
ALGEBRAIC
 COMBINATORICS

Sebastian König
The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions
Volume 2, issue 5 (2019), p. 735-751.

<http://alco.centre-mersenne.org/item/ALCO_2019__2_5_735_0>

© The journal and the authors, 2019.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2019__2_5_735_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 2, issue 5 (2019), p. 735–751
https://doi.org/10.5802/alco.58

The decomposition of 0-Hecke modules
associated to quasisymmetric Schur

functions

Sebastian König

Abstract Recently Tewari and van Willigenburg constructed modules of the 0-Hecke algebra
that are mapped to the quasisymmetric Schur functions by the quasisymmetric characteristic.
These modules have a natural decomposition into a direct sum of certain submodules. We show
that the summands are indecomposable by determining their endomorphism rings.

1. Introduction
Since the 19th century mathematicians have been interested in the Schur functions
sλ and their various properties. For example, they form an orthonormal basis of Sym,
the Hopf algebra of symmetric functions and they are the images of the irreducible
complex characters of the symmetric groups under the characteristic map [13]. The
symmetric functions are contained in the Hopf algebra QSym of quasisymmetric func-
tions defined by Gessel in 1984 [6]. An introduction to QSym can be found in [7].

There is a representation theoretic interpretation of QSym as well. The 0-Hecke al-
gebraHn(0) over a field K is a deformation of the group algebra KSn of the symmetric
group obtained by replacing the generators (i, i+1) of Sn by projections πi satisfying
the same braid relations. Norton discovered a great deal of the representation theory
of the 0-Hecke algebras in [12]. For a more combinatorial approach see [9].

Let G0 (Hn(0)) denote the Grothendieck group of the finitely generated Hn(0)-
modules and G :=

⊕
n>0 G0 (Hn(0)). Duchamp, Krob, Leclerc and Thibon established

the connection to QSym by defining an algebra isomorphism Ch : G → QSym called
quasisymmetric characteristic [5, 10].

As Sym is contained in QSym, one may ask whether there are quasisymmetric
analogues of the Schur functions. One such analogue due to Haglund, Luoto, Mason
and van Willigenburg is given by the quasisymmetric Schur functions Sα [8]. They
form a basis of QSym and nicely refine the Schur functions via

sλ =
∑
α̃=λ

Sα

where λ is a partition and the sum runs over all compositions α that rearrange λ [8]
(see Section 2.2 for definitions). Bessenrodt, Luoto and van Willigenburg defined skew
quasisymmetric Schur functions Sα//β and proved a Littlewood–Richardson rule for
expressing them in the basis of quasisymmetric Schur functions [3].
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Another basis of QSym sharing porperties with the Schur functions is formed by
the dual immaculate functions of Berg, Bergeron, Saliola, Serrano and Zabrocki [1].
Indecomposable 0-Hecke modules whose images under Ch are the dual immaculate
functions were defined in [2].

Tewari and van Willigenburg constructed modules Sα of the 0-Hecke algebra that
are mapped to Sα by Ch [14]. Each Sα has a K-basis parametrized by a set of
tableaux. By using an equivalence relation, they divided this set into equivalence
classes, obtained a submodule Sα,E of Sα for each such equivalence class E and
decomposed Sα as Sα =

⊕
E Sα,E . In the same way they defined and decomposed

skew modules Sα//β whose image under Ch is Sα//β .
This article is mainly concerned with the modules Sα and Sα,E . In [14], for a

special equivalence class Eα it was shown that Sα,Eα is indecomposable. Yet, the
question of the indecomposability of the modules Sα,E in general remained open.
The goal of this paper is to answer this question. We show that for each Sα,E the ring
of Hn(0)-endomorphisms is K id so that Sα,E is indecomposable. As a consequence,
Sα =

⊕
E Sα,E is a decomposition into indecomposable submodules.

The structure of the paper is as follows. In Section 2 we present the combinatorial
and algebraic background and then review the modules Sα//β and Sα//β,E . Section 3
is devoted to a related Hn(0)-operation on chains of a composition poset. From this
we obtain an argument crucial for proving the main results in Section 4.

2. Background
We set N := {1, 2, . . .} and always assume that n ∈ N. For a, b ∈ Z we define the
discrete interval [a, b] := {c ∈ Z | a 6 c 6 b} and may use the shorthand [a] := [1, a].
Throughout this paper K denotes an arbitrary field. For a set X, spanKX is the
K-vector space with basis X.

2.1. Symmetric groups and 0-Hecke algebras. The symmetric group Sn is the
group of all permutations of the set [n]. We proceed by reviewing Sn as a Coxeter
group. More details can be found in [4].

As a Coxeter group Sn is generated by the adjacent transpositions si := (i, i+ 1)
for i = 1, . . . , n− 1 which satisfy

s2
i = 1,

sisi+1si = si+1sisi+1,

sisj = sjsi if |i− j| > 2.
The latter two relations are called braid relations. Let σ ∈ Sn. We can write σ as a
product σ = sjk · · · sj1 . If k is minimal among such expressions, sjk · · · sj1 is a reduced
word for σ and `(σ) := k is the length of σ.

The support of σ is supp(σ) = {i ∈ [n − 1] | si appears in a reduced word of σ}.
One assertion of the word property of Sn [4, Theorem 3.3.1] is that a reduced word
of σ can be transformed into any other reduced word of σ by applying a sequence of
braid relations. Thus, for each reduced word of σ the set of indices occurring in it is
supp(σ).

Let σ, τ ∈ Sn. The left weak order 6L is the partial order on Sn given by

σ 6L τ ⇐⇒
τ = sik · · · si1σ,
`(sir · · · si1σ) = `(σ) + r for r = 1, . . . , k.

The following Proposition 2.1 gathers immediate consequences of the definition.

Proposition 2.1. Let σ, τ ∈ Sn.
(1) We have σ 6L τ if and only if `(τσ−1) = `(τ)− `(σ).
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(2) If σ 6L τ then the reduced words for τσ−1 are in bijection with saturated
chains in the left weak order poset (Sn,6L) from σ to τ via

sik · · · si1 ←→ σ lL si1σ lL si2si1σ lL · · ·lL sik · · · si1σ = τ.

