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Maximal green sequences for cluster-tilted
algebras of finite representation type

Kiyoshi Igusa

Abstract We show that, for any cluster-tilted algebra of finite representation type over an
algebraically closed field, the following three definitions of a maximal green sequence are equiv-
alent: (1) the usual definition in terms of Fomin–Zelevinsky mutation of the extended exchange
matrix, (2) a complete forward hom-orthogonal sequence of Schurian modules, (3) the sequence
of wall crossings of a generic green path. Together with [24], this completes the foundational
work needed to support the author’s work with P. J. Apruzzese [1], namely, to determine all
lengths of all maximal green sequences for all quivers whose underlying graph is an oriented or
unoriented cycle and to determine which are “linear”.

In an Appendix, written jointly with G. Todorov, we give a conjectural description of max-
imal green sequences of maximum length for any cluster-tilted algebra of finite representation
type.

1. Introduction
This paper is the second of three papers on the problem of “linearity” of stability con-
ditions, namely: Is the longest maximal green sequence for an algebra equivalent to one
given by a “central charge”? Although we do not address this question in this paper,
we explain the motivation behind the series of papers of which this is a part. The ques-
tion originates from a conjecture by Reineke [27] which asks if, for a Dynkin quiver,
there is a “slope function” (a special case of a central charge) making all modules sta-
ble. Reineke wanted such a result because, when it holds, his formulas would then give
an explicit description of a PBW basis for the quantum group Uv(n+) for the Dynkin
quiver. Yu Qiu partially answered this question by constructing a central charge for
at least one orientation of each Dynkin quiver making all modules stable [26].

The linearity problem is explained in the first paper [24] and solved in the third
paper of this series [1] in three cases:

(1) a hereditary algebra of affine type Ãn−1,
(2) type An any orientation and
(3) the n-cycle quiver modulo radn−1.
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The last example is well-known to be cluster-tilted of type Dn and is thus among the
ones discussed in this paper.

In the third paper [1], we use the description of a maximal green sequence in terms
of “wall crossing” sequences. The main purpose of the first two papers is to prove, in
the three cases considered in [1], that the wall crossing description is equivalent to the
usual definition of a maximal green sequence in terms of Fomin–Zelevinsky mutation
of a skew-symmetrizable matrix called the “exchange matrix” [22]. This definition is
reviewed in the example below. By “finite type” we mean the associated cluster algebra
has finite type. By [21] this is equivalent to the exchange matrix being mutation
equivalent to an acyclic exchange matrix of Dynkin type. We use the cluster category
approach [12]. To any acyclic exchange matrix we can associate an hereditary algebra
H and the clusters of the associated cluster algebra are in bijection with the cluster-
tilting objects of the cluster category CH of H. The endomorphism ring of a cluster-
tilting object is called a “cluster-tilted algebra”. These were introduced in [14]. (See
the Appendix below for more details, including definitions, for “tilted algebras” and
“cluster-tilted algebras”.) A cluster-tilted algebra has finite representation type if and
only if it comes from a cluster category of finite type [13] (see also [25]). This happens
if and only if the hereditary algebra has finite representation type, equivalently it
is of Dynkin type. By [21] this happens if and only if the cluster algebra has finite
type. By the main results of [24], this implies that the maximal green sequences of
cluster algebras of finite type are in bijection with maximal green sequences for a
corresponding (not unique) cluster-tilted algebra which are given by sequences of
indecomposable modules. We use representation theory to study these sequences.

In this paper we restrict to the case of cluster algebras of finite type coming from
skew-symmetric matrices. To each such algebra there is an associated quiver with po-
tential [20]. As explained in the previous paragraph, there is a corresponding cluster-
tilted algebra of finite representation type. In the skew-symmetric case we can choose
the cluster-tilted algebra to be an algebra over an algebraically closed field. In this
case, the cluster-tilted algebra is well-known to be isomorphic to the Jacobian algebra
Λ = J(Q,W ) of a quiver with potential of finite representation type [11]. (See the
example given below.) The main theorem of this paper is the equivalence between the
following three definitions of a maximal green sequence for such an algebra Λ.

(1) The usual definition (mutation of the extended exchange matrix)
(2) Complete forward hom-orthogonal sequence of Schurian modules (Defini-

tion 2.2). Recall that a module is Schurian if its endomorphism ring is a
division algebra.

(3) Wall crossing sequence of a green path in the cluster complex (Definition 3.5).

The precise statement is as follows.

Theorem 1.1. Let Λ = J(Q,W ) be the Jacobian algebra of a finite type quiver Q
with nondegenerate potential W over any field. Let β1, . . . , βm be a finite sequence
of elements of Nn where n is the number of vertices of Q. Then the following are
equivalent.

(1) β1, . . . , βm are the c-vectors of a maximal green sequence for Q.
(2) There exist Schurian left Λ-modules M1, . . . ,Mm with dimension vectors

dimMi = βi so that
(a) HomΛ(Mi,Mj) = 0 for all i < j.
(b) No other module can be inserted into this sequence preserving (a).

(3) There exists a generic green path γ crossing a finite number of stability walls
D(M1), ... , D(Mm) so that dimMi = βi.
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In Section 2 we prove the equivalence (1) ⇔ (2) and, in Section 3, we prove
(2) ⇔ (3). In [24] we proved the equivalences (1) ⇔ (3) ⇔ (2) for Λ any finite
dimensional hereditary algebra over any field. The equivalence (1)⇔ (3) for cluster-
tilted algebras of typeDn and tame hereditary algebras of type Ãn−1 is what is needed
for the last paper [1].

In an Appendix, written jointly with Gordana Todorov, we use this equivalence to
describe upper and lower bounds on the maximal length of a maximal green sequence
for Λ and we conjecture that the lower bound is sharp. When this Conjecture (A.15)
holds, it gives a representation theoretic description of maximal green sequences of
maximal length.

As an example of the conjecture, consider the following quiver.

Q : 2
α

��
1 γ // 3

β
[[

with potential W = αβγ. Potentials are linear combinations of oriented cycles in
the quiver and are only well-defined up to cyclic permutation. The Jacobian algebra
J(Q,W ) is defined to be the path algebra KQ of Q over a fixed field K modulo the
partial derivatives ofW with respect to each arrow [20]. In this case these relations are:

∂αW := βγ = 0, ∂βW := γα = 0, ∂γW := αβ = 0.

In other words, Λ = J(Q,W ) = KQ/ rad2KQ.
As we explain in the Appendix, there are three “tilted algebras” associated to Λ.

They are given by “cutting” the quiver, i.e. , by deleting one of the three edges of Q.
Any two of the quivers obtained by cutting are isomorphic. So, we delete edge γ. We
are left with the following quiver:

Qδ : 1 α←− 2 β←− 3

with one relation αβ = 0 since this is the only relation ofQ supported on the subquiver
Qδ. The resulting algebra C = KQδ/(αβ) is a tilted algebra of type A3 with 5 inde-
composable modules with dimension vectors (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 0, 0).
Conjecture A.15 then states that a longest maximal green sequence for Q has these
vectors as the c-vectors of the mutations as we now explain and thus has length 5.

Maximal green sequences (MGS) are defined only in terms of the quiver Q as
follows. The exchange matrix B of Q is defined to be the skew-symmetric matrix with
ijth entry bij equal to the number of arrows i→ j in the quiver Q minus the number
of arrows j → i.

B =

 0 −1 1
1 0 −1
−1 1 0


The extended exchange matrix B̃ is given by putting the 3× 3 identity matrix I3 be-
low B. By Theorem A.13 there is a MGS of length 5 which mutates at the “c-vectors”
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which are the dimension vectors of the C-modules as follows.

B̃ =


0 −1 1
1 0 −1
−1 1 0
1 0 0
0 1 0
0 0 1


µ3−→


0 0 −1
0 0 1
1 −1 0
1 0 0
0 1 0
0 1 −1


µ2−→


0 0 −1
0 0 −1
1 1 0
1 0 0
0 −1 1
0 −1 0


µ3−→


0 0 1
0 0 1
−1 −1 0
1 0 0
1 0 −1
0 −1 0



µ1−→


0 0 −1
0 0 1
1 −1 0
−1 0 1
−1 0 0
0 −1 0


µ3−→


0 −1 1
1 0 −1
−1 1 0
0 0 −1
−1 0 0
0 −1 0


The c-vectors are the columns of the bottom half of these exchange matrices. The
Fomin–Zelevinsky mutation µk is given by applying the following general rule. We add
bik|bkj | to bij whenever bik and bkj have the same sign, then we change the signs of all
bik, bkj [22]. The mutation µk is green if the kth c-vector is positive, i.e., all its entries
are nonnegative. The last matrix has no positive c-vectors. So, the green mutation
sequence must stop. This is therefore amaximal green sequence. The standard notation
for this mutation sequence is (3, 2, 3, 1, 3). However, we prefer to label the sequence
with its c-vectors because of their representation theoretic interpretation.

The c-vectors of this MGS are the dimension vectors of the C-modules in the
order M1, . . . ,M5 so that HomC(Mi,Mj) = HomΛ(Mi,Mj) = 0 for i < j. The
sixth Λ-module M6 with dimM6 = (1, 0, 1) cannot be inserted into this sequence
since HomΛ(M1,M6) 6= 0 and HomΛ(M6,M5) 6= 0. So, the sequence M1, . . . ,M5 is a
complete forward hom-orthogonal sequence.

2. Forward hom-orthogonal sequences
We will show that, for any Jacobian algebra Λ = J(Q,W ) of finite representation
type, there is a 1-1 correspondence between maximal green sequences and complete
forward hom-orthogonal sequences of Schurian modules, also known as “bricks”. We
prove this by induction on the length of a green sequence. The key step (Lemma 2.11)
is known to hold for any cluster-tilted algebra by [11]. But, we go through the details
for the benefit of our students.

2.1. Definition of forward hom-orthogonal sequence. The results of this
subsection hold for Λ any finite dimensional algebra over a field.

In the following definition we use the notation F(M) := M⊥ for the full subcat-
egory of Λ-mod of all Y so that HomΛ(M,Y ) = 0 and G(M) := ⊥F(M) is the
full subcategory of Λ-mod of all X so that HomΛ(X,Y ) = 0 for all Y ∈ F(M).
Then F(M) = G(M)⊥. So, (G(M),F(M)) is a torsion pair in Λ-mod where G(M)
(resp. F(M)) is the torsion class (resp. , torsion-free class). (See, e.g. , [7].)

The basic properties of the torsion class G(M) are that G(M) is closed under
extensions (in particular, direct sums) and also closed under taking quotients. For
example, any quotient module N ofM lies in G(M) and therefore, G(N) ⊂ G(M) and
F(N) = N⊥ ⊃M⊥ = F(M). We also need the fact that, for any Λ-module X, there
is a canonical short exact sequence

0→ rX → X → tX → 0

Algebraic Combinatorics, Vol. 2 #5 (2019) 756



MGSs for cluster-tilted algebras of finite type

where rX ∈ G(M) and tX ∈ F(M). The canonical sequence is easy to construct: rX
is simply the sum of all submodules of X which are objects of G(M). Since G(M) is
closed under direct sums and quotients, rX is an object in G(M).

