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Structural aspects of semigroups based on
digraphs

James East, Maximilien Gadouleau & James D. Mitchell

ABSTRACT Given any digraph D without loops or multiple arcs, there is a natural construction
of a semigroup (D) of transformations. To every arc (a,b) of D is associated the idempotent
transformation (a — b) mapping a to b and fixing all vertices other than a. The semigroup (D)
is generated by the idempotent transformations (a — b) for all arcs (a,b) of D.

In this paper, we consider the question of when there is a transformation in (D) containing
a large cycle, and, for fixed k € N, we give a linear time algorithm to verify if (D) contains a
transformation with a cycle of length k. We also classify those digraphs D such that (D) has
one of the following properties: inverse, completely regular, commutative, simple, O-simple, a
semilattice, a rectangular band, congruence-free, is IC-trivial or K-universal where K is any of
Green’s H-, L-, R-, or J-relation, and when (D) has a left, right, or two-sided zero.

1. INTRODUCTION

A transformation of degree n € N is a function from {1,...,n} to itself. A transfor-
mation semigroup is a semigroup consisting of transformations of equal degree and
with the operation of composition of functions. For the sake of brevity we will denote
{1,...,n} by [n]. We define (a — b) to be the transformation defined by

v(a = b) = b lfU_C.L
v otherwise
where a,b € [n] and a # b. A digraph is an ordered pair (V, A), where V is a set
whose elements are referred to as vertices, and A C (V x V) ~\ {(v,v) : v € V} is
a set of ordered pairs called arcs. We identify a transformation (a — b) with an arc
(a,b) in a digraph and we refer to (a — b) as an arc. If D is a digraph, we denote by
(D) the semigroup generated by the arcs of D, and we refer to such a semigroup as
arc-generated.

If A is empty, then D is an empty digraph, and (D) is the empty semigroup. Because
this is a degenerate case, and in order to simplify the statement of our results, we shall
always assume that D is not empty (and hence, that (D) is not the empty semigroup).

Arc-generated semigroups were first introduced by John Rhodes in the 1960s [20,
Definition 6.51], under the name semigroups of flows. In [20], Rhodes was largely
concerned with determining the maximal subgroups of an arc-generated semigroup,
and he conjectured that every such subgroup was isomorphic to a direct product of
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cyclic, alternating, and symmetric groups. This conjecture was recently proved in a
remarkable paper [11] by Horvéath, Nehaniv, and Podoski.

Arc-generated semigroups are also closely related to the pebble motion problem on
graphs [16], which we briefly describe here. Let G = (V, E) be a graph on n vertices
and P = {1,...,k} be a set of pebbles, with k < n. An arrangement of pebbles is
an injective mapping S : P — V, which places every pebble on a different vertex.
A mowve then consists of transferring a pebble p € P from a vertex u to an adjacent
vertex v, provided there is no pebble present in v already. The main problem is, given
two arrangements of pebbles S and S’, to determine whether one can go from S to
S’ by using a sequence of moves. A canonical example of the pebble motion problem
is the fifteen-puzzle on graphs [23], which corresponds to the case k = n — 1. Clearly,
moving a pebble from u to v corresponds to applying the arc (v — v); as such, we
shall use some of the results in [23] later in this paper. Conversely, one of our main
results, namely Theorem 3.15, can be applied to the pebble motion problem.

Many famous examples of semigroups are arc-generated. Perhaps the best known
example is the semigroup Sing,, of all non-invertible, or singular, transformations on
[n], which was shown to be arc-generated by J. M. Howie in [12]. Other examples
include the semigroup of singular order-preserving transformations [1], and the so-
called Catalan semigroup [9, 21], which are generated by the arcs of the digraphs
{(4,i4+1),(i+1,4) : i € {1,...,n—1}} and {(4,4+1) : ¢ € {1,...,n—1}}, respectively;
these digraphs can be seen in Figure 1.

Om=0)am:=6) ®
O—@—G ®

FIGURE 1. The digraphs D where (D) is the semigroup of singular
order-preserving transformations (top) or the Catalan semigroup
(bottom).

In [13], Howie showed that Sing,, is generated by %n(n — 1), but no fewer, arcs.
In [8] it was shown that n(n — 1) is the minimum size of any generating set for
Sing,, whether it consists of arcs or not. It was shown in [13] that Sing,, is generated
by the arcs of a digraph D if and only if D is strongly connected and D contains
a tournament. As a corollary, the minimal-size idempotent generating sets of Sing,,
are in one-one correspondence with the strongly connected tournaments on n ver-
tices; these were enumerated by Wright [24]. In [6] it was shown that a digraph D
is strongly connected and contains a tournament if and only if it contains a strongly
connected tournament. Hence every idempotent generating set for Sing,, contains one
of minimum size, something that is not true for generating sets of Sing,,, in general.

Several authors have classified those digraphs D such that (D) has a specific semi-
group property. For instance, in [25] those digraphs D such that (D) is regular are
classified; and in [5] those D where (D) is a band are classified. In [25, 26], neces-
sary and sufficient conditions on digraphs D and D’ are given so that (D) = (D’) or
(D) = (D'), respectively. In this paper, we continue in this direction, by classifying
those digraphs D for which the semigroup (D) has one of a variety of properties.

The paper is organised as follows. In Section 2 we review some relevant termi-
nology and basic results about digraphs and semigroups. In Section 3 we investigate
the presence of transformations with long cycles in arc-generated semigroups and
classify those arc-generated semigroups that are H-trivial. It is possible that Propo-
sition 3.6 and the converse of Proposition 3.12 in Section 3 can be proved using
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Theorem 1(5)(b) and Lemma 15 from [11]. Our proofs were produced independently
of the results in [11], and are relatively concise and self-contained, and so we have in-
cluded the proofs for the sake of completeness. Arc-generated semigroups that are £-,
R- or J-trivial are classified in Section 4. Further classes of arc-generated semigroups
(including bands, completely regular semigroups, inverse semigroups, semilattices and
commutative semigroups) are classified in Section 5. Finally, properties related to left
and right zeros are classified in Section 6, which among other things, allows us to
classify those arc-generated semigroups that are rectangular bands, simple, 0-simple,
or congruence-free.

Many of the results in Sections 4, 5, and 6 were suggested by initial computational
experiments conducted using the Semigroups package [17] for GAP [22].

2. PRELIMINARIES

2.1. DIGRAPHS. In this subsection, we review some terminology and basic results on
digraphs. We refer the reader to [2] for an authoritative account of digraphs.

Unless otherwise stated, the vertex set of a digraph will be [n] for some n € N.

The in-degree of a vertex v in a digraph D is the number of arcs of the form (u,v)
in D; similarly, the out-degree of v is the number of arcs of the form (v,u) in D. A
vertex v in a digraph D is called a sink if the out-degree of v is 0. A vertex is isolated
if it has no incoming or outgoing arcs.

If D = (V,A) is a digraph, and U is subset of the vertices V' of D, then the
subdigraph of D induced by U is the digraph with vertices U and arcs AN (U x U).
In general, a subdigraph of D = (V, A) is any digraph D’ = (V' A’) with V' C V and
A CAN (V' x V).

If D= (V,A) is a digraph, and ¢ is an equivalence relation on V, then the quotient
digraph D /e is defined as follows. The vertex set is the set of all e-classes of V', and
if W, U are e-classes, then D/e has the arc (W,U) if and only if W # U and D has
an arc (w,u) for some w € W and u € U.

A walk in a digraph is a finite sequence (vg, v1,...,v.), 7 > 1, of vertices such that
(vi,vi+1) is an arc for all ¢ € {0,...,r — 1}; the length of this walk is r. A path is a
walk where all vertices are distinct. A cycle in a digraph is a walk where vy = v, and
all other vertices are distinct. A digraph is called acyclic if it has no cycles.

A graph G is defined to be a digraph where (u,v) is an arc if and only if (v, ) is
an arc in G. We refer to the pair of arcs above as the edge {u, v}. Vertices v and v of
a graph G are adjacent if {u,v} is an edge of G.

