
ALGEBRAIC
 COMBINATORICS

Jan Draisma
Partial correlation hypersurfaces in Gaussian graphical models
Volume 2, issue 3 (2019), p. 439-446.

<http://alco.centre-mersenne.org/item/ALCO_2019__2_3_439_0>

© The journal and the authors, 2019.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2019__2_3_439_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 2, issue 3 (2019), p. 439–446
https://doi.org/10.5802/alco.44

Partial correlation hypersurfaces
in Gaussian graphical models

Jan Draisma

Abstract We derive a combinatorial sufficient condition for a partial correlation hypersurface
in the parameter space of a directed Gaussian graphical model to be nonsingular, and speculate
on whether this condition can be used in algorithms for learning the graph. Since the condition
is fulfilled in the case of a complete DAG on any number of vertices, the result implies an
affirmative answer to a question raised by Lin–Uhler–Sturmfels–Bühlmann.

1. Introduction
DAGs. Let G be a directed, acyclic graph (DAG) with vertex set V and edge set
D ⊆ {(i, j) ∈ V 2 | i 6= j}. We write i → j if (i, j) ∈ D and i 6→ j otherwise. A path
in G from i to j of length k is a sequence (i = i0, i1, . . . , ik = j) with il → il+1 for all
l = 0, . . . , k − 1; we allow k = 0. If there exists a path from i to j of length at least 1
we say that j is below i.

Directed Gaussian graphical models. We follow [2, p. 87]. Associated to G
is the directed graphical model for jointly Gaussian random variables Xi, i ∈ V
related by

Xj =
∑

i:i→j

aijXi + εj

where the vector ε ∼ N (0, I) and where the aij ∈ R are the parameters of the model.
The vector X = (Xj)j∈V satisfies

(I −A)TX = ε

where A is the matrix with (i, j)-entry aij if i → j and 0 otherwise. Therefore X ∼
N (0,Σ) where

Σ = Σ(A) = (I −A)−T (I −A)−1.

Note that, since A is nilpotent, this is a matrix whose entries are polynomials in the
parameters aij , i → j. For subsets I, J ⊆ V we write Σ[I, J ] for I × J-submatrix
(σij)i∈I,j∈J of Σ, and we use notation such as I + i0 − s := I ∪ {i0}r {s}.
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Partial correlation hypersurfaces. Let i0, j0 ∈ V be distinct and S ⊆ V r
{i0, j0}. In [4] the partial correlation hypersurface Hf ⊆ RD is defined as the zero
locus of the polynomial

f := det(Σ[S + i0, S + j0]);
the expression corr(i0, j0|S) := f/

√
det(Σ[S + i0, S + i0]) det(Σ[S + j0, S + j0]) is the

partial correlation of i0 and j0 given S.
So the vanishing of f is equivalent to the statement that i0, j0 are conditionally in-

dependent given S. We assume that f is not identically zero on RD. This is equivalent
to the statement that S does not d-separate i0 and j0 in G [5, Section 2.3.4]; the trek
system expansion of Section 2 yields an equivalent combinatorial characterisation.

The key motivation in [4] for studying Hf is that the behaviour for λ → 0 of the
volume (relative to some probability measure) of

Tube(λ) := {a ∈ RD : |corr(i0, j0, S)| 6 λ}
is related to the singularities of Hf . This volume scales linearly with λ if Hf is non-
singular but can be superlinear otherwise—whence the study of the real log-canonical
threshold of Hf in [4]. The parameter values a in Tube(λ) correspond to probabil-
ity distributions that are not λ-strongly-faithful to G—distributions where the PC
algorithm for learning G might fail. So it is useful to know criteria for nonsingularity
of Hf .

Main result. We will establish the following criterion for nonsingularity of Hf ; the
same applies when the εi have unequal variances (Proposition 2.5).

Theorem 1.1. Assume that i0 → j0 and that for all s ∈ S below j0 we have i0 → s.
Then Hf is nonsingular.

Corollary 1.2. If G is the DAG on {1, . . . , n} with i→ j if and only if i < j, then
Hf is nonsingular, independently of the choice of i0, j0, S.

