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Canonical decomposition of a difference of
convex sets

Ana M. Botero

Abstract Let N be a lattice of rank n and let M = N∨ be its dual lattice. In this article we
show that given two closed, bounded, full-dimensional convex sets K1 ⊆ K2 ⊆ MR := M ⊗Z R,
there is a canonical convex decomposition of the difference K2 r int(K1) and we interpret the
volume of the pieces geometrically in terms of intersection numbers of toric b-divisors.

1. Introduction
Convex sets have been widely and successfully used to explore the geometry of al-
gebraic varieties using convex geometrical methods. A well known class of examples
comes from the theory of toric varieties, where the combinatorics of a lattice polytope
encrypts most of the geometric properties of the corresponding projective toric vari-
ety (see [3] and [4]). More generally, Okounkov bodies (in the literature often called
Newton–Okounkov bodies) are convex sets which one can attach to algebraic varieties
together with some extra geometric data, e.g. a complete flag of subvarieties. These
convex sets turn out to encode also important geometric information of the varieties
(see [12, 13] and also [8, 9, 10] and [11] and the references therein).

More recently, generalizing the toric situation, in [1], convex sets are associated to
so called toric b-divisors, which can be thought of as a limit of toric divisors keeping
track of birational information. Their degree is defined as a limit. Here it is shown that
under some positivity assumptions toric b-divisors are integrable and that their degree
is given as the volume of a convex set. Moreover, it is shown that the dimension of the
space of global sections of a nef toric b-divisor is equal to the number of lattice points in
this convex set and a Hilbert–Samuel type formula for its asymptotic growth is given.
This generalizes classical results for classical toric divisors on toric varieties. Finally,
a relation between convex bodies associated to b-divisors and Okounkov bodies is
established. We remark that the main motivation for studying toric b-divisors is to be
able to do arithmetic intersection theory on mixed Shimura varieties of non-compact
type. Indeed, it turns out that toric b-divisors locally encode the singularities of the
invariant metric on an automorphic line bundle over a toroidal compactification of a
mixed Shimura variety of non-compact type. This note is part of an overall program to
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develop an arithmetic intersection theory on mixed Shimura varieties of non-compact
type via convex geometric methods whose starting point is [1].

In general, of particular interest is to compute the volume of a convex set. Aside
from this being intrinsically a question of great interest, it has applications not only
in the above mentioned geometric settings, but also in other mathematical fields such
as in convex optimization.

For the rest of this introduction let us fix a lattice N of rank n, its dual lattice
M = N∨, and two compact, full-dimensional convex sets K1 ⊆ K2 ⊆MR = M ⊗Z R.
The aim of this article is to show that there is a canonical convex decomposition
of the difference K2 r int(K1), where int(K1) denotes the interior of K1, and to
interpret geometrically the volume of the pieces in terms of intersection numbers of
toric b-divisors.

The outline is as follows. In Section 2 we recall the Legendre–Fenchel duality for
convex sets. Most of the definitions and statements which we will state regarding this
duality can be found in [14]. We also refer to [2, Chapter 2].

In Section 3 we give the canonical convex decomposition of the difference K2 r
int(K1). We start by defining what it means for two faces F1 and F2 of K1 and K2,
respectively, to be related, denoted by F1 ∼ F2. Using this relationship, we are able
to show the following main result of this section, which is Theorem 3.9 in the text.

Theorem 1.1. Let notations be as above. Then we have that

Υ (K2 r int(K1)) :=
{

convhull (F1, F2)
∣∣F1

exposed
6 K1, F2

exposed
6 K2 and F1 ∼ F2

}
is a convex decomposition of the difference K2 r int(K1).

In the polyhedral case, the above canonical decomposition gives a polyhedral sub-
division of the complement of two polytopes, one contained in the other. This sub-
division appears in the literature (e.g. in [5]) although it is constructed using the so
called pushing method. We haven’t found in the literature the method we used in The-
orem 3.9 nor have we found such a canonical decomposition in the non-polyhedral case.

In Section 4, we start by recalling the definition of toric b-divisors from [1] and
the definition of the mixed degree. We then recall the definition of the surface area
measure (and a mixed version thereof) associated to a convex set (and to a collection
of convex sets) for which our main reference is the survey of Schneider [15]. Finally,
in Corollary 4.9 we relate this measure to the intersection theory of toric b-divisors.

In Section 5, we give a geometric interpretation of the above canonical decom-
position in terms of intersection numbers of toric b-divisors in the case that K2 is
polyhedral. The main result of this section is the following, which is the first part of
Theorem 5.2 in the text.

Theorem 1.2. Let notations be as above and assume that K2 is a polytope. Then
the functions φ1 and φ2 correspond respectively to a nef toric b-divisor D1 and to
a true nef toric divisor D2 on the toric variety determined by the normal fan of
K2. Moreover, we can express the difference of degrees Dn

2 −Dn
1 as a finite sum of

correction terms
Dn

2 −Dn
1 =

∑
F6K2

cF ,

where the correction terms cF are given by

cF =
n−1∑
i=0

(n− 1)!
∫

relint(σF )∩Sn−1
(φ1(u)− φ2(u))S(K1, . . . ,K1︸ ︷︷ ︸

i -times

, K2, . . . ,K2︸ ︷︷ ︸
(n−1−i) -times

, u),

where S(·) is the mixed surface area measure associated to a collection of convex sets.

Algebraic Combinatorics, Vol. 2 #4 (2019) 586



Canonical decomposition of a difference of convex sets

2. Legendre–Fenchel duality
Throughout this article, N ' Zn will denote a lattice of rank n and M = N∨ its dual
lattice. We write NR and MR for the corresponding n-dimensional real vector spaces
N ⊗Z R and M ⊗Z R respectively.