An induced subdigraph of a graph, is also a graph, which we refer to as an induced
subgraph. A spanning subgraph (as opposed to an induced subgraph) of a graph G =
(V, A) is any graph H = (V, B) where B C A.

The degree of a vertex in a graph is its in-degree, which equals its out-degree. If
u and v are vertices of a graph G, then the distance from u to v is the length of a
shortest path from u to v, if such a path exists.

If G and H are graphs, then H is a minor of G if H can be obtained by successively
deleting vertices, deleting edges, or contracting edges of G (where contracting an edge
corresponds to deleting it and then identifying its end vertices).

If v is a vertex of a digraph D, then the strong component of v is the induced
subdigraph of D with vertices v and all u such that there is a path from u to v
and from v to u. Every digraph is partitioned by its strong components, and the
quotient of a digraph by its strong components is acyclic. If D only has one strong
component, then it is strongly connected. A terminal component of a digraph D is
a strong component C' such that (u,v) is not an arc in D for all uw € C, v ¢ C.
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Alternatively, C' is terminal if it is a sink in the quotient of a digraph by its strong
components. A strong component of a digraph is trivial if it only has one vertex.

The underlying graph of a digraph D is the graph with an edge {u, v} for each arc
(u,v) of D. The component of v is the induced subdigraph of D with vertices u such
that there is a path from u to v in the underlying graph of D. Every digraph is parti-
tioned by its components; we say the digraph is connected if it only has one component.

A graph G is separable if it can be decomposed into two connected induced sub-
graphs G and G2 with exactly one vertex in common, where all edge of Gs belong
to either G; or Go; a graph is non-separable if G admits no such decomposition. A
block of a graph is an induced subgraph that is non-separable and is maximal with
respect to this property.

A graph G is bipartite if it can be decomposed into two subgraphs G and G4 such
that every edge connects a vertex from G; with a vertex from Gs. A graph is odd
bipartite if it is bipartite and it has an odd number of vertices.

We denote by K, the complete graph with vertices [n] and edges {u,v} for all
distinet u,v € [n]; by K1 the star graph with vertices {1,...,k + 1} and edges
{i,k 4+ 1} for all ¢« € {1,...,k}. We denote by P,, the path graph, or simply path if
there is no ambiguity, with vertices [n] and edges {i,i+1} foralli € {1,...,n—1}. We
denote by C,, the cycle graph with vertices {1,...,n} and edges {1,n} and {i,7+ 1}
forallie {1,...,n—1}.

2.2. SEMIGROUPS AND MONOIDS. In this subsection, we review some terminology
about semigroups. We refer the reader to [14] and [7] for further background material
about semigroups.

A semigroup is a set with an associative binary operation. A monoid is a semigroup
S with an identity: i.e. an element e € S such that es = se = s for all s € §. If §
is a semigroup, then s € S is an idempotent if s> = s. If S is a semigroup without
identity, then we denote by S! the monoid obtained by adjoining an identity 15 & S
to S; if S is a monoid, then S' = S. A semigroup S is regular if for all x € S there
exists y € S such that xyzr = x. A subsemigroup of a semigroup S is a subset T" of S
that is also a semigroup with the same operation as S; denoted 7' < S.

A congruence on a semigroup S is an equivalence relation € on S for which (a,b) €
and (¢, d) € ¢ imply (ac,bd) € ¢ for all a,b,¢,d € S. A semigroup S is congruence-free
if the only congruences on S are the universal and trivial relations.

Let S be a semigroup and let z,y € S be arbitrary. We say that = and y are £-
related if the principal left ideals generated by x and y in S are equal; in other words,
if S'z = {sz:s€ 81} =Sy ={sy:se S} We write 2Ly to denote that z and y
are L-related.

Green’s R-relation is defined dually to Green’s L-relation; Green’s H-relation is
the meet, in the lattice of equivalence relations on S, of £ and R. Green’s J-relation
is defined so that x,y € S are J-related if S'zS' = S'yS'. We will refer to the
equivalence classes as K-classes where K is any of R, £, H, or J. We write 2Ky to
indicate (z,y) € K, where K is any of R, £, H, or J.

We denote by Tran,, the monoid consisting of all of the transformations of degree
n where n € N; called the full transformation monoid. This monoid plays the same
role in semigroup theory as the symmetric group does in group theory, in that every
finite semigroup is isomorphic to a subsemigroup of some Tran,,. Green’s relations on
Tran,, can be described in terms of the following natural parameters associated to
transformations. The image of a transformation a € Tran,, is the set

im(a) ={za:xze€{1,...,n}};
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the kernel of « is the equivalence relation

ker(a) = {(z,y) € {1,...,n} x {1,...,n} : za = ya};
and the rank of « is
rk(a) = | im(«)|.
It is well-known that two elements of Tran,, are R-, £L- or J- related if and only if
they have the same kernel, image or rank, respectively; see [14, Exercise 2.6.16].

A semigroup is aperiodic if all of its subgroups are trivial. A semigroup is K-trivial
for K € {R,L,H, T}, if 2Ky implies x = y.

2.3. ARC-GENERATED SEMIGROUPS. We now characterise some basic semigroup the-
oretic properties of (D) in terms of digraph theoretic properties of D.

Suppose that D is a digraph with vertex set V', that v € V is an isolated vertex,
and that D’ is the subdigraph of D induced by V ~ {v}. Then it is clear that the
arc-generated semigroups (D) and (D’) are isomorphic. So, we may assume without
loss of generality, where appropriate and if it is convenient, that a digraph D has no
isolated vertices.

The following proposition will allow us to only consider connected digraphs in some
cases; its proof is trivial and is omitted.

PROPOSITION 2.1. Let D be a digraph with components D1, Ds, . .., Dy and no isolated
vertices. Then (D) is isomorphic to (D1)' x -+ x (D) ~ {(Lipy),--- Lipy))}

The next result is also trivial.

PROPOSITION 2.2. Let D be a digraph. Then the following are equivalent:
(1) (D) is trivial;
(2) (D) is a group;
(3) (D) has a unique H-class;
(4) D has only one arc.

The semigroup (D) can contain arcs that are not present in D. It was shown in [25,
Lemma 2.3] that the set of arcs in (D) is

{(a = b):(a—b) € Dor (b— a) belongs to a cycle of D}.
The closure of D, denoted D, is the digraph on [n] with the set of arcs as above; it is

clear that (D) = (D). By construction, D = D if and only if every strong component
C of D is a graph. We say that D is closed if D = D.

3. CYCLIC PROPERTIES

A cycle of length k in « € Tran, is a sequence of distinct points ag, a1, ..., ax—1 € [n]
such that a;a = a;4;1 for all 4, where the indices are computed modulo k. This sec-
tion is concerned with cycles of transformations in an arc-generated semigroup. In
particular, we are interested in the presence of long cycles. As mentioned in the in-
troduction, the results in this section are related to those in [11], where the authors
describe the structure and actions of the maximal subgroups of any arc-generated
semigroup (D) in terms of properties of D. It is possible that Proposition 3.6 and the
converse of Proposition 3.12 could be proved using Theorem 1(5)(b) and Lemma 15
from [11]. However, determining the properties of the specific digraphs in Proposi-
tions 3.6 and 3.12 required to apply the results in [11] is non-trivial, and requires the
notation and terminology used in [11]. Since the proofs presented in this section are
self-contained, and relatively concise, and were found independently of [11], we have
opted not to use the results of [11].
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One application of the results in this section is a classification of the digraphs D
such that (D) is H-trivial. In particular, we shall prove the following result.

PROPOSITION 3.1. Let D be a digraph. Then (D) is H-trivial if and only if all the
strong components of D are paths or isolated vertices.

3.1. PRELIMINARY RESULTS. The length of a longest cycle of « is denoted as I(«)
and for a digraph D we write

I(D) = max{l(a) : « € (D)}.

LEMMA 3.2. Let D be a digraph. Then the following are equivalent:
i) UD)=1;
(ii) (D) is aperiodic;
(iii) (D) s H-trivial.

