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Generalizations of the Matching Polynomial
to the Multivariate Independence

Polynomial

Jonathan D. Leake & Nick R. Ryder

Abstract We generalize two main theorems of matching polynomials of undirected simple
graphs, namely, real-rootedness and the Heilmann–Lieb root bound. Viewing the matching
polynomial of a graph G as the independence polynomial of the line graph of G, we determine
conditions for the extension of these theorems to the independence polynomial of any graph.
In particular, we show that a stability-like property of the multivariate independence polyno-
mial characterizes claw-freeness. Finally, we give and extend multivariate versions of Godsil’s
theorems on the divisibility of matching polynomials of trees related to G.

1. Introduction
Given a graph G = (V,E), the matching polynomial of G and the independence
polynomial of G are defined as follows.

µ(G) :=
∑
M⊂E

M,matching

(
−x2)|M | I(G) :=

∑
S⊂V

S,independent

x|S|.

The real-rootedness of the matching polynomial and the Heilmann–Lieb root bound
are important results in the theory of undirected simple graphs. In particular, real-
rootedness implies log-concavity and unimodality of the matchings of a graph, and
recently in [15] the root bound was used to show the existence of Ramanujan graphs.
Additionally, it is well-known that the matching polynomial of a graph G is equal to
the independence polynomial of the line graph of G. With this, one obtains the same
results for the independence polynomials of line graphs. This then leads to a natural
question: what properties extend to the independence polynomials of all graphs?

Generalization of these results to the independence polynomial has been partially
successful. About a decade ago, Chudnovsky and Seymour [8] established the real-
rootedness of the independence polynomial for claw-free graphs. (The independence
polynomial of the claw is not real-rooted.) A general root bound for the independence
polynomial was also given by [11], though it is weaker than that of Heilmann and
Lieb. As with the original results, these generalizations are proven using univariate
polynomial techniques.

More recently, Borcea and Brändén used their characterization of stability-
preserving operators [2, 3] to give a simple and intuitive proof of the real-rootedness
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of the matching polynomial. To that end, they use the following multivariate
generalization of real rootedness.

Definition 1.1. Let H+ denote the open upper half-plane of C. A polynomial p ∈
C[z1, . . . , zn] is said to be stable if (z1, . . . , zn) ∈ Hn+ implies p(z1, . . . , zn) 6= 0. Ad-
ditionally, if p ∈ R[z1, . . . , zn], we say that p is real stable. (For simplicity, we also
say that the zero polynomial is both stable and real stable.) Notice that a univariate
polynomial is real stable iff it is real-rooted.

Borcea and Brändén then prove something much stronger than real-rootedness:
they actually show that the multivariate matching polynomial is real stable. Beyond
its surprising simplicity, their proof also suggests that the multivariate approach may
be the more natural one. That said, the first part of this paper is a partial general-
ization of this stability result to the multivariate independence polynomial of claw-
free graphs. In particular, we prove a result related to the real-rootedness of certain
weighted independence polynomials. This result was originally proven by Engström
in [9] by bootstrapping the Chudnovsky and Seymour result for rational weights and
using density arguments. The proof we give here is completely self contained and
implies both the original Chudnovsky and Seymour result as well as the weighted
generalization. By using a multivariate framework to directly prove the more gen-
eral result, we obtain a simple inductive proof which we believe better captures the
underlying structure.

In addition, the full importance of the claw (3-star) graph is not immediately clear
from the univariate framework. Since the result of Chudnovsky and Seymour, there
have been attempts to explain more conceptually why the claw-free premise is needed
for real-rootedness. In particular, some graphs containing claws actually have real-
rooted independence polynomials, disproving the converse to the univariate result.
On the other hand, the stronger stability-like property we use here turns out to be
equivalent to claw-freeness, yielding a satisfactory converse.

In the second part of this paper, we then extend the Heilmann–Lieb root bound
by generalizing some of Godsil’s work on the matching polynomial. In [12], Godsil
demonstrated the real-rootedness of the matching polynomial of a graph by showing
that it divides the matching polynomial of a related tree. (For a tree, root properties
are more easily derived.) We prove a similar result for the multivariate matching poly-
nomial, and then we determine conditions for which these divisibility results extend
to the multivariate independence polynomial. Further, we prove the Heilmann–Lieb
root bound for the independence polynomial of a certain subclass of claw-free graphs.
By considering a particular graph called the Schläfli graph, we demonstrate that this
root bound does not hold for all claw-free graphs and provide a weaker bound in the
general claw-free case.