Recall that a non-empty subset K ⊆ MR is convex if for each pair of points
m1,m2 ∈ K, the line segment

[m1,m2] =
{
tm1 + (1− t)m2

∣∣ 0 6 t 6 1
}

is contained in K. Examples of convex sets are cones and polyhedra. (See [14] for a
detailed introduction to convex geometry). Throughout this article, convex sets are
assumed to be non-empty. Also, by “cone” we actually mean “rational cone” and by
“polytope” we mean “rational polytope”.
Definition 2.1. Let K be a convex set in MR. A convex subset F ⊆ K is called a face
of K if, for every closed line segment [m1,m2] ⊆ K such that relint ([m1,m2])∩F 6= ∅,
the inclusion [m1,m2] ⊆ F holds. A non-empty subset F ⊆ K is called an exposed
face of K if there exists a v ∈ NR such that

F =
{
m ∈ K

∣∣ 〈v,m〉 = min
m′∈K

〈v,m′〉
}
.

Remark 2.2. Every exposed face is a face. However, not every face is exposed, as can
be seen in the figure 1. Here, the star is a non-exposed face. However, in the special
case of polytopes, we do have that all the faces are exposed.

Non-exposed face?

Figure 1. Example of a non-exposed face

Definition 2.3. Let Υ be a non-empty collection of convex subsets of MR. Υ is called
a convex subdivision if the following conditions hold:

(1) Every face of an element of Υ is also in Υ.
(2) Every two elements of Υ are either disjoint or they intersect in a common

face.
If only (2) is satisfied, then we call Υ a convex decomposition. Let Υ be a convex
subdivision or decomposition in MR. The support of Υ is the set |Υ| :=

⋃
C∈Υ C. We

say Υ is complete if its support is the whole of MR. For a given subset E ⊆ MR, if
|Υ| = E, we say Υ is a convex subdivision or decomposition of E.
Example 2.4. The set of all faces of a convex set K is a convex subdivision of K.
The set of all exposed faces of a convex set K is a convex decomposition of K.

Recall that a function f : NR → R (:= R ∪ {−∞}) is said to be concave if for all
x, y ∈ NR, the following inequality

f(tx+ (1− t)y) > tf(x) + (1− t)f(y)
is satisfied for 0 6 t 6 1 and for all x, y ∈ NR. A concave function is said to be
closed if it is upper semicontinuous. We now define some important classes of concave
functions which arise from convex sets. We refer to [2, Section 2] for more details.
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Definition 2.5. The support function of a (not necessarily bounded) convex set K is
the function

φK : NR −→ R (= R ∪ {−∞})
given by the assignment

v 7−→ inf
m∈K
〈m, v〉.

Support functions of convex sets are concave, closed and conical, i.e. they satisfy
φK(λx) = λφK(x) for any non-negative real number λ.

Definition 2.6. The Legendre–Fenchel dual of a concave function f : NR → R is the
function

f∨ : MR −→ R,
defined by

m 7−→ inf
v∈NR

(〈m, v〉 − f(v)) .

The stability set of f , which is denoted by Kf , is defined to be the effective domain
dom(f∨) of the Legendre–Fenchel dual f∨, i.e. we have

Kf = dom(f∨) =
{
m ∈M

∣∣ f∨(m) 6= ∅
}
.

The Legendre–Fenchel dual of a concave function can be shown to be concave and
closed.

Definition 2.7. The indicator function of a closed convex set K ⊆MR is the function
ιK : MR −→ R

defined by

ιK(m) =
{

0 if m ∈ K,
−∞ if m /∈ K.

The indicator function of a closed convex set can be shown to be concave and
closed.

The following useful remark can be found in [2, Section 2.1].

Remark 2.8. LetK ⊆MR be a closed convex set and let ιK : MR → R be its indicator
function. Then we have that φK = ι∨K and φ∨K = ιK . Hence, the Legendre–Fenchel
duality gives a bijective correspondence between indicator functions of closed convex
sets in MR and concave, closed, conical functions on NR.

Definition 2.9. Let f be a concave function on NR. The sup-differential ∂f(u) of f
at u ∈ NR is defined by

∂f(u) :=
{
m ∈MR

∣∣ 〈m,u− v〉 > f(u)− f(v), ∀ v ∈ NR
}
,

if f(u) 6= −∞, and ∅ if f(u) = −∞.

This is a generalization to the non-smooth setting of the gradient of a smooth
function at a point. Note that in general, the sup-differential may contain more than
one point. The following definition is taken from [2, Section 2.2].

Definition 2.10.We say that f is sup-differentiable at a point u ∈ NR if ∂f(u) 6= ∅.
The effective domain of ∂f is the set of points where f is sup-differentiable. We denote
it by dom(∂f). For a subset V ⊆ NR, the set ∂f(V ) is defined by

∂f(V ) :=
⋃
u∈V

∂f(u).

In particular, the image of ∂f is defined as Im(∂f) = ∂f(NR).

The following propositions can be found in [2, Section 2].
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Proposition 2.11. The sup-differential ∂f(u) is a closed, convex set for all u ∈
dom(∂f). It is bounded if and only if u ∈ relint(dom(f)). Moreover, the effective
domain of ∂f is close to being convex, in the sense that

relint(dom(f)) ⊆ dom(∂f) ⊆ dom(f).

In particular, if dom(f) = NR, we have dom(∂f) = NR.

Proposition 2.12. If f is closed, then we have that Im(∂f) = dom(∂f∨). Moreover,
the image of the sup-differential is close to being convex, in the sense that

relint(Kf ) ⊆ Im(∂f) ⊆ Kf .

