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Equivariant Kazhdan–Lusztig polynomials
of q-niform matroids

Nicholas Proudfoot

Abstract We study q-analogues of uniform matroids, which we call q-niform matroids. While
uniform matroids admit actions of symmetric groups, q-niform matroids admit actions of fi-
nite general linear groups. We show that the equivariant Kazhdan–Lusztig polynomial of a
q-niform matroid is the unipotent q-analogue of the equivariant Kazhdan–Lusztig polynomial
of the corresponding uniform matroid, thus providing evidence for the positivity conjecture for
equivariant Kazhdan–Lusztig polynomials.

1. Introduction
For any matroid M , the Kazhdan–Lusztig polynomial PM (t) ∈ Z[t] was introduced
in [7]. In the case where the matroid M admits the action of a finite group W , one
can define the equivariant Kazhdan–Lusztig polynomial PWM (t) [10]; this is a polyno-
mial whose coefficients are virtual representations of W (in characteristic zero) with
dimensions equal to the coefficients of PM (t).

Though these polynomials admit elementary recursive definitions, there are not
many families of matroids for which explicit formulas are known. Non-equivariant
formulas exist for thagomizer matroids [11] and fan, wheel, and whirl matroids [15].
Kazhdan–Lusztig polynomials of braid matroids have been studied extensively, both
in the equivariant [18] and non-equivariant [14] settings, though no simple formulas
have been obtained.

The most interesting explicit formulas that we have are for uniform matroids.
Let Un,m be the uniform matroid of rank n − m on a set of cardinality n, which
admits an action of the symmetric group Sn. For any partition λ of n, let V [λ] be the
associated irreducible representation of Sn. The following theorem was proved in [10,
Theorem 3.1]; an independent proof of the non-equivariant statement was later given
in [9, Theorem 1.2].

Theorem 1.1. Let Cin,m be the coefficient of ti in the Sn-equivariant Kazhdan–Lusztig
polynomial of Un,m, and let cin,m := dimCin,m be the corresponding non-equivariant
coefficient.
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• C0
n,m = V [n], and for all i > 0,

Cin,m =
min(m,n−m−2i)∑

b=1
V [n− 2i− b+ 1, b+ 1, 2i−1].

• c0
n,m = 1, and for all i > 0, cin,m is equal to

min(m,n−m−2i)∑
b=1

(n− 2i− 2b+ 1)n!
(n− i− b)(n− i− b+ 1)(i+ b)(i+ b− 1)(n− 2i− b)!(b− 1)!i!(i− 1)! .

The purpose of this note is to obtain a q-analogue of Theorem 1.1. Let q be a
prime power, and let Un,0(q) be the rank n matroid associated with the collection
of all hyperplanes in the vector space Fnq , which we regard as a q-analogue of the
Boolean matroid of rank n. For any natural number m 6 n, let Un,m(q) be the
truncation of Un,0(q) to rank n − m. More concretely, a basis for Un,m(q) is a set
of n −m hyperplanes whose intersection has dimension m. The matroid Un,m(q) is
a q-analogue of the uniform matroid Un,m, and we will therefore refer to it as a q-
niform matroid. This matroid was also studied in [12], where the authors computed
the Hilbert series of its Chow ring. The q-niform matroid Un,m(q) admits a natural
action of the group GLn(q) of invertible n× n matrices with coefficients in Fq, which
is a q-analogue of Sn.

The representation theory of GLn(q) is much more complicated than the represen-
tation theory of Sn. However, there is a certain subset of irreducible representations
of GLn(q), known as irreducible unipotent representations, that correspond bijectively
to the irreducible representations of Sn. For any partition λ of n, let V (q)[λ] be the
associated irreducible unipotent representation of GLn(q), which we will refer to as
the unipotent q-analogue of V [λ]. For any positive integer k, we use the standard
notation

[k]q := 1 + q + · · ·+ qk−1 and [k]q! := [k]q[k − 1]q · · · [1]q.
The following theorem, which is our main result, says that the equivariant Kazhdan–
Lusztig coefficients of Un,m(q) are precisely the unipotent q-analogues of the equivari-
ant Kazhdan–Lusztig coefficients of Un,m.

