . .} that fix all but finitely many elements; we can
abbreviate such a permutation π = [π(1), π(2), . . .] to π = [π(1), . . . , π(n)] where n is
any integer such that all elements greater than n are fixed. Let S∞ be the set of all
such permutations on Z+.

Our central tool is a modification of the bumping algorithm introduced by Little
in [31]. We call our modified version the bounded bumping algorithm. This algorithm
will be used twice in the proof of Theorem 1.1, in two different contexts.

Definition 2.5.A word b is a bounded word for another word a if the words have
the same length and 1 6 bi 6 ai for all i. A bounded pair (for a permutation π) is
an ordered pair (a,b) such that a is a reduced word (for π) and b is a bounded word
for a. Let BoundedPairs(π) be the set of all bounded pairs for π.

For example, for the simple transposition sk, the set is
BoundedPairs(sk) =

{(
(k), (i)

)
: 1 6 i 6 k

}
.

Algorithm 2.6 (Bounded Bumping Algorithm).
Input: (a,b, t0, ε), where a is a word that is nearly reduced at t0, and b is a bounded
word for a, and ε ∈ {−,+} = {−1,+1} is a direction.
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Figure 3. An example of the sequence of wiring diagrams for the
words a′ which appear when running the bounded bumping algorithm
on input a = (4, 3, 5, 6, 4, 3, 5), b = (2, 2, 2, 2, 2, 2, 2), t0 = 4, and ε =
−. The arrows indicate which crossing will move in the next step.
After the first step, row 7 contains a wire with no swaps, which is
therefore not shown.

Output: Bε
t0(a,b) = (a′,b′, i, j, outcome), where a′ is a reduced word, b′ is a bounded

word for a′, i is the row and j is the column of the last crossing pushed in the algo-
rithm, and outcome is a binary indicator explained below.

(1) Initialize a′ ← a, b′ ← b, t← t0.
(2) Push in direction ε at column t, i.e. set a′ ←Pε

ta′ and b′ ←Pε
tb′.

(3) If b′t = 0, return (Dta′,Dtb′,a′t, t, deleted) and stop.
(4) If a′ is reduced, return (a′,b′,a′t, t, bumped) and stop.
(5) Set t← Defectt(a′) and return to step 2.

The principal difference between the above algorithm and Little’s map θr in [31]
is the presence of the bounded word b, which indicates the number of times each
column is allowed to be decremented before being deleted. The stopping rule in step 3
is not present in Little’s algorithm. As discussed above, one consequence is that when
ε = −, our map can never output a word containing a 0: if a push results in a 0 then
it is immediately deleted and the algorithm stops. In contrast, in Little’s original
algorithm, the entire word is instead shifted by +1 in this situation, changing the
permutation (and also stopping, since the word is reduced). Indeed, Little’s bumping
algorithm in the +1 direction on a reduced word a maps to a′ if and only if

B+
j (a,b) = (a′,b′, i, j, bumped)

regardless of the choice of bounded word b for a.
Since this algorithm is the main tool used in the paper, we will give several exam-

ples. In Figure 3, we show the sequence of wiring diagrams for the words a′ in the
algorithm when it is run on the input

a = (4, 3, 5, 6, 4, 3, 5), b = (2, 2, 2, 2, 2, 2, 2), t0 = 4, and ε = −.
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The result is

B−4 (a,b) =
(
(3, 2, 4, 5, 4, 3, 4), (1, 1, 1, 1, 2, 2, 1), 2, 2, bumped

)
.

Note that Little’s bumping algorithm maps (4, 3, 5, 6, 4, 3, 5) to (3, 2, 4, 5, 4, 3, 4) using
the exact same sequence of pushes as in Figure 3 as expected since outcome = bumped.

On the other hand, with input b̃ = (2, 2, 2, 2, 2, 2, 1) the bounded bumping algo-
rithm stops after the third push in the sequence because b̃7 = 1, so

B−4 (a, b̃) =
(
(4, 3, 4, 5, 4, 3), (2, 2, 1, 1, 2, 2), 4, 7, deleted

)
.

Another good example for the reader to consider is when the input word a is a
consecutive sequence such as

B−1
(
(6, 5, 4, 3), (3, 3, 3, 3)

)
=
(
(5, 4, 3, 2), (2, 2, 2, 2), 2, 4, bumped

)
.

We now make some remarks about this algorithm. The initial input word a may or
may not be reduced, but, if we reach step 5 then a′ is always not reduced but nearly
reduced at t, so the Defect map makes sense.

Suppose that the input word a is a word for a permutation π ∈ Sn. Pushes may
in general result in words with elements outside the interval [1, n− 1]. Specifically, in
the case ε = +, step 2 may result in a word a′ with an element a′t = n. As mentioned
above, this can be interpreted as a word for a permutation in Sn+1. In fact, in this
case the algorithm will immediately stop at step 4, since this new word is necessarily
reduced. On the other hand, in the case ε = −, if step 2 ever results in a word with
a′t = 0, we must have b′t = 0 as well, so the algorithm will immediately stop at step 3,
and the 0 will be deleted. Note that it is also possible for a non-zero element of a to
be deleted at step 3, since b′i < a′i is possible. Thus, the bounded bumping algorithm
clearly terminates in a finite number of steps.

The proposition below collects several technical facts about the bounded bumping
algorithm that are analogous to facts proved by Little about his algorithm [31]. These
statements may be checked by essentially the same arguments as in [31] – the inclusion
of b has scant effect here.

Proposition 2.7. Let a be a word that is nearly reduced at t, let b be a bounded word
for a, and let ε ∈ {+,−}. Assume Bε

t (a,b) = (a′,b′, i, j, outcome).
(1) Suppose a is reduced. Then, Algorithm 2.6 is reversible in the sense that

we can recover the inputs by negating the direction ε. More specifically, if
outcome = deleted, then ε = −1 and B−εj (I i

j a′,I 0
j b′) = (a,b,at, t, bumped);

if outcome = bumped, then B−εj (a′,b′) = (a,b,at, t, bumped).
(2) If a ∈ R(π), then Dta ∈ R(πtk,l), where (k < l) is the inversion of π whose

wires cross in column t of the right-labeled wiring diagram for a. If outcome =
bumped, then a′ ∈ R(πtk,ltx,y) where {x < y} is the crossing in column j of
the word a′ for πtk,ltx,y. Furthermore, if ε = +, then l = x. If ε = −, then
k = y.

(3) Suppose Dja ∈ R(ν). After every iteration of step 2 in the bounded bumping
algorithm computing Bε

t (a,b), the pair (Dta′,Dtb′) is a bounded pair for ν.
In particular, if outcome = deleted, then a′ ∈ R(ν).

(4) If outcome = bumped, then the input and output words a and a′ have the
same ascent set. If outcome = deleted, then the ascent set of I i

j (a′) is the
same as the ascent set of a.

Note that in items (3) and (4) above, the word a is not necessarily reduced.
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Figure 4. Left: a reduced pipe dream D for π = [3, 1, 4, 6, 5, 2] =
[2, 6, 1, 3, 5, 4]−1. The weight is xD = x3

1x2x3x5. Middle: the reading
order for the crossings, with numbers indicating position in the order.
The resulting sequences of row numbers and column numbers are
iD = (1, 1, 1, 2, 3, 5) and jD = (5, 2, 1, 2, 2, 1) respectively. Right: the
right-labeled wiring diagram of the associated reduced word rD =
(5, 2, 1, 3, 4, 5) ∈ R(π).

2.4. Pipe Dreams and Schubert Polynomials. Schubert polynomialsSπ for π ∈
Sn are a generalization of Schur polynomials invented by Lascoux and Schützenberger
in the early 1980s [27]. They have been widely used and studied over the past 30 years.
An excellent summary of the early work on these polynomials appears in Macdonald’s
notes [33]; see Manivel’s book [34] for a more recent treatment.

A pipe dream D is a finite subset of Z+ × Z+. We will usually draw a pipe dream
as a modified wiring diagram as follows. Place a + symbol at every point (i, j) ∈ D;
place a pair of elbows � at every other point (i, j) ∈ (Z+ × Z+) r D, where again
we use matrix-style coordinates. This creates wires connecting points on the left side
of the diagram to points on the top. If the wires are numbered 1, 2, 3, . . . down the
left side, then the corresponding wires reading along the top of the diagram from left
to right form a permutation π of the positive integers that fixes all but finitely many
values. We call π−1 the permutation of D following the literature.

We call the elements of a pipe dream D ⊂ Z+×Z+ crossings or occupied positions,
and the elements (i, j) of Z+ × Z+ rD unoccupied positions. Each crossing involves
two wires, which are said to enter the crossing horizontally and vertically.

Following the terminology for reduced words, we say that D is reduced if π is the
permutation of D and `(π) = |D|. We write RP(π) for the set of all reduced pipe
dreams for π. Two wires labeled i < j cross somewhere in D ∈ RP(π) if and only if
(i, j) is an inversion of π. Observe that the smaller labeled wire necessarily enters the
crossing horizontally in a reduced pipe dream.

As mentioned earlier, we can identify the permutation of a pipe dream with one in
Sn, where all elements greater than n are fixed. We only need to draw a finite number
of wires in a triangular array to represent a pipe dream since for all large enough
wires there are no crossings. See Figure 4 for an example.