(3) The poset (Sn,6L) is graded by the length function.

Theorem 2.2 ([4, Corollary 3.2.2]). Let σ, τ ∈ Sn. The interval in left weak order
[σ, τ ] := {ρ ∈ Sn | σ 6L ρ 6L τ} is a graded lattice with rank function ρ 7→ `(ρσ−1).

Next, we define the 0-Hecke algebra Hn(0). We use the presentation as in [14] and
refer to [11, Ch. 1] for details.

Definition 2.3. The 0-Hecke algebra Hn(0) is the unital associative K-algebra gen-
erated by the elements π1, π2, . . . , πn−1 subject to relations

π2
i = πi,

πiπi+1πi = πi+1πiπi+1,

πiπj = πjπi if |i− j| > 2.

Note that the π1, . . . , πn−1 are projections satisfying the same braid relations as
the s1, . . . , sn−1. Another set of generators of Hn(0) is given by elements π̄i for i =
1, . . . , n − 1 such that π̄2

i = −π̄i and the braid relations hold. We do not use them
here but they appear in some of the references.

Let σ ∈ Sn. We define πσ := πjk · · ·πj1 where sjk · · · sj1 is a reduced word for σ.
The word property ensures that this is well defined. Multiplication is given by

πiπσ =
{
πsiσ if `(siσ) > `(σ)
πσ if `(siσ) < `(σ)

for i = 1, . . . , n − 1. As a consequence, {πτ | τ ∈ Sn} spans Hn(0) over K. One can
also show that it is a K-basis of Hn(0).

2.2. Compositions and composition tableaux. A composition α = (α1, . . . , αl)
is a finite sequence of positive integers. The length and the size of α are given by
`(α) := l and |α| :=

∑l
i=1 αi, respectively. The αi’s are called parts of α. If α has

size n, α is called composition of n and we write α � n. A partition is a composition
whose parts are weakly decreasing. We write λ ` n if λ is a partition of size n. For a
composition α we denote the partition obtained by sorting the parts of α in decreasing
order by α̃. The empty composition ∅ is the unique composition of length and size 0.

Example 2.4. For α = (1, 4, 3) � 8, we have α̃ = (4, 3, 1) ` 8.

A cell (i, j) is an element of N × N. A finite set of cells is called diagram. Dia-
grams are visualized in English notation. That is, for each cell (i, j) of a diagram
we draw a box at position (i, j) in matrix coordinates. The diagram of α � n is the
set {(i, j) ∈ N× N | i 6 `(α), j 6 αi}. So, we display the diagram of α by putting αi
boxes in row i where the top row has index 1. We often identify α with its diagram.

Example 2.5.

(1, 4, 3) =

Next, we will consider standard composition tableaux and a related poset of com-
positions which arose in [3].
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Definition 2.6. The composition poset Lc is the set of all compositions together with
the partial order 6c given as the transitive closure of the following covering relation.
For compositions α and β = (β1, . . . , βl)

β lc α ⇐⇒
α = (1, β1, . . . , βl) or
α = (β1, . . . , βk + 1, . . . , βl) and βi 6= βk for all i < k.

In other words, β is covered by α in Lc if and only if the diagram of α can be
obtained from the diagram of β by adding a box as the new first row or appending a
box to a row which is the topmost row of its length in β.
Example 2.7.

lc lc lc lc lc

Let α and β be two compositions such that β 6c α. In this situation we always
assume that the diagram of β is moved to the bottom of the diagram of α, and we
define the skew composition diagram (or skew shape) α//β to consist of all cells of α
which are not contained in β.

Moreover, we define osh(α//β) = α and ish(α//β) = β as the outer and the inner
shape of α//β, respectively. The size of a skew shape is |α//β| := |α|− |β|. We call α//β
straight if β = ∅. In this case the skew composition diagram α//β is nothing but the
ordinary composition diagram α.
Example 2.8. In the following the cells of the inner shape are gray.

(1, 4, 3)//(1, 2) =

Note that β 6c α implies β`(β)−i 6 α`(α)−i for i = 0, . . . , `(β) − 1. One could
define skew shapes for all pairs of compositions fulfilling this containment condition.
Anyway, we demand 6c rather than containment since with the latter one allows skew
shapes for which standard composition tableaux (which we will define next) do not
exist. For instance, the compositions β = (1, 1) and α = (1, 2) satisfy the containment
condition but β 66c α. Even if α//β were a skew shape, there would be no standard
composition tableau of this shape (because of the triple rule stated below).

Let D be a diagram. A tableau T of shape D is a map T : D → N. It is visualized
by filling each (i, j) ∈ D with T (i, j).
Definition 2.9. Let α//β be a skew shape of size n. A standard composition tableau
(SCT) of shape α//β is a bijective filling T : α//β → [n] satisfying the following con-
ditions:

(1) The entries are decreasing in each row from left to right.
(2) The entries are increasing in the first column from top to bottom.
(3) (Triple rule). Set T (i, j) :=∞ for all (i, j) ∈ β. If (j, k) ∈ α//β and (i, k−1) ∈

α such that j > i and T (j, k) < T (i, k−1) then (i, k) ∈ α and T (j, k) < T (i, k).
Let a := T (j, k), b := T (i, k − 1) be two entries of an SCT T occurring in adjacent

columns. Then the triple rule can be visualized as follows by considering the positions
of entries in T :

b

a

and a < b
triple rule=⇒ ∃c ∈ T :

b c

a

and a < c.
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The set of standard composition tableaux of shape α//β is denoted with SCT(α//β).
For an SCT T we write sh(T ) for its shape. The notions of outer and inner shape are
carried over from sh(T ) to T . We call T straight if its shape is straight.

Example 2.10. An SCT is shown below.

T =
2

5 4 1
3

We have osh(T ) = (1, 4, 3) and ish(T ) = (1, 2).

Standard composition tableaux encode saturated chains of Lc in the following way.

Proposition 2.11 (see [3, Proposition 2.11]). Let α//β be a skew composition of size n.
For T ∈ SCT(α//β),

β = αn lc αn−1 lc · · ·lc α0 = α

given by
αn = β, αk−1 = αk ∪ T−1(k) for k = 1, . . . , n(1)

is a saturated chain in Lc. Moreover, we obtain a bijection from SCT(α//β) to the set
of saturated chains in Lc from β to α by mapping each tableau of SCT(α//β) to its
corresponding chain given by (1).