Theorem 1.2. Let Cin,m(q) be the coefficient of ti in the GLn(q)-equivariant Kazhdan–
Lusztig polynomial of Un,m(q), and let cin,m(q) := dimCin,m(q) be the corresponding
non-equivariant coefficient.

• C0
n,m(q) = V (q)[n], and for all i > 0,

Cin,m(q) =
min(m,n−m−2i)∑

b=1
V (q)[n− 2i− b+ 1, b+ 1, 2i−1].

• c0
n,m(q) = 1, and for all i > 0, cin,m(q) is equal to

min(m,n−m−2i)∑
b=1

qb−1+i(i+1) [n− 2i− 2b+ 1]q[n]q!
[n− i−b]q[n− i−b+1]q[i+b]q[i+b−1]q[n−2i−b]q![b−1]q![i]q![i−1]q!

.

Remark 1.3. For any matroid M , the coefficients of PM (t) are conjectured to be
non-negative [7, Conjecture 2.3]. More generally, the coefficients of PWM (t) are conjec-
tured to be honest (rather than virtual) representations of W [10, Conjecture 2.13].
These conjectures are proved when M is realizable [7, Theorem 3.10] (respectively
equivariantly realizable [10, Corollary 2.12]), but no proof exists in the general case.
The matroid Un,m is always realizable, but it is not equivariantly realizable unless
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m ∈ {0, 1, n− 1, n} (of these, only the m = 1 case yields nontrivial Kazhdan–Lusztig
coefficients). Similarly, the matroid Un,m(q) is always realizable, but it is typically not
equivariantly realizable. Thus Theorems 1.1 and 1.2 both provide significant evidence
for the equivariant non-negativity conjecture.

Remark 1.4. Theorem 1.1 implies that {Cin,m | n > m} admits the structure of
a finitely generated FI-module [3, Theorem 1.13], while Theorem 1.2 implies that
{Cin,m(q) | n > m} admits the structure of a finitely generated VI-module [8, Theo-
rem 1.6]. In order to define these structures in a natural way, we would need to be able
to define Cin,m and Cin,m(q) as actual vector spaces rather than as isomorphism classes
of vector spaces. The matroid Un,1 is equivariantly realizable, which means that we
have a cohomological interpretation of Cin,1, and we obtain a canonical FIop-module
structure from [18, Theorem 3.3(1)]; dualizing then gives a canonical finitely gener-
ated FI-module. In joint work with Braden, Huh, Matherne, and Wang, the author
is working to construct a canonical vector space isomorphic to the coefficient of ti in
PM (t) for any matroid M . When this goal is achieved, we believe that this construc-
tion will induce a canonical FIop-module structure on {Cin,m | n > m} and a canonical
VIop-module structure on {Cin,m(q) | n > m}, each with finitely generated duals.

Our proof of Theorem 1.2 relies heavily on Theorem 1.1 along with the Compari-
son Theorem (Theorem 2.1), which roughly says that calculations involving Harish-
Chandra induction of unipotent representations of finite general linear groups are
essentially equivalent to the analogous calculations for symmetric groups. The only
additional ingredients in the proof are to check that the Orlik–Solomon algebra of
Un,m(q) is the unipotent q-analogue of the Orlik–Solomon algebra of Un,m (Exam-
ple 3.4) and that the recursive formula for Cin,m(q) is essentially the same as the
recursive formula for Cin,m (Equations (7) and (8)).

2. Unipotent representations and the Comparison Theorem
Given a pair of natural numbers k 6 n and a pair of representations V of Sk and V ′
of Sn−k, we define

V ∗ V ′ := IndSn

Sk×Sn−k

(
V � V ′

)
.

