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Discrete cubical and path homologies of
graphs

Hélène Barcelo, Curtis Greene, Abdul Salam Jarrah
& Volkmar Welker

Abstract In this paper we study and compare two homology theories for (simple and undi-
rected) graphs. The first, which was developed by Barcelo, Capraro, and White, is based on
graph maps from hypercubes to the graph. The second theory was developed by Grigor’yan,
Lin, Muranov, and Yau, and is based on paths in the graph. Results in both settings imply
that the respective homology groups are isomorphic in homological dimension one. We show
that, for several infinite classes of graphs, the two theories lead to isomorphic homology groups
in all dimensions. However, we provide an example for which the homology groups of the two
theories are not isomorphic at least in dimensions two and three. We establish a natural map
from the cubical to the path homology groups which is an isomorphism in dimension one and
surjective in dimension two. Again our example shows that in general the map is not surjec-
tive in dimension three and not injective in dimension two. In the process we develop tools to
compute the homology groups for both theories in all dimensions.

1. Introduction
For a simple finite undirected graph G, we study a discrete cubical singular homology
theory HCube

• (G). This theory is a special case of the discrete cubical homology theory
DH•,r(X) that was defined by Barcelo, Capraro and White [2] for any metric space
X and any real number r > 0. Their work builds on a discrete homotopy theory for
undirected graphs introduced earlier by Barcelo, Kramer, Laubenbacher, and Weaver
in [3]. Later work by Babson, Barcelo, de Longueville, and Laubenbacher [1] connects
this theory to classical homotopy theory of cubical sets and asks for a corresponding
homology theory. The homology theory developed in [2] is an answer to that question.
A more general but closely related homotopy theory for directed graphs was developed
by Grigor’yan, Lin, Muranov, and Yau in [7], which also introduces a corresponding
homology theory based on directed paths. The homotopy theories in [1] and [7] are
identical when G is undirected and from [2] and [7] it follows that the homology
theories yield isomorphic homology groups in dimension 1. In this paper we explore
both the similarities and differences between the two homology theories, showing
that they agree in all dimensions for many infinite classes of undirected graphs but
disagree in general. Both theories differ markedly from classical singular/simplicial
homology of graphs seen as 1-dimensional complexes or their clique complexes. For
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example, when G is a 4-cycle, both the cubical and path homologies are trivial in all
dimensions greater than zero.

In Section 2, following [2] and [7], we give precise definitions of both cubical and
path homology for undirected graphs, and discuss the differences between these theo-
ries and classical simplicial homology of a graph (as a 1-dimensional simplicial complex
as well as of the clique complex of the graph). In Section 3 we give proofs that both cu-
bical and path homology are preserved under homotopy equivalence, along lines that
essentially appear in [2] and [7]. These results are used in Section 4 to compute ho-
mology for a large number of examples, showing in the process that cubical and path
homology agree in all of these cases. Section 5 constructs a natural homomorphism
from HCube

• (G) to HPath
• (G). We show that the homomorphism is an isomorphism

in dimension 0 and 1 and surjective in dimension 2, hence fueling speculation that
this might explain the isomorphisms observed in Section 4. However, Section 6 gives
a counterexample: a graph G for which HCube

• (G) 6∼= HPath
• (G), and for this example

the map defined in Section 5 is neither injective nor surjective. Section 7 suggests
several natural questions for further study.

2. Background: discrete homology of graphs
Throughout the paper let R denote a commutative ring with unit which shall be the
ring of coefficients. For any positive integer n, let [n] := {1, . . . , n}. For graph theory
definitions and terminology we refer the reader to [4].

2.1. Discrete cubical homology.

Definition 2.1. For n > 1, the discrete n-cube Qn is the graph whose vertex set
V (Qn) is {0, 1}n := {(a1, . . . , an) | ai ∈ {0, 1} for all i ∈ [n]}, with an edge between
two vertices a and b if and only if their Hamming distance is exactly one, that is,
there exists i ∈ [n] such that ai 6= bi and aj = bj for all j 6= i. For n = 0, we define
Q0 to be the 1-vertex graph with no edges.

Definition 2.2. Let G and H be simple graphs, i.e. undirected graphs without loops
or multiple edges. A graph homomorphism σ : G −→ H is a map from V (G) to V (H)
such that, if {a, b} ∈ E(G) then either σ(a) = σ(b) or {σ(a), σ(b)} ∈ E(H).

Definition 2.3. Let G be a simple graph, a graph homomorphism σ : Qn −→ G is
called a singular n-cube on G.

For each n > 0, let LCube
n (G) be the free R-module generated by all singular n-

cubes on G. For n > 1 and each i ∈ [n], we define two face maps f+
i and f−i from

LCube
n (G) to LCube

n−1 (G) such that, for σ ∈ LCube
n (G) and (a1, . . . , an−1) ∈ Qn−1:

f+
i σ(a1, . . . , an−1) := σ(a1, . . . , ai−1, 1, ai, . . . , an−1),
f−i σ(a1, . . . , an−1) := σ(a1, . . . , ai−1, 0, ai, . . . , an−1).

For n > 1, a singular n-cube σ is called degenerate if f+
i σ = f−i σ, for some i ∈ [n].

Otherwise, σ is called non-degenerate. By definition every 0-cube is non-degenerate.
For each n > 0, let DCube

n (G) be the R-submodule of LCube
n (G) that is gener-

ated by all degenerate singular n-cubes, and let CCube
n (G) be the free R-module

LCube
n (G)/DCube

n (G), whose elements are called n-chains. Clearly, the cosets of non-
degenerate n-cubes freely generate CCube

n (G).
Furthermore, for each n > 1, define the boundary operator

∂Cube
n : LCube

n (G) −→ LCube
n−1 (G)
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such that, for each singular n-cube σ,

∂Cube
n (σ) =

n∑
i=1

(−1)i
(
f−i σ − f

+
i σ
)

and extend linearly to all chains in LCube
n (G). When there is no danger of confusion,

we will abbreviate ∂Cube
n as ∂n. If one sets LCube

−1 (G) = DCube
−1 (G) = (0) then one can

define ∂Cube
0 as the trivial map from LCube

0 (G) to LCube
−1 (G).

It is easy to check that, for n > 0, ∂n[DCube
n (G)] ⊆ DCube

n−1 (G) and ∂n∂n+1σ = 0
(see [2]). Hence, using the same notation, we may define a boundary operator ∂n :
CCube
n (G) −→ CCube

n−1 (G), and CCube(G) = (CCube
• , ∂•) is a chain complex of free R-

modules.

Definition 2.4. For n > 0, denote by HCube
n (G) the nth homology group of the chain

complex CCube(G). In other words, HCube
n (G) := Ker ∂n/ Im ∂n+1.

We represent singular n-cubes σ : Qn → G by sequences of length 2n, where the
ith term is the value of σ on the ith vertex, and the vertices of Qn are indexed in
colexicographic order. For example, if G is defined as in Figure 2, then the sequence
(1, 2, 2, 1, 2, 3, 3, 2) represents the singular 3-cube with labels as illustrated in Figure 1.

000 100

010 110

001 101

011 111

1 2

2 1

2 3

3 2

Figure 1. Singular 3-cube represented by (1, 2, 2, 1, 2, 3, 3, 2).

We represent each coset in CCube
n (G) by the unique coset representative in which

all terms are non-degenerate.

Example 2.5. Let G be a 4-cycle, with vertices labeled cyclically, as illustrated in
Figure 2.

1 2

34

Figure 2. Graph G = 4-cycle.
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Then

CCube
0 =

〈
(1), (2), (3), (4)

〉
CCube

1 =
〈
(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)

〉
CCube

2 =
〈
(1, 1, 1, 2), (1, 1, 1, 4), · · · < 60 more > . . . , (4, 4, 4, 1), (4, 4, 4, 3)

〉
.