Proof. Conditions (ii) and (iii) are equivalent for any finite semigroup; see [18, Propo-
sition 4.2].

(i) = (ii). We prove the contrapositive. Suppose a € (D) belongs to a non-trivial
subgroup and that « is not an idempotent. Then the restriction of « to im(«) is a
non-trivial permutation, so l(a) > 2.

(ii) = (i). Again, we prove the contrapositive. Suppose a € (D) has a cycle of

length k > 2, say ag,a1,...,ar—1. Choose r > 1 such that " is an idempotent, and
let H be the H-class of a”. Then H is a group, and H = {a® : s > r}. But a” and
a1 are distinct elements of H, since apa” = ag # a1 = apa’ 1. O

Since (D) = (D) for any digraph D, we clearly have [(D) = I(D). Thus, when
studying I(D), we can assume without loss of generality that D is closed. If o € (D),
then any cycle of a belongs entirely to a strong component of D. Therefore, if D has
strong components S, ..., .S, then

Thus, in this section we may assume without loss of generality, if it is convenient,
that D is a connected graph.
LEMMA 3.3. For the cycle graph Cy,, n > 3, we have [(Cy,) =n — 1.

Proof. Clearly, for any digraph G on n vertices, {(G) < n — 1. Conversely,
m—1-n)n-2-n-1)---(1—=2)(n—1) € (Cy)
has the cycle 1,2,...,n — 1. O

If G’ is a subgraph of G, then (G') < (G), and so I[(G') < I(G), which will allow us
to isolate subgraphs of G in order to obtain lower bounds on I(G). In the next lemma,
we extend this result to graph minors.

LEMMA 3.4. If G is a graph and H is a minor of G, then l(H) < I(G).

Proof. For any £k < n and S < Trang and any T < Tran,, we write S < T if,
relabelling the vertices of {1, ..., k} if necessary, for any a € S, there exists 3 € T such
that v8 = va for all v € {1,...,k}. It is clear that if (G) =< (H), then I(G) < I(H).
Hence it suffices to show that (H) < (G).

This clearly holds if H is obtained from G by deleting an edge or a vertex. Suppose
that H is obtained from G by contracting the edge {n — 1,n}. Let B be the set of
vertices that are adjacent to n but not ton — 1 in G.

Let o € (H) be arbitrary. Then there exist arcs f1,...,0; € H such that o =
B1Ba - Br. If B; = (b — n — 1) for some b € B, then we replace §; in the product
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for a by (b = n)(n — n — 1). Similarly, we replace any arc (n — 1 — b), b € B, by
(n—1—=n)(n —b). If 8 € (G) denotes this modified product, then v8 = va for all
ve{l,...,n—1}, and so (H) < (G). O

LEMMA 3.5. Let G be a graph. Then the following hold:

(i) if G has a vertex of degree k, then I(G) > k — 1;
(ii) if G contains a subgraph that is a tree with k leaves, then [(G) > k — 1;
(iii) if G is connected and t is the number of vertices of degree not equal to 2, then

1(G) > i(t—2)+1.

Proof. (i). For distinct vertices u and v of the star graph Ky 1 such that u,v # k+1,
we write (v~ v) = (u - k+1)(k+1— v). Then

(k*lwk)(k72wk—1)-~(lw2)(kw1)6<Kk,1>

has the cycle 1,2,...,k — 1. The result now follows from Lemma 3.4.

(if). If T is a tree with k leaves, then K} 1 is a minor of T', so the result follows
from Lemma 3.4 and part (i).

(iii). By [3], any graph with ¢ vertices of degree not equal to 2 contains a spanning
tree with at least (¢ — 2) + 2 leaves. O

The next result concerns connected graphs that can be decomposed into two con-
nected induced subgraphs with a path connecting them. With this in mind, we in-
troduce a construction based on paths. Let L and R be two connected graphs on m
and s vertices, respectively, where m < s, and let P be a path with ¢ vertices. Let
L @, R denote the graph obtained by adding an edge between an endpoint of P and
a vertex of L of degree not equal to 1, and an edge between the other endpoint of P
to a vertex of R of degree not equal to 1. Even though this definition depends on the
choice of attachment vertices, we will omit them in the notation, for our purpose is
to derive results that do not depend on them, apart from the fact that they do not
have degree 1 in L and R. We remark that m, s # 2, since the only connected graph
on two vertices is Ko, whose vertices both have degree 1. However, it is possible to
have m=1or s =1.

The vertices of R are denoted as ry,...,7s, where they are sorted in weakly in-
creasing order of distance to the path P. In particular, 1 is attached to P, and ro
and rg are neighbours of 1 if s # 1. A similar notation is used for L; in particular [y
is attached to P. Write L* = L~ {l1}, R* = R~ {r1}, P* = PU{ly,r1}, and order
the elements of the path as py,...,p, so that p; is adjacent to /;, and p, is adjacent
to r1; finally, we also write l; = pg and r; = pg41. For instance, the graph K31 ©4Cy
is illustrated in Figure 2.

lo T2

P D2 D3 D4 Ps

FIGURE 2. The graph K31 @4 Cy.
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PROPOSITION 3.6 (cf. Theorem 1(5)(b) in [11]). With the above notation, if ¢ > s,
then
1 ifm=s=1
(LegR)=¢s—1 ifm=1s>3

m+s—3 otherwise.

Proof. We write G = L@, R. If m = s =1, then G = P,, where n = ¢+ 2, and hence
(P,) is the semigroup of order-preserving transformations [1], which is aperiodic.
Otherwise, we have s > 3 and we view the result as two matching upper and lower
bounds on I(G).

LOWER BOUND. Throughout this part of the proof, if u,wi,...,w;, v is a path in G,
then we define

(u~v) = (u—wy)(wy = wa) - (wWee1 = we)(wy — v) € (G).

Since this transformation depends on the choice of path, we will always specify the
path.

CASE 1: m = 1. We will show that there exists & € (G) containing the cycle ra, ..., 7.
For each 3 < i < s, we choose r; € {re,r3} such that there is a shortest-length
path from 7 to r; that avoids r,. We also define

o (rg ~> pa) to follow the path r2,71,pq, - . ., D2,

® (pj—1 ~ 7;) to follow a shortest-length path avoiding r; and (r; ~ p;) to
follow the reverse of such a path (but omitting the last edge) for all 3 < j < s,

o (riri )= () = ri)(r —ri_y) foralld <j <s, evenif vl =77,

e (rs ~ rl) to follow any path avoiding vertices from P.

It is straightforward to verify that

a= [1:[(7"@ ~ pz)] (rs ) - H(pj—l ) (1~ i g) | - (p2 ~ 13) € (G)

i=2 j=s

contains the cycle rq, ..., rs, as required (the second product is computed in descend-
ing order of the indices). We also note that lya = [5.

CASE 2: m > 3. As in Case 1, we may use K7 &, R C G to create o € (G) containing
the cycle 72, ..., 7, and such that l;a = [; for all ¢. Similarly, we may use L&, K1 C G
to create 8 € (G) containing the cycle la, ... I, and such that r;8 = r; for all 7. If
(rq ~> l3) and (ly ~> ro) follow the unique shortest paths, then v = af(rq ~ I3)(la ~
ro) € (G) contains the cycle I3, ... Ly, T2, ..., Ts.

UPPER BOUND. Since I(G1) < I[(G>) if Gy is a subgraph of Ga, we assume without
loss of generality that G = K,, ®©4 K. We define a pre-order < on the vertices of G
such that a <bifa € L*,or b€ R*, or a =p; and b =p; for some 0 <7 < j < g+ 1.
If a < band b £ a, then we write a < b or b > a. We note that b A a implies a < b.
We define the sets

at={ben]:b=aluf{a} and a ={be[n]:a>b}U{a}.
For the remainder of the proof, we fix some v € (G), and we write v = €; - - - €, where
€1,...,€ are arcs in G. We also define 79 =id and v; = €1 ---¢; for all 1 < i < k.
CASE 1: m = 1. We require the following claim.