2. Stability Theory
Before the graph theoretic results, we give a bit of background on stability theory. We
then generalize the typical notion of stability in a way that gives a natural extension
of the matching polynomial stability result.

In what follows, let H+ denote the open upper half-plane of C, let R+ denote the
nonnegative real numbers, and let K denote a field, either R or C. For p ∈ K[z1, . . . , zn]
and t = (t1, . . . , tn) ∈ Kn, define p(tz) := p(t1z, t2z, . . . , tnz), which is a univariate
polynomial. For t = (t1, . . . , tn) ∈ Kn and k ∈ [n] := {1, . . . , n}, let (t1, . . . , t̂k, . . . , tn)
denote the vector in Kn−1 which is the vector t with the kth element removed. Also,
for all k we use the shorthand ∂zk

:= ∂
∂zk

.
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2.1. Interlacing. The notion of interlacing polynomials is intimately related to the
theory of stable polynomials. That said, we now define this notion and state a few of
its important properties.

Definition 2.1. Let p, q ∈ R[z] be real-rooted polynomials given by

p(z) = C1

n∏
k=1

(z − λk) and q(z) = C2

m∏
k=1

(z − γk),

where n and m differ by at most 1 and m 6 n. We write q � p, or say q interlaces
p, if λ1 > γ1 > λ2 > γ2 > · · · and C1 ·C2 > 0. If the roots alternate in the same way
but C1 · C2 < 0, we swap the order of p and q in this relation.

Definition 2.2. Let p1, p2, . . . , pm ∈ R[z] be real-rooted polynomials with positive
leading coefficients. We say that p1, p2, . . . , pm have a common interlacing, if there
exists f ∈ R[z] such that f � pk for all k ∈ [m].

Notice in the above definition that the connotation of “�” as an order symbol
presents itself in the fact that the “larger” polynomial has a larger maximum root
(when C1 · C2 > 0). However, � is not a partial order.

The next result gives a link between the concept of interlacing and the roots of
linear combinations of polynomials. It is typically attributed to Obreshkoff, but can
be viewed as a reformulation of the Hermite–Biehler theorem.

Proposition 2.3 (Obreshkoff’s Theorem). For p, q ∈ R[z] with real roots, αp+ βq is
real-rooted for all α, β ∈ R iff p� q or q � p.

To generalize Obreshkoff’s Theorem to many polynomials, Chudnovsky and Sey-
mour make the following definition and prove the following equivalence.

Definition 2.4. We say that p1, . . . , pm ∈ R[z] are compatible if all convex combina-
tions are real rooted.

Theorem 2.5 ([8]). Let p1, . . . , pk ∈ R[z] be polynomials with positive leading coeffi-
cients. The following are equivalent.

(1) pi and pj are compatible for all i 6= j.
(2) pi and pj have a common interlacing for all i 6= j.
(3) p1, . . . , pk are compatible.
(4) p1, . . . , pk have a common interlacing.

2.2. Real Stability. We now give a condition which is equivalent to the notion of
stability defined above.

Proposition 2.6 ([2, Lemma 1.5]). A polynomial p ∈ K[z1, . . . , zn] for K = C (resp.
K = R) is stable (resp. real stable) iff for every t ∈ Rn+ and every y ∈ Rn, the
univariate restriction p(tz+y) is stable. Note that if K = R, the univariate restrictions
will be real-rooted.

We give this equivalent condition to emphasize the sense in which we generalize
stability in the next section. As will be seen, this generalization turns out to work
well with the multivariate independence polynomial. Before this though, we give a bit
more stability theory. The following will also serve as a base for generalization in the
next section.

Proposition 2.7 (Closure Properties). Let p, q ∈ K[z1, . . . , zn] be stable (resp. real
stable) polynomials, and fix k ∈ [n]. Then the following are also stable (resp. real
stable).