Definition 2.13. Let f be a closed, concave function on NR. We denote by Υ(f) the
collection of all sets of the form

Cm := ∂f∨(m) ⊆ P(NR),

for m ∈ dom (f∨) ⊆MR.

The following is [2, Proposition 2.2.8].

Proposition 2.14. Let f be a closed, concave function on NR. Then Υ(f) is a convex
decomposition of dom(∂f). In particular, if dom(f) = NR, then Υ(f) is complete.

Definition 2.15. Let f be a closed, concave function on NR. The Legendre–Fenchel
correspondence of f

Lf : Υ(f) −→ Υ(f∨)
is given by the assignment

C 7−→
⋂
u∈C

∂f(u) (= ∂f(u0), for any u0 ∈ relint(C)) .

Definition 2.16. Let V , V ∗ be subsets of NR and of MR, respectively. Moreover, let
Υ, Υ∗ be convex decompositions of V and V ∗, respectively. We say that Υ and Υ∗ are
dual convex decompositions if there exists a bijective map

Υ −→ Υ∗

given by the assignment
C 7−→ C∗

and satisfying the following properties:
(1) For every C,D in Υ we have that C ⊆ D if and only if C∗ ⊇ D∗.
(2) For every C in Υ, the sets C and C∗ are contained in orthogonal affine spaces

of NR and MR, respectively.

The following theorem is taken from [2, Theorem 2.2.12].

Theorem 2.17. Let f be a closed, concave function. Then Lf gives a duality between
Υ(f) and Υ(f∨) with inverse given by (Lf)−1 = Lf∨.

We make the following remark which can be found in [7, Proposition 2.1.5].

Remark 2.18. Consider a full-dimensional, closed convex set K ⊆MR. Let φK be the
corresponding closed, concave, conical support function and let C ∈ Υ(φK). Then,
for any u ∈ relint(C) we have that ∂φK(u) ∈ Υ(φ∨K) is an exposed face of KφK = K.
Conversely, every exposed face F of K can be obtained as ∂φK(u) for some u ∈ NR.
Explicitly, consider m ∈ relint(F ). Then we may take any u ∈ relint (∂h∨K(m)) =
relint (∂ιK(m)). In particular, if K is bounded, we get a duality between the set of
exposed faces of K and a complete convex decomposition of NR.
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Example 2.19. Let notations be as in Remark 2.18 and assume that K = P is a
polytope. Then the Legendre–Fenchel duality gives back the classical duality between
the faces of a polytope and the cones of its normal fan ΣP .

If K is not polyhedral, our convex decompositions will not be finite, as can be seen
in Figure 2. Here we have

φK(a, b) =
{

ab
a+b , if a, b ∈ R>0,

min{0, a, b}, otherwise.

Note that here the convex decomposition of NR ' R2 gives us a foliation of the
positive quadrant by rays.

E

F

C

F ∗

•E∗

y

x

•
C∗

C 7→ C∗

KR2

√
x+√y = 1

Figure 2. Legendre–Fenchel correspondence in the non-polyhedral case

3. Canonical decomposition of a difference of convex sets
Let K1 ⊆ K2 be two full-dimensional, closed and bounded convex sets in MR with
corresponding support functions φK1 , φK2 : NR → R. The aim of this section is to give
a canonical decomposition of the difference K2 r int(K1).

Definition 3.1.We define two complete convex decompositions ΣK1 and ΣK2 of NR
by setting

ΣKi := Υ(φKi)
for i = 1, 2.

Note that the elements in ΣKi for i = 1, 2 are cones. This follows from the fact
that the convex set Cm corresponding to an m ∈ relint(Ki) is {0}. Hence, we will call
ΣKi a fan, eventhough it may not be finite nor rational.

It follows from Remark 2.18 that the Legendre–Fenchel duality gives an order-
reversing, bijective correspondence between cones in ΣKi and the set of exposed faces
of Ki for i = 1, 2. For F 6 Ki an exposed face, we will denote by σF the cone in ΣKi
given by this correspondence.

The following is a key definition for giving the canonical decomposition of the
difference K2 r int(K1).

Definition 3.2. Let F1 6 K1 and F2 6 K2 be exposed faces. We say that F1 is related
to F2 (and denote it by F1 ∼ F2) if and only if

relint (σF1) ∩ relint (σF2) 6= ∅

is satisfied.
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In the case where both K1 and K2 are polytopes, we make the following definition.
This will be useful for the polytopal case in Theorem 5.2.

Definition 3.3.Assume that K1 and K2 are polytopes. Let Σ ⊆ NR be a com-
plete fan in NR. We say that Σ is a difference fan for K1 and K2, and denote it
by Σ = ΣK2rint(K1), if the following two conditions are satisfied:

(1) Σ is a smooth refinement of both ΣK1 and ΣK2 .
(2) Let F1 6 K1 and F2 6 K2 be exposed faces. If F1 ∼ F2, then there exists a

τ ∈ Σ(1) such that τ ∈ relint(σF1) ∩ relint(σF2).

Remark 3.4.Note that given any two full-dimensional polytopes K1 ⊆ K2, we can
always find a difference fan ΣK1rint(K2).

Now, before giving the canonical decomposition of the difference K2 r int(K1), we
need some auxiliary results.

Let I be the incidence set

I :=
⋃

F1,F2

F1 × F2,

where the union is taken over all proper, exposed faces Fi 6 Ki, for i = 1, 2, such
that F1 ∼ F2.

Note that by Definition 3.2 of being related, we have that

I =
{

(x, y) ∈ ∂K1 × ∂K2
∣∣σFx ∩ σFy 6= ∅

}
,

where σFx and σFy denote the smallest exposed faces of K1 and K2 respectively
containing x and y respectively.

