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FFLV-type monomial bases for type B

Igor Makhlin

Abstract We present a combinatorial monomial basis (or, more precisely, a family of monomial
bases) in every finite-dimensional irreducible so2n+1-module. These bases are in many ways
similar to the FFLV bases for types A and C. They are also defined combinatorially via sums
over Dyck paths in certain triangular grids. Our sums, however, involve weights depending
on the length of the corresponding root. Accordingly, our bases also induce bases in certain
degenerations of the modules but these degenerations are obtained not from the filtration by
PBW degree but by a weighted version thereof.

Introduction
In the papers [8] and [9] Feigin, Fourier and Littelmann constructed certain monomial
bases in the finite-dimensional irreducible representations of, respectively, type A and
type C simple Lie algebras. These bases came to be known as the FFLV bases, with
“FFL” being the initials of the three authors and the “V” standing for Vinberg, who
was the first to conjecture the result for type A in [17].

Here we use the word “monomial” to denote the fact that each of the basis vectors is
obtained from the highest vector by the action of a monomial in the root vectors. The
degrees of these monomials are given by integer points in certain polytopes (FFLV
polytopes). Thus these bases comprise a fascinating and relatively new family of
combinatorial bases entirely different from the classic Gelfand–Tsetlin bases ([15]).
FFLV bases serve as a key component of the growing theory of PBW degenerations.
This theory reaches into various aspects of representation theory ([6], [8], [9], [5], . . . ),
algebraic geometry ([7], [4], [12], [13], . . . ) and combinatorics ([1], [14], [11], [10], . . . ).

That being said, versions of FFLV bases for the remaining (i.e. orthogonal) classical
Lie algebras have yet to be constructed. In this paper we offer a possible solution for
type B. (We point out that constructions for certain special cases in type B can be
found in [2]. Those constructions are not a special case of the ones presented here.)

Parallels between the bases constructed in this paper and FFLV bases for types A
and C can be drawn on two levels: combinatorial and algebraic.

The combinatorial definition of our bases is remarkably similar to that of FFLV
bases: the roots of the type B root system are arranged into a triangular grid and the
degrees of the monomials defining our bases are obtained by limiting sums over “Dyck
paths” in the grid. A key difference is that one computes these sums with weights
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depending on the length of the root (i.e. short roots have a weight of 1
2 ) which is not

the case for type C. It is also worth mentioning that, unlike both types A and C, the
way in which we arrange the roots differs slightly from the Hasse diagram of their
standard ordering.

On the algebraic level our bases induce bases in certain associated graded spaces
(degenerations) of the representation, as is the case for FFLV bases. These degenera-
tions are again defined by a filtration which is obtained by computing certain degrees
for every PBW monomial. However, the degree we consider here is not the regular
PBW degree but a weighted modification thereof. Short roots contribute a summand
of 1

2 to the degree which is seen to reflect the above difference on the combinatorial
level. We point out that the associated graded algebra for such a filtration is not
commutative unlike the standard PBW filtration. Therefore, we may not assume that
a basis is obtained regardless of the order in which the root vectors in every monomial
are found and, in fact, not all orders provide a basis (see also Remark 1.2).

1. Definitions and the main result
Consider the complex Lie algebra g = so2n+1. Fix a Cartan decomposition g =
n− ⊕ h ⊕ n+. We choose a basis β1, . . . , βn in h∗ such that the set Φ+ of positive
roots consists of the vectors βi − βj for 1 6 i < j 6 n, βi + βj for 1 6 i < j 6 n
and βi for 1 6 i 6 n. The basis (βi) is orthonormal with respect to the (dual of the)
Killing form. The simple roots are then the vectors αi = βi − βi+1 for 1 6 i 6 n− 1
together with αn = βn. The fundamental weights are the vectors ωi = β1 + · · · + βi
for 1 6 i 6 n − 1 together with ωn = 1

2 (β1 + · · · + βn). This information concerning
root systems of type B can be found, for instance, in [3].

Fix a dominant integral weight λ ∈ h∗. Let λ have coordinates (a1, . . . , an) with
respect to the basis of fundamental weights (the ai being arbitrary nonnegative inte-
gers) and coordinates (λ1, . . . , λn) with respect to the basis (βi). We then have the
relations

λi =
n−1∑
j=i

aj + an
2 ,

wherefrom we see that the coordinates (λi) comprise a non-increasing sequence of
nonnegative half-integers, pairwise congruent modulo 1.

We now move on to define the combinatorial set Πλ which parametrizes our basis
(or, rather, each of a family of bases) in the irreducible representation Lλ with highest
weight λ. Each element of Πλ is a number triangle consisting of n2 nonnegative integers
Ti,j with 1 6 i < j 6 2n + 1 − i. We visualize these triangles with Ti,j and Ti+1,j+1
being, respectively, the upper-left and the upper-right neighbors of Ti,j+1, e.g. for
n = 3 we have:

T1,2 T2,3 T3,4
T1,3 T2,4

T1,4 T2,5
T1,5

T1,6

To specify when T ∈ Πλ the notion of a Dyck path is used. We call a sequence
d = ((i1, j1), . . . , (iN , jN ))

of pairs 1 6 i < j 6 2n + 1 − i a Dyck path if we have j1 − i1 = 1, the element
(ik+1, jk+1) is either (ik + 1, j) or (ik, jk + 1) for all 1 6 k 6 N − 1 and, lastly, either
jN − iN = 1 or iN + jN = 2n + 1. In terms of the above visualization this means
that the path starts in the top horizontal row, every element of the path is either the
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bottom-right or the upper-right neighbor of the previous one and that the path ends
either in the top row or in the rightmost vertical column.

For a triangle T = (Ti,j , 1 6 i < j 6 2n+ 1− i) and a Dyck path

d = ((i1, j1), . . . , (iN , jN ))

we denote

S(T, d) =


∑

(i,j)∈d
Ti,j if iN + jN < 2n+ 1,

N−1∑
l=1

Ti,j + TiN ,jN
2 if iN + jN = 2n+ 1.

In the above dichotomy we distinguish between the paths ending in the top row but
not the rightmost column and those that do end in the rightmost column. Next, we
define

M(λ, d) =
{
λi1 − λjN if iN + jN < 2n+ 1,
λi1 if iN + jN = 2n+ 1.

We now define Πλ by saying that T ∈ Πλ if and only if all Ti,j are nonnegative integers
and for any Dyck path d we have S(T, d) 6M(λ, d).

Next, let us establish a one-to-one correspondence between the elements of a tri-
angle T ∈ Πλ and the positive g-roots. Namely, let the root αi,j corresponding to Ti,j
be the root βi − βj when j 6 n, the root βi + β2n+1−j when n < j < 2n+ 1− i and
the short root βi when i+ j = 2n+ 1.

(To elaborate on the remark in the introduction we point out that in the Hasse
diagram of the standard order on the set of positive roots we would have the short
roots positioned on the “diagonal” of our triangle, i.e. in the positions (i, n + 1),
instead of the rightmost vertical column.)