The weight of a pipe dream D is given by the product over row numbers of the
crossings

xD :=
∏

(i,j)∈D

xi

where x1, x2, . . . are formal variables. The Schubert polynomial can be defined as a
generating function for weighted reduced pipe dreams as follows.
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Definition 2.8. The Schubert polynomial of π ∈ Sn is defined to be

Sπ = Sπ(x1, x2, . . . , xn) :=
∑

D∈RP(π)

xD.

For example, the second row of Figure 1 shows pipe dreams for 5 different per-
mutations. The pipe dream in the middle of the figure is the unique reduced pipe
dream for [2, 3, 1, 4] = [3, 1, 2, 4]−1 so S[2,3,1,4] = x1x2. The pipe dream on the left for
[1, 4, 3, 2] is not the only one. There are 5 pipe dreams for w = [1, 4, 3, 2] in total and
(3) S[1,4,3,2] = x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x2

2x3.

There are many other equivalent definitions of Schubert polynomials [1, 3, 10, 12,
27, 48]. Note that pipe dreams are also called pseudo-line arrangements and RC-
graphs in the literature. See [21, 22] for other geometric and algebraic interpretations
of individual pipe dreams.

The following theorem is an important tool for calculating Schubert polynomials.
It is a recurrence based on the lexicographically (lex) largest inversion (r, s) for π
assuming π 6= id, where as usual an inversion means r < s and π(r) > π(s). Note
that r is the position of the largest descent in π, and s is the largest value such
that π(r) > π(s). If a is a reduced word for π, then there exists a unique column
t0 containing the {r, s}-wire crossing in the right-labeled wiring diagram for a. One
can easily verify that `(πtrs) = `(π)− 1, and hence a is nearly reduced in column t0.
The original proof due to Lascoux and Schützenberger [29] uses Monk’s formula for
computing products of Schubert classes in the cohomology ring of the flag manifold.
See also [33, 4.16]. We give a bijective proof using pipe dreams in the next section.
Theorem 2.9 (Transition Equation for Schubert polynomials [29]). For all permuta-
tions π with π 6= id, the Schubert polynomial Sπ is determined by the recurrence

(4) Sπ = xrSν +
∑
q<r:

`(π)=`(νtqr)

Sνtqr

where (r, s) is the lex largest inversion in π, and ν = πtrs. The base case of the
recurrence is Sid = 1.

Continuing the example above, the lex largest inversion for w = [1, 4, 3, 2] is (3, 4)
so

S[1,4,3,2] = x3S[1,4,2,3] + S[2,4,1,3].

The lex largest inversion for [2, 4, 1, 3] is (2, 4) so
S[2,4,1,3] = x2S[2,3,1,4] + S[3,2,1,4].

If we continue to use the Transition Equation, we find S[3,2,1,4] = x2
1x2, S[2,3,1,4] =

x1x2 and S[1,4,2,3] = x2S[1,3,2,4] + S[3,1,2,4] = x2(x1 + x2) + x2
1. Therefore, we can

rederive (3) via the Transition Equation as well.
Definition 2.10.We define the inversion order ≺ on permutations as follows. Given
π ∈ S∞, let Inv(π) be the ordered list of inversions in reverse lex order. Note, Inv(π)
begins with the lex largest inversion of u. Then, for τ, π ∈ S∞, we say τ ≺ π provided
Inv(τ) < Inv(π) in lex order as lists. For example, Inv([1432]) = ((3, 4), (2, 4), (2, 3))
and Inv([2413]) = ((2, 4), (2, 3), (1, 3)), so [2413] ≺ [1432].
Remark 2.11.All of the permutations on the right hand side of (4) are strictly smaller
than π in inversion order by construction. Furthermore, the permutations on the right
hand side of (4) are in Sn provided π ∈ Sn. Hence there are only a finite number of
terms in the expansion of a Schubert polynomial. We will apply induction over this
finite set in the bijective proofs that follow.
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3. Bijective proof of the Transition Equation
In this section, we give a bijective proof of the Transition Equation for Schubert
polynomials, Theorem 2.9. The Transition Algorithm described here is a key tool for
proving Theorem 1.1. We begin by describing how the bounded bumping algorithm
acts on reduced pipe dreams.

A pipe dream for a permutation π may be interpreted as a bounded pair of a special
type for the same π. To make this more precise, order the crossings in D in the order
given by reading rows from top to bottom, and from right to left within each row. We
call this the reading order on D. We construct three words from the ordered list of
crossings: the row numbers of the crossings iD = (i1, i2, . . . , ip), the column numbers
jD = (j1, j2, . . . , jp) and the diagonal numbers rD = (i1 + j1 − 1, i2 + j2 − 1, . . . , ip +
jp− 1) = jD + iD − 1. Any two of iD, jD, rD suffice to determine D. In this paper, we
will encode D by the biword (rD, jD) departing from the literature which typically
uses (rD, iD).

If D is a pipe dream for π then it is easy to see that rD is a word for π. And
D is reduced if and only if rD is. Furthermore, the column numbers jD always
form a bounded word for rD. Although the bounded pair (rD, jD) determines D,
not every bounded pair corresponds to a pipe dream. In fact, a bounded pair
(a,b) = ((a1, . . . , ap), (b1, . . . , bp)) corresponds to a pipe dream if and only if the
list [(i1, b1), . . . , (ip, bp)] has p distinct elements listed in the reading order, where
ik = ak − bk + 1. Equivalently, (a,b) corresponds to a pipe dream if and only if the
pairs (i1,−b1), . . . , (ip,−bp) are in strictly increasing lex order.

For example, Figure 4 shows the pipe dream D corresponding with reduced word
rD = (5, 2, 1, 3, 4, 5), row numbers iD = (1, 1, 1, 2, 3, 5), and column numbers jD =
(5, 2, 1, 2, 2, 1).

Using the biword (rD, jD) to encode a reduced pipe dream D, we can apply the
bounded bumping algorithm to D in either direction and for any t0 where rD is
nearly reduced. One can observe that the bounded pairs encountered during the steps
of the bounded bumping algorithm do not all encode pipe dreams, but it will turn
out that the departures from “pipe dream encoding status” are temporary, and have
a straightforward structure that will be analyzed in the proof of Lemma 3.1 below.

Lemma 3.1. Let D be a reduced pipe dream and suppose that rD is nearly reduced at
t. Let ε ∈ {+,−} and write

Bε
t (rD, jD) = (a′,b′, i, j, outcome).

Then the bounded pair (a′,b′) also encodes a reduced pipe dream.

Proof. Consider the effect of the bounded bumping algorithm in terms of pipe dreams.
To be concrete, assume ε = −, the case ε = + being similar. Observe that when we
initially decrement-push (rD, jD) in column t, it has the effect of moving the tth
crossing in the reading order on D, say in position (i, j) ∈ D, one column to the
left to position (i, j − 1). If this location is already occupied, (i, j − 1) ∈ D, then
P−
t rD returns a nearly reduced word with identical letters in positions t and t + 1.

The resulting bounded pair does not encode a pipe dream. Then, the next step of the
bounded bumping algorithm will decrement-push at t+ 1. If (i, j − 2) ∈ D also, then
a′ = P−

t+1P
−
t rD will again have duplicate copies of the letter i + j − 1 in positions

t+ 1 and t+ 2 so the next decrement-push will be in position t+ 2, and so on. Note
that since the algorithm decrement-pushes both of the words in the bounded pair in
the same position at each iteration, the entrywise differences a′−b′ = rD− jD agree,
so the original row numbers iD are maintained unless a deletion occurs.
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We can group the push steps along one row so a decrement-push in position (i, j)
pushes all of the adjacent +’s to its left over by one as a stack. Thus, the effect of
the bounded bumping algorithm on the pipe dream amounts to a sequence of such
“stack pushes”. If at the end of a stack push, a + in column 1 of the pipe dream is
decrement-pushed, the bounded bump algorithm terminates by deleting that position
because there will be a 0 in the bounded word. Otherwise, a stack push ends with a
bounded pair that corresponds to a pipe dream, which may or may not be reduced. If
it is reduced, the algorithm stops and returns outcome = bumped. Otherwise, we find
the defect and continue with another stack push in a different row. In either case, the
final bounded pair (a′,b′) encodes a reduced pipe dream. �

Next we give the promised bijective proof of the Transition Equation for Schubert
polynomials using pipe dreams. The bijection we give was independently observed by
Anders Buch [20, p. 11]. The proof will involve several technical steps, Lemmas 3.6
to 3.9, which are stated and proved after the main argument.

Proof of Theorem 2.9. In the case π = id, we have Sπ = 1 so the theorem holds
trivially. Assume π 6= id. Recall ν = πtr,s, and let
(5) U(π) := RP(ν) ∪

⋃
q<r:

`(π)=`(νtqr)

RP(νtqr).

We think of ν = νtr,r so each pipe dream in U(π) is for a permutation of the form
νtq,r with 1 6 q 6 r, though not all such νtq,r necessarily occur.

By definition, the left side of (4) is the sum of xD over all D ∈ RP(π). Similarly,
the right side can be expressed as a sum over all reduced pipe dreams E ∈ U(π). Each
such E contributes either xrxE or xE respectively to the sum on the right side. We
will give a bijection Tπ : RP(π) −→ U(π) that preserves weight, except in the cases
Tπ(D) = E ∈ RP(ν), where the weight will change by xr, so xD = xrx

E .