Example 2.12. The SCT from Example 2.10 corresponds to the chain from Exam-
ple 2.7.

From the perspective of Proposition 2.11, the triple rule reflects the fact that by
adding a cell to a row of a composition diagram, a covering relation in Lc is established
if and only if the row in question is the topmost row of its length.

Some of the upcoming notions already played a role in [14]. Let (i, j) and (i′, j′)
be two cells. Define r(i, j) := i and c(i, j) := j the row and the column of (i, j),
respectively. We say that (i, j) attacks (i′, j′) and write (i, j)  (i′, j′) if j = j′ and
i 6= i′ or j = j′ − 1 and i < i′. That is, the two cells are distinct and either they
appear in the same column or they appear in adjacent columns such that (i′, j′) is
located strictly below and right of (i, j). We call (i, j) the left neighbor of (i′, j′) if
i = i′ and j = j′ − 1.

Let T be an SCT and i, j ∈ T be two entries. We refer to the row and the column
of i in T by rT (i) := r(T−1(i)) and cT (i) := c(T−1(i)), respectively. We say that i
attacks j in T and write i T j if T−1(i) T−1(j). Note that i T j implies i 6= j.
If T−1(j) is the left neighbor of T−1(i) then we also call j the left neighbor of i.

For two sets of cells C1, C2 ⊆ N2 we say C1 attacks C2 and write C1  C2 if there
are cells c1 ∈ C1 and c2 ∈ C2 such that c1  c2. If c(c1) 6 c(c2) for all c1 ∈ C1, c2 ∈ C2
then C1 is called left of C2. If c(c1) < c(c2) for all c1 ∈ C1, c2 ∈ c2, C1 is strictly left
of C2. To simplify notation we may replace singletons by their respective element. For
instance, given a cell c1 we may write c1  C2 instead of {c1} C2.

In the same way we use these notions for sets of entries of an SCT.

Example 2.13. Consider the standard composition tableau T from Example 2.10.
We have 2  T 5, 3  T 4, 4  T 3, 5  T 3 and i 6 T j for all other pairs of entries.
Moreover, 3 is left of {1, 4} in T and 2 T {3, 5}.

Definition 2.14. Let T be an SCT of size n.
(1) D(T ) = {i ∈ [n− 1] | cT (i) 6 cT (i+ 1)} is the descent set of T .
(2) AD(T ) = {i ∈ D(T ) | i T i+ 1} is the set of attacking descents of T .
(3) nAD(T ) = {i ∈ D(T ) | i /∈ AD(T )} is the set of non-attacking descents of T .
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(1′) Dc(T ) = {i ∈ [n − 1] | cT (i + 1) < cT (i)} = [n − 1] r D(T ) is the ascent set
of T .

(2′) NDc(T ) = {i ∈ Dc(T ) | i+ 1 is the left neighbor of i} is the set of neighborly
ascents of T .

Example 2.15. Let T be the tableau from Example 2.10. Then D(T ) = {2, 3},
AD(T ) = {3}, Dc(T ) = {1, 4} and NDc(T ) = {4}.

2.3. 0-Hecke modules of standard composition tableaux. In this subsection
we consider the skew 0-Hecke modules Sα//β and Sα//β,E introduced in [14] and review
related results. This includes the special cases Sα and Sα,E .

Theorem 2.16 ([14, Theorem 9.8]). Let α//β be a skew composition of size n. Then
Sα//β := spanK SCT(α//β) is an Hn(0)-module with respect to the following action.
For T ∈ SCT(α//β) and i = 1, . . . , n− 1,

πiT =


T if i /∈ D(T )
0 if i ∈ AD(T )
siT if i ∈ nAD(T )

where siT is the tableau obtained from T by interchanging i and i+ 1.

The module Sα is called straight if α = α//β is a composition. Even though the
main results of this paper are only for straight modules, we consider the more general
concept of skew modules here as they naturally arise in the context of the 0-Hecke
action on chains of Lc in Section 3.

Example 2.17. Consider the SCT T =
1
6 5 4 3
8 7 2

. Then D(T ) = {1, 2, 6},

πiT =


T for i = 3, 4, 5, 7
0 for i = 6
siT for i = 1, 2,

s1T =
2
6 5 4 3
8 7 1

and s2T =
1
6 5 4 2
8 7 3

.

We now decompose Sα//β as in [14]. To do this we use an equivalence relation.
Let α//β be a skew composition of size n and T1, T2 ∈ SCT(α//β). The equivalence
relation ∼ on SCT(α//β) is given by

T1 ∼ T2 ⇐⇒ in each column the relative orders of entries in T1 and T2 coincide.

For example, the tableaux shown in Figure 1(a) form an equivalence class under ∼ as
well as the tableaux shown in Figure 1(b). We denote the set of equivalence classes
under ∼ on SCT(α//β) by E(α//β).

For E ∈ E(α//β) define Sα//β,E = spanKE. It is easy to see that the definition of
the 0-Hecke action on standard composition tableaux in Theorem 2.16 implies that
Sα//β,E is an Hn(0)-submodule of Sα//β . Thus we have the following.

Proposition 2.18 ([14, Lemma 6.6]). Let α//β be a skew composition. Then we have
Sα//β =

⊕
E∈E(α//β) Sα//β,E as Hn(0)-modules.

The main result of this paper is that the Hn(0)-endomorphism ring of each straight
module Sα,E is K id and, therefore, we obtain a decomposition of Sα into indecom-
posable submodules from Proposition 2.18.

Let α//β be a skew composition of size n and E ∈ E(α//β). We continue by study-
ing E and its module Sα//β,E more deeply. First, we consider a partial order � on E.
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It will turn out that (E,�) is a graded lattice. Afterwards, we prepare two techni-
cal results, Corollary 2.24 and Proposition 2.25, on the 0-Hecke action on standard
composition tableaux for later use.

Suppose T1, T2 ∈ E. In [14, Section 4] it is shown that a partial order � on E is
given by

T1 � T2 ⇐⇒ ∃σ ∈ Sn such that πσT1 = T2.