For every pair 1 6 i < j 6 2n + 1 − i fix a nonzero element fi,j ∈ n− in the root
space of −αi,j . We assume our choice of the fi,j to be standard in the sense that the
Serre relations are satisfied. In what follows we will often write j for 2n + 1 − j to
simplify our notations. This means that for every pair 1 6 i < j 6 n we have the
positive roots αi,j = βi − βj and αi,j = βi + βj and for every 1 6 i 6 n we have the
short root αi,i = βi. We now also give the only commutation relation that we will be
using explicitly:

(1) [fi,i, fj,j ] = 2fi,j for 1 6 i < j 6 n.

We introduce a few more concepts before stating our main theorem. First, for a
monomial M ∈ U(n−) in the root vectors fi,j let logM denote the number triangle
Ti,j , 1 6 i < j 6 2n + 1 − i where Ti,j is equal to the total degree in which M
contains fi,j . Second, let us call such an M arranged if for all pairs 1 6 i < j 6 n the
monomial M does not contain an fj,j to the left of an fi,i (i.e. the fi,i occurring in
M are ordered by i increasing from left to right).

Finaly, denote v0 a highest weight vector in Lλ.

Theorem 1.1. For every triangle T ∈ Πλ choose an arranged monomial MT ∈ U(n−)
with logMT = T and denote vT = MT (v0) ∈ Lλ. For any such choice the resulting
set {vT , T ∈ Πλ} will constitute a basis in Lλ.

Remark 1.2.We see that, unlike the FFLV bases for types A and C constructed in [8]
and [9], the root vectors in the monomials may not be ordered arbitrarily. Instead we
require the monomials to be arranged. It can be easily seen that some restriction of
this sort must indeed be imposed. For instance, for n = 2 and λ = 2ω2 the module
Lλ may be described as ∧2V with V = span(e2, e1, e0, e−1, e−2) and highest weight
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vector e1∧e2 (see Section 4 for a detailed description of the representation). Here one
already has log(f2,3f1,4f2,3) ∈ Πλ but

f2,3f1,4f2,3(v0) = f2,3f1,4f2,3(e1 ∧ e2) = f2,3f1,4(e1 ∧ e0) = −2f2,3(e1 ∧ e−1) = 0.

However, numerical experimentation has shown that a basis may sometimes be
obtained despite some of the MT not being arranged. For example, it seems plausible
that avoiding monomials with a subexpression of the form fi,i . . . fj,j . . . fi,i with i 6= j
is sufficient to obtain a basis. Still, even such a theorem would not be the most general
in this vein. It would be interesting to know if there exists a concise combinatorial
criterion distinguishing those sets of monomials {MT , logMT = T, T ∈ Πλ} for which
{vT = MT (v0)} is a basis in Lλ.

2. Bijection with the Gelfand–Tsetlin basis
Our first step towards the proof of Theorem 1.1 will be showing that we indeed have
|Πλ| = dimLλ. This will be done by establishing a bijection between Πλ and the
Gelfand–Tsetlin basis in Lλ (see [15]) or, more precisely, the corresponding set of
Gelfand–Tsetlin patterns.

The set Γλ of Gelfand–Tsetlin patterns parametrizing the Gelfand–Tsetlin basis in
Lλ consists, once again, of certain number triangles R = {Ri,j} with 1 6 i < j 6 i.
We have R ∈ Γλ if and only if the following requirements are met.

(1) All Ri,j are nonnegative half-integers and if i + j < 2n + 1, then Ri,j is
congruent to (all of) the λi modulo 1.

(2) For 1 6 i 6 n− 1 we have λi > Ri,i+1 > λi+1 and we also have λn > Rn,n+1.
(3) If j − i > 1 and i+ j < 2n+ 1, then Ri,j−1 > Ri,j > Ri+1,j . If j − i > 1 and

i+ j = 2n+ 1, then Ri,j−1 > Ri,j .
When considering a pattern R ∈ Γλ we at times refer to n additional fixed elements

Ri,i = λi for 1 6 i 6 n. These are naturally visualized as an additional top row of
the triangle. Then (2) and (3) simply state that every element is no greater than its
upper-left neighbor and no less than its upper-right neighbor (whenever the neighbor
in question exists).

In [15] it is shown that the defined set Γλ parametrizes a certain basis in Lλ, we
now define a map F : Γλ → Πλ which we then show to be bijective. Namely, for a
pattern R ∈ Γλ and a pair 1 6 i < j 6 i set

F (R)i,j =


min(Ri,j−1, Ri−1,j)−Ri,j if i > 1 and i+ j < 2n+ 1,
Ri,j−1 −Ri,j if i = 1 and j < 2n,
2(min(Ri,j−1, Ri−1,j)−Ri,j) if i > 1 and i+ j = 2n+ 1,
2(Ri,j−1 −Ri,j) if i = 1 and j = 2n.

Note that Ri,j−1 and Ri−1,j are, respectively, the upper-left and bottom-left neighbors
of Ri,j . Above, one of the first two cases takes place if Ri,j is not in the rightmost
vertical column, otherwise, one of the last two takes place. Cases 1 and 3 take place
when Ri,j does have a bottom-left neighbor, otherwise, one of cases 2 and 4 takes
place (i.e. i = 1).

Theorem 2.1. The map F : Γλ → Πλ is well-defined and bijective.

Proof. First we show that the image of F is contained in Πλ. The fact that all F (R)i,j
for an R ∈ Γλ are nonnegative integers is immediate from the definition of F and
properties (1)–(3) above. Now consider a Dyck path d = ((i1, j1), . . . , (iN , jN )). If
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jN − iN = 1 and iN + jN < 2n+ 1, we have
S(F (R), d) 6 (λi1 −Ri1,j1) + (Ri1,j1 −Ri2,j2) + · · ·+ (RiN−1,jN−1 −RiN ,jN )

6 λi1 −RiN ,jN 6 λi1 − λjN .
If iN + jN = 2n+ 1, we have

S(F (R), d) 6 (λi1 −Ri1,j1) + (Ri1,j1 −Ri2,j2) + · · ·+ (RiN−1,jN−1 −RiN ,jN )
6 λi1 −RiN ,jN 6 λi1 .

To prove that F is bijective we describe the inverse map G : Πλ → Γλ.
First we introduce the notion of a partial Dyck path. A partial Dyck path is a

sequence d = ((i1, j1), . . . , (iN , jN )) such that for all 1 6 k 6 N we have 1 6 ik <
jk 6 ik, that j1 − i1 = 1 and that for all 1 6 k 6 N − 1 the pair (ik+1, jk+1)
is equal to either (ik + 1, jk) or (ik, jk + 1). For such a d and a number triangle
T = {Ti,j , 1 6 i < j 6 i} we set

S(T, d) =
N∑
k=1

ckTik,jk ,

where ck = 1 if ik + jk < 2n+ 1 and ck = 1
2 otherwise.

For a T ∈ Πλ we define
G(T )i,j = min

partial Dyck path
d=((i1,j1),...,(i,j))

(λi1 − S(T, d)).

Let us show that G(T ) ∈ Γλ. Property (1) is immediate except for the nonnegativity.
Any partial Dyck path d = ((i1, j1), . . . , (i, j)) may be extended to a Dyck path
d′ = ((i1, j1), . . . , (i′, j′)) with i′+ j′ = 2n+ 1. However, S(T, d) 6 S(T, d′) 6 λi1 and
the nonnegativity ensues. Property (3) is immediate from the definition of G, the fact
that G(T )i,i+1 6 λi for 1 6 i 6 n is also immediate. Now, if for some 1 6 i 6 n − 1
we had G(T )i,i+1 < λi+1, then for some Dyck path d = ((l, l + 1), . . . , (i, i + 1)) we
would have S(T, d) = λl −G(T )i,i+1 > λl − λi+1 = M(λ, d).

