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Homomorphisms of strongly regular graphs

David E. Roberson

ABSTRACT We prove that if G and H are primitive strongly regular graphs with the same
parameters and ¢ is a homomorphism from G to H, then ¢ is either an isomorphism or a coloring
(homomorphism to a complete subgraph). Moreover, any such coloring is optimal for G and its
image is a maximum clique of H. Therefore, the only endomorphisms of a primitive strongly
regular graph are automorphisms or colorings. This confirms and strengthens a conjecture of
Peter Cameron and Priscila Kazanidis that all strongly regular graphs are cores or have complete
cores. The proof of the result is elementary, mainly relying on linear algebraic techniques. In
the second half of the paper we discuss the idea underlying the proof, namely that it can be
seen as a straightforward application of complementary slackness to a dual pair of semidefinite
programs that define the Lovasz theta function. We also consider implications of the result and
show that essentially the same proof can be used to obtain a more general statement. We believe
that one of the main contributions of the work is the novel proof technique, which is the first
able to make use of the combinatorial regularity of a graph in order to obtain results about its
endomorphisms/homomorphisms. Thus we expect this approach to have further applicability
to the study of homomorphisms of highly regular graphs.

1. INTRODUCTION

A homomorphism from a graph G to H is an adjacency preserving map from the vertex
set of G to the vertex set of H. When there are homomorphisms from G to H and
from H to G, we say that the graphs are homomorphically equivalent. An important
class of examples of homomorphisms are colorings: a c-coloring of G is equivalent to
a homomorphism from G to the complete graph on ¢ vertices, K.. More generally,
we will refer to any homomorphism whose image is a clique (complete subgraph) as
a coloring.

Homomorphisms from a graph G to itself are called endomorphisms, and they are
said to be proper if they are not an automorphism of G, or equivalently, their image
is a proper subgraph of G. A graph with no proper endomorphisms is said to be a
core, and these play a fundamental role in the theory of homomorphisms since every
graph is homomorphically equivalent to a unique core. We refer to the unique core
homomorphically equivalent to G as the core of G. It is known [11], and not difficult
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to show, that the core of G is isomorphic to any vertex minimal induced subgraph of
G to which G admits an endomorphism.

If the core of a graph G is a complete graph K., then G must contain a clique
of size ¢ and must also be c-colorable. Therefore, w(G) = x(G) = ¢. Conversely, if
w(G) = x(G) = ¢, then the core of G is K. If a graph is either a core or has a complete
graph as a core, then it is said to be core-complete. Many known results on cores are
statements saying that all graphs in a certain class are core-complete [2, 10, 15], and
often it remains difficult to determine whether a given graph in the class is a core or
has a complete core.

For some classes of graphs, something stronger than core-completeness can be
shown. A graph G is a pseudocore if every proper endomorphism of G is a coloring. It
follows that such a graph either has no proper endomorphisms and is thus a core,
or has some proper endomorphism to a clique and thus has a complete core. In
other words, any pseudocore is core-complete, although the converse does not hold
(consider a complete multipartite graph). Similarly, it is easy to see that any core
is a pseudocore, but the converse does not hold in this case either (for instance the
Cartesian product of two complete graphs of equal size at least three).

In this paper, we will focus on homomorphisms and cores of strongly regular graphs.
An n-vertex k-regular graph is said to be strongly regular with parameters (n, k, A, 1)
if every pair of adjacent vertices have A common neighbors, and every pair of distinct
non-adjacent vertices have p common neighbors. For short, we will call such a graph
an SRG(n,k, A, u). A strongly regular graph is called imprimitive if either it or its
complement is disconnected. In such a case, the graph or its complement is a disjoint
union of equal sized complete graphs. Homomorphisms of these graphs are straight-
forward, and so we will only consider primitive strongly regular graphs here. Because
of this, from now on when we consider a strongly regular graph, we will implicitly
assume that it is primitive. In this case, we always have that 1 < p < k, and that the
diameter is two.

Cameron & Kazanidis [2] showed that a special class of strongly regular graphs,
known as rank 3 graphs, are all core-complete. A graph is rank 3 if its automorphism
group acts transitively on vertices, ordered pairs of adjacent vertices, and ordered
pairs of distinct non-adjacent vertices. The rank refers to the number of orbits on
ordered pairs of vertices, and so after complete or empty graphs, rank 3 graphs are
in a sense the graphs with the most symmetry. The proof of Cameron & Kazanidis
exploits this symmetry by noting that either no pair of non-adjacent vertices can
be identified (mapped to the same vertex) by an endomorphism of a rank 3 graph,
or every such pair can. In the former case, the graph must be a core. In the latter,
any endomorphic image that contains non-adjacent vertices cannot be minimal, and
therefore the core must be complete.

Strongly regular graphs can be viewed as combinatorial relaxations of rank 3
graphs and, following their result, Cameron & Kazanidis (tentatively) conjectured
that all strongly regular graphs are core-complete. Towards this, Godsil & Royle [10]
showed that many strongly regular graphs constructed from partial geometries are
core-complete. A partial geometry is simply a point-line incidence structure obeying
certain rules. The point graph of a partial geometry has the points as vertices, such
that two are adjacent if they are incident to a common line. The properties of par-
tial geometries guarantee that their point graphs are strongly regular, and they are
typically referred to as geometric graphs.

Godsil & Royle showed that the point graphs of generalized quadrangles are pseu-
docores, as are the block graphs of 2-(v,k,1) designs and orthogonal arrays with
sufficiently many points. As they note, a result of Neumaier [19] is that for a fixed
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least eigenvalue, all but finitely many strongly regular graphs are the block graphs
of 2-(v, k, 1) designs or orthogonal arrays. Thus their result makes a significant step
towards the conjecture of Cameron & Kazanidis. The main idea used in the proof of
the Godsil & Royle result is that any endomorphism must map maximum cliques to
maximum cliques. Starting with this simple observation, they show that if G is geo-
metric, and the maximum cliques of G are exactly the lines of the underlying partial
geometry, then G is a pseudocore. It then remains to show when this assumption on
the maximum cliques holds true.