Algorithm 3.2 (Transition Map). Suppose π 6= id is given, and let (r, s) and ν be
defined as in Theorem 2.9.
Input: D, a non-empty reduced pipe dream for π encoded as the biword (rD, jD).
Output: Tπ(D) = E ∈ U(π).

(1) Let t0 be the unique column containing the {r, s}-wiring crossing in the right-
labeled wiring diagram for rD.

(2) Compute B−t0(rD, jD) = (a′,b′, i, j, outcome).
(3) If outcome = deleted, then we will show in Lemma 3.6 that i = r−1, j = `(π),

and (a′,b′) encodes a pipe dream E ∈ RP(ν) ⊂ U(π). Return E and stop.
(4) If outcome = bumped, then we will show in Lemma 3.7 that (a′,b′) encodes

a pipe dream E ∈ RP(νtqr) for some q < r with `(π) = `(νtqr). Thus,
E ∈ U(π). Return E and stop.

See Example 3.4 below. The inverse map T−1
π (E) again has two cases.

Algorithm 3.3 (Inverse Transition Map). Suppose π 6= id is given, and let (r, s) and
ν be defined as in Theorem 2.9.
Input: E ∈ U(π) a reduced pipe dream encoded by the biword (rE , jE). In particular
E ∈ RP(νtq,r) for some 1 6 q 6 r.
Output: T−1

π (E) = D, a reduced pipe dream for π.
(1) If q = r, then E ∈ RP(ν). Set j ← `(π), g← I r−1

j (rE), h← I 0
j (jE).

(2) If q < r, set g ← rE and h ← jE. Let j be the column containing the
{q, r}-crossing in the right-labeled wiring diagram of rE which must exist since
E ∈ RP(νtq,r) ⊂ U(π).
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(3) Compute B+
j (g,h) = (g′,h′, i′, t, bumped). Here the outcome will always be

bumped since we are applying increment-pushes. Lemma 3.9 below shows that
(g′,h′) encodes a pipe dream D ∈ RP(π).

(4) Return D and stop.

We claim that Tπ is an injection. First note that, by Proposition 2.7(1), the
bounded bumping algorithm is reversible given the column j of the final push and, in
addition, in the case the outcome is deleted, the value i of the letter omitted. Thus,
to prove injectivity, let E ∈ U(π), then E ∈ RP(νtq,r) for some q 6 r. We need to
show i and j can be determined from q.

If q = r, then the final push in the bounded bumping algorithm was in the last
position so i = r − 1 and j = `(π). If q < r then (q, r) is an inversion in πtr,stq,r.
Lemma 3.7 shows that j is determined by the unique column of the right-labeled
wiring diagram of rE containing the {q, r}-wire crossing which must exist since it
corresponds to an inversion. Thus, T−1

π Tπ(D) = D so if Tπ(D) = E = Tπ(D′) then
D = D′.

Similarly, for all E ∈ U(π) we have TπT−1
π (E) = E so Tπ is surjective. Therefore,

Tπ is a bijection.
Finally, we show that Tπ is weight preserving. Say D ∈ RP(π) and Tπ(D) =

(E, (q, r)). Recall that if the row numbers iD = (i1, . . . , ip), then xD = xi1 · · ·xip .
The row numbers are determined by iD = rD − jD + 1 so they are preserved by each
push step in the bounded bumping algorithm since rk − jk is preserved for each k.
If q < r, then the algorithm terminates with xD = xE . If q = r then the algorithm
terminates when the pth position is deleted and at that point ip = (r− 1)− 0 + 1 = r
so xD = xrx

E . �

Example 3.4. If D is the pipe dream on the left in Figure 1, then the corresponding
permutation is π = [1, 4, 3, 2]. The lex largest inversion of π is (3, 4) so ν = πt3,4 =
[1, 4, 2, 3]. The {3, 4}-crossing is circled. Using the biword encoding of D, we have
rD = (2, 3, 2) and jD = (2, 2, 1). To compute Tπ(D), we initiate the bump at t0 = 1
since the {3, 4}-crossing is first in reading order on D.

B−1 ((2, 3, 2), (2, 2, 1)) = ((1, 3, 2), (1, 2, 1), 1, 1, bumped).
It requires just one push map since (1, 3, 2) is reduced. The crossing in column 1 in
the right-labeled wiring diagram for (1, 3, 2) is between wires (1, 3). Thus, Tπ(D) =
E ∈ RP(νt1,3) where E is the pipe dream encoded by rE = (1, 3, 2) and jE = (1, 2, 1).
Observe that E is the second pipe dream in Figure 1.

Example 3.5. In Figure 5, we give a more complicated example of computing Tπ(D).
Note that a defect can occur either above or below the pushed crossing. Going from the
fourth to the fifth pipe dream, two consecutive pushes on the same row are combined
into one step. This is an example of a nontrivial “stack push”.

Lemma 3.6.Assume the notation in Theorem 2.9 and the definition of the transition
map Tπ. Let D ∈ RP(π). If

B−t0(rD, jD) = (a′,b′, i, j, deleted),
then i = r − 1, j = `(π), and (a′,b′) encodes a pipe dream E ∈ RP(ν) so Tπ(D) ∈
U(π).

Proof. The fact that (a′,b′) encodes a pipe dream E ∈ RP(ν) follows directly from
Proposition 2.7(3), Lemma 3.1 and the construction of ν and t0.

To show i = r−1 and j = `(π), it suffices to prove that the last step of the bounded
bumping algorithm stack pushed a crossing in position (r, 1) into the 0th column and
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Figure 5. If D is the pipe dream on the left, then Tπ(D) is the
pipe dream on the right. In between we show the stack pushes in the
bounded bumping algorithm. The crossing initiating a stack push
is circled for each step, and the final crossing which moved in the
last step is marked with a diamond. Here, π = [1265734], hence
π−1 = [1267435], r = 5, s = 7, ν = [1265437]. In this case, Tπ(D) is
a pipe dream for νt25 = [1465237] so q = 2.

out of the pipe dream. This is because r is the last descent of π so there cannot be
any crossings in the reading order on D after (r, 1).

Say the {r, s}-wire crossing in D is in row x column y. The bumping algorithm is
initiated with a stack push to the left starting at position (x, y). The r-wire enters
(x, y) horizontally since r < s and D is a reduced pipe dream. If there is no empty
position in row x to the left of column y, then x = r since the wires are labeled
increasing down the left side of D by definition of a pipe dream. Otherwise, if y′ is the
largest column such that y′ < y and (x, y′) 6∈ D, then the initial decrement-stack push
on D would result in the pipe dream E = D−(x, y)∪(x, y′). Let s′ be the wire crossing
with the r-wire at (x, y′) in E. Now, E cannot be reduced since outcome = deleted in
the bounded bumping algorithm. So by Lemma 2.3, we know there exists exactly one
other position in E where wires r and s′ cross, say in position (x′′, y′′). By analyzing
the possible wire configurations for two wires to cross exactly twice in a pipe dream,
we see that the r wire is the horizontal wire crossing in the defect position (x′′, y′′) in
E. Furthermore, D − (x, y), E − (x, y′), E − (x′′, y′′) ∈ RP(ν).

Update x ← x′′, y ← y′′ and apply another stack push at (x, y). Recursively
applying the same argument we see that the only crossing in D that can be pushed
into column 0 must be in position (r, 1). �

Lemma 3.7.Assume the notation in Theorem 2.9 and the definition of the transition
map Tπ. Let D ∈ RP(π). While computing Tπ(D), if

B−t0(rD, jD) = (a′,b′, i, j, bumped),

then the crossing in column j of the right-labeled wiring diagram of a′ corresponds
with the r-wire and the q-wire for some q < r such that `(π) = `(νtqr). Therefore,
(a′,b′) encodes a pipe dream E ∈ RP(νtqr) ⊂ U(π).

Proof. The proof follows from Proposition 2.7(2) and Lemma 3.1. �

Given the notation established in Theorem 2.9, we can state an important conse-
quence of the proof of Little’s main theorem [31, Theorem 7]. We will use this theorem
to prove Lemma 3.9. Recall that Little’s bumping algorithm in the +1 direction on
reduced words maps a maps to a′ if and only if

B+
j (a,b) = (a′,b′, i, t, bumped)

for any (equivalently every) bounded word b for a.
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Theorem 3.8 ([31]).Assume the notation in Theorem 2.9. Further assume there exists
some q < r such that `(π) = `(νtqr). Given any bounded pair (a,b) for νtqr, let j be
the column of the {q, r}-wire crossing in a. If

B+
j (a,b) = (a′,b′, i, t, bumped),

then, a′ ∈ R(π) and t is the column containing the {r, s}-crossing in the wiring
diagram of a′.

Lemma 3.9.Assume the notation in Theorem 2.9. Let E ∈ RP(νtq,r) ⊂ U(π) for
some 1 6 q < r. Assume E is encoded by the bounded pair (rE , jE), j is the column
of the {q, r}-crossing in rE, and

B+
j (a,b) = (a′,b′, i, t, bumped).

Then (a′,b′) encodes a pipe dream D ∈ RP(π) and t is the column containing the
{r, s}-crossing in the wiring diagram of a′.

Proof. By Lemma 3.1, we know (a′,b′) encodes a reduced pipe dream D for some
permutation with the same length as π. By Theorem 3.8, a′ ∈ R(π), so we conclude
D ∈ RP(π). The column of the {r, s}-crossing also follows from the theorem. �

This completes all the lemmas needed for Theorem 2.9. Finally in this section, we
introduce the transition chains. The transition chains will appear in the examples of
the main bijection for Macdonald’s identity. However, these chains do not appear in
the formal proof of Theorem 1.1 explicitly.