Irreducible representations of the symmetric group Sn are classified by partitions of
n. Given a partition λ, let V [λ] be the associated representation. For each cell (i, j)
in the Young diagram for λ, let hλ(i, j) be the corresponding hook length; then the
dimension of V [λ] is equal to

n!∏
hλ(i, j) .

We now review some analogous statements and constructions in the representation
theory of finite general linear groups. Given a pair of natural numbers k 6 n, let
Pk,n(q) ⊂ GLn(q) denote the parabolic subgroup associated with the Levi GLk(q)×
GLn−k(q). Given a pair of representations V (q) of GLk(q) and V ′(q) of GLn−k(q), we
obtain a representation V (q)�V ′(q) of GLk(q)×GLn−k(q), and we may interpret this
as a representation of Pk,n(q) via the natural surjection Pk,n(q)→ GLk(q)×GLn−k(q).
We then define

V (q) ∗ V ′(q) := IndGLn(q)
Pk,n(q)

(
V (q)� V ′(q)

)
.

This operation is called Harish-Chandra induction.
Let Bn(q) ⊂ GLn(q) be the subgroup of upper triangular matrices. An irreducible

representation of GLn(q) is called unipotent if it appears as a direct summand of the
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representation
C
[

GLn(q)/Bn(q)
]

= IndGLn(q)
Bn(q)

(
tricGLn(q)

)
.

(We note that the definition of unipotent representations of finite groups of Lie type
outside of type A is more complicated.) An arbitrary representation is called unipotent
if it is isomorphic to a direct sum of irreducible unipotent representations.

Theorem 2.1. Let q be a prime power and n a natural number.
(1) Irreducible unipotent representations of GLn(q) are in canonical bijection with

partitions of n.
(2) The irreducible unipotent representation V (q)[λ] associated with the partition

λ has dimension
q
∑

(k−1)λk
[n]q!∏

[hλ(i, j)]q
.

(3) If k 6 n, V (q) is a unipotent representation of GLk(q), and V ′(q) is a unipo-
tent representation of GLn−k(q), then V (q) ∗ V ′(q) is a unipotent representa-
tion of GLn(q).

(4) Let λ, µ, and ν be partitions of n, k, and n−k, respectively. The multiplicity of
V (q)[λ] in V (q)[µ] ∗V (q)[ν] is equal to the multiplicity of V [λ] in V [µ] ∗V [ν].

Proof. Statements 1 and 4 appear in [4, Theorem B]. The fact that the dimension
of V (q)[λ] is polynomial in q appears in [2, Theorem 2.6]. For an explicit calculation
of this polynomial, see [5, Equation (1.1)]. Finally, Statement 3 follows from the fact
that C

[
GLk(q)/Bk(q)

]
∗ C
[

GLn−k(q)/Bn−k(q)
] ∼= C

[
GLn(q)/Bn(q)

]
. �

Remark 2.2. The standard proof of Theorem 2.1(1) is very far from construc-
tive. One proves that the endomorphism algebra of C

[
GLn(q)/Bn(q)

]
is isomor-

phic to the Hecke algebra of Sn; this implies that the irreducible constituents of
C
[

GLn(q)/Bn(q)
]
are in canonical bijection with irreducible modules over the Hecke

algebra, which are in turn in canonical bijection with irreducible representations of
Sn. However, a recent paper of Andrews [1] gives a construction of V (q)[λ] modeled
on tableaux, which is analogous to the usual construction of V [λ].

Remark 2.3.A generalization of Statement 4 due to Howlett and Lehrer [13, The-
orem 5.9] is commonly referred to as the Comparison Theorem. For the purposes of
this paper, we will use this terminology to refer to the entirety of Theorem 2.1.