Proposition 2.1. Suppose HomΛ(X,Y ) = 0 and C = X⊥ ∩ ⊥Y .
(1) If C 6= 0 then C contains a Schurian object.
(2) G(X) = ⊥C ∩ ⊥Y .

Proof.
(1) Let M be a nonzero object of C of minimal length. Then we claim that M is

Schurian. If not, there would be an endomorphism f : M → M whose image f(M)
is nonzero and of smaller length than M . But f(M) ∈ X⊥, being a submodule of M
and f(M) ∈ ⊥Y since it is a quotient object of M . Therefore, f(M) lies in C which
contradicts the minimality of M .

(2) G(X) ⊂ ⊥Y since Y ∈ F(X). G(X) ⊂ ⊥C since C ⊂ X⊥ = F(X). Therefore,
G(X) ⊂ ⊥C ∩ ⊥Y . Conversely, let M ∈ ⊥C ∩ ⊥Y . Then, in the canonical short exact
sequence 0→ rM →M → tM → 0 for the torsion pair (G(X),F(X)), tM ∈ ⊥C∩ ⊥Y
since tM is a quotient of M ∈ ⊥C ∩ ⊥Y . Also, tM ∈ F(X) = X⊥ by definition of the
canonical sequence. So, tM ∈ X⊥∩ ⊥C∩ ⊥Y = C∩ ⊥C = 0. So,M = rM ∈ G(X). �

Definition 2.2. A forward hom-orthogonal (FHO) sequence in Λ-mod is a finite
sequence of Schurian modules M1, · · · ,Mm so that

(1) HomΛ(Mi,Mj) = 0 for all 1 6 i < j 6 m.
(2) The sequence is maximal in G(M) whereM = M1⊕· · ·⊕Mm. By maximal we

mean that no other Schurian object in G(M) can be inserted into the sequence
M1, . . . ,Mm preserving property (1).

We say that a forward hom-orthogonal sequence is complete if G(M) = Λ-mod or,
equivalently, F(M) = 0 where we generally let M denote M1 ⊕ · · · ⊕Mm when it is
clear from the context which forward hom-orthogonal sequence is being considered. If
the sequence (Mi) satisfies only (1) we call it weakly forward hom-orthogonal. Note
that, by Proposition 2.1, property (1) is equivalent to the condition that G(M)∩(M1⊕
· · ·⊕Mk)⊥∩ ⊥(Mk+1⊕· · ·⊕Mm) = 0 for all k since, if this intersection were nonzero,
by 2.1 (1) it would contain a Schurian object which could be inserted between Mk and
Mk+1 in the FHO sequence.

As a consequence of Proposition 2.1 we have the following.

Corollary 2.3. Let M1, . . . ,Mm be a weakly FHO sequence of Schurian Λ-modules
which is maximal in the sense that it is not a proper subsequence of any other weakly
FHO sequence. Then M1, . . . ,Mm is complete.

Proof. It follows from Definition 2.2 that M1, . . . ,Mm is FHO in G(M). It remains to
show that G(M) = Λ-mod. Suppose not. Then, F(M) 6= 0 and, by Proposition 2.1
with Y = 0 and X = M , there would exist a Schurian module in F(M) = M⊥. This
Schurian module could be added after Mm contradicting its maximality. �

Proposition 2.4. IfM1, . . . ,Mm is a FHO sequence in Λ-mod then so isM1, . . . ,Mk

for any k < m.

Proof. Suppose not. Then there is a Schurian object X in G(M1 ⊕ · · · ⊕Mk) which
can be inserted into the sequence M1, . . . ,Mk. But X ∈ ⊥Mj for k < j 6 m since
X ∈ G(M1 ⊕ · · · ⊕Mk) ⊂ G(M1 ⊕ · · · ⊕Mm). So, X can also be inserted into the
original sequence M1, . . . ,Mm giving a contradiction. �
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Lemma 2.5. Let M1, . . . ,Mm be a FHO sequence in Λ-mod so that no Mi is isomor-
phic to the simple module Sj. Then HomΛ(Mi, Sj) = 0 for all i.

Proof. Suppose not and let i be minimal so that HomΛ(Mi, Sj) 6= 0. Since Sj is
simple, any nonzero morphism Mi → Sj must be an epimorphism. So, Sj ∈ G(M),
whereM =

⊕
iMi. Also, HomΛ(Sj ,Mk) = 0 for all i 6 k 6 m. So, Sj can be inserted

into the FHO sequence to the left of Mi contradicting its maximality. �

This Lemma implies that, if a simple module is missing from a FHO sequence, it
can be added after the last module.

Proposition 2.6. Each complete FHO sequence in Λ-mod contains every simple Λ-
module. �

Corollary 2.7. If M1, . . . ,Mm is a complete FHO sequence then Mm is simple.

Proof. If Mm were not simple, all simple Λ-modules would come before Mm in the
sequence. Then, HomΛ(Sk,Mm) = 0 for all k which is impossible. �

Lemma 2.8. Let M be a Schurian module. Then M = M1 is a FHO sequence of length
1 if and only if M is simple.

Proof. Let M = Si be the ith simple module. Then F(Si) contains the injective
modules Ij for all j 6= i. So, G(Si) consists only of iterated self extensions of Si. So,
Si is the only Schurian object in G(Si). So, it is a FHO sequence of length 1.

Conversely, let M = M1 be a FHO sequence of length 1. If M is not simple then,
by Lemma 2.5, HomΛ(M,Sj) = 0 for all Sj which is impossible. �

Proposition 2.4, Lemma 2.8 and Proposition 2.7 imply that every FHO sequence
starts with a simple module. This leads to the following very useful result.

Proposition 2.9. Let M1, . . . ,Mm be a sequence of Schurian Λ-modules. Then the
following are equivalent.

(1) M1, . . . ,Mm is a complete FHO sequence in Λ-mod.
(2) M1 is simple and M2, . . . ,Mm is a maximal weakly FHO sequence in M⊥1 .
(3) Mm is simple and M1, . . . ,Mm−1 is a maximal weakly FHO sequence in

⊥Mm.

Proof. Since every complete FHO sequence starts and ends with a simple module,
(1) implies (2) and (1).

For the converse, we observe in both cases (2) and (3), every simple module must
occur in the sequence. Suppose not. Let Sk be a simple module not isormorphic to any
Mi. In Case (3), M1, . . . ,Mm−1 is FHO by definition since ⊥Mm is a torsion class.
Therefore, by Lemma 2.5, HomΛ(Mi, Sk) = 0 for all i < m. Also, HomΛ(Sk,Mm) = 0
since Sk,Mm are nonisomorphic simple modules. So, Sk can be added to the sequence
M1, . . . ,Mm−1 contradicting its maximality as a sequence in ⊥Mm. In case (2), let
j > 1 be maximal so that HomΛ(Mi, Sk) = 0 for 1 6 i 6 j. Then, either j < m in
which case HomΛ(Mj+1, Sk) 6= 0 or j = m. In either case, Sk can be inserted into
the sequence M1, . . . ,Mm after Mj , where j > 1, contradicting the maximality of
M2, . . . ,Mm in M⊥1 .

This implies that M1, . . . ,Mm is maximal weakly FHO and thus complete (by
Corollary 2.3). Indeed, in Case (2), no module can be inserted before M1 since every
module maps to at least one simple module. No Schurian module can be inserted
after M1 since that would increase the length of the sequence M2, . . . ,Mm in M⊥1
contradicting its maximality. Case (3) is similar. Therefore, the three conditions are
equivalent. �
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2.2. Rotation of forward hom-orthogonal sequences. We assume for the
rest of the paper that Q is a quiver without loops or oriented 2-cycles which is of
finite type in the sense of Fomin and Zelevinsky [22]. Let W be a nondegenerate
potential for Q in the sense of [20]. Let Λ = J(Q,W ) be the Jacobian algebra of
the quiver with potential (Q,W ). Mutation of quivers with potential will be reviewed
below (before the proof of Lemma 2.11).

We will show, in Theorem 2.13, that sequences ofm green mutations (i.e., mutations
on positive c-vectors) of the quiver Q are in bijection with FHO sequences of length
m in J(Q,W )-mod. This will immediately imply the bijection (Corollary 2.14):{

maximal green sequences
for Q

}
∼=
{
complete FHO sequences

for J(Q,W )

}
.

We will prove the m mutation statement by induction on m using Lemma 2.11
below which, by Corollary 2.15, is an analogue of the Rotation Lemma [9] for complete
FHO sequences. Before this we review the mutation process for quivers with potential:
(Q′,W ′) = µk(Q,W ) assuming that Q is a quiver of finite type with nondegenerate
potential W . We begin with the observation that, since Q has finite type, it cannot
contain the subquiver

Ã2 : i %%// k // j

since, if it did, mutation at k would produce a double arrow from i to j.
Let I be the set of all vertices i for which there is an arrow αi : i → k in Q.

Let J be the set of all vertices j for which there is an arrow βj : k → j in Q. Since
Q has finite type, Q has no arrows between elements of I and no arrows between
elements of J . Otherwise Q would contain a subquiver of type Ã2. Additionally, for
each (i, j) ∈ I × J there are no arrows i→ j and there is at most one arrow j → i.

Let P be the set of all pairs (i, j) ∈ I×J for which Q has an arrow γij : j → i. Let
P ′ be the complement of P in I × J . The mutated quiver Q′ = µkQ is obtained from
Q by reversing the orientations of the arrows αi, βj to produce new arrows α∗i : k → i,
β∗j : j → k, adding an arrow γ∗i′j′ : i′ → j′ for each (i′, j′) ∈ P ′ and deleting the
arrows γij : j → i for all (i, j) ∈ P . This is indicated as follows.

Q : j

γij

&&
k

βj

oo i
αi

oo Q′ = µkQ : j′
β∗

j′

// k
α∗

i′

// i′

γ∗
i′j′

xx

The potential W is a linear combination of oriented cycles in Q. We begin with the
general form of such a potential then simplify it by a change of coordinates. Collecting
together all terms involving γij or βjαi for (i, j) ∈ P , we have:

W =
∑

(i,j)∈P

aijγijβjαi +
∑

(i,j)∈P

Aijβjαi +
∑

(i,j)∈P

γijBij + other terms

where aij are nonzero scalars, Aij , Bij are linear combinations of path j → i and i→ j
of length at least 2. We claim that, by changing the choice of γij we may eliminate
the terms Aij . The new γij will be equal to aijγij plus a converging, possibly infinite
sum of paths j → i.

The first step in this simplification process is given by changing the choice of γij
to γ′ij := aijγij +Aij . Equivalently, we make the substitution

γij = a−1
ij γ

′
ij − a−1

ij Aij .