Recall that to compute a Schubert polynomial Sπ, one applies the Transition
Equation recursively until the expansion is given as a positive sum of monomials. We
could also use the Transition Map Tπ repeatedly to see exactly what happens to each
pipe dream in RP(π) in this process. The transition chain records these steps in a
way that enables the process to be reversed.

Definition 3.10.Given D ∈ RP(π), define the associated transition chain Y (D) for
π recursively as follows. If D is the empty pipe dream, then D ∈ RP(id) and Y (D) :=
(), the empty list. If D ∈ RP(π) is not empty, compute Tπ(D) = E ∈ RP(πtr,stq,r)
and Y (E) = ((qk−1, rk−1), . . . , (i2, r2), (i1, r1)). Prepend (q, r) onto the front, so that
(6) Y (D) := ((q, r), (qk−1, rk−1), . . . , (q2, r2), (q1, r1)).

For example, starting with the pipe dream D encoded by ((2, 3, 2), (1, 2, 2)) on the
left in Figure 1, we apply transition maps along the second row until the we get to
the empty pipe dream. This sequence of pipe dreams goes along with the following
data.

π (r, s) (rD, jD) (rE , jE) (q, r)
[1, 4, 3, 2] (3, 4) (232, 122) (132, 122) (1, 3)
[2, 4, 1, 3] (2, 4) (132, 122) (12, 11) (2, 2)
[2, 3, 1, 4] (2, 3) (12, 11) (1, 1) (2, 2)
[2, 1, 3, 4] (1, 2) (1, 1) (, ) (1, 1)

Thus, Y (D) = ((1, 3), (2, 2), (2, 2), (1, 1)).

Corollary 3.11. The reduced pipe dreams for π and the transition chains for π are
in bijection via the map Y .

Proof. This statement clearly holds for id. By induction on inversion order and Re-
mark 2.11, we can assume Y maps all pipe dreams in U(π) bijectively to their transi-
tion chains. The claim now follows since T−1

π is a bijection and the observation that
the computation in Algorithm 3.3 only relies on the input E ∈ U(π) and the pair
(q, r). �
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4. Transition Equation for Bounded Pairs
In the last section, the Transition Equation for Schubert polynomials was proved via
a bijection on reduced pipe dreams (which can be interpreted as bounded pairs of a
special kind). Next we give an analogue of the Transition Equation for the enumeration
of all bounded pairs of a permutation, together with a bijective proof. Combining the
two bijections will lead to our bijective proof of Theorem 1.1. Some terms are defined
here in more generality than we need for this proof – they will be used later in
Section 6.

Definition 4.1. Fix π ∈ Sn of length p. Given a ∈ R(π) and b a bounded word
for a, let xa := xa1

1 xa2
2 · · ·x

ap
p and similarly for yb. Let q be an formal variable, and

let x = (x1, x2, . . . , xp) and y = (y1, y2, . . . , yp) be two alphabets of formal variables.
Define the bounded pair polynomial to be

Fπ(x,y; q) :=
∑
(a,b)

xaybqcomaj(a)

where the sum is over all bounded pairs (a,b) for π. For π = id, set Fπ(x,y; q) := 1.
Thus, setting all of the variables to 1 gives the number of bounded pairs for π:

Fπ(1) = Fπ(1,1; 1) =
∑

(a1,a2,...,ap)∈R(π)

a1 · a2 · · · ap.

For example, Fsk(1) = k for a simple transposition sk. Also, F[3,2,1] = 6 as men-
tioned in the introduction.

Theorem 4.2 (Transition Equation for Bounded Pairs). For all permutations π such
that `(π) = p > 0, the number of bounded pairs satisfies the following recursive
formula:

(7) Fπ(1) = p Fν(1) +
∑
q<r:

`(π)=`(νtqr)

Fνtqr (1),

where (r, s) is the lex largest inversion of π, and ν = πtrs. The base case of the
recurrence is Fid(1) = 1.

Observe the same permutations appear in the right hand side of (7) as in (4) so
Remark 2.11 applies here as well.

Proof. Similarly to the proof of Theorem 2.9, we give a bijective proof of this recur-
rence by defining a map BTπ that maps BoundedPairs(π) to

X (π) :=
(

BoundedPairs(ν)× [1, p]
)
∪

⋃
q<r:

l(π)=l(νtqr)

BoundedPairs(νtqr)× {0}

whenever p = `(π) > 0.

Algorithm 4.3 (Bounded Transition). Suppose π 6= id is given, and let (r, s) and ν
be defined as in Theorem 4.2.
Input: A bounded pair (a,b) for π.
Output: BTπ(a,b) = ((a′,b′), k) ∈ X (π).

(1) Let t0 be the unique column containing the {r, s}-wire crossing in the right-
labeled wiring diagram for a.

(2) Compute B−t0(a,b) = (a′,b′, i, j, outcome).
(3) If outcome = deleted, then j is the last crossing pushed in the bounded bumping

algorithm before being deleted so j ∈ [1, p]. Return ((a′,b′), j) and stop. By
Proposition 2.7(3), we know (a′,b′) is a bounded pair for ν.
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(4) If outcome = bumped, return ((a′,b′), 0) and stop. Proposition 2.7(2) shows
that one of the wires crossing in column j of the right-labeled wiring diagram
for a′ is the r-wire, the other is labeled by some q < r with `(π) = `(νtqr).
Therefore, (a′,b′) is a bounded pair for νtqr.

Algorithm 4.4 (Inverse Bounded Transition). Suppose π 6= id is given, and let (r, s)
and ν be defined as in Theorem 4.2.
Input: ((e, f), k) ∈ X (π), in particular (e, f) is a bounded pair for νtq,r for some
1 6 q 6 r.
Output: BT−1

π ((e, f), k) = (a,b), a bounded pair for π.
(1) If q = r, then k ∈ [1, p] and e = (e1, . . . , ep−1) ∈ R(ν). If k < p, set ω ←

sep−1sep−2 · · · sek , and if k = p set ω ← id. Set

i← ω−1(r),
g← I i

k(e),
h← I 0

k (f),
j ← k.

(2) If q < r, then k = 0. Set g← e and h← f . Let j be the column of the {q, r}-
wiring crossing in the right-labeled wiring diagram of e which must exist since
(e, f) ∈ BoundedPairs(νtq,r) ⊂ X (π).

(3) Compute B+
j (g,h) = (g′,h′, i′, t, bumped). Return (g′,h′) and stop. Note

the outcome will always be bumped since we are applying increment-pushes.
Lemma 4.5 below shows that in all cases, (g′,h′) is a bounded pair for π.

Observe that BTπ is an injection since the bounded bumping algorithm is re-
versible given the column j of the final push and the value r in the case outcome =
deleted. Thus, BT−1

π BTπ(a,b) = (a,b) so BTπ(a,b) = ((e, f), j) = BTπ(a′,b′) im-
plies (a,b) = (a′,b′). Also, BTπ is surjective since BT−1

π is well defined on all of
X (π) and one can observe that BTπBT−1

π is again the identity map. Therefore,
BTπ : BoundedPairs(π) −→ X (π) is a bijection proving the Transition Equation
for Bounded Pairs. �

The following lemma is a generalization of Lemma 3.9.

Lemma 4.5.Assume the notation in Theorem 4.2. Let a = (a1, . . . , ap) be any nearly
reduced word at 1 6 j 6 p such that Dj(a) ∈ R(ν) and the wires such that Dj(a) ∈
R(ν) and the wires crossing in column j of the right-labeled wiring diagram for a are
labeled by q < r where r is the last descent of π. Let b be a bounded word for a. If

B+
j (a,b) = (a′,b′, i′, t, bumped),

then (a′,b′) is a bounded pair for π and t is the column containing the {r, s}-wire
crossing in the right-labeled wiring diagram of a′.

Proof. By assumption, Dja ∈ R(ν) so Dta′ ∈ R(ν) by Proposition 2.7(3). Say wires
{k, l} with k < l cross in column t of a′. Then a′ ∈ R(νtk,l).

By design, the r-wire is the larger labeled wire involved in the crossing in column
j of the right-labeled wiring diagram for a, hence the r wire will continue to be one
of the two wires crossed for every increment-push in the bounded bumping algorithm
so k = r < l by Proposition 2.7(2). Recall, ν(r) < ν(s), `(νtr,s) = `(ν) + 1, and (r, s)
is the lex largest inversion of π = νtr,s, so we know ν(m) < ν(r) for every m such
that r < m < s. Thus, l > s. Furthermore, ν(s) < ν(s + 1) < ν(s + 2) < . . ., so the
only possible value of l such that `(νtr,l) = `(ν) + 1 is l = s. Thus, we can conclude
a ∈ R(π). �
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Definition 4.6.Given (a,b) ∈ BoundedPairs(π), define the associated transition
chain Y ′(a,b) recursively as follows. If π = id, then Y ′(a, b) := (), the empty list.
If π 6= id, compute BTπ(a,b) = (a′,b′) ∈ BoundedPairs(πtr,stq,r) ⊂ X (π) and
Y ′(a′,b′) = ((qk−1, rk−1), . . . , (q2, r2), (q1, r1)). Prepend (q, r) to get
(8) Y ′(a,b) := ((q, r), (qk−1, rk−1), . . . , (q2, r2), (q1, r1)).