We refer to the poset (E,�) simply by E. Two examples are shown in Figure 1.
The following theorem summarizes results of [14, Section 6].

T0,E =
1
6 5 4 3
8 7 2

2
6 5 4 3
8 7 1

1
6 5 4 2
8 7 3

3
6 5 4 2
8 7 1

2
6 5 4 1
8 7 3

4
6 5 3 2
8 7 1

3
6 5 4 1
8 7 2

T1,E =
4
6 5 3 1
8 7 2

π1 π2

π2 π1

π3 π1 π2

π1 π3

(a) A poset (E,�) of straight tableaux

T0,E′ =
1
2

4 3

1
3

4 2

1
4

3 2

2
3

4 1

2
4

3 1

T1,E′ =
3
4

2 1

π2

π3 π1

π1 π3

π2

(b) A poset (E′,�) of skew tableaux

Figure 1. Two posets each of them given by an equivalence class of
standard composition tableaux and the corresponding partial order
�. Each covering relation is labeled with the 0-Hecke generator πi
realizing it.

Theorem 2.19. Let α//β be a skew composition, E ∈ E(α//β) and T ∈ E.
(1) The tableau T is minimal according to � if and only if Dc(T ) = NDc(T ).

There is a unique tableau T0,E ∈ E which satisfies these conditions called
source tableau of E.

(2) The tableau T is maximal according to � if and only if D(T ) = AD(T ).
There is a unique tableau T1,E ∈ E which satisfies these conditions called
sink tableau of E.

In particular, Sα//β,E is a cyclic module generated by T0,E.
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Source and sink tableaux can be observed in Figure 1. Next, we establish a connec-
tion between E and an interval of the left weak order. To do this we use the notion
of column words. Given T ∈ SCT(α//β) and j > 1, let wj be the word obtained by
reading the entries in the jth column of T from top to bottom. Then colT = w1w2 · · ·
is the column word of T . Clearly, colT can be regarded as an element of Sn (in one-line
notation).

Example 2.20. The column word of the tableau T0,E from Figure 1(a) is given by
colT0,E = 16857423 ∈ S8.

Lemma 2.21 ([14, Lemma 4.4]). Let T1 be an SCT, i ∈ nAD(T1) and T2 = πiT1. Then
colT2 = si colT1 and `(colT2) = `(colT1) + 1. That is, colT2 covers colT1 in left weak
order.

The following statement is similar to [14, Lemma 4.3].

Lemma 2.22. Let T1 and T2 be two standard composition tableaux such that
πip · · ·πi1T1 = T2. Then there is a subsequence jq, . . . , j1 of ip, . . . , i1 such that

(1) T2 = πjq · · ·πj1T1,
(2) sjq · · · sj1 is a reduced word for colT2 col−1

T1
.

In particular, T2 = πcolT2 col−1
T1
T1.

Proof. It follows from the definition of the 0-Hecke operation that we can find a
subsequence jq, . . . , j1 of ip, . . . , i1 of minimal length such that T2 = πjq · · ·πj1T1.
If q = 0 then T2 = T1 and the result is trivial. If q = 1 set i := j1. Then by the
minimality of q, T2 6= T1 and thus i ∈ nAD(T1). Now Lemma 2.21 shows that si is a
reduced word for colT2 col−1

T1
. If q > 1 use the case q = 1 iteratively. �

Theorem 2.23 ([14, Theorem 6.18]). Let α//β be a skew composition, E ∈ E(α//β)
and I = [colT0,E , colT1,E ] an interval in left weak order. Then the map col : E → I,
T 7→ colT is a poset isomorphism. In particular, E is a graded lattice with rank
function δ : T 7→ `(colT col−1

T0,E
).

Actually, Theorem 2.19, Lemma 2.21 and Lemma 2.22 are everything needed to
prove Theorem 2.23 as in [14]. They imply that col (and its inverse) map maximal
chains to maximal chains. Note that it follows from Theorem 2.23 and Proposition 2.1
that for T1 � T2 saturated chains from T1 to T2 correspond to reduced words for
colT2 col−1

T1
.

Corollary 2.24. Let T1 and T2 be two standard composition tableaux of size n and
σ ∈ Sn such that T2 = πσT1. Then T1 and T2 belong to the same equivalence class
under ∼. Let δ be the rank function of that class. Then

(1) δ(T2)− δ(T1) = `(colT2 col−1
T1

),
(2) δ(T2)− δ(T1) 6 `(σ) where we have equality if and only if σ = colT2 col−1

T1
.

Proof. Since T2 = πσT1, T2 ∼ T1. We obtain part (1) from the above discussion.
Part (2) is a consequence of (1) and Lemma 2.22. �

We finish this section by preparing another result for Section 4.

Proposition 2.25. Let T be an SCT, i, j ∈ T be such that i < j and � = T−1(i). If
in T i is located left of [i+ 1, j] and does not attack [i+ 1, j] then

(1) T ′ := πj−1 · · ·πi+1πiT is an SCT,
(2) sj−1 · · · si+1si is a reduced word for colT ′ col−1

T ,
(3) T ′(�) = j.
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Proof. Let T be an SCT and i, j ∈ T such that i < j, i is located left of [i + 1, j]
and i 6 [i+ 1, j]. Set � = T−1(i). We do an induction on m := j − i. If m = 1 then
i ∈ nAD(T ) and T ′ = πiT . Thus, (1) and (3) hold by the definition of the 0-Hecke
action and (2) is a consequence of Lemma 2.21.

Now, let m > 1. Since by assumption i is located left of [i + 1, j] and i 6 [i +
1, j], we can apply the induction hypothesis on i and j − 1 and obtain that T ′′ :=
πj−2 · · ·πi+1πiT is an SCT, sj−2 · · · si+1si is a reduced word for colT ′′ col−1

T and
T ′′(�) = j − 1. Since the operators πj−2, . . . , πi+1, πi are unable to move j, we have
T ′′−1(j) = T−1(j). By choice of i and j, � 6 T−1(j) = T ′′−1(j) and � is left of
T ′′−1(j). Thus, j − 1 ∈ nAD(T ′′) so that T ′ = πj−1πj−2 · · ·πiT = πj−1(T ′′) is an
SCT and T ′(�) = j. It follows from Lemma 2.21 that colT ′ col−1

T = sj−1 colT ′′ col−1
T =

sj−1sj−2 · · · si and that sj−1sj−2 · · · si is a reduced word. �

3. A 0-Hecke action on chains of the composition poset
In Proposition 2.11 a bijection between saturated chains in the composition poset
Lc and standard composition tableaux is given. In this section we study the 0-Hecke
action on these chains induced by this bijection. The main result of this section, Propo-
sition 3.8, will be useful in Section 4. We begin with some notation.