The main result of this paper is that if G and H are both strongly regular graphs
with parameters (n, k, A\, 1), and ¢ is a homomorphism from G to H, then ¢ is either
an isomorphism or a coloring. Letting G = H, this statement implies that all strongly
regular graphs are pseudocores, thus proving and strengthening the conjecture of
Cameron & Kazanidis. Using our main result and some previously known results, we
also show that in the case where ¢ is a coloring, we must have x(G) = w(H) and
this value is equal to the Hoffman bound on chromatic number which depends only
on (n,k, A\, ). It follows from this that any strongly regular graph G falls into one
of four classes depending on what subset of {w(G), x(G)} meets the Hoffman bound.
Using this we show that the homomorphism order of strongly regular graphs with a
fixed parameter set has a simple description.

We also prove a generalization of our main result, where the strong regularity
assumption on H is replaced by a strictly weaker algebraic condition. In this more
general case, we are only able to conclude that any homomorphism from G to H is
either a coloring or an isomorphism to an induced subgraph of H.

The original idea and the inspiration for the proof of the main result comes from
the theory of vector colorings, which are a homomorphism-based formulation of the
famous Lovasz theta function. The author was aided greatly by a collaboration with
Chris Godsil, Brendan Rooney, Robert Samal, and Antonios Varvitsiotis which pro-
duced three papers [8, 7, 9] on vector colorings. In particular, the second paper [7]
focused specifically on using vector colorings to restrict the possible homomorphisms
between graphs. Note however that we will present an elementary proof of our main
result which only requires basic knowledge of linear algebra and certain aspects of
strongly regular graphs which we will review in Section 2. The connection between
the proof techniques and vector colorings will not be discussed until Section 5.

Although the main concrete contribution of this paper is the resolution and
strengthening of the Cameron & Kazanidis conjecture, we believe that the real
significance of this work is the step it takes towards understanding how combinatorial
regularity can impact the endomorphisms and core of a graph. Symmetry conditions,
such as vertex- or distance-transitivity, often have easy-to-derive consequences for
the endomorphisms and/or core of a graph. This is perhaps not surprising, since such
symmetry conditions are assumptions about the automorphisms of a graph, which
are just special cases of endomorphisms. However, it appears to be more challenging
to make use of analogous regularity conditions, such as being strongly or distance
regular. In fact, we believe that ours is the first example of such a result. Interestingly,
by showing that strongly regular graphs are pseudocores, we establish a stronger
result than was previously known even under the more stringent symmetry condition
of being rank 3. Moreover, we know of no way to directly use the assumption of
being rank 3 to show that a graph is a pseudocore. We believe that our proof
technique has the potential to be applied to other classes of highly regular graphs
to obtain similar results. In particular, it could be used to generalize and strengthen
many homomorphism results based on symmetry to results based on combinatorial
regularity, analogously to how it is used in this work. Here “highly regular graph” is
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intentionally imprecise, since it is not yet clear what regularity conditions will have
an impact on properties of homomorphisms. However, one possibility would be to
consider graphs in association schemes, since these enjoy many algebraic properties
similar to those that we exploit here for strongly regular graphs.

1.1. NoTATION. We will denote the existence of a homomorphism from G to H by
writing G — H. Given a homomorphism ¢ from G to H, we will abuse terminology
somewhat and refer to the subgraph of H induced by {¢(u) : u € V(G)} as the image
of ¢, and we will denote this by Im .

Whenever we use 6 and 7, we will be referring to the second largest and minimum
eigenvalues of a strongly regular graph. This will sometimes be done without explicitly
stating so. We will also use mg and m. to denote the multiplicities of these eigenvalues,
and Fy and E, will refer to the projections onto the corresponding eigenspaces.

The all ones matrix will be denoted by J. For a matrix M, we will use sum(M)
to refer to the sum of the entries of M. For two matrices M and N with the same
dimensions, M o N will denote their Schur, or entrywise, product.

The complement of a graph G will be denoted by G, and more generally we will
add a bar over usual notation to refer to the analog in the complement. For instance,
6 will refer to the second largest eigenvalue of the complement of a given strongly
regular graph.

We will use u ~ v to mean that v and v are adjacent vertices. We will also use u 7 v
when u and v are not adjacent, which includes the case where u = v since a vertex is
not adjacent to itself. Sometimes we will need to exclude the u = v case, and for this
we will use u % v. We will also refer to w and v as non-neighbors whenever u 2 v.
Lastly, note that u % v is equivalent to u and v being adjacent in the complement
graph.

2. PROPERTIES OF STRONGLY REGULAR GRAPHS

Here we will introduce some basic properties of strongly regular graphs that we will
need later. We do not aim to give a full proof of every result, but rather enough
explanation for the interested reader to work out the details. Most of these results are
standard, and can be found in [11] or even on some widely used online sources that
are not considered citable. Those familiar with strongly regular graphs can probably
skip this section, with the possible exception of Lemma 2.1 and the definition of the
cosines of a strongly regular graph at the end of Section 2.2.

2.1. EIGENVALUES. Here we review some basic algebraic properties of strongly reg-
ular graphs. For more details we refer the reader to Chapter 10 of [11]. Let G be
an SRG(n, k, A\, n) with adjacency matrix A. Since G is a connected k-regular graph,
k is a simple eigenvalue of A with the all-ones vector as its unique (up to scalar)
eigenvector. Considering the entries of A2, it is easy to show that

(1) A2+ (= NA+ (= k)T = p,

where J is the all ones matrix. It follows from this that all eigenvalues of A other
than k must satisfy the equation x2 + (u — A\)x + (u — k) = 0. Therefore, the other
two distinct eigenvalues of an SRG(n, k, A, i), denoted @ and 7, depend only on the
parameters and are given as follows:

(= )+ VO = 2 + 40k = 1)

(=) = VO = 2+ 40— )] -

9:

T =

N~ N
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Note that these eigenvalues satisfy k& > 6 > 0 > 7. The multiplicities, mg and m.,
of § and 7 can also be expressed in terms of the parameters n, k, A\, 1, but we will
not need to make their values explicit. A key point to take away from this is that the
eigenvalues, including their multiplicities, of a strongly regular graph depend only on
the parameters, not on the specific graph.