3. Orlik–Solomon algebras
For any matroid M on the ground set E, let OS∗M be the Orlik–Solomon algebra of
M [17], and let

χM (t) :=
rkM∑
i=0

(−1)i dimOSiM t
rkM−i

be the characteristic polynomial ofM . The Orlik–Solomon algebra is a quotient of the
exterior algebra over the complex numbers with generators {xe | e ∈ E}. Let OS

∗
M

be the reduced Orlik–Solomon algebra of M , which is defined as the subalgebra of
OS∗M generated by {xe − xe′ | e, e′ ∈ E}. If rkM > 0, then we have a graded algebra
isomorphism

(1) OS∗M
∼= OS

∗
M ⊗ C[x]/〈x2〉

and therefore a vector space isomorphism

(2) OSiM
∼= OS

i

M ⊕OS
i−1
M .
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If a finite group W acts on M , we obtain induced actions on OS∗M and OS∗M , and the
isomorphisms of Equations (1) and (2) are W -equivariant.

Example 3.1. Suppose that V is a vector space over Fq, and that {He | e ∈ E} is
a collection of hyperplanes with associated matroid M . Fix a prime ` that does not
divide q, and fix an embedding of Q` into C. Let

X := V (Fq) r
⋃
e∈E

He(Fq) and PX := PV (Fq) r
⋃
e∈E

PHe(Fq).

Then we have canonical isomorphisms
OS∗M

∼= H∗(X;Q`)⊗Q`
C and OS

∗
M
∼= H∗(PX;Q`)⊗Q`

C,
where the cohomology rings are `-adic étale cohomology. If rkM > 0, then we have
an isomorphism X ∼= PX×Gm(Fq), and Equation (1) is simply the Kunneth formula.
If W acts on V by linear automorphisms preserving the collection of hyperplanes, we
obtain an induced action on M , and these isomorphisms are W -equivariant.

Example 3.2. The Boolean matroid Un,0 is Sn-equivariantly realized by the coor-
dinate hyperplanes in Fnq . Its Orlik–Solomon algebra OS∗n,0 is equal to the exterior
algebra on n generators, which is isomorphic to the cohomology of Xn,0 ∼= Gnm(Fq).
As a representation of Sn, we have

OS∗n,0
∼= Λ∗

(
V [n− 1, 1]⊕ V [n]

)
and OS

∗
n,0
∼= Λ∗

(
V [n− 1, 1]

)
.

In particular, this implies that

(3) OS
i

n,0
∼= V [n− i, 1i]

for all i < n.

Example 3.3. The matroid Un,0(q) is (by definition) GLn(q)-equivariantly realized
by the collection of all hyperplanes in Fnq . The variety PXn,0(q) is an example
of a Deligne–Lusztig variety for the group GLn(q). The techniques developed by
Lusztig [16] imply that the action of GLn(q) on the cohomology group of PXn,0(q) is
given by the unipotent q-analogue of Equation (3):

(4) OS
i

n,0(q) ∼= V (q)[n− i, 1i]
for all i < n. See [6, Examples 6.1 and 6.4] for a concise and explicit statement of this
result.

Example 3.4. Let M be any matroid, let d 6 rkM be a natural number, and let M ′
be the truncation of M to rank d. Then OS

∗
M ′ is the truncation of OS∗M to degree

d− 1. That is, we have a canonical isomorphism OS
i

M ′
∼= OS

i

M for all i 6 d− 1, and
OS

i

M ′ = 0 for all i > d. In the case of Example 3.1, this reflects the fact that PX ′ is
a generic hyperplane section of PX. In particular, we have

(5) OS
i

n,m
∼= V [n− i, 1i] and OS

i

n,m(q) ∼= V (q)[n− i, 1i]
when i < n−m, and both groups are zero otherwise.

4. Kazhdan–Lusztig polynomials
Let M be a matroid on the ground set E with lattice of flats L. For any F ∈ L, let
MF denote the localization of M at F ; this is the matroid on the ground set F whose
bases are maximal independent sets of F . Let MF denote the contraction of M at F .
If B is a basis for MF , then MF is obtained from M by contracting each element of
B and deleting each element of F rB. Equivalently, MF is a matroid on the ground
set E r F , and B′ ⊂ E r F is a basis for MF if and only if B′ ∪B is a basis for M .
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Example 4.1. If F is equal to the ground set ofM (the maximal flat), thenMF = M
and MF is the matroid of rank zero on the emptyset.