The matrix of ∂1 with respect to the above bases is the standard vertex-directed edge
incidence matrix of the corresponding directed graph in which each edge is replaced
by directed edges in both directions. An easy computation shows that ∂1 has rank
|V |−1 = 4−1 = 3 and nullity 8−3 = 5. Cycles in CCube

1 (G) correspond to circulations
in G, that is, weighted sums of edges in which the net flow out of each vertex equals
zero. A basis of CCube

1 (G) may be obtained from any directed cycle basis of G, e.g.,
for the graph G defined in Figure 2 we may take (1, 2) + (2, 1), (2, 3) + (3, 2), (3, 4) +
(4, 3), (4, 1) + (1, 4), and (1, 2) + (2, 3) + (3, 4) + (4, 1). Each of these 1-cycles is the
boundary of a 2-chain:

(1, 2) + (2, 1) = ∂2((2, 1, 2, 2))
(2, 3) + (3, 2) = ∂2((3, 2, 3, 3))
(3, 4) + (4, 3) = ∂2((4, 3, 4, 4))
(4, 1) + (1, 4) = ∂2((1, 4, 1, 1))

(1, 2) + (2, 3) + (3, 4) + (4, 1) = ∂2((1, 2, 4, 3) + (3, 4, 3, 3) + (1, 4, 1, 1)).

Hence HCube
0 (G) = R and HCube

1 (G) = (0). By somewhat tedious computations
one can also show that HCube

2 (G) = (0). Here we have rank(CCube
2 (G)) = 64 and

rank(CCube
3 (G)) = 2432, and for higher dimensions the problem of computing

HCube
n (G) becomes increasingly more difficult. Fortunately, we are able to prove more

general results (in Section 4) implying that HCube
n (G) = (0) for all n > 0, for the

graph G defined above in Figure 2.

2.2. Discrete path homology. In a series of papers [6, 7, 8] a (co)homology and a
homotopy theory for directed graphs are developed. In these theories, an undirected
graph is interpreted as the directed graph, with each undirected edge replaced by two
oppositely directed edges between its endpoints. It is shown in [7, Theorem 4.22] that
the first homology group of a directed graph is the abelianization of its fundamental
group, where both homology and homotopy groups are taken in the sense of [6, 7].

We now recall the homology theory from [6], confining ourselves to the setting of
simple (undirected) graphs.

Let V be a finite set. For n > 0 we denote by LPath
n (V ) the R-module freely

generated by the set of all (n + 1)−tuples (v0, . . . , vn) of elements in V . For each n,
let DPath

n (V ) denote the submodule generated by the degenerate n-tuples (v0, . . . , vn)
where vi = vi+1 for some i. For n > 1, let ∂Path

n : LPath
n (V )→ LPath

n−1 (V ) be defined by

(v0, . . . , vn) 7−→
n∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vn).

If we set LPath
−1 (V ) = DPath

−1 (V ) = (0) we can also define ∂Path
0 as the trivial map from

LPath
0 (V ) to LPath

−1 (V ). Again, we will write ∂Path
n = ∂n when there is no ambiguity.

For n > 0, it is easy to verify that ∂n∂n+1 = 0 and ∂n[DPath
n (V )] ⊆ DPath

n−1 (V ). Hence
if we define a sequence of quotients

CPath
n (V ) = L

Path
n (V )
DPath
n (V ) , n = −1, 0, 1, . . . ,
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then CPath(V ) = (CPath
• (V ), ∂Path

• ) forms a chain complex, again using the same no-
tation for ∂n.

Now let G = (V,E) be a simple graph. Define LPath
n (G) ⊆ LPath

n (V ) to be the
submodule of LPath

n (V ) spanned by all (v0, . . . , vn) such that {vi, vi+1} ∈ E(G) for
all i < n. Thus, LPath

n (G) ≈ CPath
n (V ) when G is the complete graph on vertex set V .

For all n > 0, define C̃Path
n (G) ⊆ CPath

n (V ) to be the submodule of CPath
n (V ) generated

by cosets of the form
(v0, . . . , vn) +DPath

n (V ),
where (v0, . . . , vn) ∈ LPath

n (G), and set C̃Path
−1 (G) = (0). The sequence {C̃Path

n (G)}n>−1
is not always a chain complex, since boundaries of paths (v0, . . . , vn) ∈ LPath

n (G) may
contain terms that are not paths in G. However, if we define, for n > 0,

CPath
n (G) = {v ∈ C̃Path

n (G) | ∂nv ∈ C̃Path
n−1 (G)}

and CPath
−1 (G) = (0), then ∂n∂n+1 = 0 immediately implies that ∂n[CPath

n (G)] ⊆
CPath
n−1 (G), and CPath(G) = (CPath

• , ∂•) is a chain complex.

Definition 2.6. For n > 0, denote by HPath
n (G) the nth homology group of the chain

complex CPath(G). In other words, HPath
n (G) := Ker ∂n/ Im ∂n+1.

We again identify cosets in CPath
n (G) with their unique representatives whose terms

are all non-degenerate. Using this notation, if G is the 4-cycle graph in Figure 2, then
CPath

0 =
〈
(1), (2), (3), (4)

〉
CPath

1 =
〈
(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)

〉
CPath

2 =
〈
(1, 2, 1), (2, 1, 2), (2, 3, 2), (3, 2, 3), (3, 4, 3), (4, 3, 4), (4, 1, 4), (1, 4, 1),
(1, 2, 3)− (1, 4, 3), (2, 3, 4)− (2, 1, 4), (3, 4, 1)− (3, 2, 1), (4, 1, 2)− (4, 3, 2)

〉
.

Represented in this notation, the chain groups CPath
0 (G) and CPath

1 (G) are identical
to CCube

0 (G) and CCube
1 (G). The boundary map ∂1 again has rank 5 and its kernel is

spanned by (1, 2)+(2, 1), (2, 3)+(3, 2), (3, 4)+(4, 3), (4, 1)+(1, 4), and (1, 2)+(2, 3)+
(3, 4) + (4, 1). As before, each of these 1-cycles is the boundary of a 2-chain:

(1, 2) + (2, 1) = ∂2((1, 2, 1))
(2, 3) + (3, 2) = ∂2((2, 3, 2))
(3, 4) + (4, 3) = ∂2((3, 4, 3))
(4, 1) + (1, 4) = ∂2((1, 4, 1))

(1, 2) + (2, 3) + (3, 4) + (4, 1) = ∂2(((1, 2, 3)− (1, 4, 3)) + (3, 4, 3) + (1, 4, 1)).

It follows that HPath
0 (G) = R and HPath

1 (G) = (0). Again it is possible to prove
directly that HPath

2 (G) = (0), but more general results in Section 4 will show that,
for this example, HPath

n (G) = (0) for all n > 0.

2.3. Classical homology of a graph and its clique complex. We mention
two other homology theories of graphs that have a substantial presence in the litera-
ture.

Given any undirected graph G, we may regard G as a 1-dimensional simplicial
complex and compute its singular (or equivalently, simplicial) homology HSing

• (G).
It is elementary and classical (e.g., [11, Chapter 8]) that if G is connected, then
HSing

0 (G) ∼= R, HSing
1 (G) ∼= R|E(G)|−|V (G)|+1, and HSing

n (G) ∼= (0) for n > 1.
Given G, we may also construct the clique complex KG of G (also called the

flag complex of G; see [14]), whose faces are the subsets of V (G) forming cliques,
and compute the simplicial (or equivalently, singular) homology HClique

• (G) of KG. If
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N = ω(G) is the size of the largest clique in G, then HClique
n (G) ∼= (0) for n > N ,

but HClique
n (G) can be nonzero for any n 6 N . If G is a 4-cycle as in Figure 2, then

HSing
n (G) and HClique

n (G) are isomorphic for all n, but this is not true in general (for
example, when G is a 3-cycle). We note that a theory analogous to HCube

• (G) can be
defined by considering chain groups spanned in dimension n by graph maps from the
complete graph on n + 1 vertices to G and differential given by the alternating sum
over the restrictions to complete subgraphs on n−1 vertices. This theory can be seen
to be equivalent to HClique

• (G) (see [12, p. 76]).