Definition 3.5.We define the function

H : I×[0, 1] −→MR

by (
(x, y), t

)
7−→ tx+ (1− t)y.

The following proposition follows from the definitions.

Proposition 3.6.With the notations given above, we have that⋃
F1,F2

convhull (F1, F2) = Im(H),

where the union on the LHS is taken over all proper, exposed faces Fi 6 Ki, for
i = 1, 2, such that F1 ∼ F2.

Now, choose any identification NR ' Rn. We may then consider the unit sphere
Sn−1 ⊆ NR. Moreover, for i = 1, 2, we define the incidence sets

I
(
K1,K2,Sn−1) :=

{
(x, y, z)∈ ∂K1×∂K2×Sn−1 ∣∣z ∈ σFx ∩σFy}⊆ ∂K1×∂K2×Sn−1

I
(
Ki,Sn−1) :=

{
(w, z) ∈ ∂Ki × Sn−1 ∣∣ z ∈ σFw} ⊆ ∂Ki × Sn−1,

where the sets σFx , σFy and σFw denote, as above, the smallest exposed faces of K1,
K2 and Ki respectively containing x, y and z respectively.

Consider the maps in the following diagram.
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I
(
K1,K2,Sn−1) ⊆ ∂K1 × ∂K2 × Sn−1

I
(
K1,Sn−1) I

(
K2,Sn−1) I ⊆ ∂K1 × ∂K2

∂K1 Sn−1 ∂K2

p0 p1 p2

p3 p4 p5 p6

We have the following propositions.

Proposition 3.7.All the sets in the above diagram are closed, hence they are compact
and all the maps p0, . . . , p6 are proper.

Proof. Let i ∈ {1, 2}. We show that I
(
Ki,Sn−1) ⊆ ∂Ki × Sn−1 is closed. Consider

the concave support function φKi : NR → R. Then the set

Ĩ :=
{

(x, y) ∈ NR ×MR
∣∣φKi + φ∨Ki(y) = 〈x, y〉

}
,

where φ∨Ki denotes the Legendre–Fenchel dual (see Section 2), is closed and

I
(
Ki,Sn−1) = Ĩ ∩

(
Sn−1 ×MR

)
,

hence, it is closed. Now, we have that

I
(
K1,K2,Sn−1) = p−1

0
(
I
(
K1,Sn−1)) ∩ p−1

1
(
I
(
K2,Sn−1)) ,

hence it is closed. Moreover, we have that

I = p2
(
I
(
K1,K2,Sn−1))

and since I
(
K1,K2,Sn−1) is compact, we get that I is compact as well. This concludes

the proof of the proposition. �

Proposition 3.8. For all p0, . . . , p6, the corresponding maps in homology

(πi)∗ : H∗( ,Z) −→ H∗( ,Z)

are isomorphisms.

Proof. One can think of the dual maps in cohomology. Note that for i = 1, . . . , 6,
the fibers of the pi’s are contractible. Using this together with the properness of the
pi’s we apply the Leray spectral sequence in cohomology (see e.g. [6, III Section 5])
and deduce the result. Indeed consider for example the map p5 : I(K2,Sn−1)→ Sn−1.
Consider the constatnt sheaf Z and let F be any fiber of p5. Then the Leray spectral
sequence Ep,q∞ already converges at the second page

Epq2 = Hp
(
Sn−1,Hq(F,Z)

)
=
{
Hp(Sn−1,Z), if q = 0,
0, otherwise.

Hence we get that

Hn(I(K2,Sn−1),Z) = ⊕pEp,n−p∞ = ⊕pEp,n−p2 = En,02 = Hn(Sn−1,Z).

We can do the same with the other maps pi. �

The next theorem gives the canonical decomposition of the differenceK2 r int(K1).
It is the main result of this section.
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Theorem 3.9. Let K1 ⊆ K2 be two n-dimensional closed and bounded convex sets in
MR. Then we have that

Υ (K2 r int(K1))

:=
{

convhull (F1, F2)
∣∣F1

exposed,proper
6 K1, F2

exposed,proper
6 K2 and F1 ∼ F2

}
is a convex decomposition of the difference K2 r int(K1).

Proof. Let F1 6 K1 and F2 6 K2 be proper, exposed faces such that F1 ∼ F2. We
may fix a v ∈ NR such that

F1 =
{
m∈K1

∣∣〈v,m〉= min
m′∈K1

〈v,m′〉
}

and F2 =
{
m∈K2

∣∣〈v,m〉= min
m′∈K2

〈v,m′〉
}
.

Note that related faces live in parallel hyperplanes.
Now, let us show that convhull (F1, F2) ⊆ K2 r int(K1). Let m ∈ convhull(F1, F2).

The fact that m ∈ K2 is clear. Now, let λ1, λ2 be non-negative real numbers satisfying
λ1 + λ2 = 1 and such that

m = λ1m1 + λ2m2

for m1 ∈ F1 and m2 ∈ F2. Since m1 ∈ F1, m2 ∈ F2 and K1 ⊆ K2, we have
〈v,m1〉 = min

m′∈K1
〈v,m′〉 > min

m′∈K2
〈v,m′〉 = 〈v,m2〉.

Hence, we obtain
〈v,m〉 = λ1〈v,m1〉+ λ2〈v,m2〉 6 λ1〈v,m1〉+ λ2〈v,m1〉 = 〈v,m1〉,

which implies that
convhull(F1, F2) ∩K1 = F1,(1)

in particular convhull (F1, F2) ⊆ K2 r int(K1).
Now we show the other inclusion

K2 r int(K1) ⊆
⋃

F1,F2

convhull (F1, F2) ,

where the union on the RHS is taken over all proper, exposed faces Fi 6 Ki, for
i = 1, 2, such that F1 ∼ F2.