2.2. PROJECTIONS ONTO EIGENSPACES. It follows from Equation (1) that any poly-
nomial in A is contained in span{I, A, J} or, equivalently, span{I, A, A} where A =
J — I — A is the adjacency matrix of the complement. A standard result of linear
algebra is that the projections onto the eigenspaces of a real symmetric matrix are
polynomials in that matrix. Therefore, denoting by Ey and FE, the projections onto
the 6- and T-eigenspaces of A respectively, we have that both of these projections are
contained in the span of {I, A, A}. This means that Ey and E, have three distinct
entries: those corresponding to vertices, edges, and non-edges of G. Therefore, using
the identity Tr(MTN) = sum(M o N), we can compute the entries of E, on, say, the
edges of G as

1 1 1 ™
— sum(Ao E,) = — Tr(AE,) = — Tr(1E,) = =
nk sum(A o Er) nk (AE:) nk r(rEr) nk’

since the trace of a projection is equal to its rank. Similarly, we can show

mr/n ifu=w
(Er)yw = § T /nk ifu~wv
(=t=1m;/n(n—k—1) ifuwv.

One can also determine the entries of Fy in a similar manner, but we will not need this.

The proof of our main result makes use of the projection E., but we will actually
want to scale this matrix so that its diagonal entries are equal to one. Thus we define
the cosine matriz of a strongly regular graph G, denoted E¢, to be the matrix given
as follows:

1 fu=wv
(Ec)yy = mﬂ (Er)yp =18 7/k ifu~wv
T (-7 =1)/(n—k—1) ifucto.

The key properties of Eg that we will make use of are that it is positive semidefinite
and that (A — 7I)Eg = 0, both of which follow from the fact that it is a positive
multiple of E...

Since the matrix Eg is positive semidefinite with ones on the diagonal, it is the
Gram matrix of some unit vectors that we can consider as being assigned to the
vertices of the graph. The off diagonal entries of Eg are then the cosines of the angles
between these vectors, thus motivating the term “cosine matrix”. We refer to the
values 7/k and (—7 — 1)/(n — k — 1) as the adjacency and non-adjacency cosines
of a strongly regular graph, respectively. Note that for a primitive strongly regular
graph G, its adjacency cosine is always contained in the interval (—1,0), and its non-
adjacency cosine is contained in the interval (0,1). The latter follows from the fact,
presented in the next section, that n — k — 1 and —7 — 1 are the largest and second
largest eigenvalues of the complement of G respectively.

Note that the parameters of a strongly regular graph determine its adjacency and
non-adjacency cosines, but the converse is not true. Indeed, strongly regular graphs
with parameter sets (16,10,6,6), (26,15,8,9), or (36,20,10,12) all have adjacency
and non-adjacency cosines equal to —1/5 and 1/5 respectively.
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2.3. COMPLEMENTS AND SOME COMBINATORIAL PROPERTIES. It is easy to check
that if G is a strongly regular graph with parameters (n, k, A, 1), then the complement
of G, denoted G, is also a strongly regular graph with parameters (n, k, A, 1) where

k=n—k—-1
A=n—-2k—2+p
n=mn-—-2k+ A\

The eigenvalues of G are denoted by k > 6 > 7. The latter two can be computed from
the parameters of G using the identities in Section 2.1, but it is easier to use the fact
that the adjacency matrix of G is equal to J — I — A, where A is the adjacency matrix
of G. From this it follows that

=—1—1

F=—0-1.
The last property of strongly regular graphs that we will need concerns the second
neighborhoods of vertices. The second neighborhood of a vertex v, denoted Na(v), is

the set of vertices at distance exactly two from v. The following result was proven
in [5]:

LEMMA 2.1. Let G be a primitive strongly reqular graph. For any v € V(G), the
subgraph of G induced by No(v) is connected.

3. HOMOMORPHISMS BETWEEN SRGS

In this section we prove our main result that any homomorphism between strongly
regular graphs with the same parameters is either an isomorphism or a coloring.
However, we will first need to introduce the following construction:

DEFINITION 3.1. Suppose that M is a symmetric matriz with rows and columns in-
dexed by some finite set T'. For any set S and function ¢ : S — T, let M¥ denote the
matriz indeved by S and defined entrywise as (M%), = M) (v)-

It turns out that this construction preserves positive semidefiniteness:

LEMMA 3.2. Suppose M is a positive semidefinite matriz indexed by some set T and
let ¢ : S — T for some set S. Then M¥ is positive semidefinite.

Proof. Since M is positive semidefinite, it is the Gram matrix of some multiset of
vectors {p,, : w € T}. In other words, M, = pLp, . But then we have that M¢, =
Mwypw) = pg(u)pw(v). Thus M¥ is the Gram matrix of the multiset of vectors
{Py(uy : v € S}, and is therefore positive semidefinite. O

Using the above, we can prove the following which will be instrumental in proving

our main result.

LEMMA 3.3. Suppose G and H are strongly reqular graphs with the same adjacency
cosines. Let A be the adjacency matriz of G and T its least eigenvalue. If ¢ is a
homomorphism from G to H, then (A —7I)E}, = 0.