CLAIM 3.7. Suppose that m = 1. If there are vertices u and v in G such that u < v
and uy = vy, then v € a(G) for some a € (G) U {id} such that u™a C R*.
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Proof. If u € R*, then u™ = {u} and so o = id has the required properties. Suppose
that u ¢ R*. Since uy > v, there exists ¢ such that uy; € R*. If j is the least such
value, then uy;_; = ry, u"‘fyj,l C R,and ¢; = (r1 = 7o) for some r, € R*. If we set
a =, then uta = (uty;_1)e; C R*. O

Seeking a contradiction, suppose that + has a cycle of length ¢, where ¢ > s, and
let C' = {uy,...,u.} be such a cycle, where u; < -+ < w,.. It is not necessarily the
case that u;y = u;41. Since |C] = ¢ > s — 1 = |R*|, C is not contained in R* and so
uy < u; for all 4 # 1. This gives C' C uf Let j be such that u;y = u;. Then u; < u;
but w1y > u;7. So by Claim 3.7, ¢ = |Cy| < |uf | < |R*| = s—1, which is the desired
contradiction.

CASE 2: m > 3. For the sake of obtaining a contradiction, suppose that v has a cycle
of length at least m 4+ s — 2. Let C = {uq,...,u.} be such a cycle, sorted so that
up X -+ X u.. Again it is not necessarily the case that u;y = u;41. We note that
ue ¢ L (since ¢ > m+1) and uy ¢ R (since ¢ > s + 1), whence u, > uy.

We say that a vertex v of G is of L-type if there is 8 € (G)U{id} such that v € 8(G)
and v~ C L*. Similarly, we say that v is of R-type if there is o € (G) U {id} such
that v € a(G) and vTa C R*.

CLAIM 3.8. Suppose that m = 3. If there are vertices u and v in G such that v < v
and uy > vy, then either u is of R-type, or v is of L-type.

Proof. As in the proof of Claim 3.7, if v € R*, then a = id witnesses that u is of
R-type. Similarly, if v € L* then 8 = id shows that v is of L-type.

Suppose that v ¢ R* and v ¢ L*. As before, for some i € {1,...,k}, uy; and vy;
both belong to L* or R*. Suppose that both u~y; and v+; belong to R* before they
both belong to L*; the case when they both first belong to L* is symmetric. Let ¢
be the least value such that uwy;,vy; € R*. Then for all j < i, wy; < vy; and either
uy; ¢ R* or vy; ¢ R*. If wy; € R* for some j < i, then since uy; < vv;, it follows
that vy; € R*. Hence i is the least value such that uwy; € R*.

We will show that uy; & L* for all 0 < j < 7. Seeking a contradiction, suppose
that wy; € L* for some 0 < j < ¢, and let b = max{j : j < ¢, uy; € L*}. The vertices
[n] of G can be partitioned into two parts:

A= ({up}UP*UR)y," and B = (L*~{up})y "

Let x € A. If v, = wyp, then zy; = wy; € R*. Otherwise, uy, < x7,. By maximality
of b and minimality of i, we have e,11 = (uy — l1), € = (r1 — wy;), wy; € P* for
all b < j <4, and wy; X @y; for all b < j < 4. It follows that xy; € R*. Therefore,
Av; € R*, and so

¢ <rk(y) < [Bw|+ Ayl < (m—=2)+ (s —1) =m+s -3,
which contradicts the fact that ¢ > m + s — 3.

We conclude that uwy; € P* for all j < i, and by the argument concluding the proof
of Claim 3.7, we obtain u*+; C R*, so that u is of R-type. O

CLAIM 3.9. There exist u,v € C such that u < v, u. < v, and wy = vy. There also
exist u',v' € C such that v’ X v, v S uy, and u'y = v'7y.

Proof. If u, € R*, then since C intersects R* but is not contained in R*, there exist
u,v € C such that u ¢ R*, uy € R*, v € R*, and vy ¢ R*. Then u and v have the
required properties.

If uc ¢ R*, then u, > u; for all 1 < i < ¢ — 1. In particular, if u. = u;7, then
u = u; and v = u. have the required properties.

The proof of the existence of u’ and v’ is symmetrical. O
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We now write X = {u; € C : 3j, u; =< uj, w7y > u;v}, and note that X # @
by Claim 3.9. We enumerate X = {x1,...,24} such that z; < --- < 4. For each
1 < i< d, let y; be an element of C' such that x; < y; and z;v > y;7y; we also assume
that y; is maximal with respect to this property: that is, if v € C' is such that x; < v
and x;y > vy, then v < y;. Note that {y1,...,ya} is not necessarily sorted according
to the pre-order. If yj; is a maximal element of {yi,...,yq} with respect to =<, then
Claim 3.9 indicates that u. =< yas. We also have x1 =< uq, since 1 < v/, where v’ is
as in Claim 3.9.

CrLAM 3.10. There exists 1 < a < d such that y1,...,y, are all of L-type and
Tat1s---,%q are all of R-type. Moreover, for alli>a > j, x; = y;.

Proof. We shall prove a sequence of facts about the set X, the last two of which give
the claim.
(a) If ; is of R-type, and if z; < y;, then y; is not of L-type.
Suppose to the contrary that we have the following: z; < y;; o, f € (G) U
{id}; v € a(G) and v € B(G); i C R* and y; 8 C L*. We then have
x; ¢ L*, for otherwise [n] = L* Uz and
c<tk(y) < |[L* Az} +|zfa| < (m—2)+(s—1)=m+s—3,
a contradiction. Similarly, we have y; ¢ R*. Thus
zi,y; € P*, [n]=af Uy;, ;€ xf Ny; .
Denoting S = {w € y; : wy = z;7}, we have
e <tk(y) < [(&7US)y1+|(y; NSyl = la v +]y; 71 < (s—1)+(m—1)~1 = m+s-3,
a contradiction.
(b) For every i, x; is of R-type if and only if y; is not of L-type.
Apply (a) with ¢ = j and combine with Claim 3.8.
(¢) If x; is of R-type, then so too are x;y1,...,xq.
If z; is of R-type and i < j, then because z; =< z; < y;, (a) says that y; is
not of L-type and (b) in turn says that z; is of R-type.
(d) y1 is of L-type and xj/ is of R-type.
We prove that z1 is not of R-type, which by (b) implies that y; is of L-type.
Suppose that xa C R* for some a € (G) U {id} with v € a(G). If 21 € L*,
then # = {x;} U P* U R* and hence
c<rk(v) <L~ Az} +|[{z1} UP*UR")a| < (m—2)+ (s—1) =m+ s — 3,

a contradiction. If z; ¢ L*, then x1 = uy (since 1 < uy and u; ¢ R*) and
hence C C z7, so that ¢ = |Cy| < |#]a| < s — 1, a contradiction. The proof
for xp; is symmetrical.
(e) There exists 1 < a < d such that yy,...,y, are all of L-type and z441,...,2q
are all of R-type.
This follows from combining (b), (¢) and (d), with

a=max{i:y1,...,y; are of L-type}.

(f) Foralli>a > j, z; > yj;.
By (e), z; is of R-type, and y; of L-type. It follows from (a) that

Ti = Yj- O
We now partition C into two parts A and B defined by
A={ueC:x441 > u} and B={ve(C:x441 20}
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Note that A and B are both non-empty: for example, z,41 € B and y, € A. Since
C is a cycle of v, Sy # S for any non-empty proper subset S of C. In particular,
A~ # A and By # B, and so there exist u € A and v € B such that uy € B and
vy € A. It follows that v =< v and wy > vy, and hence v = z; and v = y; for some
J < a. But then .41 <X v X y;, which contradicts Claim 3.10. ]

3.2. CLASSIFICATION RESULTS. In this subsection, we give a classification of the con-
nected graphs G for which [(G) is equal to 1, 2 or n — 1. From this, and in light
of equation (1), it is easy to deduce such classifications for arbitrary graphs G. We
also consider the computational complexity of determining whether a given graph G
satisfies I(G) < k.