Finally, the fact that F and G are mutually inverse is straightforward from their
definitions. �

Corollary 2.2. |Πλ| = dimLλ.

Since the above equality has been established it suffices to either prove that the
set considered in Theorem 1.1 spans Lλ or that it is linearly independent. In fact, we
will proceed by a certain induction on λ and, in a sense, prove the former for the base
and the latter for the step.

Remark 2.3. It is evident from the definition of Πλ that it may naturally be viewed
as the set of integer points inside a certain convex polytope Pλ ⊂ Rn2 . (This polytope
can actually be obtained from a suitable type C FFLV polytope via a diagonal linear
transformation.)

It is worth noting that our bijection F is very much in the spirit of the bijection
between the sets of integer points of a poset’s order polytope and of its chain polytope
(constructed in [16]). Furthermore, it is even closer in spirit to the bijection between
the sets of integer points of a marked order polytope and of a marked chain polytope
(constructed in [1]). This is despite the fact that Pλ is not a marked chain polytope
per se.

On the other hand, the type B Gelfand–Tsetlin polytope is a marked order poly-
tope. This is observed in Section 4.3 of [1] and lets the authors suppose that a mono-
mial basis in Lλ is provided by (some modification of) the set S(λ) obtained from Γλ
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under the piecewise linear bijection with the corresponding marked chain polytope.
We point out, however, that Πλ appears to be quite different from S(λ) although, of
course, both are in bijection with Γλ.

3. Ordered monomials
Before carrying out our induction we introduce a few technical tools which, in partic-
ular, will let us eliminate arbitrary choices from the statement of Theorem 1.1.

First we define a linear order on the set of positive g-roots, i.e. the set of integer pairs
1 6 i < j 6 i. We set (i1, j1)� (i2, j2) whenever i1 + j1 < i2 + j2 or i1 + j1 = i2 + j2
and i1 < i2 ordering the elements of a triangle from left to right and within a vertical
column from bottom to top.

Next, we term a monomial M ∈ U(n−) in the elements fi,j ordered if the elements
occurring in M are ordered according to �, i.e. if both fi1,j1 and fi2,j2 occur and
(i1, j1) � (i2, j2), then fi1,j1 occurs to the left of fi2,j2 . Note that every ordered
monomial is arranged and that the ordered monomials comprise a basis in U(n−). For
any monomialX in the fi,j we denote ord(X) the ordered monomial with log ord(X) =
logX. For a number triangle T = {Ti,j , 1 6 i < j 6 i} with nonnegative integer
elements we denote expT the ordered monomial with log exp(T ) = T .

Finally, � induces a certain graded lexicographical order on the set of ordered
monomials which we denote ≺. The grading of (any) monomial M is given by

gradM =
∑

16i<j6i

ci,j(logM)i,j ,

where ci,j = 1 if i+ j < 2n+ 1 and ci,j = 1
2 otherwise. For ordered monomials M and

N we then write M ≺ N whenever gradM < gradN or gradM = gradN and the
�-minimal pair (i, j) with (logM)i,j 6= (logN)i,j satisfies (logM)i,j < (logN)i,j .

An important property of ≺ is that it is monomial in the sense that if M ≺ N and
X ≺ Y , then ord(MX) ≺ ord(NY ).

The key statement that we will be proving by induction can now be given as follows.

Theorem 3.1. Let M be an ordered monomial with logM /∈ Πλ. Then the vector
Mv0 ∈ Lλ can be expressed as a linear combination of vectors of the form Kv0 with
K ordered and K ≺M .

It is evident that Theorem 3.1 provides the special case of Theorem 1.1 in which
all the monomials MT are ordered. However, it is actually not that hard to deduce
the general case.

Proposition 3.2. Theorem 3.1 implies Theorem 1.1.

First we prove the following lemma.

Lemma 3.3. LetM and N be two monomials with logM = logN . Then, as an element
of U(n−), the difference M −N is a linear combination of ordered monomials K with
gradK 6 gradM = gradN . If M and N are arranged, then the last inequality is
necessarily strict.

Proof. Let us proceed by induction on gradM and, within a specific gradM , on the
value

∑n
i=1(logM)i,i, i.e. the total number of elements of the form fi,i in M . The

base M = 1 is trivial.
Consider M 6= 1. Let us rearrange the monomial M into N , i.e. let us obtain N

from M by a series of operations of the form
(2) Xfi1,j1fi2,j2Y → Xfi2,j2fi1,j1Y.
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Note that
Xfi1,j1fi2,j2Y −Xfi2,j2fi1,j1Y = X[fi1,j1 , fi2,j2 ]Y

and that

(3) grad(X[fi1,j1 , fi2,j2 ]Y ) 6 grad(Xfi1,j1fi2,j2Y ) = grad(M).

The inequality above is trivial when i1 + j1 < 2n + 1 or i2 + j2 < 2n + 1 and
when j1 = i1 and j2 = i2 it follows from the commutation relation (1). In the latter
case note that the monomial X[fi1,j1 , fi2,j2 ]Y contains less elements of the form fi,i
than M and N . We thus see that the difference M − N is a linear combination of
monomials considered previously in our induction. Applying the induction hypothesis
to a monomial Z in this linear combination, we replace Z with the sum of ord(Z) and
a linear combination of ordered monomials K with gradK 6 gradZ 6 gradM . This
proves our claim.

Now, if M and N are arranged, we need only to perform operations of form (2)
for which i1 + j1 < 2n + 1 or i2 + j2 < 2n + 1. In this case the inequality in (3) is
necessarily strict. �

Proof of Proposition 3.2. Theorem 3.1 shows that the set of vectors {exp(T )v0, T ∈
Πλ} spans Lλ and, with Corollary 2.2 taken into account, we conclude that this set
is, in fact, a basis.

To prove the Proposition let us show that, given a set D = {MT v0, T ∈ Πλ} as
in the statement of Theorem 1.1, we can, employing Theorem 3.1, express a chosen
exp(U)v0 with U ∈ Πλ as linear combination of the vectors in D. Indeed, let us
proceed by induction on grad(expU) with the base expU = 1 being trivial.

For expU 6= 1 apply Lemma 3.3 to write

expU = MU +
∑
i

ciKi,

for some numbers ci and ordered monomials Ki with gradKi < grad(expU). Next,
employing (iterating) Theorem 3.1, express any Ki for which logKi /∈ Πλ as a lin-
ear combination of ordered monomials K with logK ∈ Πλ and, moreover, K ≺ Ki

whence grad(K) < grad(expU). This last inequality permits us to invoke the induc-
tion hypothesis. �

With Proposition 3.2 established the following two sections are devoted to an in-
ductive proof of Theorem 3.1.

4. Induction base
In this section we prove Theorem 3.1 in the cases of λ being a fundamental weight and
λ = 2ωn. To do so we make use of explicit descriptions of the corresponding modules.