Proof. First, recall that (A — 7I)Eg = 0. Since ¢ is a homomorphism and G and H
have the same adjacency cosines, we have that E¢ and EY, agree on their diagonals
and entries corresponding to the edges of GG. Therefore,

Tr ((A—71I)E};) =sum ((A—7I) o EY))
=sum ((A—7I)o Eg)
=Tr((A—7I)Eg) =0.
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Since both A — 71 and EY, are positive semidefinite (using Lemma 3.2 for the latter),
the above implies that (A — 71)E};, = 0. O

Suppose that G and H are strongly regular graphs with equal adjacency cosines «
and non-adjacency cosines 8 and 3’ respectively. If ¢ is a homomorphism from G to
H, define the homomorphism matriz of ¢ to be X := E}, — Eg. Then

1=8  ifugo& p(u)=pv)
a—pB ifuzv&o(u)~ep)
Br=pB ifuzv&p(u)#e)
0 otherwise.

Recall that « € (—1,0) and 3,8’ € (0,1). Therefore we have that 1 — 8 > 0 and
a—f < 0. The noteworthy property of the homomorphism matrix is that (A—71)X =
0 where A is the adjacency matrix of G and 7 its least eigenvalue. This follows
immediately from the fact that (A —7I)Eg = 0 and (A — 7I)E}, = 0 by Lemma 3.3.
The other important property of the homomorphism matrix is that it contains many
zeros. This allows us to prove our main result:

Xu'u =

THEOREM 3.4. Let G and H be primitive strongly reqular graphs with the same adja-
cency cosines, and non-adjacency cosines equal to B and B’ respectively. Suppose o is
a homomorphism from G to H. Then the following hold:
(1) If B > B', then ¢ is a coloring.
(2) If B = B, then ¢ is either a coloring or an isomorphism to an induced sub-
graph of H.

Proof. Let X be the homomorphism matrix of ¢. Suppose that ¢ is not a coloring.
Then there exist vertices u,v € V(G) such that ¢(u) # ¢(v). Note that this implies
that u % v. For notational purposes, define the following sets:

Cr={w e V(G) : w~u,w # v, pw) =p(v)}

Co={w e V(G) 1w ~u,w#v,pw) ~pv)}

Cs ={w e V(G) : w ~ u,w % v, p(w) % ¢(v)}.
Note that the sets C7,Cs,C3 partition the set of all neighbors of u contained in
Ns(v). Since ¢ is a homomorphism, w € Cy implies that ¢(u) ~ p(w) = ¢(v) which
contradicts our assumption that ¢(u) % ¢(v). Thus C; must be empty. Now let A be

the adjacency matrix of G, 7 its least eigenvalue, and a the common adjacency cosine
of G and H. Then (A —71)X = 0 and therefore

0=((A=7DX),, = > (A=7DuwXuy
weV(G)

= —7Xuw + Z Xuwo

wn~u

=—7(8"=B)+ (1 = B)IC1] + (a = B)|Ca| + (8" = B)|C3]
=—7(8" = B) + (a = B)|Ca| + (8" = B)|C3].

Now a — 8 < 0, and —7 > 0. Therefore, if § > 3 then every summand above is
non-positive, and the first term is strictly negative. This is a contradiction and so
in this case no homomorphism that is not a coloring can exist. This proves the first
claim.

If 5 = B, then the above implies that Cs is empty, and we already noted that
C is empty. Let us consider what this means. Since C7 U Cy U Cj3 is the set of all
neighbors of u in Ny(v), this implies that all such vertices w satisfy o(w) 2 ¢(v).
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In other words, if v(u) % ¢(v), then ¢ preserves non-adjacency between v and every
neighbor of u in No(v).

Now we can apply the above argument again, replacing v with any neighbor of u
in Na(v). Since Na(v) is connected by Lemma 2.1, iterating this argument implies
that ¢ preserves non-adjacency between v and every vertex of Ny(v). But now, for
any w € Na(v), we have that ¢(v) % ¢(w) and thus it must follow that ¢ preserves
non-adjacency between w and every vertex of No(w). Iterating again, and using the
fact that G is connected, we see that ¢ must preserve all non-adjacencies, i.e. it is an
isomorphism to an induced subgraph of H. O

As a corollary, we immediately obtain the following:

COROLLARY 3.5. If G and H are primitive strongly regular graphs with the same
parameters, then any homomorphism from G to H is either a coloring or an isomor-
phism.

Proof. In this case we have that § = 8’ in Theorem 3.4, and therefore any such ho-
momorphism is a coloring or an isomorphism to an induced subgraph of H. However,
since they have the same parameters, G and H have the same number of vertices.
Therefore, any isomorphism to an induced subgraph of H is simply an isomorphism
to H. O

Finally, we obtain a strengthening of the Cameron and Kazanidis conjecture:
COROLLARY 3.6. FEvery primitive strongly reqular graph is a pseudocore.

In Section 6 we will see a generalization of Theorem 3.4 in which the graph H
does not necessarily need to be strongly regular. Also, in Section 6.1, we will see that
the conclusion of Theorem 3.4 does not hold in the case where S < /', nor when
the adjacency cosine of G is strictly less than that of H (regardless of how 8 and g’
compare).

4. CLIQUES, COLORINGS, AND THE HOMOMORPHISM ORDER

Since we now know that all homomorphisms between strongly regular graphs with
the same parameters are either isomorphisms or colorings, it is worth considering the
properties of the colorings. In order to distinguish them, we will refer to homomor-
phisms that are not also isomorphisms as proper homomorphisms. We will see that,
for a fixed parameter set, the proper homomorphisms between strongly regular graphs
are not only required to be colorings, but colorings with a fixed number of colors. For
this we will need to introduce some known bounds on the clique and chromatic num-
bers of a strongly regular graph. In Section 5 we will see that these bounds actually
coincide with the Lovéasz theta function of the complement. But for now we will not
need this connection, and so we will present these bounds purely as spectral bounds
which is historically how they were derived.