The classification of graphs with [(G) = 1 or I(G) = 2 is based on the following
family of graphs. The graph @, for n > 3 is obtained by adding the edge {n — 2,n}
to the path P,, so that the three last vertices form a triangle (and indeed Q3 = K3).
The graph R, for n > 4 is obtained by removing the edge {n —1,n} from @, so that
the last four vertices form the star graph Ks3; (and indeed R4 = K3 1). The graphs
Q¢ and Rg are illustrated in Figure 3.

FIGURE 3. The graphs Q¢ (left) and Rg (right).

A number of other graphs, pictured in Figure 4, will feature in the proofs. It can
be shown, using GAP [22] for instance, that if G is the bull graph or the E-graph,
then I[(G) = 3 and that {(0y) = 6.

FIGURE 4. The bull graph (left), E-graph (right) and 6, graph (below).

PROPOSITION 3.11. Let G be a connected graph. Then [(G) =1 if and only if G is a
path.

Proof. Since (P,) is the semigroup of order-preserving transformations of [n], it is
aperiodic. Conversely, suppose that [(G) = 1. By Lemmas 3.3, 3.4 and 3.5, G is a tree
with maximum degree 2, in other words, G is a path. g

Proposition 3.1 easily follows from Proposition 3.11 and equation (1).
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PROPOSITION 3.12. Let G be a connected graph. Then [(G) = 2 if and only if G is
Qn (n>3) or R, (n>=4).

Proof. Note that @, = K1 ®,—4 K3 and R,, = K1 ®p,—4 K31. It follows from Propo-
sition 3.6 that 1(Q,) = l(R,) = 2 for n > 7; this can also be verified for n < 6, using
GAP [22]. This part of the proof also follows from [11, Lemma 15].

Conversely, suppose that [(G) = 2; the case n < 3 is easy so let us assume n > 4.
By Lemmas 3.3 and 3.4, G does not have any cycle of length 4 or more. By Lemma 3.5,
G has no vertices of degree greater than 3.

CLAIM 3.13. G has exactly one vertex of degree 3.

Proof. If G has no vertex of degree 3, then it is a path and I[(G) = 1, or it is a cycle
and I(G) =n — 1 > 3. Thus, G has a vertex of degree 3, say x1, with neighbours x5,
x3 and z4. First, suppose that x5 also has degree 3. If 3 and x4 are both neighbours
of x5, then G has the cycle x1, x3, T2, x4. If x5 is adjacent to x3 and to another vertex,
say x5, then G contains a bull. Thus, x5 is not adjacent to either x3 or x4, and instead
is adjacent to x5 and xg, say, in which case, G contains a tree with leaves x3, x4, 5,
and xg, so Lemma 3.5(ii) applies. So vertex xo does not have degree z3 and, similarly,
neither do vertices x3 and x4. Second, suppose that G contains another vertex of
degree 3, say u, that is not a neighbour of x;. There is a path from u to 1, and we
may assume this goes through vertex xs; then by contracting the path from zs to u,
and applying Lemma 3.4, we get back to the first case. O

We now split the rest of the proof into two cases. First, if G is a tree, then G = R,
or G has the E-graph as a subgraph. The latter case would yield {(G) > 3, hence
G = R,,. Second, if G is not a tree, then G has a triangle, say induced by the vertices
a,b,c. One of them must be the vertex of degree 3, say a, and the other two have
degree 2. Then G = Q. d

On the other extreme, we have the following classification. Recall that a graph G
is non-separable if for every pair of vertices u,v € [n], there are at least two vertex-
disjoint paths from wu to v.

PROPOSITION 3.14. Let G be a connected graph. Then [(G) = n — 1 if and only if
G = K5 or G is non-separable and not odd bipartite.

Proof. The case n < 3 being easily checked, we assume n > 4 throughout the proof.

Let G be non-separable. Recall the puzzle group I'g(v) from [23], obtained as
follows. First of all, create a hole at any vertex v. Then repeatedly slide a vertex a
into the hole at vertex b, where a is adjacent to b; this moves the hole to a. Whenever
the hole goes back to v, this yields a permutation of [n] \ {v}. The (abstract) group
does not actually depend on v. Clearly, creating the hole at v can be done by using
any arc (v — u) where u is a neighbour of v, and then sliding a vertex a to the hole
in b is equivalent to using the arc (¢ — b). Therefore, for any initial hole v and any
g € T'g(v) acting on [n] \ {v}, there exists @ € (G) such that ug = ua for all u # v.

(<) We have already noted that I(6p) = 6, and that {(Cy,) = n — 1. Let G be
non-separable and neither a cycle nor the graph 6. According to [23, Theorem 2],
I'¢(v) = Alt,—; if G is bipartite and I'¢(v) = Sym,,_; otherwise. Therefore I(G) =
n—1 if G is non-separable and not odd bipartite, or [(G) > n—2 if G is non-separable
and odd bipartite.

(=) We prove the contrapositive. Suppose first that G is non-separable and odd
bipartite. To obtain a contradiction, suppose that 8 € (G) has I(8) = n — 1. Due to
the form of 3, there exist u and v such that u8 = v3, uf~! # @ and v3~! = @ (note
that 8 acts as a cyclic permutation 7 on [n] ~\ {v}). Since (v — w)B = B, we can
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assume that the first arc in any word expressing 3 is (v — u). This corresponds to
creating a hole in v, and then expressing 7 as a member of I'(v), which is impossible
since 7 is an odd permutation while T'g(v) = Alt,—;.

Now suppose that G is separable. So there exist L, R C [n] and v € [n] such that
2 < |L| € |R|, LN R = {v}, and for any edge {l,r} of G with ] € L and r € R we have
v € {l,r}; see for example [4, Theorems 5.1 and 5.2]. Then G is a minor of L &,, R,
which is itself a minor of K, ®, K, where m = |L| and s = |R|. Let us abuse notation
slightly, and define Ks @,, K¢ := K1 @,,+1 Ks. By Lemma 3.4 and Proposition 3.6,

1 ifm=s=2
HG) S U(EKm &n Ko) = s—1 ifm=2<s
m+s—3 ifm,s>2.
Thus, in all cases, I{(G) < n — 2. O

We remark that the proof of Proposition 3.14 (in conjunction with Proposition 3.14
itself) indicates that if G is non-separable and odd bipartite, then I(G) = n — 2.

A classification of graphs G such that [(G) < k for arbitrary k seems beyond reach
at the moment. However, since these graphs form a minor-closed class, we can deter-
mine whether [(G) < k in time O(n?) [15]. We show that in fact this can be done in
linear time. Here, we consider a computational model where the atomic operations are
integer operations. This is not only the consensus in the analysis of graph algorithms,
but is also similar to the analysis of sorting algorithms, where typically the running
time is given as the number of comparisons made (e.g. Merge-Sort makes O(n logn)
comparisons; clearly each comparison could take O(logn) bitwise operations).

THEOREM 3.15. For any fized k, deciding whether a connected graph G, given as an
adjacency list, satisfies I(G) < k can be done in O(n) time.

Proof. Let us refer to a maximal path in G consisting of vertices of degree 2 as a
branch. If a branch does not belong to a non-separable block, then G = L ®4 R, where
the branch is the path in the middle. We say that a branch is terminal if L = K7 and
non-terminal otherwise. We shall use the same notation as for Proposition 3.6.

The result is clear for k = 1 (Proposition 3.11), so suppose k > 2. The algorithm
goes as follows.

(1) If n < (k4 2)(k+ 1)(2k — 1), solve by brute force, i.e. by enumerating all
elements of (G).

(2) If G is a path, then return Yes.

(3) If G has a vertex of degree at least k + 2, then return No (Lemma 3.5).

(4) If G has at least 4k—1 vertices of degree not 2, then return No (Lemma 3.5(iii)).

(5) If G has a non-separable block of size at least k + 3, then return No (Propo-
sition 3.14 and the remark after its proof).

(6) Let P be the longest branch of G. If P is terminal and has length at most
n—k—3, or if P is non-terminal and has length at most n —k —4, then return
No. Otherwise, return Yes.