First, we describe the module Lω1 , which is the (2n + 1)-dimensional vector rep-
resentation of so2n+1. We specify the actions of the root vectors fi,j in terms of a
distinguished basis in Lω1 consisting of the vectors e−n, . . . , en. These actions are as
follows.

(i) The element fi,j with 1 6 i < j 6 n maps ei to ej and e−j to −e−i, mapping
all other ek to 0.

(ii) The element fi,j with 1 6 i < j 6 n maps ei to e−j and ej to −e−i, mapping
all other ek to 0.

(iii) The element fi,i with 1 6 i 6 n maps ei to e0 and e0 to −2e−i, mapping all
other ek to 0.
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Now it can be said that for 2 6 i 6 n−1 the fundamental module Lωi is the exterior
power ∧iLω1 with highest weight vector e1 ∧ · · · ∧ ei and that L2ωn is the exterior
power ∧nLω1 with highest weight vector e1 ∧ · · · ∧ en. Such characterizations of the
first n − 1 fundamental modules can be found in [3]. To verify the characterization
of L2ωn one may, for example, compute its dimension via Weyl’s dimension formula
and then observe that e1 ∧ · · · ∧ en is indeed a highest weight vector of weight 2ωn in
∧nLω1 .

The remaining fundamental module Lωn is the so-called spin module which will be
discussed separately towards the end of this section.

Proposition 4.1. Suppose that Lλ ∼= ∧lLω1 for some l ∈ [1, n]. Then Theorem 3.1
holds.

Proof. We are given an ordered monomial M with logM /∈ Πλ and we are to show
that Mv0 ∈ Ω, where Ω ⊂ U(n−) is the subspace spanned by vectors of the form Kv0
with K ≺M . We assume v0 = e1 ∧ · · · ∧ el and denote T = logM .

Our weight λ is given by λ1 = · · · = λl = 1 and λi = 0 for i > l. Hence, for
Dyck paths d starting in one of (1, 2), . . . , (l, l+ 1) and ending either in one of (l+ 1,
l+2), . . . , (n−1, n) or anywhere in the rightmost vertical column we haveM(λ, d) = 1.
For all other Dyck paths d we have M(λ, d) = 0. Therefore, by the definition of Πλ,
the fact that T /∈ Πλ leaves us with four possibilities.

(I) We have Ti,j > 0 for some i > l or some j < l + 1.
(II) We have Ti1,j1 > 0 and Ti2,j2 > 0 for two distinct pairs (i1, j1) and (i2, j2)

with i1 6 i2 6 l and l + 1 6 j1 6 j2. The meaning of these inequalities is
that there exists a Dyck path passing first through (i1, j1) and then through
(i2, j2).

(III) We have Ti,j > 1 for some i 6 l and j > l + 1 with i+ j < 2n+ 1.
(IV) We have Ti,j > 2 for some i 6 l and i+ j = 2n+ 1.
To visualize each of these possibilities and (especially) the cases they will be broken

up into it is helpful to consider a partitioning of the set of pairs 1 6 i < j 6 i into six
different subsets. We provide the following diagram demonstrating this partitioning
in the case of n = 5 and l = 3.

j < l + 1

i 6 l

l + 1 6 j 6 n

i 6 l

n < j < l

i > l

i + j = 2n + 1
i 6 l (j > l)

j > l

i + j < 2n + 1
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Our four possibilities will further be split up into cases (especially possibility (II))
and altogether there is quite a number of different situations to discuss. However, the
outline of the argument will always be the same in spirit or, rather, conform to one
of the following scenarios.

In a few trivial situations we will simply have Mv0 = 0. In all other situations we
will present an arranged monomial M ′ with logM ′ = logM and show that M ′v0 ∈ Ω
which will suffice by Lemma 3.3. Again, if we are lucky, we will simply haveM ′v0 = 0,
however, in general, this is not the case. In general, we will use the explicit actions of
the fi,j provided by (i), (ii) and (iii) to express M ′v0 as a certain linear combination
of vectors of the form Nv0, where the monomials N are of the following type. Each
of these N is obtained from M ′ by replacing the product of the two “problematic”
elements (fi1,j1fi2,j2 in possibility (II) and f2

i,j in possibility (III)) with a certain
different expression, less (with respect to ≺) than the product being replaced. This
then means that we have ord(N) ≺M and we are left to show that N − ord(N) ∈ Ω.
This last assertion is proved with the help of Lemma 3.3 and, at times, a couple
additional remarks.

We first deal with possibility (I). If we have Ti,2n+1−i > 0 for some i > l, then we
may assume that i is the largest possible, i.e. the rightmost multiple in the monomial
M is fi,i. However, from (iii) we see that fi,i maps each of e1, . . . , el to 0, hence it
also maps v0 to 0 and the assertion is trivial.

Otherwise, we have Ti,j > 0 with either i > l or j < l+ 1 and with i+ j < 2n+ 1.
Consider the monomial M ′ obtained from M by shifting one fi,j to the very right
and preserving the order of the other elements. By Lemma 3.3 the difference M −M ′
is a linear combination of monomials K ≺ M . However, we have M ′v0 = 0 due to
fi,jv0 = 0 which follows from (i) and (ii).

We move on to possibility (II) which will be split up into numerous cases corre-
sponding to the numerous ways (i1, j1) and (i2, j2) can be positioned.

Case 1.We have j1 6 j2 6 n. Consider the monomial M ′ obtained from M by
shifting fi1,j1 and fi2,j2 to the very right and preserving the order of the remaining
elements, i.e. M ′ = Xfi1,j1fi2,j2 . By Lemma 3.3 it suffices to show that M ′v0 ∈ Ω.

If i1 = i2 or j1 = j2 from (i) we immediately have M ′v0 = fi1,j1fi2,j2v0 = 0.
Otherwise, we claim that fi1,j1fi2,j2v0 = −fi1,j2fi2,j1v0. Indeed, let us express v0 as
ei1 ∧ ei2 ∧ E. Clearly,

fi1,j1fi2,j2E = fi1,j2fi2,j1E = 0
and we are to show that

fi1,j1fi2,j2(ei1 ∧ ei2) = −fi1,j2fi2,j1(ei1 ∧ ei2).

However, with the help of (i) it is easily seen that both of the above expressions equal
ej1 ∧ ej2 .

We have obtained M ′v0 = −Xfi1,j2fi2,j1v0. By Lemma 3.3 we can rewrite the
right-hand side as the sum of − ord(Xfi1,j2fi2,j1v0) and an element of Ω. However,
since i1 + j2 > i1 + j1 and i2 + j1 > i1 + j1, we also have ord(Xfi1,j2fi2,j1v0) ≺M .

Case 2.We have j1 6 n while n < j2 < l. The proof repeats the one from Case 1
verbatim, except that the equality j1 = j2 is now impossible and that fi1,j1fi2,j2(ei1 ∧
ei2) and −fi1,j2fi2,j1(ei1 ∧ ei2) now both equal ej1 ∧ e−j2

.

Case 3.We have j1 6 n while j2 > l and i2 + j2 < 2n+ 1. We will also assume that
Ti,i = 0 for all i > i1, since otherwise we would be within Case 7.