By results of Delsarte [3], later generalized by Hoffman [14], it is known that any
strongly regular graph G satisfies

(2) w(@) <1-

where w(G) and x(G) are the clique and chromatic numbers of G respectively. Cliques
meeting the bound are often referred to as Delsarte cliques, and colorings meeting the
bound are referred to as Hoffman colorings. We also say that a coclique of G meeting
the above bound for G is a Delsarte coclique. We remark that Hoffman colorings
appear to be quite special. Indeed, it is known that for a fixed ¢ € N, only finitely

many strongly regular graphs have Hoffman colorings with ¢ colors [12].
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Importantly for us, the above simultaneous bound on the clique and chromatic
numbers of a strongly regular graph depends only on the parameters, not the specific
graph. We are therefore able to prove the following:

LEMMA 4.1. Let G and H both be SRG(n,k, A\, u)’s. There exists a proper homomor-
phism from G to H if and only if

k
X(G) =1~ = = w()
i.e. G has a Hoffman coloring and H contains a Delsarte clique.

Proof. Suppose there exists a proper homomorphism from G to H. By Corollary 3.5,
this homomorphism must be a coloring. Therefore, using Equation (2), we have that

-5 @) <wim<1- L.
T T

The converse is trivial. O

Note that the above lemma implies that if G and H are non-isomorphic
SRG(n,k,\,p)’s, then G — H if and only if x(G) = 1 — k/7 = w(H). We
also obtain the following corollary giving an if and only if condition for when a
strongly regular graph is a core:

COROLLARY 4.2. If G is a strongly regular graph, then G is NOT a core if and only if

w(@)=1- ﬁ = x(G).

T

In this case the core of G is a complete graph of size 1 — é

4.1. TYPES AND THE HOMOMORPHISM ORDER. The result of Lemma 4.1 suggests
a useful partition of strongly regular graphs of a fixed parameter set. Namely, to
classify them according to which subset of {w(G), x(G)} meet the Hoffman bound.
We therefore propose the following four “types” of strongly regular graphs:

e Type A: w(G) <1 - £ =(G);
e Type B: w(G) =1— % = x(G);
e Type C: w(G) =1— £ < x(G);
e Type X: w(G) <1-£% < x(G).

The existence of a homomorphism between any two non-isomorphic SRG(n, k, A, u)’s
is determined by their types: Any graph of type A or B has homomorphisms to any
graph of type B or C, and there are no other homomorphisms between non-isomorphic
SRG(n, k, A, p)’s. Furthermore, all graphs of type A, C, or X are cores, and all graphs
of type B have complete graphs of size 1 — k/7 as their cores. Summarizing these
observations, the Hasse diagram of the homomorphism order of SRG(n, k, A\, p)’s is
given in Figure 1 below.

Note that the type B graphs are represented by a single node in the above diagram
since they are all homomorphically equivalent, whereas graphs of any other fixed type
are incomparable (have no homomorphisms in either direction between them). The
diagram suggests that any homomorphism from a type A graph G to a type C graph
H can be “factored” into a homomorphism from G to a type B graph K and then from
K to H. Since type B graphs are homomorphically equivalent to complete graphs,
this is essentially what our main theorem says.

If the Hoffman bound is not an integer, then neither the clique nor chromatic
number can meet this bound with equality, and therefore only graphs of type X can
occur. This happens for conference graphs of non-square order, since these have 7
equal to an irrational number. However, this can also occur for other parameter sets.
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A

FIGURE 1. Homomorphism order of SRG(n, k, A, u)’s.

Some examples include (10, 3,0, 1), (16,5,0,2), (21,10, 3,6), (26, 10, 3,4), (36, 14,4, 6),
and (36,21,10,15), for all of which there do exist strongly regular graphs. Also note
that if the Hoffman bound of the complementary parameter set is not an integer, then
there can be no Delsarte cocliques, and therefore no Hoffman colorings. Therefore, for
such parameter sets, there will only be type C and/or X graphs.

Computations reveal that there are parameter sets which contain only graphs of a
single type. Examples of this for each type, including an example for type X where
the Hoffman bound is an integer, are given below:

Type A - (27,16, 10, 8);
Type B - (49,12,5,2);
Type C - (45,32, 22, 24);
Type X - (16, 10,6, 6).

On the other hand, there are also parameter sets having all four types. Some exam-
ples include (36, 20, 10, 12), (45,12, 3,3), and (64, 18,2,6). In general, for the strongly
regular graphs we performed computations on (obtained from Ted Spence’s web-
page [21]), almost all of them were either type C or X. This seems to indicate that
having a Hoffman coloring is a rare property for a strongly regular graph, but having
a Delsarte clique is not. The latter observation is perhaps not so surprising since it is
known that all strongly regular graphs arising as point graphs of partial geometries
have Delsarte cliques.

The computations for the above were done in Sage [23]. One only needs to determine
if the given strongly regular graph has a clique of a certain size and/or coloring with
certain number of colors. For the former, the built in clique number routine is very
fast, and so there is no problem finding the clique number of all the strongly regular
graphs from [21]. This is not the case for chromatic number. Sage’s built in coloring
routines seem to be far too slow to be of any use for this endeavor. However, there is
a GAP package called Digraphs [16] developed by researchers at The University of St
Andrews, and the coloring routine in this package works very quickly in comparison.
In fact, it is hard to overstate how much faster it seems to be.

5. VECTOR COLORINGS AND THE LOVASZ 9 FUNCTION

In this section we will see that some of the results of Section 3 are part of a more
general theory involving semidefinite programs and the Lovész theta number of a
graph [18].
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For a graph G and a real number ¢ > 2, a strict vector t-coloring of G is an
assignment, u +— p,, of unit vectors to the vertices of G such that

(3) prv = P

If we drop the “strict”, then we only require that the inner product in (3) is bounded
above by the righthand side. We note however that for strongly regular graphs, every
optimal vector coloring is also a strict vector coloring [8]. For a non-empty graph G,
its strict vector chromatic number is the minimum ¢ > 2 such that G admits a strict
vector t-coloring. For empty graphs, this parameter is defined to be equal to 1. The
strict vector chromatic number was defined by Karger, Motwani, and Sudan [17], and
they showed that it is equal to the Lovasz theta number of the complement graph.
The Lovasz theta number is typically denoted by o, and so we will use 9(G) := 9(G)
to denote the strict vector chromatic number of G. We will give two of the more well
known formulations of the Lovasz theta number in Section 5.1.