Definition 3.1. Let T be an SCT of shape α//β and size n, m ∈ [0, n] and
β = αn lc αn−1 lc · · ·lc α0 = α the chain in Lc corresponding to T . The SCT of
shape αm//β corresponding to the chain αn lc αn−1 lc · · ·lc αm is denoted by T>m.

Example 3.2. For T =
1

3
2

we have T>2 = 1
.

The following Lemma shows how we can obtain T>m directly from T .

Lemma 3.3. Let T be an SCT of size n and shape α//β, β = αnlcαn−1lc · · ·lcα0 = α
the chain in Lc corresponding to T and m ∈ [0, n].

(1) αm = osh(T>m).
(2) We obtain T>m from T by removing the cells containing 1, . . . ,m and sub-

tracting m from the remaining entries.

Proof. Part (1) is a immediate consequence of Definition 3.1. By Proposition 2.11, we
obtain T>m by successively adding cells with entries n−m, . . . , 1 to the inner shape
β at exactly the same positions where we would add n, . . . ,m + 1 to β in order to
obtain T from its corresponding chain. This implies part (2). �

With the first part of Lemma 3.3 we can access the compositions within a chain
of a given SCT. We use the following preorder to describe how the 0-Hecke action
affects these compositions.

Definition 3.4.
(1) For a composition α = (α1, . . . , αl) of n and j ∈ N we define |α|j =

# {i ∈ [l] | αi > j}.
(2) On the set of compositions of size n we define the preorder E by

α E β ⇐⇒
k∑
j=1
|β|j 6

k∑
j=1
|α|j for all k > 1.

Moreover, set α C β ⇐⇒ α E β and α 6= β.
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Note that |α|j is the number of cells in the jth column of the diagram of α.
Obviously E is reflexive and transitive. It is not antisymmetric since for example
(2, 1) E (1, 2) and (1, 2) E (2, 1). In general, for α, β � n we have

α E β and β E α ⇐⇒ |α|j = |β|j for all j = 1, 2, . . . ⇐⇒ α̃ = β̃.

Example 3.5.

C C

If we restrict E to partitions, we obtain the well known dominance order appearing,
for example, in [13]. However, E on partitions may seem to be reversed to the dom-
inance order. This is because in the definition above we are considering the number
of cells in columns rather than in rows as usual.

Lemma 3.6. Let α//β be a skew composition of size n and T1, T2 ∈ SCT(α//β) be such
that T2 = πiT1 for an i ∈ nAD(T1). Then

osh(T>i2 ) C osh(T>i1 ),
osh(T>m2 ) = osh(T>m1 ) for m ∈ [0, n],m 6= i.

Proof. Assume T1, T2 and i as in the assertion. Then T2 is the tableau obtained
from T1 by swapping the entries i and i+ 1 of T1. Let m ∈ [0, n].

If m 6= i then either {i, i+ 1} ⊆ [1,m] or {i, i+ 1} ∩ [1,m] = ∅. Therefore,
T−1

1 ([1,m]) = T−1
2 ([1,m]) and so from the perspective of Lemma 3.3 we remove

the same set of cells from T1 to obtain T>m1 as we remove from T2 to obtain T>m2 .
That is, sh(T>m1 ) = sh(T>m2 ).

If m = i, set (rk, ck) := T−1
1 (k) for k = i, i+ 1, γ1 := osh(T>i1 ) and γ2 := osh(T>i2 ).

We assume that all composition diagrams appearing here are moved to the bottom of
α. Observe that as T2 = siT1, one obtains sh(T>i2 ) from sh(T>i1 ) by moving the cell
(ri+1, ci+1) to the position (ri, ci). Since ish(T>i2 ) = β = ish(T>i1 ), we obtain γ2 from
γ1 by this movement. Moreover, i ∈ nAD(T1) implies ci < ci+1. That is, we obtain γ2
from γ1 by moving a cell strictly to the left. By the definition of E, this means that
γ2 C γ1. �

Example 3.7. The Hn(0)-action on tableaux and the corresponding chains of the
composition poset is shown below.

T osh(T>3) − osh(T>2) − osh(T>1) − osh(T>0)
1

3
2

− − −

↓ π2 ↓ π2
1

2
3

− − −

↓ π1 ↓ π1
2

1
3

− − −

Let α//β be a skew composition, E ∈ E(α//β) and T1, T2 ∈ E be such that T1 � T2.
Recall that for each saturated chain from T1 to T2 in E the index set of the 0-Hecke
operators establishing the covering relations within the chain is supp(colT2 col−1

T1
).
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As a consequence of Lemma 3.6 we obtain a criterion for determining whether an
operator πi appears in the saturated chains from T1 to T2 or not.

Proposition 3.8. Let α//β be a skew composition of size n, i ∈ [n− 1], E ∈ E(α//β)
and T1, T2 ∈ E be such that T1 � T2. Then i ∈ supp(colT2 col−1

T1
) if and only if

sh(T>i2 ) 6= sh(T>i1 ).

Proof. Lemma 3.6 applied to each covering relation in a saturated chain from T1 to T2
in E and the fact that E is a preorder imply

i ∈ supp(colT2 col−1
T1

) ⇐⇒ osh(T>i2 ) 6= osh(T>i1 ).

From this we obtain the claim since ish(T>i1 ) = β = ish(T>i2 ). �

4. The endomorphism ring of Sα,E

For each α � n there is an equivalence class Eα ∈ E(α) such that for all T ∈ Eα the
entries increase in each column from top to bottom [14, Section 8]. In [14], Tewari
and van Willigenburg showed that Sα,Eα is indecomposable.