Similarly to the previous two cases we consider M ′ = Xfi1,j1fi2,j2 obtained from
M by shifting fi1,j1fi2,j2 to the very right and show that M ′v0 ∈ Ω.
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First we assume that i1 < i2. Invoking (i), (ii) and (iii), write down the following
equalities (we omit the wedge product for brevity)

fi1,j1fi2,j2(ei1ei2ej2
) = ej1ej2

e−j2
− ej1ei2e−i2 ,

fi1,j2fi2,j1(ei1ei2ej2
) = e−j2

ej1ej2
− ei1ej1e−i1 ,

fi1,i2fj2,j1
(ei1ei2ej2

) = e−i2ei2ej1 − ei1e−i1ej1

and
fj2,j1

fi1,i1fi2,i2(ei1ei2ej2
) = −2ei1e−i1ej1 .

We obtain
(4) fi1,j1fi2,j2v0 = (fi1,i2fj2,j1

− fi1,j2fi2,j1 − fj2,j1
fi1,i1fi2,i2)v0

(we express v0 = ei1 ∧ ei2 ∧ ej2
∧E and note that all of the above monomials map E

to 0).
Now, similarly to Case 1 we deduce that M ′v0 is congruent to

(ord(Xfi1,i2fj2,j1
)− ord(Xfi1,j2fi2,j1)− ord(Xfj2,j1

fi1,i1fi2,i2))v0

modulo Ω and observe that each of the monomials in the expression above lies in Ω.
To prove this last assertion we verify that all the fi,j appearing in the right-hand side
of (4) satisfy i+ j > i1 + j1:

i1 + i2 > i1 + j2 > i1 + j1,(5)
j2 + j1 > i2 + j1 > i1 + j1,(6)

i1 + i1 = i2 + i2 = 2n+ 1 > i2 + j2 > i1 + j1(7)

and (i1, j2) and (i2, j1) are considered trivially (as in Case 1). We also make use of
the fact that Xfj2,j1

fi1,i1fi2,i2 is arranged which is due to the assumption made at
the beginning of this case.

Finally, if we have i1 = i2, we have the easily obtainable identity

fi1,j1fi2,j2v0 = −1
2fj2,j1

f2
i1,i1

v0.

The rest of the argument is analogous and makes use of (6) and (7).

Case 4.We have n < j1 6 j2 < l. The proof repeats the one from Case 1 verbatim,
except that fi1,j1fi2,j2(ei1 ∧ei2) and −fi1,j2fi2,j1(ei1 ∧ei2) now both equal e−j1

∧e−j2
.

Case 5.We have n < j1 < l 6 j2 and i2 + j2 < 2n + 1. The proof repeats the one
from Case 3 verbatim except for a substitution of e−j1

for ej1 and the remark that
having Ti,i > 0 for some i > i1 would let us reduce to Case 8 (and not Case 7).

Case 6.We have l 6 j1 6 j2 and i2 + j2 < 2n+ 1. We will also assume that Ti,i = 0
for all i1 6 i 6 j1, since otherwise we would be within Case 9.

Here to define M ′ we don’t shift fi1,j1fi2,j2 to the very right but instead we shift
it to the right of all elements except those of form fi,i with i > j1. We denote
M ′ = Xfi1,j1fi2,j2Y . The vector Y v0 is a linear combination of vectors of two forms:
either ei1ei2ej2

ej1
E or e0ei1ei2ej2

ej1
E with fi1,j1fi2,j2E = 0 in both cases.

Next, in the spirit of the previous cases, we assume that i1 < i2 and j1 < j2 and
write down the equalities

fi1,j1fi2,j2(ei1ei2ej2
ej1

)
= e−j1

e−j2
ej2
ej1
− e−j1

ei2e−i2ej1
− ei1e−j2

ej2
e−i1 + ei1ei2e−i1e−i2 ,
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fi1,j2fi2,j1(ei1ei2ej2
ej1

)
= e−j2

e−j1
ej2
ej1
− e−j2

ei2ej2
e−i2 − ei1e−j1

e−i1ej1
+ ei1ei2e−i2e−i1 ,

fi1,i2fj2,j1
(ei1ei2ej2

ej1
)

= e−i2ei2e−j1
ej1
− e−i2ei2ej2

e−j2
− ei1e−i1e−j1

ej1
+ ei1e−i1ej2

e−j2
,

fj2,j1
fi1,i1fi2,i2(ei1ei2ej2

ej1
) = −2ei1e−i1e−j1

ej1
+ 2ei1e−i1ej2

e−j2
,

fi1,i2fj2
fj1

(ei1ei2ej2
ej1

) = −2e−i2ei2ej2
e−j2

+ 2ei1e−i1ej2
e−j2

,

fi1,i1fi2,i2fj2
fj1

(ei1ei2ej2
ej1

) = 4ei1e−i1ej2
e−j2

.

We also have

fi1,j1fi2,j2(e0ei1ei2ej2
ej1

) = e0fi1,j1fi2,j2(ei1ei2ej2
ej1

),
fi1,j2fi2,j1(e0ei1ei2ej2

ej1
) = e0fi1,j2fi2,j1(ei1ei2ej2

ej1
),

fi1,i2fj2,j1
(e0ei1ei2ej2

ej1
) = e0fi1,i2fj2,j1

(ei1ei2ej2
ej1

),
fj2,j1

fi1,i1fi2,i2(e0ei1ei2ej2
ej1

) = −2e−i2e0ei2e−j1
ej1

+ 2e−i2e0ei2ej2
e−j2

,

fi1,i2fj2
fj1

(e0ei1ei2ej2
ej1

) = −2e−j1
e−i2ei2e0ej1

+ 2e−j1
ei1e−i1e0ej1

,

fi1,i1fi2,i2fj2
fj1

(e0ei1ei2ej2
ej1

) = 4e−j1
e0ei2e−i2ej1

.

We see that we have the same linear relation for the six right-hand sides in both cases
and we end up with

M ′v0 = X(fi1,i2fj2,j1
−fi1,j2fi2,j1−fj2,j1

fi1,i1fi2,i2−fi1,i2fj2
fj1

+fi1,i1fi2,i2fj2
fj1

)Y v0.

We complete the argument as in the previous cases, noting that the last three mono-
mials in the (expanded) right-hand side above are arranged due to the assumption
we made at the beginning of this case. Here we make use of (5), (6), (7) and of

(8) j1 + j1 = j2 + j2 = 2n+ 1 > i2 + j2 > i1 + j1.

To complete the consideration of this case we are left to deal with the situations
in which i1 = i2 or j1 = j2. When i1 = i2 we write

fi1,j1fi2,j2(ei1ej2
ej1

) = −e−j2
ej2
e−i1 − e−j1

e−i2ej1
,

fj2,j1
f2
i1,i1

(ei1ej2
ej1

) = −2e−i1e−j1
ej1

+ 2e−i1ej2
e−j2

,

f2
i1,i1

fj2
fj1

(ei1ej2
ej1

) = 4e−i1ej2
e−j2

and

fi1,j1fi2,j2(e0ei1ej2
ej1

) = e0fi1,j1fi2,j2(ei1ej2
ej1

),
fj2,j1

f2
i1,i1

(e0ei1ej2
ej1

) = −2e−i1e0e−j1
ej1

+ 2e−i1e0ej2
e−j2

,

f2
i1,i1

fj2
fj1

(e0ei1ej2
ej1

) = 4e−j1
e0e−i1ej1

= 4e−j1
e0e−i2ej1

to conclude
M ′v0 = 1

2X(−fj2,j1
f2
i1,i1

+ f2
i1,i1

fj2
fj1

)Y v0.