Many bounded pairs for π map to the same transition chain via Y ′. For
example, when π = [1, 4, 3, 2] all 6 of the following bounded pairs map to
((1, 3), (2, 2), (2, 2), (1, 1)) via Y ′.

a b
323 122
323 123
232 211
232 212
232 221
232 231

5. Bijective proof of Macdonald’s formula
In this section, we spell out the promised bijection proving Macdonald’s formula in
Theorem 1.1. We introduce some notation first and then define the Macdonald map
M on all bounded pairs.

Recall from the introduction that both sides of the formula can be interpreted
combinatorially. The sum on the left side of (1) clearly equals |BoundedPairs(π)|.
Let

C(π) = [1, 1]× [1, 2]× · · · × [1, p]
where p = `(π) and [i, j] = {i, i+ 1, . . . , j}. Recall c = (c1, c2, . . . , cp) ∈ C(π) is a sub-
staircase word of length p. By Definition 2.8, one observes that the right side of (1)
equals |C(π) × RP(π)|. We will refer to the elements (c, D) ∈ ∪π∈S∞C(π) × RP(π)
as cD-pairs for π.

We can now define a mapM from all bounded pairs to all cD-pairs which preserves
the underlying permutation.

Algorithm 5.1 (Macdonald Map).
Input: A bounded pair (a,b) = ((a1, . . . , ap), (b1, . . . , bp)). Let π = sa1sa2 · · · sap . By
definition of a bounded pair, a is reduced, so p = `(π).
Output: M(a,b) = (c, D) ∈ C(π)×RP(π).

(1) If π is the identity, then we must have (a,b) = ((), ()). Set c = () and D = {}.
Return (c, D) and stop.

(2) Compute BTπ(a,b) = ((a′,b′), k) ∈ X (π). Say (a′,b′) is a bounded pair for
νtq,r where (r, s) is the lex largest inversion for π, ν = πtr,s and 1 6 q 6 r.

(3) Recursively compute M(a′,b′) = (c′, D′). By induction on inversion order
and Remark 2.11, we can assume that (c′, D′) ∈ C(νtq,r)×RP(νtq,r).

(4) Set D = T−1
π (D′). If q < r, set c = c′. Otherwise, if q = r, set c = I k

p (c′).
Return (c, D) and stop. Observe that in either case, c ∈ C(π). By Algo-
rithm 3.3, D ∈ RP(π).

Example 5.2. Consider the bounded pair (a,b) = ((2, 3, 2), (2, 1, 2)) for the permu-
tation π = [1, 4, 3, 2]. The steps from Algorithm 5.1 in this case are summarized in
Table 6. The result is M((2, 3, 2), (2, 1, 2)) = (c, D) where c = (1, 1, 2) and D is
the pipe dream encoded by the biword (rD, j) = ((2, 3, 2), (2, 2, 1)). The transition
chain is Y (D) = ((1, 3), (2, 2), (2, 2), (1, 1)). Figure 1 from Section 1 illustrates the
computations in this table using drawings of pipe dreams and wiring diagrams.
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π (a,b) (q, r) k (c, rD, jD)
[1432] (232, 212) (1, 3) 0 (112, 232, 221)
[2413] (132, 112) (2, 2) 2 (112, 132, 121)
[2314] (12, 12) (2, 2) 1 (11, 12, 11)
[2134] (1, 1) (1, 1) 1 (1, 1, 1)
[1234] (∅,∅) (∅,∅,∅)

Figure 6. Data for the computation M((2, 3, 2), (2, 1, 2)).

Example 5.3. Consider the bounded pair ((5, 4, 3, 5, 6, 4, 5), (1, 4, 2, 3, 5, 3, 5)) for π =
[1, 2, 6, 5, 7, 3, 4]. The steps from Algorithm 5.1 in this case are summarized in Table 7.
The result is the pair (c, D) = (c, rD, jD) where D is the pipe dream D on the far left
in Figure 5 and c = (1, 1, 1, 3, 2, 1, 3). Again, in the table, we use the biword encoding
of pipe dreams, (rD, jD).

π (a,b) (q, r) k (c, rD, jD)
[1265734] (5435645, 1423535) (2, 5) 0 (1113213, 4356435, 4344212)
[146523] (5324534, 1312424) (4, 4) 3 (1113213, 324534, 233211)
[146325] (523423, 121313) (1, 4) 0 (111321, 323543, 322321)
[46135] (513423, 111313) (3, 3) 1 (111321, 312543, 311321)
[24513] (13423, 11313) (3, 3) 2 (11132, 31243, 31121)
[2431] (1323, 1213) (3, 3) 3 (1113, 3123, 3111)
[2413] (132, 122) (1, 2) 0 (111, 312, 311)
[3214] (121, 111) (2, 2) 1 (111, 212, 211)
[3124] (21, 11) (1, 1) 1 (11, 21, 21)
[2134] (1, 1) (1, 1) 1 (1, 1, 1)
[1234] (∅,∅) (∅,∅,∅)

Figure 7. Data for the computation M((5, 4, 3, 5, 6, 4, 5),
(1, 4, 2, 3, 5, 3, 5)).

Proof of Theorem 1.1. DefineMπ to be the restriction ofM to BoundedPairs(π). We
will show by induction thatMπ is a bijection from BoundedPairs(π) to C(π)×RP(π),
as required to prove the theorem.

For the base case, if π = id, then Mid is the bijection mapping ((), ()) 7→ ((), {}).
Now assume that Mω : BoundedPairs(ω) −→ C(ω) × RP(ω) is a bijection for all
permutations ω such that ω ≺ π, as in Remark 2.11.

By Theorem 4.2, we know that BTπ : BoundedPairs(π) −→ X (π) is a bijection
where

X (π) =
(

BoundedPairs(ν)× [1, p]
)
∪

⋃
q<r:

l(π)=l(νtqr)

BoundedPairs(νtqr)× {0}.

Let

Y(π) =
(
C(ν)×RP(ν)× [1, p]

)
∪

⋃
q<r:

l(π)=l(νtqr)

C(νtqr)×RP(νtqr)× {0}.

The induction hypothesis implies that the restricted map M × id : X (π) −→ Y(π) is
a bijection preserving the underlying permutation. That is, if (a,b, k) ∈ X (π), then
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a ∈ R(νtq,r) for some q 6 r, and if M × id(a,b, k) = (c, D, k) then D ∈ RP(νtq,r) as
well.

Define RTπ : C(π)×RP(π) −→ Y(π) by mapping

RTπ(c, D) =
{

(ĉ, Tπ(D), cp) |D| > |Tπ(D)|
(c, Tπ(D), 0) |D| = |Tπ(D)|,

where ĉ := (c1, . . . , cp−1). Since Tπ is a bijection, RTπ is a bijection with well defined
inverse RT−1

π : Y(π) −→ C(π)×RP(π).
The map Mπ : BoundedPairs(π) −→ C(π)×RP(π) can be written as the compo-

sition of three bijections, Mπ = RT−1
π ◦ (M × id) ◦ BTπ, hence is itself a bijection.

This concludes the induction. �

Observe from the proof above, we can show by induction that M−1
π = BT−1

π ◦
(M−1 × id) ◦ RTπ. Thus, we can write out the algorithm for M−1 analogously with
Algorithm 5.1.

Corollary 5.4. The inverse of M is given by Algorithm 5.5.

Algorithm 5.5 (Inverse Macdonald Map).
Input: (c, D) where D is a reduced pipe dream for some permutation π and c =
(c1, c2, . . . , cp) is a sub-staircase word of length p = `(π).
Output: M−1(c, D) = (a,b), a bounded pair for π.

(1) If π is the identity, then we must have c = () and D = {}. Return (a,b) =
((), ()) and stop.

(2) Compute Tπ(D) = D′ ∈ U(π). Say D′ is a reduced pipe dream for νtq,r where
(r, s) is the lex largest inversion for π, ν = πtr,s and 1 6 q 6 r. If q < r, set
k = 0 and c′ = c. Otherwise, if q = r, set k = cp and c′ = (c1, . . . , cp−1).

(3) Recursively compute M−1(c′, D′) = (a′,b′). By induction on inversion order
and Remark 2.11, we can assume that (a′,b′) ∈ BoundedPairs(νtq,r).

(4) Compute BT−1
π ((a′,b′), k) = (a,b). Return (a,b) and stop. By the proof of

Theorem 4.2, we know that (a,b) is a bounded pair for π.

Remark 5.6.Observe that in step 2 of both Algorithm 5.1 and Algorithm 5.5, the data
(q, r) and k are determined from the input. So if M(a,b) = (c, D), then by step 4
of both algorithms, these 3 quantities, k, q, r are the same. In particular, Y (D) =
Y ′(a,b).

Remark 5.7. In general, it is not easy to “eyeball” the map M or M−1 by simply
straightening out or bending wires without passing through the transition chain. Every
biword coming from a reduced pipe dream for π is a bounded pair for π, but the
converse does not hold. Thus, the map M−1 rarely acts as the identity map. In fact,
we know M is a p! to 1 map if we project the image onto the pipe dreams.