2.4. Relationships. This paper will explore connections between the two homology
theoriesHCube

• (G) andHPath
• (G) defined above. For many classes of graphs G we have,

HCube
• (G) ∼= HPath

• (G), and we will give several more examples of this phenomenon
(see especially Section 4). In Section 5 we define a homomorphism from CCube(G) to
CPath(G) that may explain some of these connections. However, HCube

• and HPath
• are

not isomorphic in general, and we give an example illustrating this in Section 6.
Connections with HSing

• and HClique
• seem to be less close; for example, when G is

a 4-cycle, the discrete cubical and path homologies are trivial in dimension 1, but the
singular and clique homologies are nontrivial. A combination of results in [1] and [2]
proves that for any graph G, HCube

1 (G) ∼= HSing
1 (K), where K is the CW-complex

obtained from G by “filling in” all of its triangles and quadrilaterals with 2-cells. A
similar construction in higher dimensions is conjectured in [1] to give the correct higher
homotopy groups. For homology groups, it is known that HCube

n (G) ∼= HSing
n (K∗) for

all n, where K∗ is the geometric realization of the cubical set {CCube
n (G)}, see [5,

Theorem 3.9.12].

3. Homotopy equivalence preserves homology
This section describes the connection between the graph homotopy theory introduced
in [1] and [7] and the cubical and path homologies introduced in [2] and [7]. First we
recall several basic definitions.

Definition 3.1. (See [9]) If G and H are graphs, the Cartesian (or box) product
G�H is the graph whose vertex set is the Cartesian product set V (G)× V (H), and
whose edges are pairs {(g1, h1), (g2, h2)} such that either g1 = g2 and {h1, h2} ∈ E(H)
or h1 = h2 and {g1, g2} ∈ E(G).

Definition 3.2. Suppose that G and H are graphs, and f and g are graph homomor-
phisms from G to H. Then f and g are homotopic if there exists a graph homomor-
phism Φ from G� Im to H such that Φ(•, 0) = f and Φ(•,m) = g, where Im denotes
the m-path with vertex set {0, 1, . . . ,m} and edge set {{i, i+ 1} | 1 6 i < m}.

Definition 3.3. Two simple undirected graphs G and H are homotopy equivalent
if there exist graph homomorphisms φ : G → H and θ : H → G such that θφ is
homotopic to idG and φθ is homotopic to idH . Here idG and idH denote the identity
maps on G and H, respectively.

The connection between the discrete homotopy theory in [1] and [7] and the ho-
mology theories introduced in [2] and [7] is expressed by the following theorem, which
also provides a key computational tool.

Theorem 3.4. Let G and H be simple, undirected graphs. If G and H are homotopi-
cally equivalent, then, for all n > 0,

(i) HCube
n (G) ∼= HCube

n (H), and
(ii) HPath

n (G) ∼= HPath
n (H).
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For both parts of Theorem 3.4 it suffices to prove that if α and β are homotopically
equivalent maps from G to H, then α and β induce identical maps on homology. For
cubical homology, this result is contained in Theorem 3.8(1) of [2], where it is proved
for any discrete metric space. For path homology, Theorem 3.4(ii) is stated and proved
explicitly in [7] (Proposition 6.8). For completeness, we will sketch both proofs, which
are structurally similar and employ a chain homotopy construction that is standard
in contexts similar to this (see e.g. [11, Chapter 7]).

Proof of Theorem 3.4(i). Suppose that α and β are homomorphisms from G to H,
and Φ is a homotopy from α to β with Φ(x, 0) = α(x) and Φ(x,m) = β(x) for all
x ∈ V (G), as in Definition 3.2. If σ ∈ CCube

n (G), let Φ(σ, j) denote the map defined by
Φ(σ, j)(q) = Φ(σ(q), j) for all q ∈ Qn, and define α̃n, β̃n : CCube

n (G)→ CCube
n (H) by

α̃n(σ) = Φ(σ, 0), β̃n(σ) = Φ(σ,m).
It is straightforward to show that α̃ and β̃ are chain maps, i.e., α̃n−1∂n = ∂nα̃n and
similarly for β̃. We will construct a sequence of maps hn : CCube

n (G)→ CCube
n+1 (H) such

that
(1) β̃n − α̃n = ∂n+1hn + hn−1∂n,

for all n. In other words, the sequence {hn} defines a chain homotopy between {α̃n}
and {β̃n}. It follows that if z ∈ CCube

n (G) is a cycle, then
β̃n(z)− α̃n(z) = ∂n+1hn(z).

In particular, β̃n(z) − α̃n(z) ∈ Im ∂n+1 and hence α̃n(z) and β̃n(z) lie in the same
homology class for all z, implying that α and β induce the same maps on homology.

Given a singular n-cube σ ∈ CCube
n (G), the map hn(σ) ∈ CCube

n+1 (H) is constructed
as follows. For j = 1, . . . ,m, let h(j)

n (σ) ∈ CCube
n+1 (H) be the unique labeled (n+1)-cube

such that
f+

1 h
(j)
n (σ)(q) = Φ(σ(q), j)

f−1 h
(j)
n (σ)(q) = Φ(σ(q), j − 1),

for all q ∈ Qn. Finally, define
hn(σ) = h(1)

n (σ) + · · ·+ h(m)
n (σ).

It is immediate from the definition of h(j)
n that

f+
1 h

(m)
n (σ)(q) = β(σ(q))

f−1 h
(1)
n (σ)(q) = α(σ(q)),

for all q ∈ Qn. A few moments of reflection show that for i = 2, . . . , n, we have

(2) f εi (h(j)
n (σ)) = h

(j)
n−1(f εi−1σ)

for j ∈ [m] and ε ∈ {−,+}. Computing the right hand side of (1), we get

h
(j)
n−1(∂n(σ)) = h

(j)
n−1

( n∑
i=1

(−1)i(f−i σ − f
+
i σ)

)

=
n∑
i=1

(−1)i
(
h

(j)
n−1(f−i σ)− h(j)

n−1(f+
i σ)

)
(3)

and

(4) ∂n+1(h(j)
n (σ)) =

n+1∑
i=1

(−1)i
(
f−i (h(j)

n (σ))− f+
i (h(j)

n (σ))
)
.
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It follows from (2) that terms i = 1, . . . , n in (3) are identical to terms i = 2, . . . , n+1
in (4), but have opposite signs. Hence they cancel, leaving only the first term in (4),
and we obtain

∂n+1h
(j)
n (σ) + h

(j)
n−1∂n(σ) = f+

1 (h(j)
n (σ))− f−1 (h(j)

n (σ))
= Φ(σ, j)− Φ(σ, j − 1).(5)

Summing (5) over j gives

∂n+1hn(σ) + hn−1∂n(σ) =
m∑
j=1

Φ(σ, j)− Φ(σ, j − 1)

= Φ(σ,m)− Φ(σ, 0)
= β̃(σ)− α̃(σ)(6)

as desired, and (1) is proved. �

Proof of Theorem 3.4(ii). The proof in [7] has essentially the same structure as the
proof of part (i) given above. We will sketch the argument, using similar notation but
focusing on the important differences. Again assume that α, β : G → H are graph
homomorphisms, with a homotopy Φ such that Φ(x, 0) = α(x) and Φ(x,m) = β(x)
for all x ∈ V (G). It is shown in [7, Theorem 2.10] that α and β induce chain maps
α̃n and β̃n from CPath

n (G) to CPath
n (H). As before, the key step in the present proof is

to construct a chain homotopy between the sequences {α̃n} and {β̃n}.
For σ = (v0, v1, . . . , vn) ∈ CPath

n (G) and j ∈ [m], define h(j)
n (σ) ∈ CPath

n+1 (H) as
follows:

h(j)
n (σ) =

n∑
k=0

(−1)k(Φ(v0, j − 1), . . . ,Φ(vk, j − 1),Φ(vk, j), . . . ,Φ(vn, j)),

and define
hn(σ) = h(1)

n (σ) + · · ·+ h(m)
n (σ).