When j1 = j2 we similarly derive

M ′v0 = 1
2X(−fi1,i2f

2
j1

+ fi1,i1fi2,i2f
2
j1

)Y v0.

In either situation the argument is then finished off as when we had i1 < i2 and
j1 < j2.
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Case 7.We have j1 6 n and i2 + j2 = 2n+ 1. We assume that i2 is the largest i for
which Ti,2n+1−i > 0, i.e. the rightmost element in M is fi2,j2 = fi2,i2 .

We defineM ′ by shifting fi1,j1 to the right of all elements other than the last fi2,i2 .
The rest of the argument is analogous to Cases 1 - 5 and makes use of

fi1,j1fi2,i2(ei1ei2) = ej1e0,

fi2,j1fi1,i1(ei1ei2) = e0ej1 ,

fi1,j1fi2,i2v0 = −fi2,j1fi1,i1v0

when i1 < i2 and of fi1,j1fi2,i2v0 = 0 when i1 = i2. (In the former case we make use
of (7) substituting the first “>” for a “=”.)

Case 8.We have n < j1 < l and i2 + j2 = 2n+ 1. The argument repeats the one in
Case 7 verbatim except for a substitution of e−j1

for ej1 .

Case 9.We have j1 > l and i2 + j2 = 2n+ 1. We assume that i2 is the largest i with
Ti,2n+1−i > 0 and i1 6 i 6 j1.

We define M ′ by shifting fi1,j1 to the immediate left of the rightmost fi2,i2 to
obtain M ′ = Xfi1,j1fi2,i2Y with Y containing only elements of the form fi,i with
i > i2. We see that Y v0 is a linear combination of vectors of the forms ei1ei2ej1

E and
e0ei1ei2ej1

E with fi1,j1fi2,i2E = 0.
First we assume that i1 < i2 < j1 and write

fi1,j1fi2,i2(ei1ei2ej1
) = e−j1

e0ej1
− ei1e0e−i1 ,

fi2,j1fi1,i1(ei1ei2ej1
) = e0e−j1

ej1
− e0ei2e−i2 ,

fi1,i2fj1
(ei1ei2ej1

) = e−i2ei2e0 − ei1e−i1e0,

fi1,i1fi2,i2fj1
(ei1ei2ej1

) = −2e0ei2e−i2

and

fi1,j1fi2,i2(e0ei1ei2ej1
) = −2e−i2e−j1

ei2ej1
+ 2e−i2ei1ei2e−i1 ,

fi2,j1fi1,i1(e0ei1ei2ej1
) = −2e−i1ei1e−j1

ej1
+ 2e−i1ei1ei2e−i2 ,

fi1,i2fj1
(e0ei1ei2ej1

) = −2e−j1
e−i2ei2ej1

+ 2e−j1
ei1e−i1ej1

,

fi1,i1fi2,i2fj1
(e0ei1ei2ej1

) = 4e−j1
ei1e−i1ej1

obtaining
M ′v0 = X(−fi2,j1fi1,i1 − fi1,i2fj1

+ fi1,i1fi2,i2fj1
)Y v0.

A particularity of this case is that the monomials Xfi2,j1fi1,i1Y and
Xfi1,i1fi2,i2fj1

Y will not be arranged if X contains any fi,i with i > i1. How-
ever, we still claim that the expressions

Xfi2,j1fi1,i1Y − ord(Xfi2,j1fi1,i1Y )

and
Xfi1,i1fi2,i2fj1

Y − ord(Xfi1,i1fi2,i2fj1
Y )

lie in Ω.
Indeed, let us consider Xfi2,j1fi1,i1Y with X containing a fi,i with i > i1. Let

Z be the arranged monomial obtained from Xfi2,j1fi1,i1Y by shifting the fi1,i1 to
the immediate left of the leftmost fi,i with i > i1. This shift consists of a series of
operations of the form X ′fi,ifi1,i1Y

′ → X ′fi1,i1fi,iY
′ with i > i1. Note that

X ′fi,ifi1,i1Y
′ −X ′fi1,i1fi,iY

′ = −2X ′fi1,iY
′
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by (1). However, by definition of M ′ we must have i < j1 whence i1 + i > i1 + j1
and X ′fi1,iY

′ ∈ Ω. Therefore, we may conclude that Xfi2,j1fi1,i1Y − Z ∈ Ω. We
also have Z − ord(Z) ∈ Ω by Lemma 3.3 and our assertion follows. The monomial
Xfi1,i1fi2,i2fj1

Y is considered analogously and the argument is completed as in the
previous cases. (Note that in (5) the “>” is replaced with a “=” but the second
inequality is strict since j2 = i2 > j1 due to our current assumption. Also note that
in (8) the first “>” is replaced with a “=”.)

When i1 = i2 we have
M ′v0 = 1

2Xf
2
i1,i1

fj1
Y v0.

When i2 = j1 we have

M ′v0 = 1
2Xfi1,i1f

2
j1
Y v0.

In both cases the argument is completed just like when we had i1 < i2 < j1, however,
when i2 = j1 the monomialM ′ is to be defined by shifting fi1,j1 to the immediate left
of the leftmost fi2,i2 = fj1

. This last adjustment is necessary in order to avoid having
a fj1

in X. Otherwise, when shifting our fi1,i1 in Xfi1,i1f
2
j1
Y to the left we would be

commuting it with fj1
and obtaining fi1,j1 .

We have completed the consideration of possibility (II) and are left to deal with
possibilities (III) and (IV).

If we are within possibility (III) and we have j < l, then we argue as in possi-
bility (I). We define M ′ by shifting the f2

i,j to very left. It is then easily seen that
M ′v0 = 0 and that M −M ′ ∈ Ω by Lemma 3.3.

If we, however, are within possibility (III) and have j > l, then our argument may
be viewed as an adaptation of the argument in Case 6 above to the situation i1 = i2
and j1 = j2. Namely, we define M ′, X and Y as in Case 6 (setting i1 = i2 = i and
j1 = j2 = j) and obtain the relation

M ′v0 = −1
2Xf

2
i,i
f2
j,j
Y v0.

The argument is then completed analogously to Case 6.
Finally, if we are within possibility (IV), we simply make use of the fact that f3

i,i

annihilates Lλ. �

We now discuss the remaining fundamental weight ωn.

Proposition 4.2. Theorem 3.1 holds if λ = ωn.

Proof. An explicit description of the spin representation Lωn may be found in [3]. We
will utilize the following properties. The spin representation has dimension 2n and a
basis comprised of vectors eI with I ∈ {0, 1}n. Vector eI has weight 1

2
∑n
j=1(−1)Ijβj ,

in particular, v0 = e{0,...,0} is the highest vector. We will also need the fact that if
Ij = 0, then fj,jeI is a nonzero multiple of eI′ , where I ′ is obtained from I by setting
I ′j = 1.

Observe that Πωn is comprised of all U with Ui,i ∈ {0, 1} for all 1 6 i 6 n and
Ui,j = 0 for all i + j < 2n + 1. In view of the above properties, this already shows
that the vectors exp(U)v0, U ∈ Πωn comprise a basis in Lωn .