For n 6 6 this is [4, Theorem 4.1], which was established there by extensive com-
puter calculations showing that some power of det Σ[S + i0 + j0, S + i0 + j0] lies in
the ideal generated by f and its partial derivatives. Since Σ[S + i0 + j0, S + i0 + j0]
is positive definite and hence has a nonzero determinant for all (real) values of the
parameters, this shows that the (real) common vanishing locus of f and its derivatives
is empty.

We will follow a similar approach, except that we consider the principal submatrix
det Σ[S+ i0, S+ i0], no power is needed, and indeed not f but only some of its partial
derivatives are needed.

Organisation. In Section 2 we review the expansion of subdeterminants of Σ in
terms of trek systems without sided intersection [6]. In Section 3 we use this to prove
the theorem, and we conclude with a brief discussion in Section 4.

2. Background
The trek rule. We recall results from [6]. Suppose we allow the variances of the εi
to be distinct, rather than all equal to 1 as above. In that case, the covariance matrix
Σ becomes

Σ = (I −A)−T Ω(I −A)−1

where Ω is the diagonal matrix with the covariances of the εi on the diagonal. Using
the geometric series for (I −A)−1 we find that

σij =
∑

t:i→j

w(t)

Algebraic Combinatorics, Vol. 2 #3 (2019) 440



Partial correlation hypersurfaces

where the sum is over all treks from i to j as in the following definition.

Definition 2.1. A trek t in G is a pair (PU , PD) of paths in G that start at the same
vertex m, the top of the trek. The paths PU , PD are called the up part and the down
part of t, respectively. If i0 is the last vertex of PU and j0 is the last vertex of PD,
then we call t is a trek from i0 to j0, i0 the starting vertex of t, and j0 the end vertex
of t. The weight of t equals

w(t) :=

 ∏
(i,j) in PU

aij

 · ωm ·

 ∏
(i,j) in PD

aij

 .

We allow one or both of PU , PD to have length 0, in which case the corresponding
factor(s) above is (are) 1.

The terminology derives from an informal interpretation of a trek as traversing PU

upwards from i0 (i.e. against the direction of its edges in G) and then traversing PD

downwards to j0. In slightly different terms, the trek rule above goes back at least
to [7].

Trek system expansion. Equip V with an arbitrary linear order. Then for I, J ⊆ V
of equal cardinality and π : I → J we define sgn(π) as (−1) to the power the number
of crossings: pairs (i1, i2) ∈ I2 with i1 < i2 but π(i1) > π(i2).

Definition 2.2. Let I, J ⊆ V with |I| = |J | = k. A trek system T from I to J is a set
of treks {t1, . . . , tk} such that I is precisely the set of starting vertices of the tl and J
is precisely the set of end vertices of the tl. We write T : I → J . The map π : I → J
that sends the starting vertex of each trek to its end vertex is a bijection, and we define
the sign of T as sgn(T ) := sgn(π). The weight of T is w(T ) :=

∏k
l=1 w(tl).

Definition 2.3. A sided intersection between treks t and t′ is a vertex where either
the up parts of t and t′ meet or the down parts of t and t′ meet. We say that a trek
system has no sided intersections if there is no sided intersection between any two of
its treks.

We have the following formula for subdeterminants of Σ.

Proposition 2.4 ([6]). For I, J ⊆ V of the same cardinality we have

(∗) det Σ[I, J ] =
∑

T :I→J without sided intersections
sgn(T ) wt(T ).

The proof is an application of tail swapping as in the classical Lindström–Gessel–
Viennot Lemma [3]. We will see another instance of tail swapping in Section 3. In [6]
the proposition is used to give a combinatorial criterion, generalising d-separation, for
the determinant to be identically zero on RD × RV

>0. Furthermore, in [1] it is shown
that the sum above is cancellation-free: if two trek systems I → J have the same
weight, then they have the same sign. Moreover, it is shown there that the coefficient
of each monomial is plus or minus a power of 2.