At this point it is essential to check that h(j)
n (σ) ∈ CPath

n+1 (H) for all j, since not every
linear combination of elements of C̃Path

n+1 (H) is an element of CPath
n+1 (H). An argument

proving this fact can be found in [7, Proposition 2.12], and is omitted here.
The proof is completed by showing that identity (5) holds for the maps hn just

defined, exactly as it did in part (i). This argument is technical but straightforward,
and is omitted here. With (5) in hand, (6) follows, and we are done. �

4. Computations of homology groups
With Theorem 3.4, we have tools that will allow us to compute HCube

• (G) and
HPath
• (G) for large classes of graphs. We give many examples in this section. Most in-

volve deformation retraction, a special kind of homotopy equivalence that is frequently
easy to recognize.

Definition 4.1. Let G be a graph, and let H be an induced subgraph of G. That is,
V (H) ⊆ V (G) and E(H) consists of all edges in E(G) for which both endpoints belong
to V (H).

(i) A retraction of G onto H is a graph homomorphism r : G → H such that
r(y) = y for all y ∈ V (H).

(ii) A deformation retraction of G onto H is a retraction r : G→ H such that ir
is homotopic to idG, where i denotes the inclusion map from H to G.
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(iii) A one-step deformation retraction from G to H is a deformation retraction
r for which m = 1 in the homotopy between ir and idG. Equivalently, r is a
retraction such that {x, r(x)} is an edge or x = r(x) for all x ∈ V (G).

If r is a deformation retraction from G to H, then, since ri = idH , the following
lemma is an immediate consequence of Theorem 3.4.

Lemma 4.2. If r is a deformation retraction from G onto a subgraph H, and i denotes
the inclusion map from H to G, then r and i define a homotopy equivalence between
G and H. Consequently, HCube

n (G) ∼= HCube
n (H) and HPath

n (G) ∼= HPath
n (H), for all

n > 0.

This result immediately gives several infinite classes of graphs for which the cubical
and path (reduced) homology is trivial in all dimensions.

Corollary 4.3. If G is a tree, or a complete graph, or a hypercube, then HCube
n (G) ∼=

HPath
n (G) ∼= (0) for all n > 0.

Proof. If G is a tree and x ∈ V (G) is a leaf connected to a unique vertex y, then the
map r : V (G)→ V (G)\{x} defined by

(7) r(v) =
{
v v 6= x,

y v = x,

is a one-step deformation retraction from G onto the subgraph G\x. If G is a complete
graph, x ∈ V (G) and y 6= x is any other vertex, then (7) again defines a one-step
deformation retraction from G to G\x. If G is a hypercube of dimension n, then the
map r defined by collapsing any facet onto its opposite facet is a one-step deformation
retraction onto a hypercube of dimension n− 1. In all three cases, the process can be
repeated, eventually showing that the homology (both cubical and path) is the same
as that of a graph with a single vertex. �

For path homology, results implying Lemma 4.2 and the first two parts of Corol-
lary 4.3 appear in [7] (Proposition 6.8 and Example 6.10). The arguments used to
prove Corollary 4.3 can be extended to a larger class of examples:

Theorem 4.4. Let G be a graph, and K1 and K2 are induced nonempty subgraphs
of G such that V (G) = V (K1) ∪ V (K2) and V (K1) ∩ V (K2) = ∅. Suppose there
exist vertices a ∈ V (K1) and b ∈ V (K2) such that {a, b} ∈ E(G), every vertex in
K1 is connected to b, and every vertex in K2 is connected to a. Then HPath

n (G) ∼=
HCube
n (G) ∼= (0) for n > 0.

Proof. Let H be the subgraph of G with vertices a and b and the single edge {a, b}.
Define r : V (G)→ V (H) by

r(x) =


a if x ∈ K2 − {b},
b if x ∈ K1 − {a},
x if x ∈ H.

An easy argument shows that r is a one-step deformation retraction of G onto H, and
since H has trivial reduced homology in both the cubical and path case, the result
follows from Lemma 4.2. �

Corollary 4.5. For all s, t > 0, let Ks,t denote a complete bipartite graph with s+ t
vertices. Then HPath

n (Ks,t) ∼= HCube
n (Ks,t) ∼= (0) for n > 0.
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Corollary 4.6. Let K1 and K2 be graphs with disjoint vertex sets. Consider the join
graph G = K1 ∗ K2, where V (G) = V (K1) ∪ V (K2) and E(G) consists of E(K1)
and E(K2) together with all edges {p, q} connecting a vertex p ∈ V (K1) with a vertex
q ∈ V (K2). Then HPath

n (K1 ∗K2) ∼= HCube
n (K1 ∗K2) ∼= (0) for n > 0.

The last corollary includes two elementary but important examples, the cone G∗{p}
of G over p, and the suspension G ∗ {p, q} of G over a pair of non-adjacent vertices
p and q. Corollary 4.6 shows that the reduced cubical and path homologies in both
cases are trivial.

Definition 4.7. The disjoint sum K1 ⊕ K2 of graphs K1 and K2 is the graph with
vertex set V (K1⊕K2) = V (K1)∪V (K2) and edge set E(K1⊕K2) = E(K1)∪E(K2).

Theorem 4.8. For any graphs K1 and K2, HCube
n (K1 ⊕ K2) ∼= HCube

n (K1) ⊕
HCube
n (K2) and HPath

n (K1 ⊕K2) ∼= HPath
n (K1)⊕HPath

n (K2) for all n > 0.

Proof. The proof is elementary in both cases. �

Definition 4.9. A graph G is chordal if every cycle of length greater than three
contains a chord. Equivalently (see, e.g., [13]), G is chordal if and only if there exists
an ordering of its vertices v1, . . . , vm such that for each j > 1, the set of vertices vk
adjacent to vj with k < j form a clique (possibly empty).

Theorem 4.10. If G is a chordal graph, then HPath
n (G) ∼= HCube

n (G) ∼= (0) for n > 0.

Proof. Suppose that n > 0 and v1, . . . , vm is an ordering of V (G) satisfying the
condition of Definition 4.9. For j ∈ [m], let G(j) denote the induced subgraph of G
whose vertex set is {v1, . . . , vj}. Proceeding by induction, suppose that HPath

n (G(j)) ∼=
HCube
n (G(j)) ∼= (0). If vj+1 has no neighbors in G(j), it follows from Theorem 4.8 that
HPath
n (G(j+1)) ∼= HCube

n (G(j+1)) ∼= (0). Otherwise, suppose that vj+1 has neighbors
in G(j) and let vk with k < j + 1 be one of them. It is easy to check that the map
from G(j+1) to G(j) defined by sending vj+1 to vk and fixing the remaining elements
of G(j) is a 1-step deformation retraction. Hence G(j+1) has trivial homology, by
Theorem 3.4. �

The next theorem shows how the homology theories HCube
• and HPath

• behave with
respect to three well-known types of graph products. One of these, the box product
G�H has already been defined in Definition 3.1. The next definition introduces two
more. For a more complete treatment of these constructions, see [9].