By considering the Gram matrix of vectors in a strict vector coloring, it is easy to
see that G has a strict vector ¢-coloring if and only if there exists a positive semidefinite
matrix M indexed by the vertices of G such that

Mw:{l ifu=w

-1 . N
— ifu~w.

1 for all u ~ v.

Using this interpretation, it is not difficult to see that a complete graph on n vertices
has strict vector chromatic number equal to n. It is also now apparent that the
matrices Eg and EY, from Section 3 were Gram matrices of strict vector colorings.

Suppose that G and H are graphs and that w — p,, for w € V(H) is a strict
vector t-coloring of H. If ¢ is a homomorphism from G to H, then it is easy to see
that u — py(y) for u € V(G) is a strict vector t-coloring of G' (note that this is
the exact construction used in the proof of Lemma 3.2 to show that M¥ is positive
semidefinite). It follows that if G — H, then 9(G) < 9(H), i.e. the strict vector
chromatic number is homomorphism monotone. In particular, using the fact that
J(K,) = n, this implies the well known “sandwich theorem”:

w(G) <I(G) < x(G).

5.1. SEMIDEFINITE PROGRAMMING. One of the many useful properties of the Lovasz
theta number is that it can be written as a semidefinite program that satisfies strong
duality. This provides us with both a minimization and maximization program for
this parameter:

PRIMAL DUAL
9(G) = min ¢ = max sum(B)
st. My, =t—1forue V(G) 8.t. By, =0foru#v
My, = —1for u~w Tr(B)=1
M >0 B>0

Note that a feasible solution of value t for the primal program above is exactly
(t — 1) times the Gram matrix of a strict vector t-coloring of G, and so we see that
these are equivalent definitions of 9.

Suppose that M and B are feasible solutions to the above primal and dual formu-
lations of ¥ with objective values P and D respectively. Then,

Tr(MB) =sum(M o B) = (P — 1) Tr(B) — [sum(B) — Tr(B)] = P — D.

It thus follows that if M and B are feasible solutions for the primal and dual programs
respectively, then they are both optimal if and only if Tr(MB) = 0 if and only
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if MB = 0. This is in fact just the complementary slackness condition for these
semidefinite programs.

For any graph G with adjacency matrix A and least eigenvalue 7, the matrix A—71
meets the first and third conditions for the dual program above. If we let B be the
positive scaling of A — 71 that has trace one, then B is a feasible solution to the dual.
If G is strongly regular, then we have seen in Section 2.2 that the cosine matrix of G,
FEq, is constant on the diagonal, and is a negative constant on entries corresponding
to edges of G. Therefore, up to a scalar multiple, this is a feasible solution to the
primal program for J(G). If we let M denote this scalar multiple of Eg, then it is
obvious that M B = 0. Therefore these are both optimal solutions to their respective
programs. It is then only a matter of arithmetic to show that 1§(G) is equal to our
old friend the Hoffman bound for any strongly regular graph G. In particular, this
means that for strongly regular G' with adjacency cosine «, we have 9(G) = 1 — é
Note that this is monotonically increasing with «.

We can now see Lemma 3.3 for what it is:() The strongly regular graph G has
feasible solutions Fg and A — 71 to the primal and dual respectively, and these must
be optimal since their product is 0. Similarly, the cosine matrix Fy is an optimal
primal solution for H. Furthermore, Ej; is the Gram matrix of the strict vector
coloring of G obtained by composing ¢ with the strict vector coloring of H whose
Gram matrix is Fg. Since both graphs are strongly regular with the same parameters,
they have the same strict vector chromatic number and therefore E}; is an optimal
primal solution for G. Finally, since A — 71 was already shown to be an optimal dual
solution for G, we have that (A — 71)Ej; = 0.

Of course, a similar technique can be applied to any homomorphism between graphs
with the same strict vector chromatic number. But the primal and dual solutions for
the two graphs will likely not be as nice as in the strongly regular case. The key
feature of the primal solutions we used is that their entries depend only on whether
the corresponding vertices are equal, adjacent, or non-adjacent. Most graphs will not
have an optimal primal solution of this form.

On the other hand, distance regular graphs also have E, and A — 71 as optimal
primal and dual solutions, and the uv-entry of the matrix F, only depends on the
distance between vertices u and v. Thus, distance regular graphs are a natural choice
for attempting to generalize our main theorem. Indeed, strongly regular graphs are
exactly distance regular graphs of diameter two. However, the analysis seems more
difficult in this case, since the matrix £}, — E¢ will potentially have a different nonzero
entry for every way in which the homomorphism ¢ can change the distance between
two vertices. This is actually the same for our case, but for us there are only two such
possibilities for how ¢ can change the distance between two vertices.

Another possible route for generalization would be to consider directed strongly
regular graphs. These were introduced in [4] and have been given a fair amount of
attention in the literature. Since homomorphisms extend naturally to directed graphs,
and many of the algebraic properties of strongly regular graphs have analogs in the
directed case [6], it seems plausible that our main result could be generalized to this
larger class of graphs.

6. A GENERALIZATION

We did not make extensive use of the fact that H was a strongly regular graph in
the proof of our main result, nor the lemmas leading up to it. If we let G be an
SRG(n, k, A\, u), then the only thing we required of H in our arguments is that the

(DAl instances of the phrase “up to a scalar” have been removed from the following for brevity.
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matrix I + oAy + ' Ay, where « is the adjacency cosine of G and 3’ is at most the
non-adjacency cosine of G, is positive semidefinite. The proof of the main result now
proceeds exactly as before.