If the first five properties are not satisfied, then the number of vertices of degree 2
is at least
n—t>k+2)(k+1)2k—1)+1— (4k—2) > (k+1)*(2k — 1).

On the other hand, the number of branches is at most (k + 1)t/2 < (k +1)(2k — 1).
Thus the longest branch P of G has length ¢ > k + 2.

First, suppose that P is terminal, ie. G = L &; R with m = 1 and s > 3. If
g<n—-k—-3,thens—1=n—-q¢—2>k+1andl(G) > I(G") =k +1, where G’
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is the subgraph of G induced by LU P U {ry,...,7k42}. Otherwise, s < k + 1 hence
gzsand I(G)=s—1<k.

Second, suppose that P is non-terminal: i.e. G = L ®&; R with s > m > 3. If
g<n—k—4,thenm+s—-3=n—q—3>k+1. Let

k+4
u:min{m,{;—J} and oc=k+4—p.

We then have
c+pu—3=k+1, ¢g=2k+2>20>2p>23, m=u s=o

and [(G) > I(G') = k + 1, where G’ is the subgraph of G induced by {l,...,1,} U
PU{r,...,r5}. Otherwise, m + s — 3 < k hence ¢ > s and I[(G) =m + s -3 < k.
Step 1 runs in O(1) time; properties 2 to 4 are decidable in time O(n). If the first
four properties are not satisfied, the number m of edges of GG is at most %(k + Dt +
n—1t < 2n. Then the following steps, which run in O(n+m) (an algorithm to find the
non-separable blocks in linear time is given in [10]), actually run in O(n) time. O

We now give an interpretation of Theorem 3.15 in terms of the pebble motion
problem, reviewed in the introduction. In general, the problem of determining whether
S’ can be obtained from S via a sequence of moves is NP-hard [19]. However, we can
easily extend any pebble arrangement T : P — [n] into a singular transformation 7
of [n], by letting 7(p) = T'(p) for all p € P and 7(q) = T(1) otherwise. Moreover,
any sequence of moves corresponds to an element « € (D). Thus, S’ can be obtained
from S via a sequence of moves if and only if the corresponding transformations
satisfy o/ = oa for some o € (D)! — in particular, if D is strongly connected, then
this is equivalent to 0’Ro. Theorem 3.15 then gives a linear-time algorithm to show
that some arrangements cannot be obtained from S, solely based on how much they
“shuffle” the pebbles. Indeed, for the sake of simplicity, let us assume that o and o’
have the same image, say I. The restriction of « to I is then a permutation 7, since
(po)a = (po’) for all p € P. If & has a cycle of length k > I(D), then the algorithm
in the proof of Theorem 3.15 will return No.

4. PROPERTIES RELATED TO GREEN’S RELATIONS

In this section we characterise some semigroup theoretic properties of (D) in terms
of certain digraph theoretic properties of D. In Proposition 3.1, we classified the
digraphs D for which (D) is H-trivial. The purpose of this section is to give analogous
classifications for Green’s R-, £- and J-relations in Propositions 4.3, 4.4 and 4.5,
respectively.

The proof of [14, Proposition 2.4.2] gives the following.

LEMMA 4.1. Let T be a subsemigroup of a semigroup S, let a,b € T, and suppose a,b
are regular in T'. Then the following hold:

(i) a,b are R-related in T if and only if they are R-related in S;
(ii) a,b are L-related in T if and only if they are L-related in S.

Recall that two elements of Tran,, are R-, L-, or J- related if and only if they have
the same kernel, image, or rank, respectively.

LEMMA 4.2. Let D be a digraph. If D contains a cycle and (a — b) is an arc in that
cycle, then (b — a) € (D) and (a — b)R(b — a).

Proof. As noted earlier, it follows from [25, Lemma 2.3] that (b — a) belongs to (D).
Since (@ — b) and (b — a) are idempotents, and hence regular, and they have equal
kernels, it follows follows from Lemma 4.1 that (¢ — b)R(b — a). O
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PROPOSITION 4.3. Let D be a digraph. Then (D) is R-trivial if and only if D is
acyclic.

Proof. (=) Tt follows immediately from Lemma 4.2 that if D contains a cycle, then
it is not R-trivial, and so the contrapositive of this implication holds.

(<) Again we prove the contrapositive. Suppose that «, 8 € (D) are such that
a # B and R S. Then there exist v, € (D) such that oy = § and 86 = «, and there
is i € [n] with i # i8. Hence iy = i # i and i = iayd. The former implies that
D contains a non-trivial path from i« to ia7y, and the latter that D contains a path
from iay to ia. Thus D contains a cycle. O

PROPOSITION 4.4. Let D be a digraph. Then (D) is L-trivial if and only if the following
hold:

(i) the out-degree of every vertex in D is at most 1; and
(ii) D contains no cycles of length greater than 2.

Proof. (=) We prove the contrapositive (i.e. that if either (i) or (ii) is not true, then
(D) is not L-trivial). If there are distinct arcs « = (a — b) and g = (@ — ¢) in D,
then o« and g are regular, and have the same image, and so aLS. If D contains a cycle
of length greater than 2, then (D) is not H-trivial, by Proposition 3.1, and hence it
is not L-trivial.

(«=) Suppose that both (i) and (ii) both hold. We begin by making some observa-
tions about the elements of (D) and their action on the vertices of D.

Suppose that xzy € [n] is an arbitrary vertex of D with out-degree 1. By the
assumptions on the structure of D, there is a unique path

(2) To— Ty — = Tp—1 — Tk,

in D starting at 2o, and where x, has out-degree 0 or (z, — xi—_1) is an arc in D. Since
there are no vertices in D with out-degree exceeding 1, it follows that (z; — ;1) is
the only arc in D starting at x; for every i. So, if v € (D), then

(3) rey=2; and s<t forall s<k-—1.

First, we will show that

(4)
if y="0(z0 = 21)71(21 = 22)72 - Vr—1 (T -1 = 21)7y Where 70,71, ..,V € (D),
then xgy = x5 where either s >rors=k—1landr==%k

forall 0 <r < k.
We proceed by induction on r. If » = 0, then v = vy and zgy = x; for some [ > 0
by (3). If » > 0, then by induction there exists [ > r — 1 such that

ToY0 (o — T1)V1(T1 — T2)Y2 Vo1 = 21

Suppose first that [ > r. Then zoy = z;(z,—1 — @)y = 1y Tl <k —1, then (3)
gives 77y, = x for some s > [ > r. If [ = k, then by the form of D, z;7, = z7, can
only be one of zj or x_1. On the other hand, if l =r — 1, then zoy = z,—1(x,—1 —
Tr)Yr = ey, and Ty, = Ty, where m > r, again by (3), unless » = k in which case
it is possible that z,7, = xx_1. This completes the proof of (4).

Second, suppose that v € (D) and z¢y = x, for some r. Since there is a unique
path from z to =, in D, it follows that any factorisation of v in the arcs of D must
contain each of

(o = 1), (1 = T2), .., (Tro1 = T1)
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in this order. In other words,

(5)

if xgy = x, for some r, then v = yo(xg = z1)y1(x1 = 2)Y2 - Vo1 (Xpo1 = X0 )Y

for some 9,71, ...,7 € (D).

We will now begin the proof of this implication in earnest. Suppose that there are
a,B € (D) such that a # 3. We will show that « and S are not L-related. Since
a # 3, there exists zg € [n] such that xga # x08. Since at least one of «,  does not
fix xg, it follows that the out-degree of xq is equal to 1. Suppose that x4, ...,z are as
in (2). From (3), zoax = x, and xof = x5 for some r,s > 0. We may assume without
loss of generality that r > s. We consider two cases separately.

CASE 1: s <k —2 OR (xr — Tx—1) IS NOT AN ARC IN D. By (5),
a=ag(xg— x1)a1(r1 = x2)ag - ap_1(¥r—1 = x,),.  for some ag, ay,...,a, €(D).
It follows that if v € (D) is such that 8 = ya, then

B =va = (yap)(xo = x1)a1(x1 — T2)ag -+ a1 (Tr_1 = Ty ).