Example 4.2. Proper (that is, non-maximal) flats of Un,m are subsets of [n] of
cardinality less than n − m. For such an F , (Un,m)F ∼= U|F |,0 is Boolean, while
UFn,m

∼= Un−|F |,m.

Example 4.3. Proper flats of Un,m(q) are collections of linearly independent hyper-
planes in Fnq of cardinality less than n − m. For such an F , Un,m(q)F ∼= U|F |,0(q),
while Un,m(q)F ∼= Un−|F |,m(q).

The Kazhdan–Lusztig polynomial of M is characterized by the following three
conditions [7, Theorem 2.2]:

(1) If rkM = 0, then PM (t) = 1.
(2) If rkM > 0, then degPM (t) < 1

2 rkM .
(3) For every M , trkMPM (t−1) =

∑
F

χMF
(t)PMF (t).

IfM admits the action of a finite group W , the equivariant Kazhdan–Lusztig polyno-
mial is defined by the three analogous conditions, with the coefficients of the charac-
teristic polynomial replaced by the graded pieces of the Orlik–Solomon algebra (with
corresponding signs), which are now virtual representations ofW rather than integers.
For every flat F ∈ L, let WF ⊂ W denote the stabilizer of F . If CiM,W is the coeffi-
cient of ti in the W -equivariant Kazhdan–Lusztig polynomial of M and i < rkM/2,
we have the following explicit recursive formula [10, Proposition 2.9]:

(6) CiM,W =
∑

[F ]∈L/W
06j6rkF

(−1)j IndWWF

(
OSjMF

⊗ CcrkF−i+j
MF ,WF

)
,

where we take in the sum one flat from each W -orbit in L.

Example 4.4. Consider the case of the uniform matroid Un,m. Proper flats are subsets
of [n] of cardinality less than n −m, and the Sn-orbit of a flat is determined by its
cardinality. The stabilizer of a flat of cardinality k is isomorphic to the Young subgroup
Sk × Sn−k ⊂ Sn. Thus Equation (6) transforms into the following recursion:

Cin,m = (−1)iOSin−m +
n−m−1∑
k=0

k∑
j=0

(−1)j IndSn

Sk×Sn−k

(
OSjk,0 ⊗ Cn−m−k−i+jn−k,m

)

= (−1)iOSin−m +
n−m−1∑
k=0

k∑
j=0

(−1)j OSjk,0 ∗ C
n−m−k−i+j
n−k,m ,(7)

where the first term corresponds to the maximal flat F = [n].

Example 4.5. Consider the case of the q-uniform matroid Un,m(q). Proper flats are
collections of linearly independent hyperplanes in Fnq of cardinality less than n −m,
and the GLn(q)-orbit of a flat is determined by its cardinality. The stabilizer of a
flat of cardinality k is isomorphic to the parabolic subgroup Pn,k(q) ⊂ GLn(q). Thus
Equation (6) transforms into the unipotent q-analogue of Equation (7):

Cin,m(q) = (−1)iOSin−m(q)+
n−m−1∑
k=0

k∑
j=0

(−1)j IndGLn(q)
Pn,k(q)

(
OSjk,0(q)⊗ Cn−m−k−i+jn−k,m (q)

)

= (−1)iOSin−m(q) +
n−m−1∑
k=0

k∑
j=0

(−1)j OSjk,0(q) ∗ Cn−m−k−i+jn−k,m (q).(8)
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Proof of Theorem 1.2. By Equations (2), (3), and (4), Equation (8) is precisely the
unipotent q-analogue of Equation (7). Then by Theorem 2.1, the first part of Theo-
rem 1.2 is equivalent to the first part of Theorem 1.1. The second part of Theorem 1.2
follows from Theorem 2.1(2). �
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