The assumption that I + oAy + B'Ag is positive semidefinite implies that H
admits a strict vector coloring of value 1 — 1/a = 9¥(G). Since we also assumed
that G — H, this must be an optimal strict vector coloring of H. This inspires the
following definition. For real numbers a and §, we say that H is an («, 8)-graph if
I+ aAp + BAp is the Gram matrix of an optimal strict vector coloring of H. Note
that this implies that @ € [—1,0). We can now succinctly state the above discussed
generalization of our main result:

THEOREM 6.1. Suppose G is a strongly regular graph with adjacency and mnon-
adjacency cosines a and 8 respectively, and that H is an («, 3')-graph. Let ¢ be a
homomorphism from G to H. Then the following hold:

(1) If B > B', then ¢ is a coloring.
(2) If B = B, then ¢ is either a coloring or an isomorphism to an induced sub-
graph of H.

Note that in the case of a coloring, the image of ¢ must be a maximum clique of H
of size 1 — é In either case, the image of ¢ must have strict vector chromatic number
equal to that of both G and H, namely 1 — é

As an example, let H be the complement of the line graph of the Petersen graph.
Note that this is not strongly regular. If we let G be the unique SRG(25, 16,9, 12) (this
is the complement of the line graph of K5 5) then both G and H are (—i, %)-graphs. It
then follows from Theorem 6.1 that any homomorphism from G to H is a coloring or
an isomorphism to an induced subgraph of H. However, H has fewer vertices than G,
so there can only be colorings. There do exist such colorings since x(G) =5 = w(H),

but there can be no other homomorphisms from G to H by Theorem 6.1.

6.1. GENERALIZATIONS THAT FAIL. Let G and H be primitive strongly regular graphs
with adjacency cosines «, o’ and non-adjacency cosines 3, 3’ respectively. Theorem 3.4
characterizes the homomorphisms from G to H in the case where a = o/ and 8 > f'.
But we might hope that the conclusion of this theorem holds in other cases as well.
We will see that such generalizations do not hold except in one trivial case.

If a > o, then 9(G) > J(H) since the strict vector chromatic number of a strongly
regular graph is monotonically increasing with its adjacency cosine. Furthermore, since
¥ is homomorphism monotone, in this case we have that there are no homomorphisms
from G to H. So we can generalize our result to the case where o > o', but this is
really just an instance of the homomorphe monotonicity of 9, and thus is nothing new.

In the case of a = o', Theorem 3.4 covers both the 5 = 5’ and 8 > 3’ subcases.
For 8 < f/, we can let G be the Shrikhande graph and H be the complement of the
line graph of K4 4. These are an SRG(16,6,2,2) and an SRG(16,9,4, 6) respectively,
and we have that « = o’ = —1/3 and 8 =1/9 < 1/3 = f’ for these graphs. One can
find, for instance with the GAP package Digraphs, a homomorphism from G to H
whose image is a 6-vertex subgraph of H formed by gluing together two K,’s along an
edge. Obviously, this homomorphism is neither a coloring nor an isomorphism to an
induced subgraph, and so we see that Theorem 3.4 cannot be generalized to this case.

For the case of @ < o', we will fix G to be the Petersen graph, which is an
SRG(10,3,0,1) and has o = —2/3 and § = 1/6. We will also always have o/ =
—1/4 > « for the counterexamples in this case.

Algebraic Combinatorics, Vol. 2 #4 (2019) 493



DaviD E. ROBERSON

Let H be the SRG(45,12,3,3) with graph6 string given below(?):
1~}CKMF_C70B_FPCGaICQOaH@DQAHQ@Ch7aJHAQ@GP_CQAIGCcAJGO‘IcGOY ‘@IGaGHGaKS
CDI?gGDgGcE_@0QAg@PCSO_hOa‘GIDADAD@XCIASDKB?0K00@_SHCc?SGcGA@A ‘B?b00OHG
QH?ROQOW ¢ 7X0Pa@C_hcGo ‘CGJK
This is also the first graph in the list of SRG(45, 12,3, 3)’s given on [21]. For this graph
we have o/ = —1/4 and ' =1/16 < 1/6 = /3. One can find a homomorphism from G
to H whose image is a 6-vertex subgraph of H isomorphic to the graph constructed
from a K5 by adding a vertex adjacent to just one of its vertices.

For the 8’ = 3 case, we let H be the line graph of Kg. This is an SRG(15,8,4,4)
for which we have o/ = —1/4 and 8/ = 1/6 = B. One can check that G has a
homomorphism to H whose image is a 6-vertex subgraph of H that can be constructed
by gluing together a K3 and 4-cycle along an edge and then adding a sixth vertex
adjacent to all others.

Finally, let H be the unique SRG(25,16,9,12) (this is the complement of the line
graph of K5 5). For this graph we have o/ = —1/4 and 8’ = 3/8 > 1/6 = . However,
there is a homomorphism from G to H whose image is a 6-vertex subgraph of H that
can be constructed by gluing three K3’s together along a single edge and then adding
a vertex adjacent to the three vertices not incident to the merged edge. Thus we see
that Theorem 3.4 cannot be generalized to this case either.

The above examples show that the cases dealt with by Theorem 3.4 are exactly
the cases where the conclusion does in fact hold (except the trivial case of o > ).

7. DISCUSSION

The main purpose of this work was to prove the conjecture of Cameron & Kazanidis.
However, our results have several other implications and raise certain questions. We
will discuss some of these here.