Then we obtain:
W =

∑
(i,j)∈P

γ′ijβjαi +
∑

(i,j)∈P

A′ijβjαi +
∑

(i,j)∈P

γ′ijB
′
ij + other terms.
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The old terms Aijβjαi are cancelled. However, new term arise from γijBij =
a−1
ij γ

′
ijBij − a

−1
ij AijBij . The term a−1

ij AijBij might give a term A′ijβjαi since βjαi
might be a subword of a term in Aij . To fix this we let γ′′ij := γ′ij +A′ij and substitute
again:

γ′ij = γ′′ij −A′ij .
This process converges because the minimum length of the paths in the sum Aij is
going to infinity. To see this, define the “adjusted length” of each path in Aij to be its
length minus the number of two letter subwords of the form βjαi. When a cycle in the
sum AijBij becomes a cycle in A′ijβjαi, the length of the path in A′ij is at least equal
to the length of the corresponding path in Aij since Bij is a linear combination of
paths of length > 2. However, the adjusted length strictly increases since the subword
βjαi has been removed from Aij . Therefore, the process converges. So, we may assume
aij = 1 and Aij = 0 in the expression for W and we have:

W =
∑

(i,j)∈P

γijβjαi + F

where F is a linear combination of oriented cycles in Q none of which contain the
subword βjαi for any (i, j) ∈ P . We may also assume that each of these oriented
cycles, written as a path, does not start at vertex k. Then, if αi occurs as a letter in
one of these paths, the next letter must be βj where (i, j) ∈ P ′. This implies that, for
each i ∈ I, we have

∂αiF =
∑

j:(i,j)∈P ′
Fijβj

where Fij is a linear combination of paths from j to i. For each occurrence of the
word βjαi in the terms in F we get one term in Fij . With this description we also
see that

∂βj
F =

∑
i:(i,j)∈P ′

αiFij .

For each (i, j) ∈ P let
Gij := ∂γijF.

The Jacobian algebra J(Q,W ) is the path algebra of Q modulo the following
relations.

(∀(i, j) ∈ P ) ∂γij
W = 0 : βjαi = −Gij

(1) (∀i ∈ I) ∂αi
W = 0 :

∑
j:(i,j)∈P

γijβj +
∑

j′:(i,j′)∈P ′
Fij′βj′ = 0

(∀j ∈ J) ∂βj
W = 0 :

∑
i:(i,j)∈P

αiγij +
∑

i′:(i′,j)∈P ′
αi′Fi′j = 0

And, for all other arrows δ, the equation ∂δW = 0 is just Wδ := ∂δF = 0.
We need the following notation. Let X be a linear combination of paths or oriented

cycles in Q which do not start or end at vertex k and which do not contain the
subword βjαi for any (i, j) ∈ P , for example, X = F, Fij , Gij . We denote by X̃∗ the
corresponding linear combination of paths or cycles in Q′ given by replacing each
occurrence of the letter γij in X, for (i, j) ∈ P , with α∗i β∗j and each occurrence of the
pair of letters βj′αi′ , for (i′, j′) ∈ P ′, with γ∗i′j′ .

We need formulas for commuting cyclic derivatives with the operation (̃ )
∗
. The

best explanation might be by example: Given an oriented cycle

X = (γij)ab(βj′αi′)de(γij′)gh
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we have X̃∗ = (α∗i β∗j )ab(γ∗i′j′)de(α∗i β∗j′)gh. Then

∂α∗
i
X̃∗ = β∗j ab(γ∗i′j′)de(α∗i β∗j′)gh+ β∗j′gh(α∗i β∗j )ab(γ∗i′j′)de = β∗j ∂̃γijX

∗
+ β∗j′ ∂̃γij′X

∗

following the general formula:

∂α∗
i
X̃∗ =

∑
j′:(i,j′)∈P ′

β∗j′ ∂̃γij′X
∗
.

Using this formula, we obtain the following calculations.

(2) ∀i ∈ I : ∂α∗
i
F̃ ∗ =

∑
j:(i,j)∈P

β∗j ∂̃γij
F
∗

=
∑

j:(i,j)∈P

β∗j G̃
∗
ij

∀j ∈ J : ∂β∗
j
F̃ ∗ =

∑
i:(i,j)∈P

G̃∗ijα
∗
i

∀(i′, j′) ∈ P ′ : ∂γ∗
ij
F̃ ∗ = F̃ ∗ij

All other arrows δ in Q′ are also arrows in Q and the operations ∂δ and (̃ )
∗
commute:

∂δF̃
∗ = ∂̃δF

∗
.

Proposition 2.10. The mutation µk(Q,W ) of this quiver with potential in direction
k is equivalent to (Q′,W ′) where Q′ is defined above and

W ′ = −
∑

(i′,j′)∈P ′
α∗i′β

∗
j′γ
∗
i′j′ + F̃ ∗

where the notation F̃ ∗ is defined above. The Jacobian algebra J(Q′,W ′) is the path
algebra of Q′ modulo the relations given as follows.

(∀i ∈ I) ∂α∗
i
W ′ = 0 : −

∑
j′:(i,j′)∈P ′

β∗j′γ
∗
ij′ +

∑
j:(i,j)∈P

β∗j G̃
∗
ij = 0

(∀j ∈ J) ∂β∗
j
W ′ = 0 : −

∑
i′:(i′,j)∈P ′

γ∗i′jα
∗
i′ +

∑
i:(i,j)∈P

G̃∗ijα
∗
i = 0

(∀(i′, j′) ∈ P ′) ∂γ∗
i′j′
W ′ = 0 : α∗i′β

∗
j′ = F̃ ∗i′j′

And, for all other arrows δ, the equation ∂δW ′ = 0 is just W̃ ∗δ = 0 where Wδ = ∂δF .

Proof. We follow the original definition of mutation of a quiver with potential as given
in [20]. The first step is to replace the pair of letters βjαi with a new letter γ∗ij for
all (i, j) ∈ I × J = P

∐
P ′. We denote the result of such a procedure with a tilde .̃

We get:
W̃ =

∑
(i,j)∈P

γijγ
∗
ij + F̃

where F̃ is a linear combination of oriented cycles of length at least 3. The next step is
usually to add new terms α∗i β∗j γ∗ij for all (i, j) ∈ I×J . However, it is more convenient
to subtract these terms to get:

W̃+ = −
∑

(i,j)∈I×J

α∗i β
∗
j γ
∗
ij +

∑
(i,j)∈P

γijγ
∗
ij + F̃

This deviation from standard procedure is justified since the letters α∗i occur only in
this new sum. By replacing each α∗i with its negative, we change the signs of these
new terms.
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The next step is to change the basis again by replacing γij with γ′ij +α∗i β
∗
j for each

(i, j) ∈ P . This eliminates those terms in the first sum corresponding to (i, j) ∈ P
to give:

W̃ ′ = −
∑

(i,j)∈P ′
α∗i β

∗
j γ
∗
ij +

∑
(i,j)∈P

γ′ijγ
∗
ij + F̃ ′

The term F̃ ′ contains the term that we want F̃ ∗ plus other unwanted terms involving
γ′ij for (i, j) ∈ P . So, F̃ ′ = F̃ ∗ +

∑
γ′ijZij where Zij is a linear combination of paths

of length at least 2 from i to j for each (i, j) ∈ P . Then W̃ ′ can be rewritten as:

W̃ ′ = −
∑

(i,j)∈P ′
α∗i β

∗
j γ
∗
ij +

∑
(i,j)∈P

γ′ijγ
∗
ij +

∑
(i,j)∈P

γ′ijZij + F̃ ∗.

Since γ∗ij only occurs in the second sum, we can change coordinates, replacing γ∗ij
with γ′∗ij − Zij to eliminate the third, unwanted sum. Then

W̃ ′ = −
∑

(i,j)∈P ′
α∗i β

∗
j γ
∗
ij +

∑
(i,j)∈P

γ′ijγ
′∗
ij + F̃ ∗.

Now the letters γ′ij and γ′∗ij occur only in the second sum which is a sum of 2-cycles.
The final step is to “reduce” this expression by deleting these isolated 2-cycles to give

W ′ = −
∑

(i,j)∈P ′
α∗i β

∗
j γ
∗
ij + F̃ ∗

as claimed. Computation of the cyclic derivatives of W ′ is given by Formulas 2. �

The following lemma is proved in much greater generality in [11, Sec 7] where the
statement is demonstrated for any cluster-tilted algebra of the form Λ = J(Q,W ).
The statement uses an involution ϕk on Zn defined as follows.

For any x∈Zn and any k∈Q0, let ϕk(x) = y ∈ Zn be given by yi =xi for i 6= k and

(3) yk = −xk +
∑
k→j

xj

where the sum is over all arrows k → j in Q. Since Q has no loops, ϕk is an involution:
x = ϕk(y).

Lemma 2.11. Let Sk be a simple Λ-module for Λ = J(Q,W ) and let Λ′ be the Jacobian
algebra of (Q′,W ′) = µk(Q,W ) where W is a nondegenerate potential for Q. Suppose
that Q has finite type. Then there is an equivalence of full subcategories ψk : S⊥k ∼= ⊥S′k
where

S⊥k = {X ∈ Λ-mod | HomΛ(Sk, X) = 0}
⊥S′k = {Y ∈ Λ′-mod | HomΛ′(Y, S′k) = 0}

with Sk, S′k being the simple Λ,Λ′-modules at vertex k. Furthermore, the dimension
vectors of X and Y = ψk(X) are related by

dimψk(X) = ϕk(dimX).

where ϕk is the automorphism of Zn given by (3) above.

Proof. Any representation X of J(Q,W ) is given by vector spaces Xv for all vertices
v of Q and linear maps Xv → Xw for arrows v → w satisfying the relations ∂αW = 0.
In particular, the arrows k → j, for j ∈ J , induce linear maps βj : Xk → Xj . If
X ∈ S⊥k , the sum of these linear maps will give a monomorphism (βj) : Xk →

⊕
Xj .
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Let Yk with maps β∗j : Xj → Yk be the cokernel. This gives a functorial short exact
sequence:

(4) 0→ Xk
(βj)−−→

⊕
j∈J

Xj

(β∗j )
−−−→ Yk → 0.

Let Y = ψk(X) be the representation of Λ′ = J(Q′,W ′) given as follows. For each
vertex s 6= k, let Ys = Xs. Yk is given in (4). Then the exact sequence (4) immediately
implies

dimY = ϕk(dimX)
where ϕk is the automorphism of Zn given by (3) above. For each j ∈ J , the map β∗j :
Yj → Yk is given in (4) since Yj = Xj . Since these give an epimorphism

⊕
Yj � Yk,

we will have HomΛ′(Y, Sk) = 0. So Y ∈ ⊥S′k (once we show that Y is a representation
of J(Q′,W ′)). For each (i′, j′) ∈ P ′, let γ∗i′j′ = βj′αi′ : Yi′ → Yj′ . If δ : s → t is an
arrow in Q′ which is not equal to α∗i , β∗j or γ∗ij then δ is also an arrow in Q and we
define δ : Ys → Yt to be the equal to the morphism δ : Xs → Xt. It remains to define
α∗i : Yk → Yi for all i ∈ I.