(i) p · q (product).
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(ii) ∂zk
p (differentiation).

(iii) zk∂zk
p (degree-preserving differentiation).

(iv) p(z1, . . . , zk−1, r, zk+1, . . . , zn), for r ∈ R (real specialization).
(v) p(z1, . . . , zk−1, z1, zk+1, . . . , zn) (projection).
(vi) zdegk(p)

k p(z1, . . . , zk−1,−z−1
k , zk+1, . . . , zn) (inversion).

Here, degk(p) is the degree of zk in p.

The next result is a stability equivalence theorem of Borcea and Brändén, which is
essentially a generalization of the Hermite–Biehler theorem. It is the inspiration for
the main theorem of the next section.

Theorem 2.8 ([2], Lemma 1.8). For p, q ∈ R[z1, . . . , zn], p + zn+1q is real stable iff
for every t ∈ Rn+ and every y ∈ Rn, we have that q(tz + y) interlaces p(tz + y).

Finally, we give an equivalent condition for real stability of multi-affine polynomials.
This will be a useful result for demonstrating counterexamples to real-rootedness.

Definition 2.9. A polynomial p ∈ K[z1, . . . , zn] is said to be multi-affine if it is of
degree at most one in each variable.

Proposition 2.10 ([4]). A multi-affine polynomial p ∈ R[z1, . . . , zn] is real stable iff
p is strongly Rayleigh. That is, iff for every j 6= k ∈ [n] and every x ∈ Rn, we have
the following.

(∂zjp)(x) · (∂zk
p)(x) > (∂zj∂zk

p)(x) · p(x).

2.3. Same-phase Stability. We now introduce a new notion of stability. Notice
that the connection between the following conditions is similar to that which is given
by Proposition 2.6.

Definition 2.11. A polynomial p ∈ R[z1, . . . , zn] is said to be same-phase stable if
one of the following equivalent conditions is satisfied.

(i) For every t ∈ Rn+, the univariate restriction p(tz) is stable (and therefore real
rooted).

(ii) If arg(z1) = arg(z2) = · · · = arg(zn), then p(z1, . . . , zn) = 0 implies zk 6∈ H+
for some k.

We will primarily make use of condition (i).

This notion is strictly weaker than that of “stable”, and it will serve as the basic
concept in what follows (as stability and real stability did in the previous section).
Next, we define a notion of compatibility for real same-phase stable polynomials,
which is similar to that of Chudnovsky and Seymour in [8].

Definition 2.12. Polynomials p1, . . . , pm ∈ R+[z1, . . . , zn] with nonnegative coeffi-
cients are said to be same-phase compatible if pk is same-phase stable for all k, and
the polynomials {pk(tz)}mk=1 are compatible for each t ∈ Rn+. Note that by Theo-
rem 2.5, we could instead require {pk(tz)}mk=1 have a common interlacing for each
t ∈ Rn+.

Remark 2.13. In order to utilize the theory of interlacing and compatible polynomi-
als, we need to assume that the polynomials we are using have nonnegative coefficients.
This is because results like Theorem 2.5 no longer hold if negative or complex coef-
ficients are allowed. That said, this restriction is not required to define same-phase
stable polynomials, and many other properties also hold without it.

We now can apply Chudnovsky and Seymour’s equivalence result (Theorem 2.5)
to get the following:
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Corollary 2.14. Let p1, . . . , pk ∈ R+[z1, . . . , zn] be polynomials with nonnegative
coefficients. The following are equivalent.

(1) pi and pj are same-phase compatible for all i 6= j.
(2) p1, . . . , pk are same-phase compatible.

2.4. Same-phase Stability for Multi-affine Polynomials. We now begin to
develop a general theory of same-phase stability for multi-affine real polynomials.
This class of polynomials is of particular importance here, as most multivariate graph
polynomials are real and multi-affine. We start by giving some basic closure properties.

Proposition 2.15 (Closure Properties). Let p ∈ R[z1, . . . , zn] and q ∈ R[w1, . . . , wm]
be multi-affine same-phase stable polynomials, and fix k ∈ [n]. Then the following are
also multi-affine same-phase stable. Note that if in addition p and q have nonnegative
coefficients, then the following do as well.