In this section, we show for all E ∈ E(α) that EndHn(0)(Sα,E) = K id and
hence Sα,E is indecomposable; this extends the result of Tewari and van Willigen-
burg to the general case. By Proposition 2.18 we then have the desired decomposition
of Sα. In contrast, skew modules Sα//β,E can be decomposable (see Example 4.13 at
the end of the section).

We fix some notation that we use in the entire section unless stated otherwise.
Let α � n, E ∈ E(α) and T0 := T0,E be the source tableau of E. Moreover, let
f ∈ EndHn(0)(Sα,E), v := f(T0) and v =

∑
T∈E aTT be the expansion of v in the

K-basis E. Since Sα,E is cyclically generated by T0, f is already determined by v. The
support of v is given by supp(v) = {T ∈ E | aT 6= 0}. Our goal is to show that T0 is the
only tableau that may occur in supp(v) since then f = aT0 id ∈ K id. We begin with
a property holding for supp(v) that also appeared in the proof of [14, Theorem 7.8].

Lemma 4.1. If T ∈ supp(v) then D(T ) ⊆ D(T0).

Proof. Let T∗ ∈ E be such that D(T∗) 6⊆ D(T0). Then there is an i ∈ D(T∗)∩Dc(T0).
Because i ∈ Dc(T0), πiv = f(πiT0) = v. Thus, aT∗ is the coefficient of T∗ in πiv =∑
T∈E aTπiT . But this coefficient is 0 since πiT 6= T∗ for all T ∈ E. To see this,

assume that there is a T ∈ E such that πiT = T∗. Then we obtain a contradiction as

T∗ 6= πiT∗ = π2
i T = πiT = T∗. �

Thanks to Lemma 4.1 it remains to show aT = 0 for all T ∈ E such that T 6= T0
and D(T ) ⊆ D(T0). So fix such a tableau T . In order to determine aT , we will use a
0-Hecke operator πσ where σ = sj−1 · · · si and i and j are given by

(2)
i = max

{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
,

j = min
{
k ∈ [n] | k > i and i T0 k

}
.

That is, i is the greatest entry whose position in T differs from that in T0 and j is the
smallest entry in T0 which is greater than i and attacked by i in T0. At this point it
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is not clear that j is well defined since the defining set could be empty. However, the
next two lemmas will show that there always exists an element in this set.

Example 4.2. Consider the equivalence class E from Figure 1(a). Then T0 = T0,E
and there is exactly one other tableau T in E with D(T ) ⊆ D(T0):

T0 =
1
6 5 4 3
8 7 2

π1−→ T =
2
6 5 4 3
8 7 1

Defining i and j for T as in (2), we obtain i = 2 and j = 4. Note that 2 ∈ D(T0).
This property holds in general by the following result.

Lemma 4.3. Let T ∈ E be such that T 6= T0 and D(T ) ⊆ D(T0) and set

i = max
{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
.

Then i ∈ D(T0).

Proof. Let T , T0 and i be given as in the assertion. We introduce indices such that
D(T0) = {d1 < d2 < · · · < dm} and set d0 := 0, dm+1 := n. Moreover, define Ik :=
[dk−1 + 1, dk] for k = 1, . . . ,m+ 1. Recall that since T0 is a source tableau, Dc(T0) =
NDc(T0) by Theorem 2.19. That is, a+1 is the left neighbor of a for each ascent a of T0.
Therefore, we have Ik r {dk} ⊂ NDc(T0) and conclude that T−1

0 (Ik) is a connected
horizontal strip (a one-row diagram which contains all cells between its leftmost and
rightmost cell) for k = 1, . . . ,m+ 1.

Set �k := T−1
0 (k) for k = 1, . . . , n and let x be the index such that T (�x) = i.

Since T0 and T are straight, the ordering conditions of standard composition tableaux
imply T−1(n) = (`(α), 1) = T−1

0 (n). Therefore i 6= n and we now show i /∈ Dc(T0).
Assume for sake of contradiction that i ∈ Dc(T0). Let l ∈ [m + 1] be such that

i ∈ Il. Since i ∈ Dc(T0), i < dl and i+ 1 ∈ Il. The strip T−1
0 (Il) looks as follows:

�dl�dl−1 · · ·�i+1�i · · ·�dl−1+1.(3)

By choice of i, we have

T (�k) = k for k = i+ 1, . . . , n and T (�i) < i.(4)

Since entries decrease in rows of T , (3) implies

T (�k) < i for k = dl−1 + 1, . . . , i.(5)

Combining (4) and (5) we obtain

x 6 dl−1.(6)

We deal with two cases depending on cT (i). In both cases we will end up with a
contradiction.

Case 1. cT (i) 6 cT0(dl−1 + 1). It follows from D(T ) ⊆ D(T0) that i ∈ Dc(T ) and
thus cT (i + 1) < cT (i). Using cT0(i) = cT0(i + 1) + 1 = cT (i + 1) + 1, we obtain
cT0(i) 6 cT (i) 6 cT0(dl−1 + 1). Then there is a y ∈ [dl−1 + 1, i] such that �x and
�y are in the same column. On the one hand, we obtain from (5) that T (�y) < i =
T (�x). On the other hand, the choice of y and (6) imply y > dl−1 > x and hence
T0(�y) = y > x = T0(�x). That is, in the column of �x and �y the relative order
of entries in T differs from that in T0. So T 6∼ T0 which contradicts the assumption
T, T0 ∈ E.
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Case 2. cT (i) > cT0(dl−1 + 1). This case is illustrated in Figure 2. Since by (6)
x 6 dl−1, there is a 1 6 p 6 l− 1 such that x ∈ Ip. The leftmost cell of the connected
horizontal strip T−1

0 (Ip) is �dp . As entries decrease in rows of T from left to right, we
have T (�dp) > T (�x) = i. In addition, the choice of p and (4) imply that T (�dp) 6 i.
Thus, dp = x.