By Proposition 3.8 we have that Hn−1(I,Z) = Z. Let γ be a chain representing a
generator of this group. Recall the map H from Definition 3.5. Note that the chains
γ×{0} and γ×{1} are homologous, i.e. they give the same homology class in I×[0, 1],
hence their images H∗ (γ × {0}) and H∗ (γ × {1}) are homologous in Im(H).

We show that K2 r int(K1) ⊆ Im(H). Indeed, suppose this is not the case. Then
there exists an x ∈ K2 r int(K1) such that x /∈ Im(H). Note that since ∂K1 and
∂K2 are clearly in the image of H then such an x must belong to int (K2 r int(K1)).
But this in turn implies that H∗ (γ × {0}) is not homologous to H∗ (γ × {1}) (see
figure 3) and this gives a contradiction. Hence we have that K2 r int(K1) ⊆ Im(H).
Using Proposition 3.6 we finally obtain

K2 r int(K1) ⊆
⋃

F1,F2

convhull (F1, F2) ,

as we wanted to show.
It remains to show that this is indeed a convex decomposition. To this end, let

F ′1 6 K1 and F ′2 6 K2 be any other proper, exposed faces satisfying F ′1 ∼ F ′2. We
have to show that

convhull (F1, F2) ∩ convhull (F ′1, F ′2)(2)
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K2

K1

• x

γ × {0}
γ × {1}

Figure 3.

is either empty or a face of both. If the intersection is empty, then we are done. Hence,
assume that convhull (F1, F2) ∩ convhull (F ′1, F ′2) 6= ∅. Using (1) , we can show that
if convhull(F1, F2) ⊆ convhull(F ′1, F ′2) then F1 is a face of F ′1 and F2 is a face of F ′2.
Hence, in this case, and similarly in the case that convhull(F ′1, F ′2) ⊆ convhull(F1, F2),
the statement is clear. Hence, assume that

convhull (F1, F2) r int (convhull (F ′1, F ′2)) 6= ∅

and
convhull (F ′1, F ′2) r int (convhull (F1, F2)) 6= ∅.

Let A be a hyperplane separating F1 and F ′1, i.e. A is a hyperplane such that F1 lies
entirely in one of the affine half spaces defined by this hyperplane and F2 in the other.
This exists by definition of an exposed face together with the fact that F1 ∩ F2 is an
exposed face. Then, since F1 is parallel to F2 and F ′1 is parallel to F ′2, we can choose
A to be a separating hyperplane of F2 and F ′2 as well.

The existence of this separating hyperplane implies that

convhull (F1, F2) ∩ convhull (F ′1, F ′2) = convhull (F1 ∩ F ′1, F2 ∩ F ′2)

which proves that the intersection in (2) is a face of both. This concludes the proof
of the proposition. �

Remark 3.10.As was mentioned in the introduction, in the polyhedral case, the above
canonical decomposition is a polyhedral subdivision of the complement of two poly-
topes, one contained in the other. This subdivision appears in the literature (e.g. in [5])
although it is constructed using the so called pushing method. We haven’t found in
the literature the method we used in Theorem 3.9 nor have we found such a canonical
decomposition in the non-polyhedral case.

Again, let K1 ⊆ K2 be full-dimensional, closed and bounded convex sets in MR.

Definition 3.11. Let F 6 K2 be an exposed face. To F we associate the correction set

KF :=
⋃

τ∈relint(σF )
convhull (F, F1,τ ) ,

where for τ ∈ relint (σF ), the face F1,τ is the unique exposed face of K1 such that
τ ∈ relint

(
σF1,τ

)
. The associated correction term cF is defined as n! times the volume

of KF , i.e.
cF := n! vol (KF ) .

Remark 3.12.Note that by Theorem 3.9 we have that

K2 r int(K1) =
⋃

F
exposed

6 K2

KF
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is a convex decomposition and hence

n! vol (K2 r int(K1)) =
∑

F
exposed

6 K2

cF .

Let’s look at a simple 2-dimensional polyhedral example.

Example 3.13. Consider the simplexK1 contained in the squareK2 as in the Figure 4.
Here, the different colors show the correction sets associated to the faces of K2.
Figure 5 shows the dual picture with the fans ΣK2 , ΣK2rint(K1), ΣK1 .

•

K1

K2

F2

F ′2

P2

F1,τ0
F1,τ1 = F1,τ2

F1,τ4

F1,τ3

•

•

Figure 4. Canonical decomposition of the complement of the sim-
plex contained in the square

ΣK2 σF2

σF ′2

P2

ΣK2rint(K1)

τ3 τ4

τ2

τ1

τ0
ΣK1

σF1,τ4

σF1,τ0

σF1,τ3

σF1,τ1
= σF1,τ2

Figure 5. Difference conical subdivision of the simplex contained
in the square

4. Toric b-divisors and surface area measures
The goal of this section is to recall the main definitions and facts regarding toric
b-divisors (see [1]) and to relate the intersection theory of toric b-divisors with the so
called surface area measure (and a mixed version thereof) associated to a convex set
(and to a collection of convex sets) (see [15]).
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We fix a complete, smooth fan Σ ⊆ NR = N ⊗Z R and we denote by XΣ the
corresponding n-dimensional, complete, smooth toric variety with dense open torus
T. We refer to [3] and to [4] for a more detailed introduction to toric geometry. The
set R(Σ) consists of all smooth sudivisions of Σ. This is a directed set with partial
order given by Σ′′ > Σ′ in R(Σ) if and only if Σ′′ is a smooth subdivision of Σ′. The
toric Riemann–Zariski space of XΣ is defined as the inverse limit

XΣ := lim←−
Σ′∈R(Σ)

XΣ′ ,

with maps given by the toric proper birational morphisms πΣ′′ : XΣ′′ → XΣ′ induced
whenever Σ′′ > Σ′. The group of toric Weil b-divisors on XΣ consists of elements in
the inverse limit

We(XΣ)R := lim←−
Σ′∈R(Σ)

T- Div(XΣ′)R,

where T- Div(XΣ′)R denotes the set of toric Weil R-divisors of XΣ′ , with maps given
by the push-forward map of toric Weil R-divisors. We will denote b-divisors with bold
D to distinguish them from classical divisors D. We can think of a toric b-divisor as
a net of toric Weil R-divisors (DΣ′)Σ′∈R(Σ), being compatible under push-forward.