Definition 4.11. Suppose that G and K are graphs. Define the strong product G�
K and the lexicographic product G[K] as graphs whose vertex set is the Cartesian
product set V (G)×V (K), and whose edges are pairs {(g1, k1), (g2, k2)} defined by the
following rules:

(i) (g1, k1) ∼� (g2, k2) iff ((g1 = g2)∧(k1 ∼ k2))∨((g1 ∼ g2)∧(k1 = k2))∨((g1 ∼
g2) ∧ (k1 ∼ k2))

(ii) (g1, k1) ∼lex (g2, k2) iff ((g1 ∼ g2)) ∨ ((g1 = g2) ∧ (k1 ∼ k2)).

Theorem 4.12. Suppose that G and K are graphs. Suppose that H is an induced
subgraph of K, such that there exists a deformation retraction r : V (K) → V (H) of
K onto H. Then for all n > 0,

(i) HCube
n (G�K) ∼= HCube

n (G�H) and HPath
n (G�K) ∼= HPath

n (G�H),
(ii) HCube

n (G�K) ∼= HCube
n (G�H) and HPath

n (G�K) ∼= HPath
n (G�H),

(iii) HCube
n (G[K]) ∼= HCube

n (G[H]) and HPath
n (G[K]) ∼= HPath

n (G[H]).
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Proof. It suffices to prove that the map
(g, k) 7−→ (g, r(k))

defines a deformation retraction from G�H to G�K, from G �H to G �K, and
from G[K] to G[H]. The arguments in each case are straightforward. �

5. A map between the chain complexes CCube(G) and CPath(G)
In this section we establish a map between the chain complexes CCube(G) and
CPath(G). Consider a singular n-cube σ : Qn → G, with n > 1. In order to define
a map from CCube

n (G) to CPath
n (G), we first associate to any permutation τ ∈ Sn a

path pτ from (0, . . . , 0) ∈ V (Qn) to (1, . . . , 1) ∈ V (Qn). The path pτ is defined as
the path of length n which in its ith step flips the τ(i)th coordinate from 0 to 1. We
write pτ (i) for the ith vertex in the path pτ , 0 6 i 6 n. If there is an 0 6 i 6 n − 1
such that σ(pτ (i)) = σ(pτ (i+ 1)), define σ ◦ pτ = 0 ∈ LPath

n (G) and otherwise define
σ ◦ pτ ∈ LPath

n (G) to be the path whose ith vertex is σ(pτ (i)).
To each singular n-cube σ ∈ LCube

n (G) with n > 1, we assign the element

(8) ψ(σ) :=
∑
τ∈Sn

sign(τ)σ ◦ pτ

of LPath
n (G). It is easy to see that if σ is degenerate, then ψ(σ) = 0, since every term

in (8) corresponds to a sequence with a repeated label. Hence (8) defines a map from
CCube
n (G) to LPath

n (G). By convention, if σ ∈ CCube
0 (G) is a singular 0-cube, i.e. a

constant map σ ≡ c ∈ G, we define ψ(σ) ∈ LPath
0 (G) to be the constant path (c) of

length zero.

Lemma 5.1. Let σ ∈ CCube
n (G). Then

(i) ∂Path
n ψ(σ) ∈ LPath

n−1 (G), and hence (8) defines a map from CCube
n (G) to

CPath
n (G).

(ii) ∂Path
n ψ(σ) = ψ(∂Cube

n (σ)).

Proof. If n = 0 or n = 1, both parts of the lemma are trivial, and so in what follows
we assume n > 2. For part (i) we have

(9) ∂Path
n (σ ◦ pτ ) =

n∑
i=0

(−1)i · (σ(pτ (0)), . . . , ̂σ(pτ (i)), . . . , σ(pτ (n))).

Note that if σ◦pτ contains repeated elements, so that σ◦pτ = 0 in LPath
n (G), then (9)

remains formally valid. Let 1 6 ` 6 n−1. If τ ′ is constructed from τ by interchanging
τ(`) and τ(`+ 1) then pτ (i) = pτ ′(i) for i 6= `. In particular, the `th summands of (9)
for pτ and pτ ′ coincide. In addition, we have sign(τ) = − sign(τ ′). This shows that

∂Path
n ψ(σ) =

∑
τ∈Sn

sign(τ) ∂Path
n (σ ◦ pτ )(10)

=
∑
τ∈Sn

sign(τ)
(

(σ(pτ (1)), . . . , σ(pτ (n)))+

(−1)n(σ(pτ (0)), . . . , σ(pτ (n− 1)))
)
.

Since both (σ(pτ (1)), . . . , σ(pτ (n))) and (σ(pτ (0)), . . . , σ(pτ (n− 1))) are paths, it fol-
lows that ∂Path

n ψ(σ) ∈ LPath
n−1 (G), and we have proved (i).

For part (ii), suppose that τ ∈ Sn. Define
• τ− ∈ Sn−1 to be the permutation where τ−(j) = τ(j) if τ(j) < τ(n) and
τ(j)− 1 if τ(j) > τ(n).
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• τ+ ∈ Sn−1 to be the permutation where τ+(j) = τ(j + 1) if τ(j + 1) < τ(1)
and τ(j + 1)− 1 if τ(j + 1) > τ(1).

Now for j = τ(n) and j′ = τ(1) we have
(σ(pτ (0)), . . . , σ(pτ (n− 1))) = (σ(pτ−(0)), . . . , σ(pτ−(n− 1))),

(σ(pτ (1)), . . . , σ(pτ (n))) = (σ(pτ+(0), . . . , σ(pτ+(n− 1))).
Now

ψ(f−i σ) =
∑

τ ′∈Sn−1

sign(τ ′) (f−i σ) ◦ pτ ′

ψ(f+
i σ) =

∑
τ ′∈Sn−1

sign(τ ′) (f+
i σ) ◦ pτ ′

Since for τ ∈ Sn we have that τ is determined by τ− and τ(n), as well as by τ+

and τ(n) it follows that:

ψ(f−i σ) =
∑

τ∈Sn,τ(n)=i

sign(τ−) (f−i σ) ◦ pτ−

ψ(f+
i σ) =

∑
τ∈Sn,τ(1)=i

sign(τ+) (f+
i σ) ◦ pτ+

Since τ(1) = i contributes i − 1 inversions and τ(n) = i in the last position n − i
inversions to τ we obtain

ψ(f−i σ) = (−1)n−i
∑

τ∈Sn,τ(n)=i

sign(τ) (f−i σ) ◦ pτ−(11)

ψ(f+
i σ) = (−1)i−1

∑
τ∈Sn,τ(1)=i

sign(τ) (f+
i σ) ◦ pτ+(12)

We have

∂Cube
n σ =

n∑
i=1

(−1)i(f−i σ − f
+
i σ).

Thus by (11), (12) and (10) we get

ψ(∂Cube
n σ) =

n∑
i=1

(−1)i (ψ(f−i σ)− ψ(f+
i σ))

=
n∑
i=1

(−1)i
(−1)n−i

∑
τ∈Sn,τ(`)=i

sign(τ) (f−i σ) ◦ pτ−

− (−1)i−1
∑

τ∈Sn,τ(1)=i

sign(τ) (f+
i σ) ◦ pτ+


=
∑
τ∈Sn

sign(τ)
(

(−1)n(σ(pτ (0)), . . . , σ(pτ (n− 1)))

+ (σ(pτ (1), . . . , σ(pτ (n))
)

= ∂Path
n ψ(σ).

�

For small n we have good control over ψ.
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Lemma 5.2. The map ψ : CCube
n (G) → CPath

n (G) is an isomorphism for n 6 1 and
surjective for n = 2.

Proof. For n = 0 both CCube
0 (G) and CPath

0 (G) are freely generated by the vertices of
G. Since ψ maps a vertex considered a the image of a 0-cube to the path consisting
of that vertex, it is clearly an isomorphism.