Given i ∈ I, consider the morphism (γij , Fij′) :
⊕
Xj → Xi given by γij on Yj

for all j so that (i, j) ∈ P and by Fij′ on Yj′ for all j′ so that (i, j′) ∈ P ′. Then,
Equation (1) implies that the composition (γij , Fij′) ◦ (βj) = 0. Therefore, there is a
unique induced map α∗i : Yk → Yi = Xi satisfying the following. (See Equation (5).)

(1) α∗i β∗j = γij when (i, j) ∈ P ,
(2) α∗i β∗j′ = Fij′ when (i, j′) ∈ P ′.

(5) 0 // Xk

0
**

(βj) //⊕Xj

(γij ,Fij′ )

��

(β∗j )
// Yk //

α∗i
{{

0

Xi = Yi

We need to verify that Y , with these maps, satisfies the relations for J(Q′,W ′).
Note that since α∗i β∗j = γij for any (i, j) ∈ P and γ∗i′j′ = βj′αi′ for (i′, j′) ∈ P ′, the
map λ : Xs → Xt for any path λ in Q with s, t 6= k which does not contain a subpath
αiβj for any (i, j) ∈ P is equal to the map λ̃∗ : Ys → Yt for Y :

λ̃∗ = λ : Xs = Ys → Xt = Yt.

In particular, this implies the required condition that W̃ ∗δ = 0 for Y for any arrow δ

not equal to α∗i , β∗j or γ∗i′j′ since W̃ ∗δ = Wδ = 0 on X and thus on Y .
Condition (2) above is equivalent the required condition α∗i′β∗j′ = F̃ ∗i′j′ for (i′, j′) ∈

P ′ (∂γ∗
i′j′
W ′ = 0) since F̃ ∗i′j′ = Fi′j′ on Y .

To verify the relation ∂α∗
i
W ′ = 0 we substitute γ∗ij′ = βj′αi for (i, j′) ∈ P ′ and

G̃∗ij = Gij = −βjαi for (i, j) ∈ P (from (1)). Then, the required condition ∂α∗
i
W ′ = 0

becomes: ∑
(i,j′)∈P ′

β∗j′βj′αi +
∑

(i,j)∈P

β∗j βjαi = 0

But P
∐
P ′ = I × J . So, this is the same as

∑
ij β
∗
j βjαi = 0 which follows from the

fact that
∑
j β
∗
j βj = 0.

Similarly, the relation ∂β∗
j
W ′ = 0 is equivalent to the condition that

∑
ij βjαiα

∗
i =

0. Since the βj together form a monomorphism and the β∗j together form an epimor-
phism, this condition is equivalent to the condition

∑
i αiα

∗
i β
∗
j = 0 for each j ∈ J .
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But this is equivalent to the condition ∂βj
W = 0 in (1) using the substitutions (1)

and (2) above.
This shows that Y is a representation of J(Q′,W ′) and Y ∈ ⊥S′k. By naturality of

the cokernel Yk in (4), the assignment Y = ψk(X) defines a functor ψk : S⊥k → ⊥S′k. In
the opposite direction, for each Y ∈ ⊥S′k, we let Xk be the kernel of the epimorphism
(β∗j ) :

⊕
Yj → Yk. Let αi : Xi = Yi → Xk be the unique morphism so that βj′αi = γ∗ij′

for (i, j′) ∈ P ′ and βjαi = −Gij for (i, j) ∈ P . Finally, γij = α∗i β
∗
j for all (i, j) ∈ P .

The verification that X ∈ S⊥k is analogous to the above discussion and it is clear that
Y 7→ X gives the inverse of the functor ψk. �

Lemma 2.12. Using the same notation as in Lemma 2.11, let M1, . . . ,Mm ∈ S⊥k ⊂
Λ-mod. Then:

(1) ψk(M1), . . . , ψk(Mm) is a FHO sequence in Λ′-mod which lies in ⊥S′k if and
only if

(2) Sk,M1, . . . ,Mm is a FHO sequence in Λ-mod.

Proof. Let B = F(Sk ⊕M) where M = M1 ⊕ · · · ⊕Mm. Thus

B = M⊥ ∩ S⊥k = {Y ∈ S⊥k | HomΛ(M,Y ) = 0}.

We will show that both statements in the lemma are equivalent to the third statement:
(3) M1, . . . ,Mm is a maximal weakly FHO sequence in S⊥k ∩ ⊥B.
The equivalence (1)⇔ (3) is clear. Since ψk : S⊥k ∼= ⊥S′k by Lemma 2.11, we have

B′ := ψk(B) = ψk(M)⊥ ∩ ⊥S′k = {Y ′ ∈ ⊥S′k | HomΛ′(ψk(M), Y ′) = 0}.

So, ψk(S⊥k ∩ ⊥B) = ⊥S′k ∩ ⊥B′ = G(ψk(M)) by Proposition 2.1 with S′k, ψk(M),B′
playing the roles of X,Y, C. Since ψk is an isomorphism, M1, . . . ,Mm is maximal
weakly FHO in S⊥k ∩ ⊥B if and only if ψk(M1), . . . , ψk(Mm) is maximal weakly FHO
in ψk(S⊥k ∩ ⊥B) = G(ψk(M)). By Definition 2.2 this is equivalent to (1).

For the equivalence (2) ⇔ (3), note that (3) is equivalent to the statement that
Sk, M1, . . . ,Mm is weakly FHO in Λ-mod and that no objects of ⊥B = G(Sk ⊕M)
can be inserted between the Mi, after Mm or before M1 (and after Sk). Since these
hold under condition (2) we have (2) ⇒ (3). To show (3) ⇒ (2) it remains to show
one more condition: that no object of ⊥B can be inserted before Sk in the sequence.

Suppose not. Then there is a Schurian Λ-module X ∈ ⊥B so that HomΛ(X,Sk ⊕
M) = 0. Let T ( X be the largest submodule having only Sk in its composition series.
Then HomΛ(Sk, X/T ) = 0 and HomΛ(X/T,M) = 0. So, S⊥k ∩ ⊥B contains X/T 6= 0.
As in the proof of Proposition 2.1, any object Z in S⊥k ∩ ⊥B of minimal length is
Schurian. Then Z,M1, . . . ,Mm is a weakly FHO sequence in S⊥k ∩ ⊥B contradict-
ing the maximality of the sequence M1, . . . ,Mm. Therefore, all three statements are
equivalent. �

Theorem 2.13. For any m > 1 and any nondegenerate quiver with potential (Q,W )
of finite type, there is a 1-1 correspondence:{

green sequences for Q
of length m

}
∼=

 isomorphism classes of
FHO sequences M1, . . . ,Mm

in J(Q,W )-mod


where the green sequence corresponding to (Mi) is the unique one with c-vectors βi =
dimMi.

We call the sequence of c-vectors of a green mutation sequence a green c-sequence.
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Proof. Since the initial c-matrix is the identity matrix In, the first mutation is muta-
tion at a unit vector which is arbitrary. By Lemma 2.8, a module occurs as the first
module M1 of a FHO sequence if and only if M1 is simple. This proves the theorem
in the case m = 1.

For m > 2,M1 = Sk is simple and we claim that the following are equivalent where
Λ′ = µkΛ = J(Q′,W ′) as discussed above and S′k is the simple Λ′-module at vertex k.

(1) M1, . . . ,Mm is a FHO sequence in Λ-mod.
(2) ψk(M2), . . . , ψk(Mm) is FHO in Λ′-mod and lies in ⊥S′k.
(3) ψk(M2), . . . , ψk(Mm) is FHO in Λ′-mod and ψk(Mi) 6∼= S′k for all i > 2.
(4) β′2, . . . , β′m, where β′i = dimψk(Mi), is a green c-sequence for Q′ = µkQ and

β′i 6= ek, the kth unit vector in Zn, for all i > 2.
(5) ek, β2, β3, . . . , βm is a green c-sequence for Q where βi = ϕk(β′i) for all i > 2.

(1)⇔ (2) the same statement as Lemma 2.12 since M1 = Sk.
(2)⇔ (3) by Lemma 2.5.
(3) ⇔ (4) is the theorem for m− 1 applied to Λ′-mod with the additional condition
that ψk(Mi) 6∼= S′k which is equivalent to β′i 6= ek since β′i = dimψk(Mi).
(4)⇔ (5) by the well-known mutation formula for c-vectors. See, e.g. , [9, Thm 2.1.8].

Finally, βi = ϕk(dimψk(Mi)) = dimMi by Lemma 2.11 since ϕk is an involution.
�

Corollary 2.14. For any nondegenerate quiver with potential (Q,W ) of finite type,
there is a 1-1 correspondence between maximal green sequences for Q and isomorphism
classes of complete FHO sequences M1, . . . ,Mm in J(Q,W )-mod where the green c-
sequence corresponding to (Mi) is (βi = dimMi). �

Corollary 2.15 (Rotation Lemma). There is a 1-1 correspondence between complete
FHO sequences M1, . . . ,Mm in J(Q,W ) starting with M1 = Sk and complete FHO
sequences X1, . . . , Xm of the same length for J(µk(Q,W )) ending with Xm = S′k. The
correspondence is given by Xi = ψk(Mi+1) for i < m.

Proof. The correspondence is already given by Xi = ψk(Mi+1) for i < m and Mj =
ψ−1
k (Xj−1) for j > 1. It remains to show that this formula sends complete FHO

sequences in Λ-mod to complete FHO sequences in Λ′-mod and vice versa. But this
follows from Proposition 2.9 and the fact that ψk : S⊥k ∼= ⊥S′k is an equivalence of
categories: M1, . . . ,Mm, with M1 = Sk and M2, . . . ,Mm ∈ M⊥1 is a complete FHO
sequence for Λ-mod if and only if M2, . . . ,Mm is a maximal weakly FHO sequence in
S⊥k . Since ψk is an equivalence, this is equivalent to X1, . . . , Xm−1 being a maximal
weakly FHO sequence in ⊥S′k in Λ′-mod. By 2.9 this is equivalent toX1, . . . , Xm−1, S

′
k

being a complete FHO sequence in Λ′-mod. �

2.3. Iterated mutation of forward hom-orthogonal sequences. For the
next section we need the following iterated version of Lemmas 2.11 and 2.12.