A toric b-divisor D = (DΣ′)Σ′∈R(Σ) is said to be nef, if DΣ′ ∈ T- Div(XΣ′)R is
nef for all Σ′ in a cofinal subset of R(Σ). It follows from basic toric geometry that
there is a bijective correspondence between the set of nef toric b-divisors and the set
of R-valued, conical, concave functions on NQ.

The mixed degree D1 · · ·Dn of a collection of toric b-divisors is defined as the limit
(in the sense of nets)

D1 · · ·Dn := lim
Σ′∈R(Σ)

D1Σ′ · · ·DnΣ′

of top intersection numbers of toric divisors, provided this limit exists and is finite.
In particular, if D = D1 = . . . = Dn, then the limit (in the sense of nets)

Dn := lim
Σ′∈R(Σ)

Dn
Σ′ ,

provided this limit exists and is finite, is called the degree of the toric b-divisor D. A
toric b-divisor whose degree exists, is said to be integrable.

It turns out that we can compute (mixed) degres of nef toric b-divisors using the
so called (mixed) surface area measure. We give some definitions in order to state our
result.

Definition 4.1. Consider the vector space Rn equipped with the standard euclidean
metric. For 0 6 k 6 n, we let Hk be the k-dimensional Hausdorff measure on Rn.
In particular, if ω is a Borel subset of a k-dimensional euclidean space Ek or a k-
dimensional sphere Sk in Rn, then Hk(ω) coincides with the k-dimensional Lebesgue
measure of ω computed in Ek or with the k-dimensional spherical Lebesgue measure
of ω computed in Sk, respectively.

Let K ⊆ Rn be a closed, bounded, full-dimensional convex set with corresponding
support function φK : Rn → R. Moreover, let

gK : Sn−1 −→ P (∂K) ,(3)

where P (∂K) denotes the power set of the boundary ∂K of K, be the map given
in the following way. In the case that φK is of class C2, gK sends u ∈ Sn−1 to the
gradient ∇φK(u). In general, the inverse g−1 is what in the literature is called the
Gauss map, which assigns the outer unit normal vector vK(x) to an x ∈ ∂∗K, where
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∂∗K consists of all points in the boundary ∂K of K having a unique outer normal
vector. In other words, we have that

gK(u) =
{
m ∈ Rn

∣∣ 〈m,u〉 = φK(u) and 〈m, v〉 > φK(v), ∀v ∈ Rn
}
,

for every u ∈ Sn−1.

Remark 4.2. This map is related to the Legendre–Fenchel duality of Definition 2.15
in the following way. Let u ∈ Sn−1 ⊆ NR. Let C ∈ Υ (φK) be the smallest convex set
containing u. Recall that Υ (φK) is a complete conical subdivision of NR. Then we
have that

Lf(C) = gK(u).

Definition 4.3. The surface area measure Sn−1(K, ·) associated to K is the finite
Borel measure on the unit sphere Sn−1 defined by

Sn−1(K,ω) = Hn−1 (gK(ω))

for every Borel subset ω of Sn−1.
In particular, for a polytope P with unitary normal vectors u1, . . . , ur at its facets

F1, . . . , Fr, respectively, the surface area measure of a Borel subset ω ⊆ Sn−1 is
given by

Sn−1(P, ω) =
∑
ui∈ω

voln−1 (Fi) ,

where volk denotes the k-dimensional volume operator. In other words, we have that

Sn−1(P, ·) =
r∑
i=1

voln−1 (Fi) δui ,

where δui denotes the Dirac delta measure supported on ui ⊂ Sn−1 for all i = 1, . . . , r.

Example 4.4. Let P be a polytope and let φP be its corresponding piecewise linear,
concave support function. We get the formula

n voln(P ) =
r∑
i=1

φP (ui) voln−1(Fi) =
∫
Sn−1

φP (u)Sn−1(P, u)

for the volume of P . This formula can be generalized to any full dimensional, closed
and bounded convex set K. Indeed, the volume of K can be shown to be given by

voln(K) = 1
n

∫
Sn−1

φK(u)Sn−1 (K,u) .(4)

As is described in [15, Section 5], one can generalize the surface area measure
associated to a single convex set to a collection of n − 1 (not necessarily distinct)
convex sets. This is the so called mixed surface area measure. We denote by Kn the
set of closed, bounded, full-dimensional convex sets in Rn. The next theorem follows
from [15, Theorem 5.1.7].