All of these results—the formula (∗) of course, but also the cancellation-freeness and
the power-of-two phenomenon—persist when we specialise Ω to the identity matrix,
as we did in Section 1 and as we do again in Section 3. Indeed, if T : I → J is a trek
system without sided intersection, then the tops of the treks in T can be recovered
from the specialisation of w(T ) as follows: m is a top if and only if either

(1) at least one amj appears in w(T ) and no aim appears in w(T ); or else
(2) m ∈ I∩J and w(T ) contains no amj and no aim (then some trek is ((m), (m))).
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Action by diagonal matrices. Let d = diag((di)i∈V ) where the di are in R>0.
Then

dΣd = (d(I −A)−T d−1) · (dΩd) · (d−1(I −A)−1d) = (I −A′)−T Ω′(I −A′)−1

where Ω′ = dΩd and where A′ = d−1Ad has the same zero pattern as A. Hence, the
group (R>0)V acts on the parameter space RD ×RV

>0 and on the space of covariance
matrices in such a manner that the map (a, ω) 7→ Σ is equivariant. This implies
that for any I, J ⊆ V of equal cardinality the hypersurface in RD × RV

>0 defined by
det Σ[I, J ] = 0 is stable under this action.

Alternatively, this can be read off from (∗): scaling each aij with d−1
i dj and ωm

with d2
m, the weight of each trek from a vertex i ∈ I to a vertex j ∈ J gets scaled by

didj , and therefore det Σ[I, J ] scales with
(∏

i∈I di

)
·
(∏

j∈J dj

)
.

Define fΩ := det Σ[I, J ] and let f be obtained from fΩ by specialising Ω to the
identity matrix. Let Hf be the hypersurface in RD defined by f and let HfΩ be the
hypersurface defined by fΩ in RD × RV

>0.

Proposition 2.5. As semi-algebraic sets, HfΩ is isomorphic to Hf ×RV
>0. In partic-

ular, HfΩ is nonsingular if and only if Hf is.

Proof. By the discussion above, the map

(a, d) 7→
((

aij ·
dj

di

)
i→j

, (d2
m)m

)
maps Hf × RV

>0 into HfΩ . The inverse is given by

(a′, ω) 7→
((

a′ij ·
√
ωi√
ωj

)
i→j

, (
√
ωm)m

)
.

Both maps are morphisms of semi-algebraic sets. �

3. Proof of the theorem
We retain the notation of Section 1; in particular, ε ∼ N (0, I), f = det Σ[S+i0, S+j0]
and Hf ⊆ RD is the hypersurface defined by f . In this section, we treat the aij as
variables and our computations take place in the polynomial ring R[aij | (i, j) ∈ D].
Let J be the ideal in this ring generated by all partial derivatives ∂f/∂aij of f .

Lemma 3.1. For s ∈ S and j ∈ V with s→ j the variable asj does not appear in f .

Proof. Let T : S + i0 → S + j0 be a trek system without sided intersection. If the
arrow s→ j were used in the up (respectively, down) part of some trek t in T , then t
would have a sided intersection with the trek starting (respectively, ending) at s. So
that arrow is not used and the conclusion follows from (∗). �

As a consequence, in the remaining discussion we may and will replace D by D r
S × V , so that G has no arrows going out of S.

Lemma 3.2. Suppose that G has no outgoing arrows from elements of S. For s ∈ S
with i0 → s the variable ai0s appears at most linearly in f and its coefficient equals
±det Σ[S + i0, S + j0 − s+ i0]. In particular, det Σ[S + i0, S + j0 − s+ i0] ∈ J .

Proof. If a trek t in a trek system T : S+ i0 → S+ j0 without sided intersection uses
the edge i0 → s, then it does so in its down part—indeed, in its up part it would
yield a sided intersection with the trek starting at i0. In particular, the variable ai0s

appears only linearly in f . Furthermore, t ends in s, or else t would have a sided
intersection with the trek ending at s.
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i0

s
T

s2

i0

s
T′

s2

Figure 1. Proof of Lemma 3.2. We suggestively draw the arrows in
up parts of treks as pointing in the south-west direction and arrows
in down parts as pointing in the south-east direction—of course, this
is not always possible!

So if we remove from t the arrow i0 → s, then we obtain a trek system T ′ : S+i0 →
S + j0 − s+ i0 without sided intersection (Figure 1).

Conversely, if we have any trek system T ′ : S + i0 → S + j0 − s+ i0 without sided
intersection, then no trek in it passes through s on its way down, because s has no
outgoing arrows. Hence, adding the arrow i0 → s to the trek t′ in T ′ ending in i0
yields a trek system S + i0 → S + j0 without sided intersection.