Now, let M be an ordered monomial with T = logM /∈ Πωn . If Ti,j = 0 for all
i+j < 2n+1, then we must have Ti,i > 1 for some i to avoid having T ∈ Πωn . However,
we then would evidently have Mv0 = 0 for weight reasons. If, on the contrary, we
have Ti,j > 0 for some i + j < 2n + 1, then we may decompose Mv0 in the basis
{exp(U)v0, U ∈ Πωn} and observe that we have U ≺ T for any U ∈ Πωn . �
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5. Induction step
In this section we complete the proof of Theorem 3.1 by transitioning from the cases
discussed in the previous section to the general case. Fortunately, this transition is
nowhere as tedious as the above case by case proof. It is enabled by the following
Minkowski type property.

Lemma 5.1. Suppose that λ 6= 0 and is neither a fundamental weight nor 2ωn. Let l
be the minimal i such that ai > 0 and let T ∈ Πλ. If l < n, set ε = ωl and else set
ε = 2ωn and denote λ′ = λ− ε. Then there exists T ′ ∈ Πλ′ such that T − T ′ ∈ Πε.

Proof. We define a weakening≪ of the order � on the set of pairs (i, j) with 1 6
i < j 6 i. For (i1, i2) 6= (j1, j2) we write (i1, j1) ≪ (i2, j2) whenever i1 6 i2 and
j1 6 j2. In fact, one sees that having (i1, j1)≪ (i2, j2) is equivalent to having a Dyck
path passing first through (i1, j1) and then through (i2, j2).

Let T be the set of pairs (i, j) such that Ti,j > 0 and let M be the set of pairs
(i, j) that are≪-minimal elements of T and have the property i 6 l. Note that any
(i, j) ∈ T satisfies j > l+1, since otherwise we wouldn’t have T ∈ Πλ. That is because
we would then have a Dyck path d passing through (i, j) and starting and ending left
of Tl,l+1 yielding S(T, d) > M(λ, d) = 0. Also note thatM is an≪-antichain, i.e. no
two elements lie on the same Dyck path.

Let the triangle U be defined by Ui,j = 1 when (i, j) ∈M and Ui,j = 0 otherwise.
From the previous paragraph we see that U ∈ Πε. We are left to show that T ′ =
T − U ∈ Πλ′ . This is done by checking that we have S(T ′, d) 6 M(λ′, d) for every
Dyck path d with S(T, d) = M(λ, d) andM(λ′, d) < M(λ, d). The latter means that d
starts in one of (1, 2), . . . , (l, l+1) and ends either in one of (l+1, l+2), . . . , (n−1, n)
or anywhere in the rightmost vertical column. In other words, we are to show that
every such Dyck path meetsM.

Indeed, let d be a Dyck path with the above properties, it meets T since
S(T, d) = M(λ, d) > M(λ′d) > 0.

Let (i′, j′) be the≪-minimal element in d ∩ T , we claim that (i′, j′) ∈ M. Indeed,
suppose that there exists a (i′′, j′′) ∈ T with (i′′, j′′)≪ (i′, j′). This means that we
can define a Dyck path d′ passing through (i′′, j′′) and (i′, j′) and coinciding with d to
the right of (i′, j′). We would then have M(λ, d′) = M(λ, d) but S(T, d′) > S(T, d) =
M(λ, d), a contradiction. We are left to check that i′ 6 l. Indeed, suppose that i′ > l
and let d′′ start with

(i′, i′ + 1), (i′, i′ + 2), . . . , (i′, j′)
(i.e. going down and to the right from (i′, i′+ 1) to (i′, j′)) and coincide with d to the
right of (i′, j′). On one hand, we have S(T, d′′) > S(T, d), on the other, since i′ > l and
al > 0, we must have λi′ < λl and, consequently, M(λ, d′′) < M(λ, d) = S(T, d). �

We are now ready to carry out the induction step.

Proof of Theorem 3.1. Let us define λ′ and ε as in Lemma 5.1. In view of Proposi-
tion 4.1 and the principle of mathematical induction we may assume that the state-
ment of Theorem 3.1 applies to Lλ′ and Lε.

Consider the moduleW = Lλ′⊗Lε. In view of our induction base and our induction
hypothesis, we have the basis {eU = exp(U)u0, U ∈ Πε} in Lε and the basis {eT ′ =
exp(T ′)v′0, T ′ ∈ Πλ′} in Lλ′ , where u0 and v′0 are, respectively, the highest vectors in
Lε and Lλ′ . This gives us the basis
(9) {eU ⊗ eT ′ , U ∈ Πε, T

′ ∈ Πλ′}
in W .
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First we show that the set of vectors {exp(T )v0, T ∈ Πλ} is linearly independent.
Indeed, suppose that we have

(10)
∑
T∈Πλ

cT exp(T )v0 = 0

with at least one nonzero cT . Consider the ≺-maximal exp(T0) with cT0 6= 0. By
Lemma 5.1 we may specify T ′0 ∈ Πλ′ and U0 ∈ Πε with T ′0 + U0 = T0. We achieve
a contradiction by showing that eU0 ⊗ eT ′0 must have a nonzero coefficient when the
left-hand side of (10) is decomposed in basis (9).

First we show that the vector eU0 ⊗ eT ′0 appears with coefficient 1 when exp(T0)v0
is decomposed in basis (9). Indeed,

exp(T0)v0 =
∑

U+T ′=T0

(exp(U)u0)⊗ (exp(T ′)v′0)

with the sum being taken over all decompositions of T0 into a sum of two number
triangles with nonnegative integer elements. In particular, one of the summands in
this sum will be eU0 ⊗ eT ′0 .

Let us consider any other summand (exp(U)u0) ⊗ (exp(T ′)v′0) and decompose it
in basis (9). If U ∈ Πε, then all vectors with nonzero coefficients in this last de-
composition are of the form eU ⊗ · 6= eU0 ⊗ eT ′0 . Similarly when T ′ ∈ Πλ′ . If both
U /∈ Πε and T ′ /∈ Πλ′ , then, due to our induction hypothesis, all vectors appearing
with nonzero coefficients in the decomposition of (exp(U)u0)⊗ (exp(T ′)v′0) are of the
form eU1 ⊗ eT ′1 with exp(U1) ≺ exp(U) and exp(T ′1) ≺ exp(T ′). This implies that
exp(U1 + T ′1) ≺ exp(U + T ′) = exp(T0) and, therefore, eU1 ⊗ eT ′1 6= eU0 ⊗ eT ′0 . We
have thus shown that eU0 ⊗ eT ′0 appears with coefficient 0 in the decomposition of
(exp(U)u0)⊗ (exp(T ′)v′0) and established the claim at the beginning of the previous
paragraph.

Now consider any other nonzero cT . We must have exp(T ) ≺ exp(T0). We again
write

exp(T )v0 =
∑

U+T ′=T0

(exp(U)u0)⊗ (exp(T ′)v′0).

When decomposing any (exp(U)u0)⊗ (exp(T ′)v′0) from the right-hand side above in
basis (9) we only obtain nonzero coefficients at vectors eU1 ⊗ eT ′1 with exp(U1) �
exp(U) and exp(T ′1) � exp(T ′), due to our induction hypothesis. This, however, im-
plies that

exp(U1 + T ′1) ≺ exp(U + T ′) = exp(T ) ≺ exp(T0)
and eU1 ⊗ eT ′1 6= eU0 ⊗ eT ′0 .