Theorem/Definition 4.5. There is a nonnegative symmetric function MV: (Kn)n →
R, called the mixed volume, such that for every natural number ` and for every non-
negative real numbers λ1, . . . , λ`, the equation

voln(λ1K1 + · · ·+ λ`K`) =
∑̀

i1,...,in=1
λi1 · · ·λin

1
n! MV (Ki1 , . . . ,Kin) ,

where the sum on the left hand side is the Minkowski sum of convex sets, is satisfied
for any collection of convex sets K1, . . . ,K` ∈ Kn.
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Furthermore, there is a symmetric map S from (Kn)n−1 into the space of finite
Borel measures on Sn−1, called the mixed surface area measure, such that for every
natural number ` and for every non-negative real numbers λ1, . . . , λ`, the equation

Sn−1 (λ1K1 + · · ·+ λ`K`, ω) =
∑̀

i1,...,in−1=1
λi1 · · ·λin−1S

(
Ki1 , . . . ,Kin−1 , ω

)
is satisfied for K1, . . . ,K` ∈ Kn and for every Borel subset ω ⊆ Sn−1. Moreover, for
K1, . . . ,Kn ∈ Kn, the mixed volume MV (K1, . . . ,Kn) can be expressed in terms of
the mixed surface area measure in the following way

MV (K1, . . . ,Kn) = (n− 1)
∫
Sn−1

φK1(u)S (K2, . . . ,Kn, u) .

We make the following remarks.

Remark 4.6.
(1) Setting K = K1 = · · · = Kn we get

voln(K) = 1
n! MV(K, . . . ,K)

= 1
n

∫
Sn−1

φK(u)S (K, . . . ,K, u)

= 1
n

∫
Sn−1

φK(u)Sn−1 (K,u)

as in Equation (4).
(2) The mixed volume “V(·)” defined in [15, Theorem 5.1.7] is related to the

Mixed Volume “MV(·)” from above by the formula

V (K1, . . . ,Kn) = 1
n! MV (K1, . . . ,Kn)

for K1, . . . ,Kn ∈ Kn.

We now come back to b-divisors. Let D1, . . . ,Dn be a collection of nef toric b-
divisors on a smooth and complete toric variety XΣ of dimension n. Let φ̃i : NQ → R
be the corresponding concave functions for i = 1, . . . , n.

The following theorem relates the mixed degree D1 . . .Dn with the mixed volume
of convex bodies. It is a combination of [1, Theorems 4.9 and 4.12].

Theorem 4.7.With notations as above, the functions φ̃i extend to continuous, con-
cave functions φi : NR → R. Moreover, the mixed degree D1 · · ·Dn exists, and is given
by the mixed volume of the stability sets Kφi of the concave functions φi, i.e. we have
that

D1 · · ·Dn = MV (Kφ1 , . . . ,Kφn) .
In particular, a nef toric b-divisor D is integrable, and its degree is given by

Dn = n! vol (Kφ) ,
where φ is the corresponding concave function.

Remark 4.8.Note that here we consider toric R-divisors instead of Q-divisors (as
is done in [1]). All the definitions and results can be extended to this case without
difficulties. Moreover, we have that if K ⊆MR is a convex set in Kn, then the support
function φK of K corresponds to a nef toric b-divisor DK . Hence, in this case, there
is a bijection between convex sets in Kn and nef toric b-divisors on a smooth and
complete toric variety XΣ of dimension n.

Algebraic Combinatorics, Vol. 2 #4 (2019) 598



Canonical decomposition of a difference of convex sets

The following corollary follows from the definition of the surface area measure and
Theorem 4.7.

Corollary 4.9.We fix an identification NR ' Rn. Let D1, . . . ,Dn be a collection
of nef toric b-divisors associated to full-dimensional, closed and bounded convex
sets Ki ⊆ MR ' Rn with corresponding support functions φi, for all i = 1, . . . , n.
Then the mixed degree D1 · · ·Dm is related to the mixed surface area measure
Sn−1(K1, . . . ,Kn−1, ·) by the formula

D1 · · ·Dn = (n− 1)!
∫
Sn−1

φ1(u)S(K2, . . . ,Kn, u).

Moreover, by the symmetry of the mixed surface area measure, we have integral for-
mulae

D1 · · ·Dn = (n− 1)!
∫
Sn−1

φi(u)S(K1, . . . , K̂i, . . . ,Kn, u)

for all i = 1, . . . , n.

Remark 4.10.Assuming some smoothness conditions on the support functions of the
convex sets, one can compute integrals with respect to (mixed) surface area measure
measures explicitly in terms of Lebesgue measures of determinants of Hessians of
smooth functions (see [15, Corollary 2.5.3] and the results in [15, Section 5.3]).

5. Volumes and intersection numbers
Let K1 ⊆ K2 be two full-dimensional, closed and bounded convex sets in MR.

The goal of this section is to relate the correction terms of Definition 3.11 with
intersection numbers of toric b-divisors in the case that K2 is a polytope.

Note that two related exposed faces F1 ∼ F2 with F1 6 K1 and F2 6 K2 are
contained in parallel hyperplane sections (defined by the v given in the proof of
Theorem 3.9). The following is a key Lemma.

Lemma 5.1. Let F1, F2 ⊆ Rd+1 be polytopes. Here, d = max {dim (F1) ,dim (F2)}.
Assume that F1 ⊆ {xd+1 = 0} and that F2 ⊆ {xd+1 = 1}. Then the volume of the
convex hull of F1, F2 is given by

vol (convhull (F1, F2)) = 1
d+ 1

d∑
i=0

MV

F1, . . . , F1︸ ︷︷ ︸
i -times

, F2, . . . , F2︸ ︷︷ ︸
(d−i) -times

 .

Proof. We start with the following three claims:
Claim 1: Let λ be any real number between 0 and 1. Then the slice of the convex hull
of F1 and F2 at xd+1 = λ is given by

convhull (F1, F2) ∩ {xd+1 = λ} = λF1 + (1− λ)F2,

where the sum in the right hand side is the Minkowski sum of convex sets.
Claim 2 : Let λ be any real number between 0 and 1. Then it follows that the volume
of the slice λF1 + (1− λ)F2 ⊆ convhull (F1, F2) is given by

vol (λF1 + (1− λ)F2) =
d∑
i=0

(
d

i

)
λi(1− λ)d−i MV

F1, . . . , F1︸ ︷︷ ︸
i -times

, F2, . . . , F2︸ ︷︷ ︸
(d−i) -times

 .