Proposition 2.16. Let M1, . . . ,Mm be a FHO sequence in Λ-mod where Λ =
J(Q,W ) is of finite representation type. Let (k1, . . . , km) be the corresponding
mutation sequence of (Q,W ). Let

Λ′ = µkm
· · ·µk1Λ = J(µkm

· · ·µk1(Q,W )).
Then ∃N ∈ Λ′-mod and an equivalence of full subcategories ψ : M⊥ ∼= ⊥N where
M = M1 ⊕ · · · ⊕Mm and a linear automorphism ϕ of Zn so that

dimψ(X) = ϕ(dimX).
Furthermore, given Schurian Λ-modules X1, . . . , Xs ∈M⊥, the sequence ψ(X1), . . . ,
ψ(Xs) is FHO in Λ′-mod if and only if M1, . . . ,Mm, X1, . . . , Xs is FHO in Λ-mod.
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Proof. Lemmas 2.11 and 2.12 give the case m = 1. Suppose by induction that the
proposition holds for m with m > 1. Let Mm+1 be one choice for the next term of
the FHO sequence M1, . . . ,Mm. By induction ψ(Mm+1) is a singleton FHO sequence
and thus ψ(Mm+1) = S′k is a simple Λ′-module by Lemma 2.8. So, the equivalence
ψ : M⊥ ∼= ⊥N given by induction on m sends Mm+1 to S′k ∈ ⊥N and we have

ψ : M⊥ ∩M⊥m+1
∼= ⊥N ∩ S′⊥k .

Let Λ′′ = µkΛ′. Then, by Lemma 2.11, we have an equivalence ψk : S′⊥k ∼= ⊥S′′k ⊂
Λ′′-mod and dimψk(X) = ϕk(dimX) for all X ∈ S′⊥k . But, S′k ∈ ⊥N implies N ∈
S′⊥k . And ψk restricts to an equivalence

ψk : ⊥N ∩ S′⊥k ∼= ⊥ψk(N) ∩ ⊥S′′k .
Combining these gives the required equivalence

ψkψ : (M1 ⊕ · · · ⊕Mm+1)⊥ ∼= ⊥(ψk(N)⊕ S′′k ).
On dimension vectors this is

dimψkψ(X) = ϕk(dimψ(X)) = ϕkϕ(dimX)
where ϕkϕ is a composition of two automorphisms of Zn.

Finally, suppose that X1, . . . , Xs are Schurian modules in (M ⊕Mm+1)⊥. Then we
are required to show that the following are equivalent.

(1) ψkψ(X1), . . . , ψkψ(Xs) is a FHO sequence in Λ′′-mod.
(2) M1, . . . ,Mm+1, X1, . . . , Xs is FHO in Λ-mod.

But, by Lemma 2.12, (1) is equivalent to ψ(Mm+1), ψ(X1), . . . , ψ(Xs) being a FHO
sequence in Λ′-mod. By induction on m, this is equivalent to (2). So, all statements
hold for m+ 1 and we are done. �

3. Semistability sets for algebras of finite representation type
In this section we prove that complete FHO sequences for Λ = J(Q,W ) of finite
representation type are given by wall crossing sequences for (generic) “green paths”.
One direction is known, namely that a green path γ gives a complete FHO sequence
assuming that each wall crossed by γ supports a unique Schurian module. (See [24,
Theorems 3.6, 3.8.]) Conversely, for any maximal green sequence for Q we construct a
green path. Brüstle, Smith and Treffinger [10] have recently shown the analogous state-
ment for any finite dimensional algebra using τ -tilting, namely that maximal green
sequences defined using τ -tilting are equivalent to wall crossing sequences which are
also equivalent to finite Harder–Narasimhan stratifications of the module category.
Demonet, Iyama and Jasso [19] have obtained similar results for τ -tilting finite alge-
bras.

3.1. Basic definitions. We present here the basic definitions and proofs of well-
known statements in detail for the benefit of our students.

Suppose that Λ is a finite dimensional algebra over a field K. For every nonzero
module M , the semistability set D(M) ⊂ Rn of M is given by:

D(M) := {x ∈ Rn |x · dimM = 0, x · dimM ′ 6 0 ∀M ′ ⊂M}
This is clearly a closed convex subset of the hyperplaneH(M) = dimM⊥ of all x ∈ Rn
perpendicular to dimM . If x ∈ D(M) and x · dimM ′ = 0 for some M ′ ( M then
clearly x ∈ D(M ′). Let ∂D(M) be the set of all x ∈ D(M) so that x ∈ D(M ′) for some
M ′ ( M . Let intD(M) = D(M) − ∂D(M). This is a (possibly empty) open subset
of the hyperplane H(M). We call intD(M) the stable set of M . Clearly, we have:

intD(M) = {x ∈ Rn |x · dimM = 0, x · dimM ′ < 0 ∀M ′ (M}.
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Proposition 3.1. If M is not Schurian then D(M) is contained in D(M ′) for some
proper submodule M ′ (M and intD(M) is empty.

Proof. If M is not Schurian there is a nonzero endomorphism f of M which is not an
isomorphism. Let K,L be the kernel and image of f . Then, dimK + dimL = dimM .
For every x ∈ D(M) the conditions x · dimK,x · dimL 6 0 and x · dimM = 0 imply
that x · dimK = x · dimL = 0. Therefore, D(M) ⊂ D(K) ∩D(L). �

Remark 3.2. The converse of Proposition 3.1 is not true in general. For example,
take the quiver with

Q : 1 // (( 2
��

3

]]

with relations rad5 = 0. The two paths 1→ 2→ 3 give two hom-orthogonal modules
A,B with the same dimension vector (1, 1, 1) and the arrow 3→ 1 gives an extension
A ↪→ M � B which is Schurian with dimM = (2, 2, 2) and intD(M) = ∅ since
D(M) ⊂ D(A).

Example 3.3. Let Λ = KQ/I be given by the cyclic quiver

1 // 2
��

4

OO

3oo

with relations rad5 = 0. Let M = P1 = I1 with dimension vector dimM = (2, 1, 1, 1).
The simple module S1 is both a submodule and quotient module of M with comple-
mentary sub/quotient module X = M/S1 with dimension vector dimX = (1, 1, 1, 1).
Therefore, D(M) is contained in the codimension 2 subspace H(S1) ∩H(X) of R4.

We say that D(M) has full rank if it contains n − 1 elements which are linearly
independent over R, i.e., it does not lie in the intersection of two distinct hyperplanes
as in the example above.

We consider the union L(Λ) =
⋃
D(M) of all D(M). For any x ∈ L(Λ), let M

be a module of minimal length so that x ∈ D(M). Then x ∈ intD(M). It follows
that L(Λ) is a union of the stable sets intD(M) for M Schurian. Since there are only
countably many hyperplanes of the form H(M), the set L(Λ) has measure zero and its
complement is dense in Rn. One example is: any point x ∈ Rn with coordinates linearly
independent over Q cannot lie on any hyperplane H(M) since each such hyperplane
is defined by a linear equation with integer coefficients. We call such points generic.
It is easy to see that, given any generic point x, the path

γx(t) = x+ (t, t, . . . , t)

does not pass through the intersection of two distinct hyperplanes H(M) ∩H(N).
Similarly, a generic point of D(M) will mean a point having n − 1 coordinates

linearly independent over Q. The set D(M) contains generic elements if and only if
it has full rank. If x ∈ D(M) is generic then the path γx will contain a generic point
in Rn (take γx(t) where t is Q-linearly independent from the coordinates of x). Thus,
γx cannot meet the intersection of two distinct hyperplanes H(M) ∩H(N) and the
intersection of γx with any other D(N) will also be generic. When D(M) has full
rank, its generic elements form a dense subset. (The nongeneric points in D(M) lie
in a countable union of codimension one subsets.)

For any x0 ∈ Rn let W(x0) be the full subcategory of Λ-mod of all modules X
so that x0 ∈ D(X). It is well-known that W(x0) is an abelian category. (See [8,
Lemma 5.2] where the role of W(x0) is played by P(φ).)
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Proposition 3.4. If x0 is a generic point of D(M) then every object in W(x0) has
dimension vector a rational multiple of dimM .

Proof. Since n− 1 of the coordinates of x0 are linearly independent over Q, any two
rational vectors perpendicular to x0 are proportional to each other. �

3.2. Green paths. We recall the definition of a green path using generic points.

Definition 3.5. By a generic path for Λ we mean a smooth path γ : R → Rn which
meets each set D(M) at a finite number of points all of which are generic. The path
will be called green if all coordinates of γ(t) are positive, resp. negative, for t � 0,
resp. t� 0 and, whenever γ(t0) ∈ D(M) the velocity vector of γ points in the positive
direction, i.e.,

d γ
d t (t0) · dimM > 0.

For example, the linear path γx is a generic green path for any generic x ∈ Rn.

Definition 3.6. A module M is strongly Schurian if M is Schurian and if, for any
generic point x0 ∈ D(M), any module X so that x0 ∈ D(X) is an iterated self-
extension of M . In particular, M is the only Schurian module in W(x0).

For example, any simple module is strongly Schurian. The following theorem,
proved in Theorem 5.13 in [24] is due to Bridgeland [8] in a different language.

Theorem 3.7. Let Λ be any finite dimensional algebra over K and let γ be a generic
green path for Λ. Then, for any Λ-module X there is a unique filtration 0 = X0 ⊂
X1 ⊂ · · · ⊂ Xm = X so that each Xi/Xi−1 ∈ W(γ(ti)) for some t1 < · · · < tm so
that γ(ti) ∈ D(Mi) for Schurian modules Mi. In particular, HomΛ(Mi,Mj) = 0 for
i < j. �

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X is called the Harder–Narasimhan (HN) filtration
of X. The last sentence in Theorem 3.7, usually stated without proof, follows from
the uniqueness of the HN-filtration for X = Mi ⊕Mj . Any morphism f : Mi → Mj

gives a different filtration using the graph of f as the submodule Xi. So, f must be
unique, i.e., f = 0.

Corollary 3.8. Let D(M1), with M1 Schurian, be the first wall crossed by γ, a
generic green path for Λ, i.e., γ(t1) ∈ D(M1) and γ(t) /∈ L(Λ) for any t < t1. Then
M1 is simple.

Proof. Apply Theorem 3.7 to any simple quotient module X of M1. Then X ∈
W(γ(ti)) for some ti > t1. Then ti = t1 since, otherwise, HomΛ(M1, X) = 0, contra-
dicting the hypothesis that X is a quotient of M1. By Proposition 3.4 each object in
W(γ(t1)) has dimension vector a multiple of the unit vector dimX. Thus it must be
an iterated self-extension of X. So, X is the only Schurian object in W(γ(t1)). So,
M1 = X. �

The following is Theorem 3.8 in [24].

Proposition 3.9. Suppose that γ is a generic green path for Λ which meets only a
finite number of walls D(M1), . . . , D(Mm) in that order. So, there exist t1 < t2 <
· · · < tm so that γ(ti) ∈ D(Mi) and γ(t) /∈ L(Λ) for any other t ∈ R. Suppose that Mi

is the unique Schurian module in W(γ(ti)) for i 6 k (so all other objects of W(γ(ti))
are iterated self-extensions of Mi). Then

(1) The torsion class G(M1 ⊕ · · · ⊕Mk) consists of all modules X whose HN-
filtration has nonzero subquotients only in W(γ(t1)), . . . ,W(γ(tk)).

(2) M1, . . . ,Mk is a FHO sequence for Λ.
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(3) If k = m then M1, . . . ,Mm is a complete FHO sequence for Λ.