Consider n = 1. A non-degenerate 1-cube is represented by an edge with a direction
chosen. Hence CCube

1 (G) has a basis given by pairs of vertices (v1, v2) where {v1, v2}
is an edge in the graph. But this is also a basis for CPath

1 (G). Thus CCube
1 (G) and

CPath
1 (G) are isomorphic and ψ is an isomorphism.
Finally we turn to n = 2. Let σ ∈ CPath

2 (G). Then, by the proof of [6, Proposi-
tion 4.2], σ is a linear combination of paths (v, v′, v) and (v, v′, v′′) where {v, v′′} is an
edge in G, and of chains of the form (v, w, v′) − (v, w′, v′) where w 6= w′ and {v, v′}
is not an edge in G. We show that all those chains are in the image of ψ. Indeed:

ψ

(
v v

v v′

)
= (v, v′, v), ψ

 v v′′

v v′

 = (v, v′, v′′),

ψ

(
w′ v′

v w

)
= (v, w, v′)− (v, w′, v′). �

Now we are in position to state and prove the consequence of the preceding lemmas
on the relation of the two homology theories.

Theorem 5.3. For any n > 0, the map ψ induces a homomorphism ψ∗ : HCube
n (G)→

HPath
n (G). For n 6 1 the map ψ∗ is an isomorphism and for n = 2 it is surjective.

Proof. The fact that ψ induces a homomorphism ψ∗ : HCube
n (G) → HPath

n (G) is
immediate from Lemma 5.1. Next we consider n = 0, 1, 2.

By Lemma 5.2 we can identify CCube
1 (G) and CPath

1 (G) by considering a non-
degenerate 1-cube σ as the edge ψ(σ) = (σ(0), σ(1)). After this identification, the
differentials ∂Cube

1 and ∂Path
1 are easily seen to be identical. In particular, we have

Ker ∂Path
1 = Ker ∂Cube

1 . Thus we need to show that Im ∂Cube
2 = Im ∂Path

2 . By
Lemma 5.2, ψ is an isomorphism in dimension 1, and since ψ ◦ ∂Cube

2 = ∂Path
2 ◦ ψ,

it follows that Im ∂Cube
2 ⊆ Im ∂Path

2 . Conversely, let σ ∈ Im ∂Path
2 . Then there is

σ′ ∈ CPath
2 (G) such that ∂Path

2 (σ′) = σ. By Lemma 5.2 there is σ′′ ∈ CCube
2 (G) such

that ψ(σ′′) = σ′. Then, again by ψ ◦ ∂Cube
2 = ∂Path

2 ◦ ψ, it follows that σ = ∂Cube
2

and Im ∂Path
2 ⊆ Im ∂Cube

2 . This implies that ψ∗ : HCube
1 (G) → HPath

1 (G) is an
isomorphism.

Now consider homological dimension 2. Let σ+Im ∂Path
2 be an element ofHPath

2 (G).
By Lemma 5.2 we know that φ is surjective in dimension 2. Hence φ−1(σ) is non-
empty. For σ′ ∈ φ−1(σ) we have

ψ(∂Cube
2 (σ′)) = ∂Path

2 (ψ(σ′))
= ∂Path

2 (σ)
= 0.

From Lemma 5.2 we know that ψ is bijective in dimension 1. From that we deduce σ′ ∈
Ker ∂Cube

2 . Thus σ′+Im ∂Cube
3 (G) ∈ HCube

2 (G) and ψ∗(σ′+Im ∂Cube
2 ) = σ+Im ∂Path

2 .
Thus ψ∗ is surjective. �

In [2, Theorem 1.2] it is shown that the abelianization of the discrete fundamental
group A1(G) (see for example [1] for definitions) of a graph is isomorphic toHCube

1 (G).
In [7, Theorem 4.23] it is shown that the abelianization of the discrete fundamental
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group of a graph is isomorphic to HPath
1 (G). Indeed their result is more general and

captures all directed graphs. Now Theorem 5.3 can be used to deduce either result
from the other.

Corollary 5.4. Let G = (V,E) be a graph then there are isomorphisms:

HCube
1 (G) ∼= A1(G)/[A1(G), A1(G)] ∼= HPath

1 (G).

Theorem 5.3 also raises the question if HCube
n (G) ∼= HPath

n (G) for all n. While we
have shown in Section 4 that this is true for many graphs G, it is false in general.

6. Example: HCube
• and HPath

• are not always isomorphic
Results in the previous two sections might suggest conjecturing that HCube

• (G) and
HPath
• (G) are the same for all graphs G. In this section we construct an example

showing that this is not always the case. From Theorem 5.3 we know that ψ∗ :
HCube

2 (G) → HPath
2 (G) is surjective. The next theorem shows that it is not always

injective.

Theorem 6.1. Let G be the following graph:

1

2 3 4 5

6 7 8 9

10

Then HPath
2 (G) ∼= (0) and HCube

2 (G) 6∼= (0).

Proof. We first prove that HPath
2 (G) ∼= (0), by showing explicitly that every 2-cycle

is a boundary. Suppose that θ ∈ CPath
2 (G) is a 2-cycle, i.e. ∂2θ = 0. We claim that θ

is a linear combination of cycles of one of the following three types:

(C1) (b, a, b)− (a, b, a), where {a, b} is an edge of G,
(C2) ((a, b, c) − (a, d, c)) + ((d, c, b) − (d, a, b)) + (d, a, d) − (c, b, c), where a, b, c, d,

are consecutive vertices of a quadrilateral,
(C3) the cycle

((6, 2, 1)− (6, 3, 1)) + ((8, 3, 1)− (8, 5, 1)) + ((9, 5, 1)− (9, 4, 1))
+ ((7, 4, 1)− (7, 2, 1)) + ((10, 6, 3)− (10, 8, 3)) + ((10, 8, 5)− (10, 9, 5))

+ ((10, 9, 4)− (10, 7, 4)) + ((10, 7, 2)− (10, 6, 2)).
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One can visualize G as the 1-skeleton of a polytope with eight quadrilateral facets.
The cycle (C3) is obtained by giving each quadrilateral an outward orientation, then
assigning signs to paths around each quadrilateral using a right-hand rule.

Each of (C1), (C2), and (C3) is easily seen to be a boundary (and hence a cycle):

(b, a, b)− (a, b, a) = ∂3
(
(a, b, a, b)

)
((a, b, c)− (a, d, c)) + ((d, c, b)− (d, a, b)) + (d, a, d)− (c, b, c)

= ∂3
(
(d, a, b, c)− (d, a, d, c)− (d, c, b, c)

)
,

and (C3) is equal to

∂3
(
(10, 6, 2, 1)− (10, 6, 3, 1) + (10, 7, 4, 1)− (10, 7, 2, 1)

+ (10, 8, 3, 1)− (10, 8, 5, 1) + (10, 9, 5, 1)− (10, 9, 4, 1)
)
.

To complete the argument, we must show that every 2-cycle can be expressed as a
linear combination of cycles of type (C1), (C2), and (C3). If θ is a 2-cycle, let (a, b, c)
be the lexicographically first term in θ with the following properties:

(a) it is injective, i.e. not of the form (a, b, a), and
(b) it is not monotone decreasing, i.e. not satisfying a > b > c.

Let us call an injective term (a, b, c) “bad” if it satisfies property (b), and “good”
otherwise (i.e. if it is decreasing).

Necessarily, such an (a, b, c) must be paired in θ with another opposite-signed term
(a, d, c) where {d, c} and {a, d} form the edges opposite to {a, b} and {b, c} in a
quadrilateral of G (otherwise the term (a, c) in ∂2((a, b, c)) does not cancel). Since
(a, b, c) is lexicographically first in θ, we must have b < d. We claim further that
a < d. If a < b this is immediate; if a > b < c, it is easy to check that a > d does not
hold in any of the eight quadrilaterals in G.

If τ is the canonical cycle of type (C2) above, then since b < d and a < d, every
injective term in τ follows (a, b, c) in lexicographic order. Hence we can use τ to
eliminate (a, b, c) from θ, and by repeating the process eventually arrive at a cycle θ∗
in which every injective term is “good”, i.e., of the form (a, b, c) with a > b > c.