But o8 = x5 and so (4) implies that s > r, contradicting the assumption that s < r.
Hence (o, 8) & L.

CASE 2: s=k—1 AND (2 — Zx—1) IS AN ARC IN D. Since r > s, it follows that
roa = xp and xof = xp_1. By (5), there exist ag, a1, ... € (D) such that

a=ap(xg = x1)ar(x1 = z9)ag - - ap_1(Trp—1 = )k,

and we may assume without loss of generality that oy does not have (z — x—1) as
a factor. Suppose that v € (D) is arbitrary. By (4),

zoyao(xo = x1)ar(x1 — To)ag - - ap—2(Th—2 = Th—1)ok—1 € {Tk—1,Tx}.

In either case, xoya = z # xp—1 = xof and so B # ~va for any v € (D), which
implies (o, 8) & L. O

PROPOSITION 4.5. Let D be a digraph. Then the following are equivalent:

(i) (D) has at most one idempotent in every L-class and every R-class;
(ii) (D) is J-trivial;

(iii) D is acyclic and the out-degree of every vertex in D is at most 1.

Proof. (i) = (iii). If D had a vertex of out-degree greater than 1, then, as in the proof
of Proposition 4.4, (D) would contain two distinct L-related idempotents.

If D contained a cycle, then, by Lemma 4.2, (D) would contain two distinct R-
related idempotents.

(iif) = (ii). If D is acyclic and the out-degree of every vertex in D is at most 1,
then, by Propositions 4.3 and 4.4, (D) is both R- and L-trivial. Hence (D) is J-trivial.

(if) = (i). Since (D) is J-trivial, it is both £- and R-trivial. Hence every L-
class and every R-class contains exactly one element, and, in particular, at most one
idempotent. O

5. OTHER CLASSICAL SEMIGROUP PROPERTIES

A semigroup S is called completely reqular if every element belongs to subgroup.
Equivalently, a semigroup is completely regular if and only if every element is H-
related to an idempotent. A finite semigroup S is completely regular if and only if
xJz? forall z € S.

If D is any digraph with at most 2 vertices, then (D) is a band. Hence in the next
two results we will assume that the number of vertices in D is at least 3.
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We say a digraph D is directed-bipartite if there is a partition of the vertices [n]
of D into two parts V5 and Vs such that every arc (a — b) of D satisfies a € V; and
beVs.

PROPOSITION 5.1. Let D be a connected digraph with at least 3 vertices. Then the
following are equivalent:
(i) (D) is a band;
(ii) (D) is completely reqular;
(iii) D is directed-bipartite.
Proof. (i) and (iii) are shown to be equivalent in [5, Theorem 2.12].

(i) = (ii). This implication follows immediately, since every band is completely
regular.

(ii) = (iii). We prove the contrapositive. Suppose that D contains the arcs (a — b)
and (b — c¢), where a,b, ¢ € [n] are distinct, and consider & = (b — ¢)(a — b). Then
tk(a) = n — 1 and rk(a?) = n — 2, and so « and o? are not J-related in Tran,,.
It follows that o and a? are not J-related in (D), and so (D) is not completely
regular. O

COROLLARY 5.2. Let D be a connected acyclic digraph with at least 3 vertices. Then
the following are equivalent:

(i) (D) is a band;
(ii) (D) is completely reqular;
(iii) (D) is regular;
(iv) D is directed-bipartite.
Proof. Tt suffices to prove that (iii) implies (i), so we suppose that (D) is regular.
Since D is acyclic, (D) is R-trivial by Lemma 4.3. Since (D) is regular, it follows that
every R-class contains an idempotent. But every R-class is of size 1, and so every
element of (D) is an idempotent. In other words, (D) is a band. O

There are non-acyclic digraphs D such that (D) is regular but not a band. For
example, if D is any strong tournament with n > 3 vertices, then (D) = Sing,,, and
Sing,, is regular but not a band.

For n > 1, an n-fan is a connected acyclic digraph isomorphic to the digraph with
arcs (i,n) for all 4 € {1,...,n—1}. A 1-fan is just a one-vertex digraph with no arcs.
A picture of an n-fan can be seen in Figure 5.

FIGURE 5. An n-fan.

A semigroup S is called inverse if for all € S there exists a unique y € S such
that xzyx = = and yzy = y. It is well-known (see, for example, [14, Theorem 5.1.1])
that a semigroup S is inverse if and only if it is regular and its idempotents commute.
The same theorem from [14] also says that S is inverse if and only if each R-class
and each L-class of S contains exactly one idempotent. A semilattice is a semigroup
of commuting idempotents. For any set X, the power set 2% = {A: A C X} of X
is a semilattice under U; the subsemigroup 2% \ {@} is called the free semilattice of
degree | X|. If X1,..., X}, are disjoint finite sets, then (2X1 x ... x 2%k} {(@,..., @)}
is a free semilattice of degree | Xi|+ --- + |X}|, isomorphic to 2X1YUXk  {g}.
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PROPOSITION 5.3. Let D be a connected digraph on n vertices. Then the following are
equivalent:
(i) (D) is a free semilattice of degree n — 1;
(ii) (D) is inverse;
(iii) (D) is commutative;
(iv) D is a fan.

If any of the above conditions holds, then |(D)| =271 — 1.

Proof. (i) = (ii). Every semilattice is an inverse semigroup.

(if) = (iii). Since (D) is inverse, it has exactly one idempotent in every £- and
R-class, and hence by Proposition 4.5, (D) is J-trivial. Thus (D) is a semilattice,
and hence it is commutative.

(iii) = (iv). Assume that (D) is commutative. If D contains distinct arcs o =
(a = b) and = (b — ¢), then af # Ba, a contradiction. If D contains distinct arcs
v=(d—e)and § = (d — f), then v§ # v, a contradiction. Since D is connected,
it follows that D is a fan.

(iv) = (i). We may assume that the unique sink in D is the vertex n. If S is any
subset of {1,...,n — 1}, then we define g € Tran,, by

n ifves,
vas =
v ifogs.

If S ={s1,..., s} is not empty, then ag = (s1 = n)--- (s = n) € (D). Conversely,
the arcs of D commute and so any transformation in (D) is of the form «g for
some non-empty subset S of {1,...,n — 1}. If S and T are non-empty subsets of

{1,...,n— 1}, then it is routine to verify that asar = asyr. It follows that the map
¢ : 21Ln=1 ({ @} — (D) defined by S¢ = ag is an isomorphism. O
If D is a digraph with connected components D1,..., D, then it follows from

Proposition 2.1 that (D) is inverse if and only if each (D;) is inverse. From this we
obtain the following corollary to Proposition 5.3.

COROLLARY 5.4. The number of digraphs (up to isomorphism) with n vertices such
that (D) is an inverse semigroup is equal to n — 1.

Proof. Suppose that (D) is inverse, that the connected components of D are
Dy, ..., D,, and write d; = |D;| for each i. It follows from Proposition 5.3 that each
D; is a fan, and each (D;) is a free semilattice of degree d; — 1. It follows that (D) is
a free semilattice of degree (dy —1)+---+ (d, — 1) = n — r. So the isomorphism class
of (D) is completely determined by r, the number of connected (fan) components of
D. Since r can take any value from 1 to n — 1, the proof is complete. O

6. ZEROS

An element a of a semigroup S is a left zero if ab = a for all b € S. Right zeros
are defined analogously. An element is a zero if it is both a left and right zero. If a
semigroup has a left zero and a right zero, then it has a unique zero. In this section,
we obtain necessary and sufficient conditions on a digraph D so that (D) has vari-
ous properties associated to left or right zeros. Some of our results also classify the
digraphs D for which (D) consists of a single R-, £-, or J-class (see Proposition 2.2
for the analogous result for the H-relation). We begin with two technical lemmas.