Proof.
(1) If X has such a filtration, then each subquotient of X will be an iterated self

extensions of Mi for some i 6 k. So, X ∈ G(M). Conversely, if the HN-filtration
of X goes beyond W(γ(tk)), the last term will be a nonzero quotient of X in some
W(γ(tp)) for p > k. But, W(γ(tp)) ⊂M⊥ = F(M). So, X /∈ G(M).

(2) We know that M1, . . . ,Mk is weakly FHO and lies in G(M). To show that it
is maximal in G(M) suppose that X is any Schurian object in G(M) not isomorphic
to any Mi. By assumption X does not lie in W(γ(ti)) for i 6 k. So, the HN-filtration
of X gives a submodule Xi ∈ W(γ(ti)) and quotient module X/Xj−1 ∈ W(γ(tj))
for some i < j 6 k. So, X cannot be inserted into the sequence M1, . . . ,Mk, since
it must go before Mi and after Mj . So, M1, . . . ,Mk is maximal in G(M) and thus a
FHO sequence.

(3) This follows from (2) and the definition of “complete FHO sequence”. �

We will show that this observation applies to every generic green path for Λ =
J(Q,W ) of finite representation type.

Theorem 3.10. Let Λ = J(Q,W ) be a Jacobian algebra of finite representation type.
Let γ be any generic green path for Λ. Let D(M1), . . . , D(Mm) be the walls crossed
by γ where each Mi is Schurian. Then each Mi is strongly Schurian. In particular,
M1, . . . ,Mm is a complete FHO sequence for Λ.

Proof. For any generic point x ∈ D(M), the green path γx passes through x. Thus, it
suffices to show that, for any generic green path γ passing through D(Mk) at t = tk,
W(γ(tk)) = addMk. This holds for k = 1 since M1 is simple. Let Wj = W(γ(tj))
and suppose by induction on k that Wj = addMj for j 6 k. By Proposition 3.9, it
follows that M1, . . . ,Mk is a FHO sequence in Λ-mod. We will use Proposition 2.16
with s = 1 to show that Wk+1 = addMk+1.

Let M = M1⊕ · · · ⊕Mk. Let F be the extension closed full subcategory of Λ-mod
of all X whose HN-filtration has subquotients only inWj for j > k+2. Then F ⊂M⊥
and Wk+1 = M⊥ ∩ ⊥F by Theorem 3.7.

Using the notation of Proposition 2.16, let Λ′ be the iterated mutation of Λ corre-
sponding to M and take N ∈ Λ′-mod so that there is an equivalence of categories

ψ : M⊥ ∼= ⊥N.

Then we claim that Y = ψ(Mk+1) ∈ ⊥N is a simple Λ′-module and ψ(Wk+1) =
addY .

To see this, let S be any simple quotient of Y . Since ⊥N is closed under quotients,
S ∈ ⊥N . But Y ∈ ⊥ψ(F) implies S ∈ ⊥ψ(F) which implies that ψ−1(S) ∈ M⊥ ∩
⊥F = Wk+1. By Proposition 3.4 the dimension vectors of ψ−1(S), Mk+1 and any
W ∈ Wk+1 are proportional. By Proposition 2.16, the dimension vectors of S, Y and
ψ(W ) are proportional. Since S is simple, these all lie in addS. So ψ(Wk+1) = addS
and S is the unique Schurian object of ψ(Wk+1). Since Mk+1 ∈ Wk+1 is Schurian,
ψ(Mk+1) ∼= S is simple as claimed. Since ψ is an equivalence of categories this implies
that Wk+1 = add(Mk+1) proving the theorem. �

3.3. Compartments of L(Λ). Since Λ = J(Q,W ) has finite representation type,
L(Λ) =

⋃
D(M) is closed. So, its complement Rn − L(Λ) is a disjoint union of con-

nected open sets U which we call compartments. We will associate a torsion pair
(G(U),F(U)) to each compartment and use these to prove the converse of Theo-
rem 3.10. Namely, any complete FHO sequence for Λ is given by a generic green
path.
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Theorem 3.11. Let Λ be of finite representation type. Then each compartment of
L(Λ) is convex.

Proof. Order the Schurian modulesMi according to dimension. ThusM1, . . . ,Mn are
the simple modules. For each k > n, let

Lk(Λ) = D(M1) ∪D(M2) ∪ · · · ∪D(Mk).

Then we show, by induction on k > n, that each component of Rn−Lk(Λ) is convex.
Since D(M1), . . . , D(Mn) are hyperplanes, this statement holds for k = n.

Let U be any component of Rn − Lk(Λ). By induction, U is convex and open.

Claim. U ∩D(Mk+1) is either empty or equal to U ∩H(Mk+1).

In either case, U − Lk+1(Λ) is a disjoint union of convex open sets, proving the
theorem. Thus, it suffices to prove the claim. But this is an easy topological argument.
If U ∩ D(Mk+1) is nonempty then it is a subset of the connected set U ∩ H(Mk+1)
which is both (relatively) open and closed. It is closed since D(Mk+1) is a closed set.
It is open since ∂D(Mk+1) ⊂ Lk(Λ). Therefore, U ∩D(Mk+1) = U ∩H(Mk+1) proving
Claim and Theorem. �

Lemma 3.12. For any Λ of finite representation type, each compartment U of L(Λ)
has at least n walls D(Mi).

Proof. Suppose not and let D(Mi) be the walls of U . Let V ⊂ U be one component of
the complement of the hyperplanes H(Mi). Then ∩H(Mi) contains a nonzero vector
x and its negative −x. These lie in the closure of V. Since x 6= 0 it has at least one
nonzero coordinate xj 6= 0. By symmetry assume xj > 0. So, cV and thus U contains
two points y, z so that yj > 0 and zj < 0. But this is impossible since these two
points are separated by the hyperplane D(Sj) = H(Sj). �

Definition 3.13. Let Λ be an algebra of finite representation type and let U be any
compartment of L(Λ). We say that a generic green path γ is centered at U if γ[0, 1] ⊂
U . For any such path call the path γ(t), t 6 0 the left part of γ. The right part is
γ(t), t > 1.

We observe that, since U is convex, the left part of any generic green path γ centered
at U can be spliced together with the right part of any other generic green path γ′

centered at U to give a new generic green path centered at U with left part the same
as γ and right part the same as γ′.

We get the following well-known bijection between support tilting objects for
Λ-mod and finitely generated torsion classes by way of the compartments of L(Λ).

Lemma 3.14. For Λ = J(Q,W ) of finite representation type and U any component
of L(Λ). Let γ be any generic green path centered at U . Let D(M1), . . . , D(Mk) be
the walls crossed by the left part of γ. Let F = M⊥ and G = ⊥F where M =
M1 ⊕ · · · ⊕Mk. Let C be the c-matrix of the mutation sequence corresponding to the
FHO sequence M1, . . . ,Mk. Then C and the torsion pair (G,F) depend only on U
and are independent of the choice of γ up to permutation of the columns of C.

Proof. Let D(Mk+1), . . . , D(Mm) be the walls crossed by the right part of γ. Then
G = ⊥M ′ and F = G⊥ whereM ′ = Mk+1⊕· · ·⊕Mm. Therefore (G,F), defined using
the left part of γ, depends only on the right part of γ. Given two paths γ, γ′ centered
at U splice them to get γ′′. Then γ, γ′′ give the same torsion pair since they have the
same right part and γ′, γ′′ give the same torsion pair since they have a common left
part. So, γ, γ′ give the same torsion pair.
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Similarly, the matrix C, defined using the left part of γ, is determined, up to
permutation of its columns, by the right part of γ since it can be obtained by backward
mutation from the final exchange matrix which is the same as the initial exchange
matrix with −In as c-matrix. �

The columns of C will be called the c-vectors of U . The torsion class of U is denoted
G(U). A wall D(M) of U will be called positive if U is on the negative side of D(M),
i.e., (x− y) ·dimM < 0 for any x ∈ U and y ∈ D(M). Otherwise, the wall is negative.

Theorem 3.15.
(a) Each positive wall of U is D(M) where dimM is a c-vector of U .
(b) Each negative wall of U is D(N) where -dimN is a c-vector of U .

Proof. (b) Let D(N0) be a negative wall of U . Let V be the region opposite
D(N0). Choose a path from V to U and extend to a green path centered at U .
By Theorem 3.10 this gives a complete FHO sequence M1, . . . ,Mk, N0, N1, . . . , Nm
so that G(U) = G(M1 ⊕ · · · ⊕ Mk ⊕ N0). This corresponds to a green c-sequence
β1, . . . , βk, α0, α1, . . . , αm where βi = dimMi, αj = dimNj . So, dimN0 is a positive
c-vector for V and a negative c-vector of U . The proof of (a) is the same with V,U
reversed. �

Since U has at least n walls and at most n c-vectors we get the following.

Corollary 3.16. For Λ = J(Q,W ) of finite representation type, each compartment
U has exactly n walls D(Mi) where dimMi are the c-vectors of U up to sign. �

Corollary 3.17. For every FHO sequence M1, . . . ,Mk for Λ there is a generic green
path whose left part passed through the walls D(M1), . . . , D(Mk).

Proof. Let M1, . . . ,Mk is a FHO sequence. Then, by induction on k, there is a
green path γ centered in some compartment U whose left part passes through
D(M1), . . . , D(Mk−1). Since FHO sequences correspond to mutation sequences, one
of the positive c-vectors of U must be dimMk. So, D(Mk) is one of the positive
walls of U . Let V be the compartment on the other side of this wall. Then the right
part of γ can be modified so that it first passes though D(Mk). This completes the
induction. �

Combining this with Theorem 3.10 we get the main result of this section:

Theorem 3.18. Let Λ = J(Q,W ) be a Jacobian algebra of finite representation type
and let M1, . . . ,Mm be a sequence of Schurian Λ-modules. Then M1, . . . ,Mm is a
complete FHO sequence if and only if there exists a generic green path which passes
through the walls D(M1), . . . , D(Mm) in that order.

Together with Corollary 2.14 this completes the proof of Theorem 1.1 from the
introduction.

Appendix A. Maximal length MGSs
This Appendix is joint work of the author with Gordana Todorov.

In this section we consider maximal green sequences of maximal length for cluster-
tilted algebras of finite representation type. We describe an upper bound and a lower
bound for this maximal length. We give three examples and a conjecture, namely, that
the upper bound is sharp. The second example, A.8, is joint work with PJ Apruzzese.
The third example, A.16, is joint work with Al Garver.
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We use the well-known fact that cluster-tilted algebras are relation-extensions of
tilted algebras [4] and we use the result of [2] describing all tilted algebras of type An.
This is Theorem A.3 below. See the lecture notes [3] for more details about this topic.