From dp = x we obtain dp 6= dl−1 since
cT0(dl−1) 6 cT0(dl−1 + 1) < cT (i) = cT0(dp)

where we use dl−1 ∈ D(T0) for the first inequality.
We claim that there exists an index y ∈ [dp + 1, dl−1 − 1] such that �y and �dp

are located in the same column. To prove the claim, assume for sake of contradic-
tion that this is not the case. Then dp ∈ D(T0) implies cT0(dp) < cT0(dp + 1).
Thus, it follows from Dc(T0) = NDc(T0) and induction that cT0(dp) < cT0(z) for
all z ∈ [dp + 1, dl−1 − 1]. As a consequence,

cT0(dl−1) < cT0(dp) < cT0(dl−1 − 1).
In other words, dl−1−1 is an ascent of T0 but dl−1 is not the left neighbor of dl−1−1.
This is a contradiction to the fact that T0 is a source tableau and finishes the proof
of the claim.

Now, let y be as claimed above. Then y ∈ [dp + 1, dl−1 − 1] and in particular
y 6= dp = x. Hence, (4) implies T (�y) < i and so T (�y) < i = T (�dp) . On the other
hand, y ∈ [dp + 1, dl−1 − 1] yields T0(�y) = y > dp = T0(�dp). As in Case 1, this is a
contradiction to T, T0 ∈ E. �

dl

dl

. . . i+ 1

i + 1

< i

i

. . .

< i

dl−1

< i

dl−1 + 1

i

dp

< i

y

Figure 2. An example for the positions of cells and entries in the
tableau T from Case 2 of the proof of Lemma 4.3.

Note that the i appearing in the following Lemma is not the same as in (2).

Lemma 4.4. For all i ∈ D(T0) there exists k ∈ T0 such that k > i and i T0 k.

Proof. Let i ∈ D(T0). Then cT0(i) 6 cT0(i+ 1) and thus rT0(i) 6= rT0(i+ 1). Since T0
is straight by assumption, the cell (rT0(i+ 1), cT0(i)) is contained in the shape of T0.
Let k be the entry of T0 in that cell. Then i  T0 k and k > i + 1 because entries
decrease in rows. �

Let T , i and j as in (2). Lemma 4.3 and Lemma 4.4 now show that j is well defined.
We proceed by considering the relative positions of i and [i+ 1, j] first in T0 and then
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in T . This will allow us to deduce useful properties of the operator πσ to be defined
in Lemma 4.9. In the following Lemma, i is slightly more general than in (2).

Lemma 4.5. Let i ∈ D(T0) and set j = min{k ∈ [n] | k > i and i  T0 k}. Then j
is well defined and in T0 i is located strictly left of [i + 1, j − 1] and does not attack
[i+ 1, j − 1].

We illustrate Lemma 4.5 before we prove it.

Example 4.6. For the source tableau from above

T0 =
1
6 5 4 3
8 7 2

and i = 2 ∈ D(T0) we have j = 4 = min{k ∈ [n] | k > i and i  T0 k} and
{3} = [i+ 1, j − 1]. Note 2 T0 4 but 2 6 T0 3.

Proof of Lemma 4.5. First, it follows from Lemma 4.4 that j is well defined. We set
I =: [i+ 1, j − 1] and cl := cT0(l) for l ∈ T0. By the minimality of j, we have i 6 T0 I.
It remains to show that i is strictly left of I or equivalently that ci < cl for all l ∈ I.
We may assume I 6= ∅ and use an induction argument to show this.

We begin with i + 1, the minimum of I. Since i ∈ D(T0), ci 6 ci+1. Moreover,
i+ 1 ∈ I implies i 6 T0 i+ 1 and consequently ci < ci+1.

Now, let l ∈ I such that l > i+1 and ci < cl−1. If l−1 ∈ D(T0) then ci < cl−1 6 cl.
If l − 1 ∈ Dc(T0) then l − 1 ∈ NDc(T0) as T0 is a source tableau. Thus cl = cl−1 − 1
and ci 6 cl. Furthermore ci 6= cl since i 6 T0 I 3 l. Hence, ci < cl. �

Let T, i and j as in (2). By definition, i attacks j in T0. In contrast, the next Lemma
shows that i does not attack j in T . There, i and j are defined as in (2).

Lemma 4.7. Let T ∈ E be such that T 6= T0 and D(T ) ⊆ D(T0). Define
i = max

{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
,

j = min
{
k ∈ [n] | k > i and i T0 k

}
.

Then i and j are well defined and in T i appears strictly left of [i+ 1, j] and does not
attack [i+ 1, j].

We first give an example and then the proof of Lemma 4.7.

Example 4.8. Recall that in our running example i = 2 and j = 4 when defined for

T =
2
6 5 4 3
8 7 1

as in Lemma 4.7. Then [i+ 1, j] = {3, 4} and 2 6 T {3, 4}.

Proof of Lemma 4.7. Lemma 4.3 yields i ∈ D(T0) and so Lemma 4.4 ensures that j
is well defined. Set σ := colT col−1

T0
, �k := T−1

0 (k) for k = 1, . . . , n and let x be the
index such that T (�x) = i.

By choice of i, we have T>i = T>i0 . So, sh(T>k) = sh(T>k0 ) for k = i, . . . , n. Hence,
from Proposition 3.8 we obtain

supp(σ) ⊆ [i− 1].(7)

Let sip · · · si1 be a reduced word for σ. Then T = πip · · ·πi1T0. From (7) we have iq 6= i
for q = 1, . . . , p. Moreover, at least one πiq has to move i because the position of i
in T differs from its position in T0. Hence, there is a q such that iq = i− 1 since πi−1
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and πi are the only operators that are able to move i. For two standard composition
tableaux T1 and T2 such that T2 = πi−1T1 = si−1T1 we have that i − 1 ∈ nAD(T1)
and thus T−1

2 (i) is left of T−1
1 (i) and T−1

2 (i) 6 T−1
1 (i). So, by applying πip · · ·πi1

to T0, i is moved (possibly multiple times) strictly to the left into a cell that does not
attack �i. That is,

�x is located strictly left of �i and �x 6 �i.(8)
It follows from the choice of i that the elements of [i+1, j−1] have the same position
in T and T0. By combining (8) and Lemma 4.5 we obtain:

In T i is located strictly left of [i+ 1, j − 1] and i 6 T [i+ 1, j − 1].(9)
Recall that j has the same position in T and T0. It follows from (8) and i T0 j that
cT (i) < cT0(i) 6 cT0(j). Thus, i is strictly left of j in T .

It remains to show i 6 T j. We have either cT0(j) = cT0(i) + 1 or cT0(j) = cT0(i)
since i T0 j.