6. q-analogue of Macdonald’s formula
In this section, we prove Theorem 1.2 bijectively. The first step is to rewrite the left
side of (2) as a specialization of the bounded pair polynomial Fπ(x,y; q) defined in
Definition 4.1. We then prove that this specialized polynomial satisfies a q-analog
of the Transition Equation for Bounded Pairs, and thus argue that every step of
our algorithmic bijection BTπ respects the q-weight so M is a q-weight preserving
bijection in addition to preserving the underlying permutation.

Specializing each xi = q and yi = q−1 in Fπ(x,y; q), where the third parameter
is the same formal variable q, gives a one parameter version of the bounded pair
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polynomial

fπ(q) :=
∑

q(a,b) =
∑

(a1,a2,...,ap)∈R(π)

qcomaj(a)[a1] · [a2] · · · [ap]

where the first sum is over all bounded pairs (a,b) for π and q(a,b) is the combined
weight

(9) q(a,b) := qcomaj(a)
p∏
i=1

qai−bi .

For example, let sr be a simple transposition for some r > 1. Then fsr (q) = [r] =
1 + q + q2 + . . .+ qr−1. See also the example after Theorem 1.2.
Theorem 6.1 (q-Transition Equation for Bounded Pairs). For all permutations π
such that `(π) = p > 0, the polynomials fπ(q) satisfy the following recursive formula:

(10) fπ(q) = (1 + q + · · ·+ qp−1)qr−1fν(q) +
∑
q<r

l(π)=l(νtqr)

fνtqr (q)

where (r, s) is the lex largest inversion in π, and ν = πtrs. The base case of the
recurrence is fid(q) = 1.

A bijective proof of Theorem 6.1 implies a bijective proof of Theorem 1.2 since fπ(q)
is by definition the left side of (2), while the right side satisfies the same recurrence
and base conditions as (10) by the Transition Equation for Schubert polynomials,
Theorem 2.9.

To prove Theorem 6.1, we need to understand how the maps BTπ and BT−1
π

change the combined weight for bounded pairs. This involves an investigation of the
comaj statistic on reduced words. Recall for motivation the well known formula due
to MacMahon relating the number of inversions to the comaj statistic

(11)
(
1 + q + · · ·+ qn−1) ∑

ν∈Sn−1

q`(ν) =
∑
π∈Sn

q`(π) =
∑
π∈Sn

qcomaj(π).

The first equality follows simply by inserting n into the one-line notation for ν ∈
Sn−1 and observing the change in the number of inversions. The second equality can
similarly be proved using the code of a permutation and the Carlitz bijection [5],
see also [35, 43]. Note, the Carlitz bijection is different than Foata’s famous bijective
proof of the second equality [8].

We next state a mild generalization of a lemma due to Gupta [15] about how
comaj changes when one additional letter is inserted into a word in every possible way.
Gupta’s proof covers the case where the numbers ak are all distinct. Lemma 6.2 below
extends this to sequences with no two adjacent values equal. We include a short proof
of Gupta’s lemma below as a prelude to extending this analysis to reduced words in
Lemma 6.4 and the proof of Theorem 6.1. For another proof and further applications
of “insertion lemmas” in the literature, see [16, 36].

Fix any sequence of real numbers a = (a1, . . . , ap). For 1 6 i 6 p+ 1, let

aji := I j
i (a) = (a1, . . . , ai−1, j, ai, . . . , ap)

be the result of inserting j into a to become column i. We also extend the definition
of the comajor index to arbitrary real sequences: comaj(a) :=

∑
i:ai<ai+1

i.
Lemma 6.2 ([15]). Fix any sequence of real numbers a = (a1, . . . , ap) such that no
two adjacent elements ai, ai+1 are equal, and let j be a real number different from
{a1, . . . , ap}. Then, we have{

comaj(aji )− comaj(a) : 1 6 i 6 p+ 1
}

= {0, 1, 2, . . . , p}.
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For example, take a = (2, 3, 5, 2) and j = 4. Then comaj(a) = 3. The five words
obtained from a by inserting 4 in all columns are given below with their comaj.

i a4
i comaj(a4

i ) comaj(a4
i )− comaj(a)

1 42352 5 2
2 24352 4 1
3 23452 6 3
4 23542 3 0
5 23524 7 4

As one can see, the difference in comaj takes on the five values from 0 to 4 in permuted
order. We refer to the word (2, 1, 3, 0, 4) as the comaj difference word.

The conclusion of the lemma does not hold when adjacent equal elements are
allowed even if we extend the definition of comaj to cover weak ascents. For example,
if a = (1, 1) and j = 1, then comaj(aji )− comaj(a) is constant for all i = 0, 1, 2.

Proof. The statement is easily checked for p = 0, 1. Let k be a real number distinct
from {j, ap}, and let a′ = (a1, . . . , ap, k). Assume by induction on p > 1 that the
statement holds for a, so we can assume {comaj(aji )− comaj(a) : 1 6 i 6 p+ 1} =
{0, 1, 2, . . . , p}.

The final element in the comaj difference word for a can be determined from the
relative order of ap, j. If ap < j, then comaj(ajp+1)− comaj(a) = p and if ap > j, then
comaj(ajp+1)− comaj(a) = 0.

Next, consider the relative order of ap, j, k and how it affects the comaj difference
word. The possible orders correspond with the 6 permutations in S3. For instance,
if j < ap < k, then comaj(a′ji ) − comaj(a′) = comaj(aji ) − comaj(a) + 1 for all
1 6 i 6 p since k adds one new ascent to the right of all these columns which
gets shifted over when j is inserted. Since j < ap, comaj(ajp+1) − comaj(a) = 0 as
noted above so {comaj(a′ji ) − comaj(a′) : 1 6 i 6 p} = {2, . . . , p + 1} by the
induction hypothesis. Furthermore, since j < ap < k, comaj(a′jp+1) − comaj(a′) = 1
and comaj(a′jp+2)− comaj(a′) = 0. Thus, the claim holds for a′ in this case as well.

Each of the remaining 5 cases is similar. They only depend on the relative order of
ap, k, j and not on any of the specific values a1, . . . , ap, j, k. We leave the remaining
cases to the reader or their computer to check. �

We can now use Lemma 6.2 to give a bijective proof of MacMahon’s formula,
Equation (11). A similar argument is implicit in [5].

Corollary 6.3. For all n > 2,∑
π∈Sn

qcomaj(π) = (1 + q + · · ·+ qn−1)
∑

ν∈Sn−1

qcomaj(ν).

Proof. For each permutation ν ∈ Sn−1 written in one-line notation, there are n ways
to insert n. By Lemma 6.2, the comaj statistic will increase by a distinct value in
{0, 1, . . . , n− 1} for each of these ways. �

Next we prove a variation of Lemma 6.2 involving reduced words. The idea is
similar to the proof of Lemma 6.2, though the proof is much more technical.

Given a reduced word a = (a1, . . . , ap), draw its left-labeled wiring diagram, as
in the first diagram of Figure 8. Fix a positive integer j and consider the j-wire. Let
hji (a) be the row of the j-wire in column i − 1, so hji (a) = sai−1 · · · sa2sa1(j). In the
notation of Section 2.2, hji (a) = π−1

i−1(j), where πt denotes the permutation at time t
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Figure 8. An example of the transformation from a (left) to ã (mid-
dle) to ã′ (right), with i = 2 and j = 5. The row of wire 5 just before
the 2nd crossing is h5

2(a) = 4, so we insert a crossing on row 3 in such
a way as to become column 2. Then we apply an increment-bump to
this crossing to obtain ã′.

of a. We insert a new crossing in column i with its left foot meeting the j-wire; i.e.
define

ã := I
hj
i
(a)−1

i (a) = (a1, a2, . . . , ai−1, h
j
i (a)− 1, ai, . . . , ap).

Then, ã may or may not be a reduced word itself, but it is nearly reduced at i. Now
we want to apply a Little bump to ã. To be consistent with our earlier definitions, we
write this in terms of bounded bumping: every word is a bounded word for itself, so
we can apply the bounded bumping algorithm with input (ã, ã, i,+). Say B+

i (ã, ã) =
(ã′, b̃′, g, h, outcome). Set

yji (a) := ã′.

Define the augmented comaj difference word for a along wire j to be vj(a) :=
(vj1(a), . . . , vjp+1(a)) where

vji (a) = comaj(yji (a))− comaj(a) + hji (a)− 1.

The augmented comaj difference word measures the change in the power of q in
the combined weight when the BTπ algorithm ends in a deletion in each column of
step 2(a).

Consider the running example of the reduced word a = (4, 3, 5, 6, 4, 3, 5), and fix j =
5. We compute comaj(a) = 11. The wiring diagram for a is shown in the first diagram
of Figure 8. Observe that the row of the 5-wire in the wiring diagram decreases to
3 and then increases to 4 in matrix coordinates. In the second diagram in Figure 8,
we show the wiring diagram for ã = (4, 3, 3, 5, 6, 4, 3, 5) computed by inserting an
extra crossing in the second column with its left foot on the 5-wire, so inserting a 3
into a. The arrows indicate pushes in the bounded bumping algorithm for B+

2 (ã, ã);
they occur in columns 2,1,7,6 in sequential order. The third diagram shows the wiring
diagram of y5

2(a) = ã′ = (5, 4, 3, 5, 6, 5, 4, 5). Compute comaj(y5
2(a)) = 14, so v5

2(a) =
14−11+3 = 6. Next we display the data to compute the augmented comaj difference
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word for a.
i h5

i (a) insert y5
i (a) comaj(y5

i (a)) h5
i (a)− 1 v5

i (a)
1 5 44356435 54356545 14 4 7
2 4 43356435 54356545 14 3 6
3 3 43256435 54356545 14 2 5
4 3 43526435 54536545 13 2 4
5 3 43562435 54563545 17 2 8
6 3 43564235 54565345 18 2 9
7 4 43564335 54565345 18 3 10
8 4 43564353 43564354 11 3 3

Thus, v5(a) = (7, 6, 5, 4, 8, 9, 10, 3). Further examples appear in the Appendix which
demonstrates the computation of v5(a) for all the initial substrings of (4, 3, 5, 6, 4, 3, 5).