Since all but finitely many strongly regular graphs with fixed least eigenvalue are
the point graphs of partial geometries, these geometric graphs warrant some consid-
eration with respect to our results. We mentioned previously that geometric graphs
always have Delsarte cliques. This is because the Hoffman bound for these graphs is
equal to the size of a line in the underlying partial geometry, and thus the points
on a line induce a Delsarte clique, though there may be others. It follows from this
that all geometric graphs are of types B or C. Therefore, a geometric graph is type
B if and only if it has a Hoffman coloring, and otherwise is type C. Recall that every
color class in a Hoffman coloring is a Delsarte coclique. For geometric graphs, it is
known that a Delsarte coclique corresponds to a set of points in the underlying par-
tial geometry that meets every line exactly once, and vice versa. Such an object is
called an ovoid. Therefore, a Hoffman coloring of a geometric graph is a partition of
its partial geometry into ovoids. A partition into ovoids is called a fan. So we see that
the point graph of a partial geometry is type B if and only if the geometry has a fan,
and otherwise the graph is type C.

In light of the generalization of our main result presented in Section 6, it is in-
teresting to ask what graphs are (a, 3)-graphs for which real numbers o and 8. We
are presently preparing a paper addressing this question, but we will discuss some
basic points here. First, we have seen that strongly regular graphs are («, 8)-graphs
for o = 7/k and 8 = 0/k. As we mentioned in Section 2.2, it is possible for different
parameter sets to result in the same values of both 7/k and 6/k. This brings us to an
interesting question: for fixed o and 8, are there an infinite number of (¢, 8)-graphs?

¢

(Q)Copying and pasting this graph6 string may result in some errors. In particular, the ¢ and

possibly the ~ characters may need to be changed manually after pasting.
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If we restrict to strongly regular graphs, it turns out the answer is no. This is be-
cause, as we show in our upcoming paper, the second largest eigenvalue of a regular
(a, B)-graph is determined by a and S. Thus the least eigenvalue of its complement
is determined. So for fixed o and [, the least eigenvalue of the complement of a
strongly regular («, 8)-graph is fixed, and thus Neumaier’s result can be applied. One
can then simply check the infinite families to see that these do not provide infinitely
many («, 3)-graphs.

In the positive direction, any graph which is transitive on its non-edges is an («, 3)-
graph for some values of a and . This is because the Gram matrix of any optimal
strict vector coloring of a non-edge-transitive graph can be “smoothed out” on the
non-edges by taking a uniform convex combination of the Gram matrix conjugated
by permutation matrices representing automorphisms of the graph. This provides a
large class of (a, 3)-graphs that includes many graphs which are not strongly regular.

The fact that every strongly regular graph is a pseudocore has implications in the
study of synchronizing groups. A permutation group I' acting on a set S synchro-
nizes a function f from S to itself if the monoid generated by I' and f contains a
transformation whose image is a single element of S. The group I' is said to be syn-
chronizing if it synchronizes every function that is not a permutation. This definition
is motivated by concerns in the theory of finite automata, in particular the Cerny
conjecture. In [1], Cameron et. al. define almost synchronizing permutation groups as
those which synchronize all functions which are non-uniform, i.e. whose preimages are
not all the same size. They note that the automorphism group of any vertex transi-
tive pseudocore is almost synchronizing whenever it is primitive. Therefore, our main
result shows that the automorphism group of any vertex transitive strongly regular
graph is almost synchronizing whenever it is primitive. In particular, they note® that
this implies any primitive group with permutation rank 3 is almost synchronizing.

In [2], the hull of a graph was introduced by Cameron & Kazanidis in order to
prove that rank 3 graphs are core-complete. The hull of a graph G has the same
vertex set as G, with two vertices being adjacent in the hull if there does not exist
an endomorphism of G which identifies these vertices. In particular, this means that
every edge of GG is an edge of its hull. Cameron & Kazanidis proved several results
about the hull of a graph, showing that it is in some sense a dual notion to that of the
core. It therefore may be natural to ask whether the hull of a strongly regular graph
is always either the graph itself or a complete graph. This turns out to not be the
case, and in fact we have found through direct computations that there are strongly
regular graphs whose hulls are not even regular. In fact this happens for 14 of the 23
type B SRG(45,12, 3,3)’s. One such example is the SRG(45,12,3,3) whose graph6
string is given in Section 6.1.

As we mentioned in the introduction, we believe that the technique presented here
has wider application to the study of homomorphisms of highly regular graphs. In
fact, with Godsil and Rooney, we have already obtained results in this direction,
though the work is still in progress. In particular, we consider graphs obtained from
a construction based on Hoffman colorings of strongly regular graphs. Depending on
whether the Hoffman bound for the initial strongly regular graphs is less than or at
least the square root of the number of vertices, the resulting graphs will either be
uniquely (vector) colorable or pseudocores.

Another avenue to consider is the generalization of homomorphism results for sym-
metric graphs to results for highly regular graphs, as we have done here for the

(3)Cameron et. al. received a preprint of this manuscript before it became publicly available.
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Cameron and Kazanidis theorem for rank 3 graphs. There are many other such re-
sults we could look at. One possibility is the following: it is known [13] that if G is
vertex transitive, then any homomorphism from G to its core has fibres (preimages
of single vertices) of uniform size. Can we use our techniques to generalize this? We
would also need to determine the correct combinatorial analog of vertex transitivity.
Simply being regular is not strong enough. Perhaps we need to assume walk regularity,
which means that the number of closed walks of length ¢ on a vertex is independent
of the vertex for all £. Algebraically, this is equivalent to the powers of the adjacency
matrix all having constant diagonals. Or maybe the assumption should more directly
concern optimal primal and dual solutions for 9(G), which are what we really used
in the end.

We briefly remark that two variants of ¥ might be useful for generalizing our results
to larger classes of graphs. The Schrijver [20] and Szegedy [22] theta functions (of the
complement), denoted ¥~ and 9% respectively, satisfy 9~ (G) < 9(G) < 97 (G) for all
graphs G. They also have primal/dual semidefinite programming formulations with
analogous complementary slackness conditions, though these conditions are not quite
as nice as for 9. The parameter 9~ is also known as the vector chromatic number.
Recall from Section 5 that every optimal vector coloring of an strongly regular graph
is a strict vector coloring. This is not true in general and so ¥~ (and similarly 9+)
may be able to be used in cases where 9 does not get the job done.
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