Case 1. cT0(j) = cT0(i) + 1. Then (8) implies cT (i) < cT0(i) < cT0(j) = cT (j) and so
i 6 T j.

Case 2. cT0(j) = cT0(i). If cT (i) < cT0(i)− 1 then cT (i) < cT (j)− 1 and so i 6 T j. If
cT (i) = cT0(i)−1 then i and j appear in adjacent columns of T and for i 6 T j we have
to show that rT (j) < rT (i). On the one hand, we have 1 6 cT (i) < cT0(i) so that i
has a left neighbor t > i in T0. In addition, from the first statement of Lemma 4.5
and cT0(j) = cT0(i) we obtain that i is weakly left of [i+ 1, j] in T0. Thus, t > j and
hence rT0(j) < rT0(i) because otherwise t, i and j would violate the triple rule in T0.
On the other hand, cT (i) = cT0(i) − 1 and i 6 T �i imply rT0(i) < rT (i). All in all,
rT (j) = rT0(j) < rT0(i) < rT (i) and thus i 6 T j. �

Next, we prove useful properties of the operators πσ mentioned already above
in (2).

Lemma 4.9. Keep the notation of Lemma 4.7 and set σ = sj−1 · · · si+1si. Then
(1) πσT0 = 0,
(2) πσT ∈ E,
(3) σ = colπσT col−1

T .

Proof. First observe that sj−1 · · · si+1si is a reduced word, i.e. πσ = πj−1 · · ·πi+1πi.
Set �k = T−1

0 (k) for k = 1, . . . , n.
We consider T0. Set T ′ = πj−2 · · ·πi+1πiT0. We can apply Proposition 2.25 in T0

to i and [i+ 1, j− 1] because of Lemma 4.3 and Lemma 4.5. By doing this, we obtain
that T ′ ∈ E and T ′(�i) = j − 1. In addition, T ′(�j) = T0(�j) = j as none of the
operators πj−2, . . . , πi+1 moves j. Recall that j is defined such that �i  �j . Thus
j − 1 ∈ AD(T ′) and πσT0 = πj−1T

′ = 0.
Now consider T . Because of Lemma 4.7, we can apply Proposition 2.25 in T on i

and [i+ 1, j]. This immediately gives us (2) and (3). �

Example 4.10. Continuing our running example, we have i = 2, j = 4 and πσ = π3π2.
Moreover,

T0 =
1
6 5 4 3
8 7 2

π2−→
1
6 5 4 2
8 7 3

π3−→ 0,

T =
2
6 5 4 3
8 7 1

π2−→
3
6 5 4 2
8 7 1

π3−→
4
6 5 3 2
8 7 1

.
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We are ready to prove the main result of this paper now.

Theorem 4.11. Let α � n and E ∈ E(α). Then EndHn(0)(Sα,E) = K id. In particu-
lar, Sα,E is an indecomposable Hn(0)-module.

Proof. For the second part, note that if EndHn(0)(Sα,E) = K id then Sα,E is inde-
composable.

To prove the first part, let f ∈ EndHn(0)(Sα,E), v := f(T0) and v =
∑
T∈E aTT

as before. We show supp(v) ⊆ {T0} since this and the fact that Sα,E is cyclically
generated by T0 imply f = aT0 id ∈ K id.

If v = 0, this is clear so that we can assume v 6= 0. Recall that by Theorem 2.23 E
is a graded poset. We denote its rank function with δ. Let T∗ ∈ supp(v) be of maximal
rank in supp(v). Assume for sake of contradiction that T∗ 6= T0. Then Lemma 4.1
yields D(T∗) ⊆ D(T0). Hence, Lemma 4.9 provides the existence of σ ∈ Sn such that
πσT∗ ∈ E, πσT0 = 0 and σ = colπσT∗ col−1

T∗
.

We claim that if T ∈ supp(v) and πσT = πσT∗ then T = T∗. To see this, let
T ∈ supp(v) be such that πσT = πσT∗. Then

`(σ) > δ(πσT )− δ(T ) = δ(πσT∗)− δ(T ) > δ(πσT∗)− δ(T∗) = `(σ)

where Corollary 2.24 is used to establish the first inequality and the last equal-
ity. Hence, `(σ) = δ(πσT ) − δ(T ) and another application of Corollary 2.24 yields
colπσT∗ col−1

T = σ. But then

colπσT∗ col−1
T = σ = colπσT∗ col−1

T∗

so that colT = colT∗ and thus T = T∗ as claimed.
The claim implies that the coefficient of πσT∗ in πσv =

∑
T∈supp(v) aTπσT is aT∗ .

Yet, πσv = f(πσT0) = 0 and hence aT∗ = 0 which contradicts the assumption T∗ ∈
supp(v) and completes the proof of supp(v) ⊆ {T0}. �

Combining Theorem 4.11 with Proposition 2.18, we obtain the desired decomposi-
tion of Sα.

Corollary 4.12. Let α � n. Then Sα =
⊕

E∈E(α) Sα,E is a decomposition into
indecomposable submodules.

Example 4.13. In general, Theorem 4.11 does not hold for skew modules Sα//β,E .
The two tableaux

T0 = 1
2

π1−→ T1 = 2
1

form an equivalence class E. Let n = 2 and α//β = sh(T0). Observe that we obtain an
idempotent Hn(0)-endomorphism ϕ by setting ϕ(T0) = ϕ(T1) = T1. Clearly, ϕ is none
of the trivial idempotents 0, id ∈ EndHn(0)(Sα//β,E). Thus, EndHn(0)(Sα//β,E) 6= K id.
Moreover, we obtain a decomposition

Sα//β,E = ϕ(Sα//β,E)⊕ (id−ϕ)(Sα//β,E) = spanK(T1)⊕ spanK(T0 − T1)

into two submodules of dimension 1.
This example also illustrates how the argumentation of this section can fail when

it is applied to skew modules. Note that D(T1) ⊆ D(T0). So, we may try to set

i = max
{
k ∈ [n] | T−1

1 (k) 6= T−1
0 (k)

}
,

j = min
{
k ∈ [n] | k > i and i T0 k

}
.

as before. But then i = 2 so that j does not exist.
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