Lemma 6.4.Given a reduced word a = (a1, . . . , ap) and a fixed positive integer j, the
augmented comaj difference word vj(a) = (vj1(a), . . . , vjp+1(a)) is a permutation of the
integers in the closed interval [hjp+1(a) − 1, hjp+1(a) + p − 1]. Moreover, every entry
of vj(a) is a record, i.e. it is either greater than all preceding entries or less than all
preceding entries.

The proof is by induction based on initial substrings of a, similar to the proof of
Lemma 6.2. It is complicated by the fact that we are inserting a crossing along the
j-wire so the value which we are inserting varies with column.

Proof. We prove the statement by induction on p. The statement is true for the empty
reduced word since vj() = (j − 1). There are 4 cases to check if p = 1. Say a = (a1),
so hj1(a) = j and hj2(a) = sk(j). Then,

vj((a1)) =


(j, j − 1) j < a1

(j, j + 1) j = a1

(j − 1, j − 2) j = a1 + 1
(j − 1, j) j > a1 + 1.

Thus, all 4 cases for p = 1 satisfy the statements in the lemma.
Assume the lemma holds by induction for all reduced words up to length p > 1.

We will show it holds for all reduced words of length p+ 1. Let
a′ = (a1, . . . , ap, k)

be a reduced word extending a. Thus, hji (a′) = hji (a) for 1 6 i 6 p+ 1. Let

h = hjp+1(a) = sap · · · sa1(j),

then hjp+2(a′) = sk(h).
Our goal is to compute the augmented comaj differences vji (a′) for 1 6 i 6 p+ 2.

We will treat the three cases 1 6 i 6 p, i = p+ 1 and i = p+ 2 separately.
First consider the case 1 6 i 6 p. The bounded bumping algorithm preserves the

ascent set of a word by Proposition 2.7(4), so one can observe that

comaj(yji (a)) = comaj(a1, a2, . . . , ai−1, h
j
i (a)− 1/2, ai, . . . , ap).

This fact will allow us to compute the augmented comaj differences without knowing
the exact sequence of pushes required in the bounded bumping algorithm. Using the
above observation,

comaj(yji (a′)) = comaj(yji (a)) + (p+ 1) · δ,
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while
comaj(a′) = comaj(a) + p · δ,

where

δ :=
{

1, ap < k

0, otherwise.

Since also hji (a′) = hji (a), we conclude by combining the last three equations that

vji (a′) = vji (a) + δ.

We compute vjp+1(a) = comaj(yjp+1(a)) − comaj(a) + hjp+1(a) − 1 = p · δ + h − 1.
By induction, we know (vj1(a), . . . , vjp(a)) is a permutation with every entry being a
record of the interval [h− 1, h+ p− 1]r {p · δ+ h− 1}. Therefore (vj1(a′), . . . , vjp(a′))
is in fact a permutation of an interval of consecutive integers such that every entry is
a record.

Now we consider the case i = p+1. We claim that the value vjp+1(a′) is completely
determined by the values h, ap, k, p as follows. Note that ap exists since p > 1 by
assumption, and ap 6= k since they are adjacent in a reduced word. All possible cases
are

vjp+1(a′) =


h+ p ap > k > h

h− 1 ap < k < h

p · δ + h− 1 + δ otherwise.

We conclude here that (vj1(a′), . . . , vjp+1(a′)) is in fact a permutation of an interval
of consecutive integers such that every entry is a record. In the case ap > k > h, the
interval is [h, h+ p], and in the other two cases the interval is [h− 1, h+ p− 1].

Finally, consider the case i = p + 2. Again, the value vjp+2(a′) is straightforward
to calculate from the definition of the augmented comaj vector given k and the fact
that sk(h) = hjp+2(a′) mentioned above:

vjp+2(a′) =
{
sk(h)− 1 k > sk(h)
p+ sk(h) k < sk(h).

Thus, vjp+2(a′) will be an extreme value in the interval [sk(h)−1, sk(h)+p] as required
for the lemma. All that remains to prove the lemma is to ascertain how vjp+2(a′) relates
to [h, h + p] when ap > k > h or [h − 1, h + p − 1] otherwise. This again breaks into
cases depending on if sk(h) = h, h−1, h+1. We leave this straightforward verification
to the reader. �

Proof of Theorem 6.1. As mentioned in the introduction to this section, we will show
that the bijection BTπ from Algorithm 4.3 preserves the q-weight in the following
sense. Assume BTπ(a,b) = ((e, f), k) ∈ X (π). Let j = π(r) so that hjp+1(a) = r. We
will show that the combined weight defined in (9) satisfies

(12) q(a,b) =
{
qv
j
k

(e)q(e,f) k > 0
q(e,f) k = 0.

Once this is complete, we know from Lemma 6.4 that vj(a) is a permutation of
[r − 1, r + p− 1]. Hence, Theorem 6.1 follows by a straightforward verification.

Every ((e, f), k) ∈ X (π) corresponds with a pair q 6 r such that (e, f) is a bounded
pair for νtq,r. Recall, k = 0 if and only if q < r.

In the case k = 0, the combined weight is preserved since the bounded bumping
algorithm preserves the ascent set of a word by Proposition 2.7(4). Furthermore, the
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differences ai − bi for all i are preserved by every push step in the bounded bumping
algorithm.

When k > 0, (e, f) is a bounded pair for ν. The computation for BTπ(a,b) removed
a letter from column k on the last step. The crossing removed had its right foot on
the wire labeled r in the right-labeled diagram for e, or equivalently the wire labeled
j = π(r) when the diagram is labeled increasing along the left side. Therefore, the
row of the removed crossing is hjk(e)− 1. We also must have yjk(e) = a by definition
of the yjk map and the fact that the bounded bumping algorithm is reversible by
Proposition 2.7(1). So hjk(e) − 1 = ak − bk. In all columns i 6= k, the difference
ai− bi is preserved by every push step in the bounded bumping algorithm. Using the
notation

vjk(e) = comaj(a)− comaj(e) + hjk(e)− 1,

we have shown q(a,b) = qv
j
k

(e)q(e,f). �

7. Fomin–Kirillov Formulas
Fomin and Kirillov [11] gave several identities generalizing Macdonald’s formula, and
posed the problem of finding bijective proofs. We show that our bijection implies a
bijective proof of one of these identities involving dominant permutations. We first
state the identity, starting with an important special case. In the interest of brevity, we
will assume the reader has some familiarity with plane partitions and standard Young
tableaux. More information on these objects may be found in the cited references.

Let w0 = [n, n − 1, . . . , 1] ∈ Sn. The following formula specializes to Macdonald’s
formula (1) when x = 0 and the coefficient of the leading term is #R(w0). The last
quantity equals the number of standard Young tableaux of staircase shape with n− 1
rows, as proved by Stanley [44], and later bijectively by Edelman and Greene [7].

Theorem 7.1 ([11, Theorem 1.1]).We have the following identity of polynomials in
x for the permutation w0 ∈ Sn:

(13)
∑

(a1,...,a(n2))∈R(w0)

(x+ a1) · · · (x+ a(n2)) =
(
n

2

)
!
∏

16i<j6n

2x+ i+ j − 1
i+ j − 1 .

The second factor on the right side of (13) counts the number of plane partitions
with maximum entry x. For a permutation π = [π(1), . . . , π(n)] ∈ Sn, write 1x ×
π = [1, 2, . . . , x, π(1) + x, π(2) + x, . . . , π(n) + x]. Via theorems of Wachs [47] and
Proctor [38, 39, 23], the second factor on the right of (13) is also the number of terms
in the Schubert polynomial for 1x × w when x is a nonnegative integer. A bijection
between the sets R(1x × π) and R(π) is given by (a1, a2, . . . , ap) 7→ (x + a1, x +
a2, . . . , x+ ap).

Fomin and Kirillov gave a q-analog of the above identity in which, moreover, w0
is generalized to an arbitrary dominant permutation. A dominant permutation is one
whose code is weakly decreasing. For any partition λ ` p, let σλ be the dominant
permutation in Sp+1 whose code is λ followed by zeros. Let rppλ(x) be the set of weak
reverse plane partitions whose entries are all in the range [0, x] for x ∈ N. This is the
set of x-bounded fillings of λ with rows and columns weakly increasing to the right
and down. Given a weak reverse plane partition P , let |P | be the sum of its entries.
Let

[rppλ(x)]q =
∑

P∈rppλ(x)

q|P |.
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Theorem 7.2 ([11, Theorem 3.1]). For any partition λ ` p and its associated dominant
permutation σλ, we have the following identity for all x ∈ N:∑

(a1,a2,...,ap)∈R(σλ)

qcomaj(a1,a2,...,ap)[x+ a1] · [x+ a2] · · · [x+ ap](14)

= [p]! S1x×σλ(1, q, q2, . . . , qx+p)(15)

= [p]! qb(λ) [rppλ(x)]q(16)
where b(λ) =

∑
i(i− 1)λi.