Hence the map T 7→ T ′ gives a bijection between the terms in (the trek system
expansion of) f divisible by ai0s and the terms in det Σ[S + i0, S + j0 + i0 − s].
Furthermore, sgn(T ) equals ± sgn(T ′), where the sign is the sign of the bijection
S + j0 − s + i0 → S + j0 that is the identity on S + j0 − s and sends i0 to s; in
particular, this sign does not depend on T . �

Lemma 3.3. Assume that i0 → j0. The variable ai0j0 appears at most linearly in f
and its coefficient equals ±(det Σ[S + i0, S + i0]− g) where

(∗∗) g =
∑

T ′′:S+i0→S+i0

sgn(T ′′)w(T ′′)

is the sum over all trek systems T ′′ : S + i0 → S + i0 without sided intersection of
which one trek contains j0 in its down part. In particular, det Σ[S+i0, S+i0]−g ∈ J .

Proof. If a trek t in a trek system T : S+ i0 → S+ j0 without sided intersection uses
the edge i0 → j0, then it does so on its way down: on its way up it would yield a sided
intersection with the trek starting at i0. In particular, the variable ai0j0 appears only
linearly in f .

Furthermore, t ends in j0, or else it would have a sided intersection with the trek
ending at j0. So if we remove from t the arrow i0 → j0, then we obtain a trek system
T ′′ : S+i0 → S+i0 without sided intersection (Figure 2). Also, sgn(T ) equals sgn(T ′′)
times the sign of the bijection S + i0 → S + j0 that is the identity on S and maps i0
to j0; this will determines the sign ± in the lemma.

Conversely, given a trek system T ′′ : S+ i0 → S+ i0 without sided intersection, we
may try and add the arrow i0 → j0 to the trek ending in i0. The resulting trek system
has no sided intersection if and only if no trek of T ′′ passes j0 on its way down. The
remaining T ′′ must be therefore be subtracted as in the lemma. �

For s ∈ S below j0 define pj0,s :=
∑

P :j0→s w(P ), the sum of the weights of all
directed paths in G from j0 to s.
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i0

j0
T

s2

i0

j0
T′′

s2

Figure 2. Proof of Lemma 3.3.

j0

T′′ s

k

t′′

u′′

j0

T′′′ s

k

t′′′

u′′′

Figure 3. The tail swapping argument of Lemma 3.4. The sided
intersections of t′′ with other treks are depicted as square vertices.

Lemma 3.4. The element g from (∗∗) satisfies

g =
∑

s∈S under j0

sgn(πs) det Σ[S + i0, S + i0 − s+ j0] · pj0,s

where πs : S + i0 − s+ j0 → S + i0 is the identity on S + i0 − s and sends j0 to s.

Proof. Let T ′ : S + i0 → S + i0 − s+ j0 be a trek system without sided intersection
and let t′ be the trek of T ′ ending in j0. Appending to t′ any path from j0 down to
s yields a trek system T ′′ : S + i0 → S + i0 with sign sgn(T ′′) = sgn(T ′) sgn(πs). In
this manner, precisely those trek systems T ′′ : S + i0 → S + i0 arise for which

(1) a unique trek t′′ of T ′′ passes j0 on its way down, and
(2) every sided intersection of T ′′ is between t′′ and some other trek of T ′′ on

their way down, and happens at a vertex below j0.
So the left-hand side of the equation in the lemma equals

∑
T ′′:S+i0→S+i0

sgn(T ′′)×
w(T ′′) where W ′′ runs over the trek systems with properties (1) and (2). The right-
hand side is the sub-sum over all T ′′ without any sided intersection. We construct a
sign-changing involution on the remaining T ′′, as follows.

Let k be the lowest vertex on the down part of t′′ that lies on the down part of
some other trek u′′ 6= t′′ of T ′′. Swapping the parts of t′′ and u′′ below k yields treks
t′′′ and u′′′ that still meet at k. Let T ′′′ be the trek system obtained from T ′′ by
replacing t′′ with t′′′ and u′′ with u′′′ (Figure 3).