(i) p · q (disjoint product).
(ii) ∂zk

p (differentiation).
(iii) zk∂zk

p (variable selection).
(iv) p(z1, . . . , zk−1, 0, zk+1, . . . , zn) (variable deselection).
(v) z1z2 · · · znp(z−1

1 , . . . , z−1
n ) (selection inversion).

Proof. (i) Straightforward.
(ii) Fix t ∈ Rn+, letting tk vary. Also, define t0 := (t1, . . . , t̂k, . . . , tn). So, p(tz) is

real-rooted for any tk ∈ R+. By Hurwitz’s theorem,

(∂zk
p)(t0z) = lim

tk→∞
t−1
k p(tz)

is also real-rooted. So, ∂zk
p is same-phase stable.

(iii) This follows from (i), since (zk∂zk
p)(tz) = tkz(∂zk

p)(t0z) is real-rooted iff
(∂zk

p)(t0z) is.
(iv) For any t ∈ Rn+ with tk = 0, we have that p(t1z, . . . , tk−1z, 0, tk+1z, . . . , tnz) =

p(tz) is real-rooted by definition of same-phase stability.
(v) Given t ∈ Rn+ with strictly positive entries, we have that p(t−1z) has real roots,

say at γ1, . . . , γm. So, znp(t−1z−1) = t1z . . . tnz ·p((t1z)−1, . . . , (tnz)−1) has real roots
at γ−1

1 , . . . , γ−1
m . Of course, some of these inverse zeros may be missing when some

γj = 0, and there may be extra zeros at z = 0. However, this will not affect the
real-rootedness of the inverted polynomial. Hurwitz’s theorem then allows us to limit
to all t ∈ Rn+. �

The names given to some of the closure properties are specific to multi-affine poly-
nomials. In particular, “variable selection” (resp. “variable deselection”) refers to the
fact that the associated actions will pick out the terms of p which contain (resp. do
not contain) a particular variable. Then, “selection inversion” inverts which terms
contain which variables. The idea here is to give a combinatorial interpretation to
these actions. For example, if the variables correspond to vertices on some graph,
then variable deselection might correspond to removal of some vertex.

The next definition is inspired by p+ zn+1q used in Theorem 2.8. The proposition
that follows then relates this definition to multi-affine polynomials.

Definition 2.16. Let p, f0, f1, . . . , fm ∈ R[z1, . . . , zn] be polynomials, not necessarily
multi-affine, such that

p = f0 + zi1f1 + · · ·+ zimfm.

We call such an expression a proper splitting of p (with respect to {zij}j) if none of
the fk’s depend on any of the zij ’s. We also say that {zij}mj=1 splits p.
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Proposition 2.17. Let p ∈ K[z1, . . . , zn] be a multi-affine polynomial, and suppose
{zij}mj=1 splits p. Then p has a unique proper splitting with respect to {zij}j, ex-
pressed as

p = p0 +
m∑
j=1

zij∂zij
p,

where p0 is the polynomial p with the variables {zij}j evaluated at 0.

Another way to think about this proposition is as follows. For a multi-affine poly-
nomial p ∈ K[z1, . . . , zn], we have that {zij}mj=1 splits p iff no term of p contains more
than one variable from {zij}mj=1. This naturally leads to the use of “variable selection”
(zij∂zij

p) and “variable deselection” (p0) in the decomposition of p into the above sum
of polynomials.

We now reach the main theorem of this section. As mentioned before, this can
be seen as a loose analogue of the stability equivalence theorem (2.8) of Borcea and
Brändén.

Theorem 2.18. Let p ∈ R+[z1, . . . , zn] be a multi-affine polynomial with nonnegative
coefficients. The following are equivalent.

(i) The polynomial p is same-phase stable.
(ii) Given any proper splitting

p = f0 +
m∑
j=1

zijfj

we have that f0, zi1f1, ..., and zimfm are same-phase compatible.
(iii) There exists some proper splitting

p = f0 +
m∑
j=1

zijfj

such that f0, zi1f1, ..., and zimfm are same-phase compatible.