LEMMA 6.1. If D is strongly connected, then (D) contains every constant map.
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Proof. Since D is strongly connected, it suffices to show that (D) contains any con-
stant map. Suppose that there exists « € (D) with rank r, where 2 <r <n — 1. We
prove that there exists 8 € (D) with rk(8) < rk(a), from which the lemma follows.
Since rk(a)) > 2, there exist distinct 4, j € im(«), and since D is strongly connected,
there is a path in D from 4 to j. If (i ~ j) denotes the product of the arcs in a path
from i to j, then it is routine to check that rk(a(i ~ j)) < rk(«), as required. O

LEMMA 6.2. If D is connected, then there exists a € (D) such that i belongs to a
terminal component of D for each i € [n].

Proof. Suppose without loss of generality that {1,...,k} are the vertices of D that do

not belong to a terminal component of D. Then for every i € {1,...,k} there exists
a vertex t; in a terminal component of D such that there is a path in D from i to ¢;.
The product o = Hle(i ~- t;) has the required property. O

PROPOSITION 6.3. Let D be a connected digraph. Then the following hold:

(i) (D) has a left zero if and only if all terminal components of D are trivial.
If this is the case, then « is a left zero of (D) if and only if va belongs to a
terminal component for all vertices v.

(ii) (D) has a right zero if and only if it has exactly one terminal component. If
this is the case, then « is a right zero of (D) if and only if it is a constant
map.

(iii) (D) has a zero if and only if it has exactly one terminal component T, which
is trivial. If this is the case, then the zero of (D) is the constant map with
image T'.

Proof. (i). Suppose that o € (D) is a left zero, let T be an arbitrary terminal com-
ponent, and let a,b € T. By Lemma 6.1, there exist 3, € (D) such that t8 = a and
ty=0bforallt € T. Let t € T be arbitrary. Since T is terminal, ta € T'. But then, since
ais a left zero, a = (ta)8 = t(af) = ta = t(ay) = (ta)y = b. This shows that |T'| = 1.

Conversely, suppose that all terminal components of D are trivial: {t1},..., {tx}.
By Lemma 6.2, there exists o € (D) such that va belongs to a terminal component
for each vertex v € [n]. Now let 5 € (D) be arbitrary. Let v € [n] and put va = t;.
Then vaf = t;8 =t; = va, so that af = «, and « is a left zero.

On the other hand, suppose that all of the terminal components of D are trivial,
and that a € (D) is such that va does not belong to a terminal component for some
v € [n]. Then D contains some arc (v — 7). But then a # a(va — j), so that « is
not a left zero.

(ii). Suppose that D has at least two terminal components. Then there exist
distinct terminal components 77 and 75 and a vertex v such that there is a path
from v to a vertex from T and a path from v to a vertex from T5. For ¢ = 1,2, let
B; € (D) be such that vg; € T;. If a € (D) is a right zero, then

va=vfia €Ty and va=v8a € Ty,

which is the desired contradiction.

Conversely, suppose that D has only one terminal component 7" and fix some ¢t € T.
By Lemmas 6.1 and 6.2, there exist oy, ay € (D) such that im(«;) C T, and Tas =
{t}. Then ajas € (D) is a constant map (with image {¢}), and hence a right zero.

On the other hand, suppose that D only has one terminal component 7', and that
a € (D) is not a constant map. So rk(a) > 2. We know that (D) contains some
constant map 5. But then rk(Sa) = rk(8) = 1 # rk(«), so that Sa # «, whence « is
not a right zero. O
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A semigroup S is called a left zero semigroup if every element of S is a left zero;
right zero semigroups are defined analogously.

PROPOSITION 6.4. Let D be a digraph. Then the following are equivalent:

(i) (D) is a left zero semigroup;
(ii) (D) has a unique L-class;
(iii) there is a unique non-trivial connected component K of D, and

K'l'={ly—z):(r—y) ecK}
is a fan.

Proof. (i) = (ii). Every left zero semigroup has a unique £L-class.

(iii) = (iii). Since (D) has a unique L-class, it follows that all of the arcs in D
belong to the same L-class. Hence the arcs in D have the same image: say, [n] \ {z}
for some fixed € [n]. In other words, the arcs in D are all of the form (z — y),
y # .

(iif) = (i). If the only arcs in D are of the form (z — y) for some fixed z, then
(z = y)(x = 2) = (z = y) for all y, z, and so (D) = D is a left zero semigroup. O

PROPOSITION 6.5. Let D be a digraph. Then the following are equivalent:

(i) (D) is a right zero semigroup;
(ii) (D) has a unique R-class;
(iii) there is a unique non-trivial connected component K of D, and K has 2
vertices.

Proof. (i) = (ii). Every right zero semigroup has a unique R-class.

(if) = (iii). Since (D) has a unique R-class, all elements of D are R-related. But
(i = J)R(k — 1) if and only if {i,5} = {k,!} and so all of the arcs of D involve the
same two vertices.

(iii) = (i). In this case, (D) is isomorphic to a subsemigroup of Sing,, which is a
right zero semigroup, and hence (D) is a right zero semigroup also. O

Recall that a semigroup is simple if it contains a single [J-class.

PROPOSITION 6.6. Let D be a connected digraph. Then the following are equivalent:

(i) (D) is a rectangular band;
(i) (D) is simple;
(iii) (D) is a left or right zero semigroup.

Proof. (iii) = (ii). Every left or right zero semigroup is simple.

(if) = (i). If (D) is simple, then it is completely regular. If n > 3, then we conclude
from Proposition 5.1 that (D) is a band; this is also true if n < 2. Every simple band
is a rectangular band.

(i) = (iii). Suppose that (D) is a rectangular band. Since (D) has a single J-class,
every element of (D) has rank n — 1. It follows that (D) consists entirely of arcs. If
(D) is not a left or right zero semigroup, then there exist distinct arcs «, 8,y € (D)
such that aRS and SLv. The former implies that « = (¢ — b) and 5 = (b — a) for
some a, b, and the latter that v = (b — ¢) for some ¢, where a,b, ¢ € [n] are distinct.
But then yo € (D) is not an idempotent, a contradiction. O

Recall that a semigroup S with a zero element 0 is 0-simple if S? # {0} and its
J-classes are {0} and S \ {0}.
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PROPOSITION 6.7. Let D be a digraph. Then (D) is 0-simple if and only if the only
non-trivial connected component of D is one of the following:

Proof. (<) It is straightforward to verify that (D) is 0-simple if D is either of the
given digraphs, using GAP [22] for instance.

(=) Suppose that (D) is 0-simple and, without loss of generality, that D has no
isolated vertices. Since (D) is O-simple, it has two J-classes, and the minimum one
contains only the zero element. In particular, (D) contains at most one element of
rank smaller than n — 1 and no elements of rank smaller than n — 2.

Suppose that D has two connected components D and D,. If there is an arc
a in Dy, and distinct arcs 8, in Da, then af,ay € (D) are distinct elements of
rank n — 2, a contradiction. Hence, if D has more than one connected component,
then every connected component has exactly one arc. In this case, (D) contains at
least 2 arcs and the zero element and so |(D)| > 3. But Proposition 4.5 implies that
(D) is J-trivial and so (D) has at least three J-classes, a contradiction. Thus D is
connected.

If a € (D) is the zero element, then by Proposition 6.3, « is constant which implies
that 1 =rk(a) > n—2, and so n < 3. It is possible to check that if D’ is any digraph
with at most 3 vertices such that (D’) is 0-simple, then D’ is isomorphic to one of the
two given digraphs. O

PROPOSITION 6.8. Let D be a digraph. Then (D) is congruence-free if and only if the
only non-trivial connected component of D is one of the following:

Proof. Let D1, Dy, D3, Dy, D5 (left to right) be the digraphs in the statement of the
proposition.

(<) The semigroups (D7), (Ds), (D3) have size at most 2, and so are congruence-
free. It is straightforward to verify that (D,) and (Ds) are both congruence-free (using
GAP [22] for instance).

(=) If (D) is congruence-free, then either |(D)| < 2, (D) is O-simple, or (D) is
a simple group; see [14, Theorems 3.7.1 and 3.7.2]. So, by Propositions 2.2 and 6.7,
it suffices to note that the only digraphs D so that [(D)| = 2 are the digraphs Dy
and Ds. O
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