The trek system T ′′′ satisfies (1): t′′′ is its unique trek that passes j0 on its way
down. As for (2): the sided intersections between t′′′ and other treks are precisely the
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1 2

3 4

1 2

3 4
G H

Figure 4. The graphs in Example 4.1.

sided intersections between t′′ and other treks, so they happen below j0. Also, u′′′
cannot have sided intersections with treks other than t′′′, because those would have
come from a sided intersection between t′′′ and another trek happening below k—this
is where the choice of k matters. Furthermore, T ′′′ r {t′′′, u′′′} = T ′′ r {t′′, u′′}, so
there are no sided intersections between these treks. This shows that T ′′′ satisfies (2).
Also, the map T ′′ → T ′′′ is an involution, since k is the last intersection of the down
part of t′′′ with any down part of a trek in T ′′′. Since sgn(T ′′′) = − sgn(T ′′), this
shows that the terms on the left-hand side that do not appear in the right-hand side
cancel out. �

Proof of the theorem. We claim that the zero set of J in RD is empty. By Lemma 3.1
we may delete from G all outgoing arrows from elements of S without changing f .
Since i0 → j0, by Lemma 3.3 we have det Σ[S + i0, S + i0] − g ∈ J . The identity
in Lemma 3.4 expresses g as a linear combination of the determinants in Lemma 3.2
where s runs over the elements of S below j0. By assumption, for each of these s we
have i0 → s, so Lemma 3.2 implies that g ∈ J . Hence det Σ[S + i0, S + i0] ∈ J . But
for any set of real parameters a ∈ RD the matrix Σ[S + i0, S + i0] is positive definite,
hence has a nonzero determinant. This proves the claim. �

4. A modest implication for the PC algorithm
In the edge-removal part of the PC algorithm [5] for learning G, in each step we have
an undirected graph H whose edge set, if no error has occurred so far, contains that
of G. Using the sample covariance matrix, a partial correlation corr(i0, j0|S) is then
computed for some triple i0, j0, S such that there is an edge i0 − j0 in H and such
that S is contained in the H-neighbours of i0 or in the H-neighbours of j0. Before
this step all partial correlations with sets S′ of cardinality smaller than that of S have
already been checked. If the absolute value of the partial correlation is less than some
prescribed λ, then the edge i0 − j0 is removed from H.

Our theorem suggests that it might be advantageous to perform this check first for
sets S contained in the intersection of the neighbourhoods of i0 and j0 in H. Then,
if all the edges between i0, j0, S present in H are also present in the DAG G (with
some orientation), one readily checks that the conditions of the theorem are satisfied.
Hence the volume of Tube(λ) is proportional to λ, and the region in the parameter
space RD of G where we would erroneously delete i0 − j0 in this step is small.

There are two obvious issues with this. First, in general it will not suffice to check S
in the intersection of the neighbourhoods of i0 and j0. And second, the condition that
all of those edges are indeed present in G is rather strong. To make better use of our
theorem, one might want to develop a version of the PC algorithm where orientation
steps are intertwined with the edge-deletion steps.

We conclude with two examples.
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Example 4.1. Singular partial correlation hypersurfaces cannot be avoided in the edge
removal step of the PC algorithm: let G be as in Figure 4, taken from [4, Example 4.8].
In the beginning, the PC algorithm finds all nonconditional independencies (so with
S = ∅), and hence removes the edge 1−2 to arrive at the graph H on the right. If the
algorithm next chooses to consider the edge 1 − 4, then it will delete this edge after
finding that 1, 4 are independent given 3. However, by symmetry of H it is equally
likely that it will first consider the edge 1 − 3. In [4] it is shown that the partial
correlation f with i0 = 1, j0 = 3 and S = {4} has a singular hypersurface Hf ⊆ RD

and that the corresponding Tube(λ) of bad parameter values is fatter.
Example 4.2. The paper [4] also discusses mathematical interpretations of existing
heuristics in statistics. In particular, [4, Problem 6.2] discusses a volume inequality
that would confirm the belief that “collider-stratification bias tends to attenuate when
it arises from more extended paths”.

1 2

43

5

Figure 5. The graph from Example 4.2.

For Figure 5 their conjecture says that
Vol({λ : |corr(1, 2|5)| 6 λ}) > Vol{λ : |corr(1, 2|3, 4)| 6 λ}.

The paper does not explicitly say with respect to which measure Vol is defined. If
this were true for all measures, then corr(1, 2|5) 6 corr(1, 2|3, 4). This is certainly not
true in general: taking a13 = −3, a14 = −2, a23 = 8, a24 = 10, a35 = 2, a45 = 0 yields
corr(1, 2|5)2 = 1024/1189 > 88/105 = corr(1, 2|3, 4)2. So formulating this statistical
belief as a precise mathematical conjecture remains a challenge.
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