If H is a hereditary algebra with n simple modules, a tilting module is a mod-
ule T with n nonisomorphic indecomposable summands which is rigid, i.e., so that
Ext1

H(T, T ) = 0. The endomorphism ring of T is called a tilted algebra. In the cluster
category CH of H introduced in [12], a cluster-tilting object is a rigid object T ∈ CH
with n nonisomorphic indecomposable summands. The endomorphism ring of T as
an object in CH is called a cluster-tilted algebra.

Every tilting module T for H can also be viewed as a cluster-tilting object in
CH under a natural inclusion functor H-mod ↪→ CH . This is a faithful but not full
embedding. It sends rigid modules to rigid objects. In this case, it is shown in [4] that
the cluster-tilted algebra Λ = EndCH

(T ) is a trivial extension of the tilted algebra
C = EndH(T ):

Λ ∼= C n Ext2
C(DC,C)

where DC = HomK(C,K) is the dual of C. This is called the relation-extension of C.
When the hereditary algebra H is the path algebra of an acyclic quiver, it was

shown in [11] that each cluster-tilted algebra Λ = EndCH
(T ) is isomorphic to the

Jacobian algebra of a quiver with nondegenerate potential. Restricting to quivers of
finite type, the converse also holds, i.e., Jacobian algebras of quivers with potential
of finite type in the sense of [21] are mutation equivalent to path algebras of Dynkin
quivers and are therefore isomorphic to cluster-tilted algebras of finite representa-
tion type. This follows from the finite type classification of cluster algebras [21] and
translation into the language of quivers with potential using [20].

A.1. Tilted and cluster-tilted algebras of type A. Tilted algebras of type
A were classified by Assem [2]. Iterated tilted algebras of type A were classified in [5].
Cluster-tilted algebras of type A came later [17, 15]. However, it is easier to start with
the cluster-tilted algebras.

As observed in [3, 2.5], a cluster-tilted algebra of type A is given by a finite con-
nected full subquiver of the following infinite quiver (an infinite array of oriented
3-cycles attached together at their vertices) modulo the relation that the composition
of any two arrows in any oriented 3-cycle is zero.

(6)
...

•
��

· · · •
>>

•oo

��
•
��

· · · •
<<

•oo

==

•oo

��

•
��

· · · •
<<

•oo

��
•
��

· · · •
<<

•oo

<<

•oo

==

•oo

Observe that a full subquiver Q containing two arrows in an oriented 3-cycle will
contain the entire 3-cycle. Thus, any cluster-tilted algebra of type An is given by
Λ = J(Q,W ) where Q is a connected full n vertex subquiver of the above infinite
quiver and the potential W is the sum of the oriented 3-cycles in Q.
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Remark A.1. All 3-cycles in Q are oriented 3-cycles since the infinite quiver (6)
contains no unoriented 3-cycles.

An example is given by the following quiver with relations.
(7) 7 // 8 9

��

oo 14

��
2

β1

��

5

��

10

AA

oo 11
α3

oo // 13

α4
@@

α5��

15oo

1
α1

// 3 //

[[
γ1
[[

4

CC

6
α2

oo 12

^^

(7) is the quiver of a cluster-tilted algebra of type A15. The potentialW is understood
to be the sum of the five 3-cycles. Thus the relations which give J(Q,W ) are α1β1 =
β1γ1 = γ1α1 = 0 and similarly for the other four 3-cycles.

As explained in [3, Sec 2.5], cluster-tilted algebras of type An are well-known to be
“gentle algebras” as defined in [16] and thus all indecomposable modules are string
modules which means their supports are linear subquivers and their dimensions are
equal to the size of their supports, i.e., they are 1-dimensional at each point in their
support. An example of a string module for the quiver with potential (7) is the 8-
dimensional module with support at the 8 vertices 1,3,4,5,10,11,13,14. We refer to this
module later as X. Note that the support of X contains the arrows α1, α3, α4. One
key property of string modules is that the full subquiver on which they are supported
contains at most one arrow from each 3-cycle of Q.

By [5] iterated tilted (or “generalized tilted”) algebras are given by deleting one
edge from each 3-cycle and retaining the relation that the remaining two arrows of
the 3-cycles have zero composition. For example, if we delete the five arrows αi in (7)
we obtain the following quiver with five zero relations β1γ1 = 0, etc, as indicated by
the dotted lines.
(8) 7 // 8 9

��

oo 14

��
2

β1

��

5

��

10

AA

oo 11 // 13 15oo

1 3 //

γ1
[[

4

CC

6 12

^^

In fact the algebra given by this particular quiver with relations is a tilted algebra
of type An by the classification of such algebras from [2] which we restate below
(Theorem A.3) using the “diagram of a module” which we now define.

Let Λ = J(Q,W ) be any cluster-tilted algebra of type An as described above.
Let C be an associated iterated tilted algebra given by deleting one arrow from each
3-cycle of Q. Then C ⊂ Λ and we have a forgetful functor F : Λ-mod → C-mod
given by restriction of scalars. The functor F sends an indecomposable Λ-module X
to FX =

⊕
Mj whereMj are indecomposable C-modules connected to each other by

deleted arrows αj . For example, the Λ-moduleX with support {1, 3, 4, 5, 10, 11, 13, 14}
becomes FX = M1 ⊕ M2 ⊕ M3 ⊕ M4 where M1,M4 are the simple modules at
vertices 1, 14 and M2,M3 are the C-modules with supports {3, 4, 5, 10} and {11, 13}
respectively.
Definition A.2. We define the diagram of an indecomposable Λ-module X (with
respect to an associated iterated tilted algebra C) to be the linear quiver with vertices
labeled with the components Mi of FX and arrows given by the deleted arrows of Q
connecting vertices in the support of X. The deleted arrow α should connect Mi to
Mj if α is an arrow in Q from a vertex v in the support of Mi to a vertex w in the
support of Mj.
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In this particular example, the diagram of X is:
M1

α1−→M2
α3←−M3

α4−→M4

Using the diagrams of the string modules for Λ = J(Q,W ), the classification of
tilted algebras from [2] can be stated as follows.

Theorem A.3 (Assem). An iterated tilted algebra C of type An given by deleting
arrows from the quiver Q of a cluster-tilted algebra Λ = J(Q,W ) is a tilted algebra of
type An if and only if, for every indecomposable Λ-module X, the diagram of X with
respect to C has alternating orientation of its arrows.

The example given by (8) is a tilted algebra since the diagrams of the string modules
X (given above) and Y,Z with supports {1, 3, 4, 6} and {12, 13, 14} resp. are:

• α1−→ • α3←− • α4−→ •, • α1−→ • α2←− •, • α3←− • α4−→ •.

A.2. Upper bound for lengths of MGSs. For many cluster-tilted algebras of
finite representation type the minimum length of a maximal green sequence has been
computed [18], [23]. In particular we have the following.

Theorem A.4 ([18]). For Λ = J(Q,W ) a cluster-tilted algebra of type An the mini-
mum length of a maximal green sequence is n + k where k is the number of 3-cycles
in the quiver Q.

Using the equivalent formulation of MGSs in terms of FHO sequences of modules
(Corollary 2.14) we will obtain an upper bound for the maximum length of a MGS.

Proposition A.5. Let m, p be the maximum and minimum lengths of maximal green
sequences for any Jacobian algebra Λ = J(Q,W ) of finite representation type. Then
m + p − n is at most equal to the number of isomorphism classes of indecomposable
Λ-modules.

Proof. Let M1, . . . ,Mm be a FHO sequence of Schurian modules of maximal length.
Construct another sequence of the n simple Λ-modules in reverse order as they appear
in the sequence (Mi). Since Λ has finite representation type, we can extend this to
a complete FHO sequence N1, . . . , Nq by inserting modules into the sequence. Then
q > p by definition of p.

Claim. A module X appears in both lists if and only if X is simple.

Proof of the claim. Suppose X is not simple. Let Sj be a simple submodule of X and
Sk a simple quotient module of X. Since X is Schurian, Sj 6= Sk. If X = Ms then
Sk < Ms < Sj in the first FHO sequence (Mi). If X = Nt then Sk < Nt < Sj in
(Nj). This is not possible since Sk, Sj are in the opposite order in the two sequences.

From this it follows that the union of the sets {Mi} and {Nj} has m + q − n >
m+ p− n elements, proving the Proposition. �

Here is another proof of the Claim in the proof of Proposition A.5 using generic
green paths. Let γ be a generic green path crossing the walls D(M1), . . . , D(Mm) in
that order. Let γ′ be another generic green path crossing the walls D(N1), . . . , D(Nq).
By Theorem 3.18 such paths exist. Suppose that γ(t0) ∈ D(X). If Sj ⊂ X then

γ(t0) · dimSj = γ(t0)j < 0
and similarly, γ(t0)k > 0 for all simple quotients Sk of X. So, γ crosses the hyperplane
D(Sk) = H(Sk) before time t0 and will cross D(Sj) = H(Sj) afterwards. Since γ′
crosses these hyperplanes in the reverse order, γ′ does not meet D(X). Therefore, the
paths γ, γ′ cannot cross the same semistability set D(X) except for the hyperplanes
D(Si) = H(Si).
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Corollary A.6. If Λ = J(Q,W ) is cluster-tilted of type An, the length of a maximal
green sequence is at most

(
n+1

2
)
− k where k is the number of oriented 3-cycles in the

quiver Q.

Proof. By Theorem A.4 the minimum length of a maximal green sequence is p =
n+k. Since every cluster-tilted algebras of type An has exactly

(
n+1

2
)
indecomposable

modules up to isomorphism, we have, by Proposition A.5, that

m+ p− n = m+ k 6

(
n+ 1

2

)
wherem is the maximum length of a maximal green sequence. Thusm 6

(
n+1

2
)
−k. �

Example A.7. Consider the cluster-tilted algebra Λ = J(Q,W ) where Q is the quiver
below (on the left) and W is given by the two 3-cycles. This is cluster-tilted of type
A5 and therefore has

(6
2
)

= 15 modules.

2
α

""

4

��

2
α

""

4

Q : 3

β <<

γ||

Qδ : 3

β <<

γ||1

OO

5δ

bb

1 5δ

bb

If we remove the two unlabeled arrows in Q we are left with the quiver Qδ indicated
above on the right, with the relations γα = 0 = βδ. By Assem’s criterion A.3, this is
the quiver with relations of a tilted algebra C. The Auslander–Reiten quiver of C is
given by:

P5

""
S4

##

3
1

""

<<

5
3

!!

S2

P3

""

<<

S3

""

<<

I3

""

<<

S1

;;

3
4

""

<<

2
3

==

S5

P2

<<

This is a full subquiver of the Auslander–Reiten quiver of Λ with only two modules
missing: the projective Λ-modules P1 and P4. Consider the partial ordering on this
set of 13 modules given by M1 ≺ M2 if there is an oriented path in this AR-quiver
from M1 to M2. For example, S1, S4 are minimal in this partial ordering and S2, S5
are maximal. We refer to this as the partial ordering given by the AR-quiver. Any
refinement of this partial ordering to a total ordering will be called one of the total
orderings given by the AR-quiver.