In the boundary ∂2θ
∗, all 1-chains arising from good injective terms must be of

the form (x, y) with x > y. Hence if θ∗ contains a non-injective term (a, b, a), it must
also contain a corresponding term of the form (b, a, b), and we can cancel them both
out by subtracting a cycle of type (C2). Eventually we arrive at a cycle θ∗∗ in which
every term is injective and “good”.

As noted above, all injective terms must appear in pairs (a, b, c), (a, d, c) arising
from one of the eight quadrilaterals in G, with opposite-signed coeffients of equal
magnitude. We may thus regard the equation ∂2θ

∗∗ = 0 as a homogeneous linear
system with eight unknowns (corresponding to the “good” quadrilateral boundary
pairs appearing in (C3)) and 16 equations corresponding to the zero coefficients of
the 1-chains

(2, 1), (3, 1), (4, 1), (5, 1), (6, 2), (6, 3), (7, 2), (7, 4), (8, 3), (8, 5),
(9, 4), (9, 5), (10, 6), (10, 7), (10, 8), (10, 9).

Algebraic Combinatorics, Vol. 2 #3 (2019) 431



H. Barcelo, C. Greene, A. S. Jarrah & V. Welker

This system has a matrix

1 0 0 −1 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 −1 1 0 0 0 0 0
1 0 0 0 0 0 0 −1
−1 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 1
0 0 0 1 0 0 −1 0
0 1 0 0 −1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0



,

which is easily seen to have rank 7, and hence all solutions to ∂θ∗∗ = 0 are constant
multiples of (C3). Since cycles of type (C1), (C2), and (C3) are all boundaries, this
completes the proof that every 2-cycle is a boundary, and hence HPath

2 (G) ∼= (0).
Next we turn to proving that HCube

2 (G) 6∼= (0), which will be done by finding an
explicit 2-cycle θ ∈ CCube

2 (G) that is not a boundary. Define

(13) θ = (1, 2, 3, 6)− (1, 2, 4, 7) + (1, 3, 5, 8)− (1, 4, 5, 9)
− (2, 6, 7, 10) + (3, 6, 8, 10)− (4, 7, 9, 10) + (5, 8, 9, 10).

Recall that each sequence denotes a labeling of the canonical 2-cube by vertices in G,
proceeding recursively by dimension. For example, (1, 2, 3, 6) represents the labeling

1 2

3 6

One can interpret θ as the result of wrapping quadrilaterals around a 3-polytope in an
orientation-preserving way. When labeled properly by their vertex names, each face
can be viewed as graph homomorphisms from a 2-cube into G.

It is easy to check that θ is a cycle, i.e., ∂2θ = 0. We will show that θ is not a
boundary, by constructing a linear invariant Ψ on CCube

2 (G) that is zero on every
2-boundary but is nonzero on θ. Fix a quadrilateral Q0 in G, say Q0 = (1, 2, 3, 6)
with vertices listed in increasing order. We say that a 2-cell F = (a, b, c, d) (that is, a
G-labeled 2-cube, with labels in the standard reading order) is supported by Q0 if its
labels agree with those of Q0 in some order. Since F is a graph map, the permutation
σ mapping (1, 2, 3, 6) onto (a, b, c, d) is an element of the dihedral group D4. Define
the weight w(F ) of F to be χ(σ), where χ is the reflection character of D4. In other
words, χ(σ) = ±1 according to whether σ is a reflection. If X is any 2-chain, define
Ψ(X) to be the sum over X of the coefficient of each 2-cell times the weight w(F ) of
that cell. In this computation, w(F ) = 0 if F is not supported by Q0.
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The following rules define Ψ explicitly on the eight 2-cells supported by Q0:

Ψ :



(1, 2, 3, 6) 7−→ +1
(2, 6, 1, 3) 7−→ +1
(3, 1, 6, 2) 7−→ +1
(6, 3, 2, 1) 7−→ +1
(1, 3, 2, 6) 7−→ −1
(2, 1, 6, 3) 7−→ −1
(3, 6, 1, 2) 7−→ −1
(6, 2, 3, 1) 7−→ −1

As an illustration, note that Ψ(θ) = 1, since (1, 2, 3, 6) is the only 2-cell appearing in
θ supported by Q0.

As another illustration, consider the 3-cell

Y = (3, 6, 1, 3, 1, 2, 3, 6),

which has Q0 = (1, 2, 3, 6) as its top face. Its boundary is

∂3Y = (1, 2, 3, 6)− (1, 3, 3, 6)− (3, 1, 1, 3) + (3, 6, 1, 2)− (3, 6, 1, 3) + (6, 3, 2, 6).

In this case, two terms are supported by Q0 but they appear with opposite signs when
Ψ is applied, and we get Ψ(∂3Y ) = 0. This turns out to be a general phenomenon:

Lemma 6.2. For any non-degenerate 3-cell Y , we have Ψ(∂3Y ) = 0. Consequently,
Ψ(X) = 0 for any 2-boundary X.

Proof. Suppose that Y is a non-degenerate 3-cell. We claim first that the number of 2-
faces supported by Q0 = (1, 2, 3, 6) is equal to 2 or 4. To prove this, we systematically
eliminate the other cases. It is easy to see that the number of Q0-supported 2-faces
cannot be 3, 5, or 6, since if two such faces are adjacent dihedrally, the two faces
adjacent to both of those faces have a repeated label, and hence cannot be supported
by Q0.

It remains to show that the number of Q0-supported faces cannot be 1. Suppose
that Y contains only one Q0-supported face, e.g., as indicated in the following picture
where the bottom four vertices are labeled by 1, 2, 3 and 6, and the others are labeled
generically by A,B,C and D.

1 2

3 6

A B

C D

The label B can be either 1, 2, 6, or 7, since these are the vertices adjacent to 2 in G.
We will argue that B must be equal to 2.

First suppose B = 1. Then D must be either 2 or 3, since D must be adjacent to 1
and 6. If D = 3, this contradicts the assumption that only one face is Q0-supported.
Hence D = 2. If D = 2, then C must be either 1 or 6. If C = 1, we again have two
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Q0-supported faces and hence a contradiction which implies C = 6. Now A must be
either 2 or 3, since it is a vertex adjacent to 1 and 6. Either choice produces a second
Q0-supported face, and hence all cases lead to a contradiction, and thus B 6= 1. A
similar (symmetrical) argument starting with the front face shows that B 6= 6.

Continuing, suppose that B = 7. The possible values for A,C,D, determined by
adjacencies in G, are D ∈ {2, 10}, A ∈ {2, 4}, C ∈ {1, 6}. Note that the possibilities
C = 3 and C = 8 are not included because neither is adjacent to either 2 or 4 in G.
We proceed systematically: If D = 10, then C = 6 since 10 is not adjacent to 1. This
implies A = 2, since 4 is not adjacent to 6, yielding a second Q0-supported face, which
is a contradiction and hence D = 2. If C = 1, we obtain a second Q0-supported face,
hence C = 6, which forces A = 2 since 4 is not adjacent to 6. This choice produces
a second Q0-supported face, and hence a contradiction. This implies B 6= 7, which
leaves B = 2 as the only possible choice.

Since 2 and 3 are related by an automorphism of G, a symmetrical argument
shows that C = 3. From that point it is easy to show that A = 1 and D = 6, thus
forcing a second Q0-supported face on top – as well as a degenerate cube. This double
contradiction completes the proof our first claim, i.e. that the number of Q0-supported
faces equals 2 or 4.

We conclude further that if Y is a non-degenerate 3-cell, then its Q0-supported
faces can occur in arrangements of three types. If the number of such faces, is 4, then
those faces must “wrap around” the 3-cell, i.e. they avoid one of the three coordinate
axes. This follows since if two Q0-supported faces are dihedrally adjacent, then the
two faces adjacent to both of them cannot be Q0-supported. If the number of Q0-
supported faces is 2, the faces may either be adjacent (and “hinged”), or opposite, in
which case an easy argument shows that their labels differ by a 90 degree rotation.