We have shown that eU0 ⊗ eT ′0 would appear with coefficient cT0 in the left-hand
side of (10). Therefore, the vectors exp(T )v0, T ∈ Πλ are linearly independent and,
due to Corollary 2.2, comprise a basis in Lλ. However, the assertion being made in
Theorem 3.1 and being proved inductively is stronger than that and is yet to be
established.

Consider some M with logM /∈ Πλ and write

(11) Mv0 =
∑
T∈Πλ

kT exp(T )v0

decomposing it in the newly acquired basis. Similarly to the above argument consider
the ≺-maximal T0 with kT0 6= 0. We are to show that exp(T0) ≺M .

We again choose T ′0 ∈ Πλ′ and U0 ∈ Πε with T ′0 + U0 = T0. We decompose both
sides of (11) in basis (9) and observe that eU0⊗eT ′0 appears with a nonzero coefficient
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in the right-hand side’s decomposition. This is proved in the same exact manner as
we employed above.

However, the left-hand side is equal to∑
U+T ′=logM

(exp(U)u0)⊗ (exp(T ′)v′0).

When a summand in this last sum is decomposed in basis (9) we only obtain nonzero
coefficients at vectors eU1 ⊗ eT ′1 with exp(U1) � exp(U) and exp(T ′1) � exp(T ′) and,
therefore, with exp(U1 + T ′1) � M . This means that we must have exp(T0) � M ,
however, exp(T0) = M is impossible since logM /∈ Πλ. The induction step is com-
pleted. �

We have proved Theorem 3.1 and, in view of the discussion in Section 3, our main
Theorem 1.1.

6. Compatible PBW degenerations
To recall what we touched upon in the Introduction and Remark 1.2, the FFLV
bases for types A and C constructed in [8] and [9] have the important property of
being bases regardless of the way we order the root vector factors comprising each
monomial. For types A and C this property is a consequence of the fact that the
FFLV bases induce a basis in the abelian PBW degeneration of the representation.
In short, to define the abelian PBW degeneration of a highest weight module one
views it as module over the corresponding nilpotent subalgebra. The filtration of the
universal enveloping algebra of this nilpotent subalgebra by PBW degree induces a
filtration of the module, the associated graded space is a module over the symmetric
algebra of the nilpotent subalgebra. We refer to this last object as the abelian PBW
degeneration of the initial module. See [8] and [9] for details.

Since the root vectors comprising a monomial may not be ordered arbitrarily for
the bases constructed here, these bases do not induce bases in the abelian PBW
degenerations. The goal of this section is to show that they, instead, induce a basis
in a different associated graded space which we now define. (We still, however, refer
to this space as a PBW degeneration of the initial module.)

First, we define a 1
2Z>0-filtration on the universal enveloping algebra U(n−). This

is done simply by defining the filtration element U(n−)m, m ∈ 1
2Z>0 as the space

spanned by ordered monomials M with gradM 6 m. The fact that we thus in-
deed obtain a filtered algebra, i.e. that for M and N ordered we have MN ∈
U(n−)gradM+gradN , follows from Lemma 3.3.

Let us denote the associated 1
2Z>0-graded algebra Φ. It is the associative algebra

generated by n2 elements ϕi,j , 1 6 i < j 6 2n+1− i with the relations [ϕi,j , ϕk,l] = 0
when either i+ j < 2n+ 1 or k + l < 2n+ 1 and [ϕi,i, ϕk,k] = 2ϕi,k when i < k.

We next define a 1
2Z>0-filtration on Lλ by setting (Lλ)m = U(n−)m(v0). The

associated graded space Rλ is naturally a Φ-module. In Rλ we can choose a “highest
vector” w0, an element of the one-dimensional component of grading 0.

For a number triangle T = {Ti,j , 1 6 i < j 6 i} with nonnegative integer elements
denote exp∗(T ) ∈ Φ the monomial in the elements ϕi,j containing each ϕi,j in total
degree Ti,j and, moreover, not containing an ϕi,i to the right of an ϕj,j with i < j

(“arranged” with respect to the ϕi,j). The monomial exp∗(T ) does not depend on the
positions in which the ϕi,j with i+j < 2n+1 are found due to the above commutation
relations in Φ.

Theorem 6.1. The set of vectors {exp∗(T )w0, T ∈ Πλ} constitutes a basis in Rλ.
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Proof. For m ∈ 1
2Z>0 denote (Rλ)m the component of Rλ of grading m. Consider an

ordered monomial M ∈ U(n−) with gradM = m. We have Mv0 ∈ (Lλ)m and the
composition map
(12) (Lλ)m → (Lλ)m/(Lλ)m− 1

2
→ (Rλ)m

sends Mv0 to exp∗(logM)w0 (we set (Lλ)− 1
2

= {0}).
Since the relation ≺ respects the grading grad, from Theorem 3.1 and Theorem 1.1

it follows that for any p ∈ 1
2Z>0 the set {Kv0, logK ∈ Πλ, gradK 6 p} constitutes a

basis in (Lλ)p. Consequently, the images under the left (surjective) map in (12) of the
vectors Kv0 with logK ∈ Πλ and gradK = m comprise a basis in (Lλ)m/(Lλ)m− 1

2
.

The right map is bijective which completes the proof. �

Before adding two final remarks, let us observe that Theorem 1.1 can, in fact, be
easily deduced from Theorem 6.1. Indeed, if we choose an arranged monomial MT

for every T ∈ Πλ as in Theorem 1.1, then Theorem 6.1 shows that the images of
the vectors {MT v0, T ∈ Πλ, gradMT = m} comprise a basis in (Lλ)m/(Lλ)m− 1

2
and

Theorem 1.1 follows.
Remark 6.2.One could point out more specifically where our argument would break
down if we had grad fi,i = 1 as one would in the abelian case. Within our proof of the
induction base in several cases we would be replacing the product of “problematic”
elements with something of a greater grad-grading. (See page 313 for the general
outline of the case-by-case argument in the proof of Proposition 4.1.)
Remark 6.3. The abelian PBW degenerations discussed above let one define the
corresponding abelian degenerations of flag varieties as is done in [7]. We point out
that a similar definition can be provided for the modified PBW filtration introduced
above.

First, note that the elements ϕi,j ∈ Φ span a Lie algebra with respect to the
induced commutation relations, we denote this Lie algebra q. The algebra Φ is then
naturally the universal enveloping algebra of q.

We now may consider the connected simply connected Lie groupQ with Lie(Q) = q,
the group Q acts on the graded space Rλ and on its projectivization P(Rλ). We may
consider the point w′0 ∈ P(Rλ) corresponding to Cw0 and define a certain analog of
the degenerate flag variety as the closure X = Qw′0.

In view of the results on the abelian degenerations, a natural question to ask about
X is, for instance, whether it provides a flat degeneration of the corresponding type
B flag variety.

Another natural geometric object to consider is the toric variety associated with
polytope Pλ (see Remark 2.3). Does this variety provide a flat degeneration of the
type B flag variety in analogy with FFLV polytopes in types A and C?
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