The first equality is given by Macdonald’s q-formula. The second follows from the
theorem of Wachs [47] proving that for every vexillary permutation π, its Schubert
polynomial is a flagged Schur function of shape determined by sorting the Lehmer
code of π. (Dominant permutations are vexillary). Using our bijection for Macdonald’s
formula, we can now give a complete bijective proof of Theorem 7.2 as requested in [11,
Open Problem 1].

Proof. Fix a partition λ and x ∈ N. We construct a bijection FK from bounded pairs
for σλ to the set of sub-staircase words of length |λ| times the set of reverse plane
partitions for λ bounded by x as follows.

(1) Given a bounded pair (a,b) for σλ, let (c, D) = M(a,b) be the corresponding
cD-pair using the Macdonald Map specified in Section 5.

(2) From D, read the vectors of row numbers iD = (i1, . . . , ip) and diagonal num-
bers rD, as described in Section 3. (Note the contrast with earlier proofs,
where we used column numbers; the vector iD is sometimes called a compat-
ible sequence for rD – see [3].)

(3) Let (PD, QD) be the insertion tableau and recording tableau of the Edelman–
Greene bijection [7] applied to the reduced word rD. Let (PTD , QTD) be the
transposes of these tableaux. (In the terminology of [42], this is Edelman–
Greene “column insertion”.)

(4) Let ID = iD ◦ QTD be the tableau with the same shape as QTD in which the
entry t replaced with it, for each t = 1, . . . , p. By Lenart’s bijection [30,
Remark 4.12(2)] (see also [42, Theorem 3.3]), the map D 7→ ID is a weight
preserving bijection from reduced pipe dreams for σλ to column strict tableaux
of shape λ with row bounds (1 + x, 2 + x, 3 + x, . . .). Call this family of x-
flagged tableaux FT (λ, x). (The terminology of flagged tableaux is related to
flagged Schur functions, see [47].)

(5) From the x-flagged tableau ID, construct the filling KD by subtracting u from
every entry in row u. Note that the rows and columns are weakly increasing in
KD and every entry is in the interval [0, x], so KD is a reverse plane partition.
Serrano and Stump prove in [41] that this is the bijection used by Fomin and
Kirillov in Theorem 7.2 for the second equality.

The resulting map FK : (a,b) → (c,KD) is a bijection since each step is a bijec-
tion. It remains only to show that the q-weight is preserved. This follows from our
bijective proof of Theorem 1.2 and the fact that specializing xi to qi−1 in the Schubert
polynomial specializes xT to qb(λ)q|KD|. �

8. Future Directions
We briefly mention some related open problems and connections to the literature here.
Recall that pipe dreams can be encoded as bounded pairs, but most bounded pairs
do not encode pipe dreams. In fact, in Section 3, we gave a simple test for this in
terms of lexicographic order on certain related pairs. Perhaps there is another statistic
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based on these pairs which could be added to Macdonald’s formula to find another
generalization.

Open Problem 8.1. Is there an analog of the bounded pair polynomial in Defini-
tion 4.1 which specializes to the Schubert polynomial when certain parameters are
set to 0? Is there a common generalization for the Transition Equation for Schubert
polynomials, bounded pairs, and its q-analog?

Proctor’s formula for plane partitions of staircase shape has a particularly nice
factored form. This was key to the elegant formula in (13). Can the staircase shape
be replaced, in any sense, with a more general partition λ?

In some sense the answer is “no”. There exist rather general determinantal formulas
for the partition function of the dimer model on a planar bipartite graph [19], and
for ensembles of nonintersecting lattice paths in a directed acyclic graph [14]; it is
famously possible to apply either formula to yield a determinantal formula for reverse
plane partitions of arbitrary shapes (see, for instance, the book [4] for an introduction
to this approach to plane partition enumeration). As observed in [11], typically this
determinant cannot be written as a product of nice factors. Nonetheless, the more
general Fomin–Kirillov formula in Theorem 7.2 makes it desirable to improve these
enumerative results as much as possible.

Open Problem 8.2. Is there a nice formula for |rppλ(x)| or [rppλ(x)]q for any large
class of partitions λ, as in the case of staircase shapes as noted in Theorem 7.1?

Stembridge [46, Theorem 1.1] gives a formula for a weighted enumeration of max-
imal saturated chains in the Bruhat order for any Weyl group which is very similar
to Macdonald’s formula. This formula is related to the study of degrees of Schubert
varieties, see [6, 37], and has no obvious direct connection to Theorem 1.1. Stanley [45,
Equation (23)] stated the following version of Stembridge’s weighted enumeration for-
mula in the case of Sn and noted the similarity to Macdonald’s formula. Given w ∈ Sn
of length p, let

T (w) :=
{(

(i1, j1), (i2, j2), . . . , (ip, jp)
)

: w = ti1,j1ti2,j2 · · · tip,jp

and `(ti1,j1ti2,j2 · · · tik,jk) = k for all 1 6 k 6 p
}
.

Theorem 8.3. For w = w0 ∈ Sn, we have

(17)
∑

((i1,j1),(i2,j2),...,(ip,jp))∈T (w0)

(j1 − i1)(j2 − i2) · · · (jp − ip) =
(
n

2

)
!.

Open Problem 8.4. Can (17) be proven bijectively, using a similar technique to our
M bijection?

The left side of (17) has a natural interpretation in terms of pairs (a,b) where a
is a word of transpositions (ik, jk), and b = (b1, . . . , bp) is a sort of “bounded word”
with bounds ik 6 bk < jk. However, no analogue of Little’s bumping map is known for
maximal saturated Bruhat chains. Worse, (17) is only known to hold for the longest
word w0 and a few special cases. It would be necessary to find a generalization of (17)
to other w before the strategy outlined in this paper could apply.

The Grothendieck polynomials are the K-theory analog of Schubert polynomials
for the flag manifolds [28]. There is a Transition Formula for these polynomials [26].
Anders Buch asked the following question.

Open Problem 8.5.What is the analog of Macdonald’s formula for Grothendieck
polynomials and what is the corresponding bijection?
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Fomin–Kirillov [9] state a Macdonald-type formula for the longest word w0, as
a corollary of their work on the degenerate Hecke algebra. Curiously the Stirling
numbers of the second kind appear on the right side of the formula. There are also
some partial recent partial results on this open problem due to Reiner, Tenner and
Yong [40]. In particular, see their Definition 6.2 and Conjecture 6.3.

9. Appendix
For a = (4) with comaj(a) = 0 and j = 5, we have v5(a) = (4, 3).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (44) (54) 0 4 4
1 4 (43) (54) 0 3 3

For a = (4, 3) with comaj(a) = 0 and j = 5, we have v5(a) = (4, 3, 2).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (443) (543) 0 4 4
1 4 (433) (543) 0 3 3
2 3 (432) (543) 0 2 2

For a = (4, 3, 5) with comaj(a) = 2 and j = 5, we have v5(a) = (5, 4, 3, 2).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (4435) (5435) 3 4 5
1 4 (4335) (5435) 3 3 4
2 3 (4325) (5435) 3 2 3
3 3 (4352) (5453) 2 2 2

For a = (4, 3, 5, 6) with comaj(a) = 5 and j = 5, we have v5(a) = (6, 5, 4, 3, 2).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (44356) (54356) 7 4 6
1 4 (43356) (54356) 7 3 5
2 3 (43256) (54356) 7 2 4
3 3 (43526) (54536) 6 2 3
4 3 (43562) (54563) 5 2 2

For a = (4, 3, 5, 6, 4) with comaj(a) = 5 and j = 5, we have v5(a) = (6, 5, 4, 3, 7, 2).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (443564) (543564) 7 4 6
1 4 (433564) (543564) 7 3 5
2 3 (432564) (543564) 7 2 4
3 3 (435264) (545364) 6 2 3
4 3 (435624) (545634) 10 2 7
5 3 (435642) (435643) 5 2 2
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For a = (4, 3, 5, 6, 4, 3) with comaj(a) = 5 and j = 5, we have v5(a) =
(6, 5, 4, 3, 7, 8, 9).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (4435643) (5435654) 7 4 6
1 4 (4335643) (5435654) 7 3 5
2 3 (4325643) (5435654) 7 2 4
3 3 (4352643) (5453654) 6 2 3
4 3 (4356243) (5456354) 10 2 7
5 3 (4356423) (5456534) 11 2 8
6 4 (4356433) (5456534) 11 3 9

For a = (4, 3, 5, 6, 4, 3, 5) with comaj(a) = 11 and j = 5, we have v5(a) =
(7, 6, 5, 4, 8, 9, 10, 3).

i h5
i (a) insert y5

i (a) comaj(y5
i (a)) h5

i (a)− 1 v5
i (a)

0 5 (44356435) (54356545) 14 4 7
1 4 (43356435) (54356545) 14 3 6
2 3 (43256435) (54356545) 14 2 5
3 3 (43526435) (54536545) 13 2 4
4 3 (43562435) (54563545) 17 2 8
5 3 (43564235) (54565345) 18 2 9
6 4 (43564335) (54565345) 18 3 10
7 4 (43564353) (43564354) 11 3 3
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