With this information in hand, we can proceed to the proof of the main result.
Suppose that Y is a non-degenerate 3-cell with two Q0-supported faces F1 and F2
that are dihedrally adjacent. Let sgn∂(F1) and sgn∂(F2) denote the signs associated
to F1 and F2 by the boundary operator ∂3. Then we claim that

(14) χ(F1) sgn∂(F1) = −χ(F2) sgn∂(F2).

If we prove (14), it will follow that Ψ(∂3Y ) = 0 in two of the three cases, i.e., either four
Q0-supported faces or two such faces that are dihedrally adjacent. We will prove (14)
in the form

(15) χ(F1)χ(F2) = − sgn∂(F1) sgn∂(F2).

Since χ is a multiplicative character, we can regard χ(F1)χ(F2) as χ(σ) where σ is
the permutation mapping a generic set of (distinct) labels on the vertices of F1 to the
corresponding set of labels on F2 obtained by flipping 90 degrees through the dihedral
edge. On both faces, the labels are read in standard order (recursively by dimension).

Denote the six faces of Y by F0∗∗, F1∗∗, F∗0∗, F∗1∗, F∗∗0, F∗∗1, with the obvious
notation, e.g., F∗1∗ denotes the face {(x, 1, z)}, where 0 6 x, z 6 1. Let us say that
F is a positive face if F is one of F1∗∗, F∗0∗, F∗∗1, and a negative face if it is one
of F0∗∗, F∗1∗, F∗∗0. These designations correspond exactly to the signs of sgn∂(F ).
Hence (15) can be interpreted as saying that if F1 and F2 are dihedrally adjacent
faces of a 3-cell, both supported by Q0, then

(16) χ(F1)χ(F2) =
{
−1 if F1 and F2 are both positive or both negative
+1 otherwise

For each dihedrally adjacent pair F1, F2, we can compute the left hand side of (16)
as the reflection character χ(σ) of the permutation σ that maps the labeling of F1
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onto the labeling of F2, where each labeling is read in the standard order. There are
12 cases (one for each edge), which can be grouped into four classes of permutations:

• the identity id, with χ(id) = +1,
• a rotation R through 90 degrees, with χ(R) = +1,
• a reflection φ around a diagonal axis, with χ(φ) = −1,
• a reflection ψ around an horizontal or vertical axis, with χ(ψ) = −1.

These four types are indicated on the edges of the following diagram. Edges in red
correspond to permutations with χ(σ) = +1 and edges in black correspond to per-
mutations with χ(σ) = −1.

1 2

3 4

5 6

7 8

id

φ R

ψ

ψ

R φ

id

id ψ

ψ id

The values of χ(σ) in each of the four cases can be verified in a straightforward manner.
Furthermore, it is easy to verify that for dihedral edges labeled in the diagram by
id or R, the corresponding pairs of faces F1, F2 have opposite boundary parity, i.e.
sgn∂(F1) = − sgn∂(F2), and for dihedral edges labeled by φ or ψ, the faces have the
same boundary parity. This is exactly the content of (16).

In order to complete the proof, it is only necessary to consider the case where Y
has exactly two opposite Q0-supported faces F1 and F2, with labels differing by a 90
degree rotation. In this case χ(F1) = χ(F2) and sgn∂(F1) = − sgn∂(F2), implying (14)
immediately.

We have shown that Ψ(∂3Y ) = 0 for every 3-cell Y . Since Ψ(θ) = 1, where θ
is defined in (13), it follows that θ is not a boundary, and hence HCube

2 (G) 6∼= (0).
Further computation (not included here) shows that HCube

2 (G) ∼= R, i.e. the homology
in dimension 2 is generated by θ. �

In fact, the same graph can be used to show that when n > 3, the map ψ∗ :
HCube
n (G) → HPath

n (G) defined in Section 5 is not always surjective. Computations
using [10] for HCube

• and Mathematica for HPath
• (not displayed here) have shown that

if G is the graph from Theorem 6.1 then

HCube
3 (G) ∼= (0) and HPath

3 (G) ∼= R.

It would be interesting to find self-contained, accessible proofs of these results.

7. Comments, examples, and questions for further study
An important family of examples for which we have less than perfect information
consists of the k-cycles Zk, with V (Zk) = {1, 2, . . . , k} and E(Zk) = {{i, i+ 1} | 1 6
i < k}∪{{k, 1}}. The following proposition states what we know about these graphs.
For path homology, these results are stated in [7].
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Proposition 7.1. Let Zk be a k-cycle. Then
(i) If k = 3 or k = 4, then HCube

n (Zk) ∼= HPath
n (Zk) ∼= (0) for all n > 0.

(ii) HCube
1 (Z5) ∼= R, HCube

2 (Z5) ∼= (0), HCube
3 (Z5) ∼= (0).

(iii) HPath
1 (Zk) ∼= R, and HPath

n (Zk) ∼= (0) for k > 5, n > 2.

Proof. Since Z3 is a complete graph and Z4 is a 2-cube, statement (i) follows from
Corollary 4.3, in both cases. In statement (ii), the dimension 1 case follows by an easy
direct calculation, or by applying Theorem 2.7 of [3] (see also Theorem 5.2 in [1])
and Theorem 4.1 of [2]. In dimension 2 and 3, the results were obtained by computer
computations which we do not include here. In statement (iii), the dimension 1 case
again follows by an easy direct calculation, or by applying statement (ii) together with
Theorem 5.3. The remaining cases in statement (iii) appear in [7], but also follow from
the more general result stated in the next proposition. �

Proposition 7.2. Suppose that G is an undirected graph containing no 3-cycles and
no 4-cycles. Then HPath

n (G) ∼= (0) for n > 2.

Proof. If n > 2, then every generator of CPath
n (G) must be an alternating path, that

is, it has the form (a, b, a, b, . . . , b) or (a, b, a, b, . . . , a) for some pair {a, b} ∈ E(G).
Denote this path by wnab, where a and b are the first two elements and the final element
is determined by the parity of n. An easy computation shows that

(17) ∂nw
n
ab = wn−1

ba + (−1)nwn−1
ab .

Suppose that
γ =

∑
{a,b}∈E(G)

cab w
n
ab + cba w

n
ba

is a cycle in CPath
n (G). It follows from (17) that

cba + (−1)ncab = 0

for all {a, b} ∈ E(G), implying that γ may be expressed as a linear combination of
terms of the form

wnba + (−1)n+1wab.

Since wn+1
ba + (−1)n+1wab = ∂n+1w

n+1
ba , every cycle γ ∈ CPath

n (G) is a boundary, and
hence HPath

n (G) = (0). �

We conjecture that Proposition 7.2 also holds for HCube
n (G):

Conjecture 7.3. Suppose that G is an undirected graph containing no 3-cycles and
no 4-cycles. Then HCube

n (G) ∼= (0) for n > 2.

Although our computational evidence is somewhat limited, it seems natural to
conjecture that a weaker property holds for all graphs G and for both cubical and
path homology.

Conjecture 7.4. For any undirected graph G, there exists an integer N such that we
have HCube

n (G) ∼= HPath
n (G) ∼= (0) for n > N .

In cases where the methods of Sections 3 and 4 do not apply, computation of
HCube
n (G) remains a significant challenge, since the problem size increases rapidly with

dimension. For example, when G = Z5, rank CCube
3 (G) = 2230 and rank CCube

4 (G) =
978350. For the graph G in Theorem 6.1, rank CCube

3 (G) = 21552 and rank CCube
4 (G) =

21745744. It would be useful to develop more effective tools to compute HCube
n (G) for

all n in these cases.
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