Since HomΛ(M1,M2) 6= 0 implies HomC(M1,M2) 6= 0 implies M1 � M2, weakly
FHO sequences for both Λ and C with 13 objects can be given by arranging these
13 objects in the reverse order of any total ordering given by the AR-quiver. In any
such sequence one of S2, S5 will be first and one of S1, S4 will be last. These maximal
green sequences for Λ have the maximum length since, by Corollary A.6, the length
of any MGS is at most 15− k = 13. Therefore, they are complete FHO sequences.

Putting the simple modules in reverse order (with S1, S4 first, in either order,
and S2, S5 last, in either order) and inserting the missing modules P1, P4 we get the
minimum length complete FHO sequence in Λ-mod: S1, S4, P1, S3, P4, S2, S5 of length
n+ k = 5 + 2 = 7.
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Our second example, from [1], is a cluster-tilted algebra of type Dn (for n > 4). In
this example, we use the following terminology. Two MGSs are said to be equivalent
if they have the same set of modules in their corresponding complete FHO sequences,
i.e., the corresponding sequences of c-vectors are permutations of each other.

Example A.8 ([1]). Let Qn be the oriented cycle quiver with n vertices and let Λn
be KQn module radn−1KQn. For n = 4 the quiver is:

Q4 : 1
��

2αoo

4
γ
// 3
β
OO

This cluster-tilted algebra is the relation-extension of the tilted algebra C given by
the subquiver

Qδ : 1 2αoo 3βoo 4γoo

of Q4 modulo the relation αβγ = 0. The Auslander–Reiten quiver is given by:

P2

��

P3

��

P4

��

P1

��

P2

��

P3

  
· · ·

>>

  

2
1

@@

��

3
2

@@

��

4
3

@@

��

1
4

@@

��

2
1

@@

��

· · ·

S1

@@

S2

@@

S3

@@

S4

@@

S1

@@

S2

>>

where five objects are repeated. There are 12 indecomposable Λ-modules, but only
the 9 black objects are modules over the tilted algebra C = KQδ. These objects, in
the following order, form a complete FHO sequence for Λ.

S4,
4
3, P4, S3,

3
2, P3, S2,

2
1, S1.

This set of modules can be arranged in four different ways since P4, S3 and P3, S2 can
be taken in either order. This gives four equivalence MGS’s. Similarly, there are three
other equivalence classes of maximal green sequences of length 9 given by deleting
P2,

2
1, P3 or P3,

3
2, P4 or P4,

4
3, P1. This is an example of the following theorem.

Theorem A.9 ([1]). The quiver Qn given by a single oriented n-cycle has, up to
permutation of c-vectors, n maximal green sequences of maximal length and these all
have length

(
n
2
)

+ n− 1.

A.3. Lower bound for maximal length of MGSs. The two examples above il-
lustrate the following lower bound for the maximal length of maximal green sequences
for a cluster-tilted algebra of finite representation type. We use the fact that every
cluster-tilted algebra Λ is the relation-extension of a tilted algebra C which is usually
not uniquely determined.

Lemma A.10. Let Λ = J(Q,W ) be a cluster-tilted algebra of finite representation type
which is the relation-extension of a tilted algebra C. Then Q has a maximal green
sequence of length greater than or equal to the number of indecomposable C-modules.

Proof. Since C is tilted of finite representation type it is derived equivalent to a hered-
itary algebra of finite representation type. Since the bounded derived category of such
an algebra has no oriented cycles, the Auslander–Reiten quiver of C has no oriented
cycles. (More generally, the AR-quiver of any tilted algebra has an acyclic compo-
nent [6, VIII.3.5.]) Let Mi be the indecomposable C-modules arranged in the reverse
order of one of the total orderings given by this AR-quiver. Then HomC(Mi,Mj) = 0
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for i < j. Since the quiver of C is a subquiver of the quiver of Λ modulo all rela-
tions which are supported on that subquiver, C-mod is exactly embedded as a full
subcategory of Λ-mod. Thus HomΛ(Mi,Mj) = 0 for i < j. Since Λ has finite repre-
sentation type, the sequence (Mi) can be completed to a maximal (complete) FHO
sequence which corresponds to a maximal green sequence for Q of the same length by
Corollary 2.14. �

For the next theorem we need the following lemma about the diagram of a Λ-
module (Definition A.2) with respect to an associated iterated tilted algebra C.

Lemma A.11. Let Λ = J(Q,W ) be a cluster-tilted algebra of type An and let C be an
iterated tilted algebra obtained by deleting one arrow from each 3-cycle in Q. Let X be
a Λ module whose diagram with respect to C is M1

α−→M2. Then, there is a sequence
of nonzero morphisms of C-modules M1 → E1 → E2 →M2.

Proof. The quiver Qδ of C is obtained from the quiver Q of Λ by deleting one arrow
from each 3-cycle in Q. Since the Λ-modules X has diagram M1

α−→ M2, there is a
3-cycle

w
β

��
v1

α // v2

γ
^^

in Q so that v1, v2 are vertices in the support ofM1,M2 respectively and α is a deleted
arrow. Since X is a string module, the vertex w is not in the support of X.

Since α is a deleted arrow, the other two arrows in the 3-cycle β, γ are within the
quiver Qδ of C. Therefore, ExtC(Sw,M1) and ExtC(M2, Sw) are nonzero where Sw is
the simple C-module supported at w. Letting E1, E2 be the extensions: M1 → E1 →
Sw and Sw → E2 →M2 we obtain the chain of nonzero morphisms in C-mod:

M1 → E1 → E2 →M2

as claimed. �

We also need the following well-known fact.

Lemma A.12 ([5]). The Auslander–Reiten quiver of any iterated tilted algebra of type
An has no oriented cycles.

Theorem A.13. Let C be a tilted algebra of type An and let Λ be the relation-extension
of C. Then the indecomposable C-modules arranged in the reverse order of one of the
total orderings given by its Auslander–Reiten quiver form a complete FHO sequence
of Λ-modules.

Proof. Let Λ = J(Q,W ) and let Qδ be the quiver of C. Since the AR-quiver of
C contains no oriented cycles, the indecomposable C-modules can be arranged in
a weakly FHO sequence. We claim that any such sequence is maximal and thus
complete.

To prove this claim, let X be any indecomposable Λ-module which is not a C-
module. Then X is a string module having at least one deleted arrow in its support.
In other words, the diagram of X has at least one arrow

· · · → • ←Mj
α−→Mj+1 ← • → · · ·

By Assem’s Theorem A.3, the arrows in the diagram of X alternate in orientation.
ThusMj is a source andMj+1 is a sink. This implies that we have nonzero morphisms
Mj+1 → X and X → Mj . In order to insert X into the weakly FHO sequence of
indecomposable C-modules, the C-moduleMj must come beforeMj+1 in the sequence
since X cannot come before Mj or after Mj+1.
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By Lemma A.11, there is a sequence of nonzero morphisms of C-modules Mj →
E1 → E2 → Mj+1. Therefore, in any weakly FHO sequence containing all indecom-
posable C-modules, Mj must come after Mj+1. Thus X cannot be added to this
sequence. So, the sequence is complete as claimed. �

Theorem A.13 extends easily to the case when C is iterated tilted of type An.

Corollary A.14. Let Λ = J(Q,W ) be a cluster-tilted algebra of type An. Let C be
an associated iterated tilted algebra given by deleting one arrow from each 3-cycle
of Q. Then the indecomposable C-modules can be arranged into a complete FHO
sequence for Λ.

Proof. The proof is the same as for Theorem A.13 with the exception that the diagram
of a Λ-module X might not be alternating. In that case, we take the longest sequence
of arrows in the diagram of X which are pointing in the same direction, say

· · · → • ←Mj
αj−→Mj+1

αj+1−−−→Mj+2 → · · · →Mk ← • → · · · .
Again, we have nonzero morphisms Mk → X and X → Mj . By Lemma A.11, there
are sequences of nonzero morphism in C-mod:

Mj → E1 → E2 →Mj+1 → E3 → · · · →Mk

So, Mj must comes after Mk in any weakly FHO sequence of all indecomposable
C-modules and X cannot be inserted into such a sequence. �

A.4. Conjecture. Examination of Example A.7 with all possible cut sets suggests
that iterated tilted algebras will have fewer modules and that the maximum length
MGS is likely to be given by a tilted algebra. This leads to the following conjecture
about the size and nature of maximal green sequences of maximal length for cluster-
tilted algebras.

Conjecture A.15 (I-Todorov). Let Λ = J(Q,W ) be a cluster-tilted algebra of finite
representation type and let C be one of the associated tilted algebras.

(a) The indecomposable C-modules can be arranged to form a complete FHO se-
quence of Λ-modules whose dimension vectors, by Corollary 2.14, form the
c-vectors of a maximal green sequence for Q.

(b) The longest maximal green sequence for Q is given in this way.

Theorem A.13 proves A.15(a) in type An.
In type An, it is easy to count the number of indecomposable modules of any given

tilted algebra. It is
(
n+1

2
)
minus the number of representations of the quiver of the

cluster-tilted algebra which are nonzero on some deleted arrow. The set of deleted
arrows consists of one arrow from each oriented 3-cycle so that the resulting quiver
with relations is tilted of type An as described by Assem (Theorem A.3).

Example A.16. This example was worked out in detail by Al Garver and K. Igusa
(unpublished). What follows is a streamlined argument using the results of this paper.
Let Λ = J(Q,W ) be the cluster-tilted algebra of type A9 where Q is the following
quiver with either of the two possible orientations of each of the two inner 3-cycles.

Q : 2
α

��

4 6 8

��
1 // 3

[[
β

5 7 //

γ

9

δ
[[

If we delete the four arrows α, β, γ, δ, the result is a tilted algebra of type A9 regardless
of orientation by Theorem A.3. So, Theorem A.13 applies. When we remove these
arrows we remove 8 modules since α, δ each support only one module and β, γ each

Algebraic Combinatorics, Vol. 2 #5 (2019) 778



MGSs for cluster-tilted algebras of finite type

support three. (In all iterated tilted cases we remove more than 8.) These eight Λ-
modules, denoted by their supports by 12, 34, 134, 234, 67, 678, 679, 89 appear in the
list below. By Theorem A.13 the other

(10
2
)
− 8 = 37 modules form a complete FHO

sequence. We claim that Q has no MGS of length greater than 37. The reason is that
Λ-mod has 8 disjoint oriented cycles of nonzero morphisms:

(1) 12→ 23→ 31→ 12
(2) 34↔ 45↔ 53↔ 34 (orientation depending on the orientation of Q)
(3) 134↔ 457↔ 1357↔ 134
(4) 234↔ 4579↔ 23579↔ 234
(5) 67↔ 75↔ 56↔ 67
(6) 678↔ 4578↔ 456↔ 678
(7) 679↔ 3579↔ 356↔ 679
(8) 89→ 97→ 78→ 89

To have a FHO sequence at least one module must be deleted from each of these 8
cycles. So, 37 is the strict upper bound for the length of any MGS for Q.
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