Claim 3 : Let λ be as before and let `, k be two non-negative integers with 0 6 k 6 `.
We define the number I(`, k) by

I(`, k) :=
∫ 1

0
λk(1− λ)`−k dλ.
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If k < `, then the formula

I(`, k) =
(

(`+ 1)
(
`

k

))−1

holds true.
Now, Claim 1 is clear and Claim 2 is a standard result in convex geometry. We

proceed to give a proof of Claim 3: integrating by parts, we get

I(`, k) =
∫ 1

0
λk(1− λ)`−k dλ

= λk+1(1− λ)`−k

k + 1

∣∣∣∣1
0

+
∫ 1

0

λk+1

k + 1(`− k)(1− λ)`−k−1 dλ

= `− k
k + 1 I(`, k + 1).

Moreover the values for k = ` and for k = 0 are given by

I(`, `) =
∫ 1

0
λ` dλ = λ`+1

`+ 1

∣∣∣1
0

= 1
`+ 1 ,

I(`, 0) =
∫ 1

0
(1− λ)` dλ = −(1− λ)`+1

`+ 1

∣∣∣∣1
0

= 1
`+ 1 .

Hence, we get

I(`, `− 1) = 1
`
· 1
`+ 1 ,

I(`, `− 2) = 2
`− 1 ·

1
`
· 1
`+ 1 ,

...

I(`, k) =
(

(`+ 1)
(
`

k

))−1
,

as we wanted to show.
Finally, note that Claim 1, Claim 2 and Claim 3 imply that

vol (convhull (F1, F2)) =
∫ 1

0
vol (λF1 + (1− λ)F2) dλ

=
∫ 1

0

d∑
i=0

(
d

i

)
λi(1− λ)d−i MV

F1, . . . , F1︸ ︷︷ ︸
i -times

, F2, . . . , F2︸ ︷︷ ︸
(d−i) -times

 dλ

=
d∑
i=0

(
d

i

)
I(d, i) MV (F1, . . . , F1, F2, . . . , F2)

= 1
d+ 1

d∑
i=0

MV (F1, . . . , F1, F2, . . . , F2) ,

concluding the proof of the lemma. �

Consider the convex sets K1 ⊆ K2 with corresponding support functions φ1, φ2.
Moreover, in the case where both K1 and K2 are polytopes, let Σ = ΣK2rint(K1) be
a difference fan as in Definition 3.3.

We have the following theorem.
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Theorem 5.2. Let notations be as above and assume that K2 is a polytope. Then
the functions φ1 and φ2 correspond respectively to a nef toric b-divisor D1 and to
a true nef toric divisor D2 on the toric variety determined by the normal fan of
K2. Moreover, we can express the difference of degrees Dn

2 −Dn
1 as a finite sum of

correction terms
Dn

2 −Dn
1 =

∑
F6K2

cF ,

where the correction terms cF are given by

cF =
n−1∑
i=0

(n− 1)!
∫

relint(σF )∩Sn−1
(φ1(u)− φ2(u))S(K1, . . . ,K1︸ ︷︷ ︸

i -times

, K2, . . . ,K2︸ ︷︷ ︸
(n−1−i) -times

, u),

where S(·) is the mixed surface area measure defined in the previous section. In par-
ticular, if K1 is also polyhedral, then Σ is a real rational, polyhedral fan and we get

cF =
n−1∑
i=0

∑
r∈relint(σF )
r∈Σ(1)

(φ1(r)− φ2(r)) Dn−1−i
1 Di

2 Dr,

where Dr is the divisor corresponding to the ray r ∈ Σ(1) and all the intersection
products are done in Σ.

Proof. The first and last statement of the theorem follow from Theorem 3.9 and
Definition 3.11. For the statement regarding the expression of the correction terms,
using Corollary 4.9, we have

φn2 − φn1

= (φ2 − φ1)
n−1∑
i=0

φi1φ
n−1−i
2

=
∑

F
exposed

6 K2

n−1∑
i=0

(n− 1)!
∫

relint(σF )∩Sn−1
(φ1(u)−φ2(u))S(K1, . . . ,K1︸ ︷︷ ︸

i -times

, K2, . . . ,K2︸ ︷︷ ︸
(n−1−i) -times

, u).

This concludes the proof of the theorem. �

Example 5.3. Consider the fan of P2 and the nef toric b-divisors φ1 and φ2 given by
the concave functions φ1, φ2 : R2 → R defined by

φ1(a, b) =
{

ab
a+b , a, b ∈ R>0,

min{0, a, b} , otherwise,

and
φ2(a, b) = min{0, a, b}

and consider the corresponding convex sets K1 ⊆ K2. Note that K2 is the 2-
dimensional symplex and K1 is the convex set from Example 2.19. The only face
of the simplex K2 whose associated correction term is non-zero is the vertex F0 in
Figure 6.

On the one hand, we can calculate the difference φ2
2−φ2

1 as the difference of volumes
of convex sets

cF0 = full correction term = φ2
2 − φ2

1 = 2 vol (K2)− 2 vol (K1) = 1− 2
3 = 1

3 .
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F0
•

Figure 6. Convex sets K1 ⊆ K2

On the other hand, Theorem 5.2 tells us that we can compute the correction term
cF0 by

cF0 =
∫ π/2

0
φ1(θ)S1 (K1, θ) = 1

3 ,

where the last equality follows from a computation using Remark 4.10.
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