Proof. (i) ⇒ (ii) Let p = f0 +
∑m
j=1 zijfj be a proper splitting of p. By uniqueness

of the proper splitting, f0 is the polynomial p with variables {zij} evaluated at 0,
and zijfj = zij∂zij

p. So, by closure properties, each of f0, zi1f1, . . . , and zimfm is
same-phase stable. Now, fix t ∈ Rn+ and λ ∈ Rm+ , and let λt be defined as:

(λt)i :=
{
λjtij , i = ij

ti, i 6∈ {ij}mj=1.

That is, λt is obtained by multiplying the ij ’th entry of t by λj for all j ∈ [m]. With
this, same-phase stability of p implies1 +

∑
j

λj

−1

p(λtz) =
f0(tz) +

∑
j λj [tijzfj(tz)]

1 +
∑
j λj

is real-rooted for every choice of λ, which means every convex combination of
f0(tz), ti1zf1(tz), . . . , and timzfm(tz) is real-rooted. So, f0(tz), ti1zf1(tz), . . . ,
and timzfm(tz) have a common interlacing. Since t was arbitrary, this implies f0,
zi1f1, . . . , and zimfm are same-phase compatible.

(ii)⇒ (iii) This is trivial, given the existence of some proper splitting. In particular,
p = p(0, z2, . . . , zn) + z1∂z1p is always a proper splitting for multi-affine p.
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(iii) ⇒ (i) Fix t ∈ Rn+. Same-phase compatibility of f0, zi1f1, . . . , and zimfm
implies f0(tz), zf1(tz), . . . , and zfm(tz) have a common interlacing. So,1 +

∑
j

tij

−1

p(tz) =
f0(tz) +

∑
j tijzfj(tz)

1 +
∑
j tij

is real-rooted. Since t was arbitrary, this implies p is same-phase stable. �

The power of this statement comes from the fact that same-phase compatibility of
any particular splitting implies same-phase compatibility of every possible splitting.
We will use this to our advantage in an inductive argument to follow.

3. Multivariate Graph Polynomials and Stability
In this section, we discuss the multivariate analogues of the independence and match-
ing polynomials. Though somewhat counterintuitive, considering the multivariate ver-
sions of these polynomials actually simplifies the situation. In the multivariate world,
one can directly manipulate how particular vertices and edges influence the poly-
nomial by manipulating the associated variable. And further, these polynomials are
multiaffine: important operations like differentiation and evaluation at 0 have intuitive
interpretations.

Notions like real-rootedness and root bounds become trickier in the multivariate
world, but real stability and similar notions can often play the analogous parts. This is
true for the multivariate matching polynomial and somewhat true for the multivariate
independence polynomial, as we will see below. But first, let’s set up some notation.

3.1. Notation. Let G = (VG, EG) be an undirected graph, which is simple unless
otherwise specified. As usual, VG is the set of vertices and EG is the set of edges. We
employ standard notation surrounding these first objects:

• {u, v} ∈ EG iff there is an edge between vertices u and v.
• u ∈ e for e ∈ EG iff u is a vertex of the edge e.
• NG[v] (resp. NG(v)) denotes the closed (resp. open) neighborhood of v.
• H ⊆ G (resp. H 6 G) iff H is a subgraph (resp. induced subgraph) of G.

As usual, we will leave off the subscript G when unambiguous. We also generalize
the definition of “claw” in the following standard way. As usual, let Km,n denote the
complete bipartite graph with m + n vertices. So, we refer to K1,3 as a claw or as a
3-star. Generalizing, we refer to K1,n as an n-star. For any graph H, we say that G
is H-free if it does not contain H as an induced subgraph.

Finally, we denote the line graph of G by L(G). This is the graph formed by con-
sidering the edges of G to be the vertices of L(G), with adjacency in L(G) determined
by whether or not the corresponding edges of G share a vertex in G.

3.2. The Matching Polynomial. The univariate and multivariate matching poly-
nomials have been well studied. In 1972, Heilmann and Lieb proved that for any graph
the multivariate matching polynomial is real-stable. This implies the real-rootedness
of the univariate matching polynomial, and in fact Heilmann and Lieb gave bounds
on its largest root. More recently, Choe, Oxley, Sokal, and Wagner [7] gave a simpler
proof of this fact using a special linear operator on polynomials, called the “multi-
affine part”. We give their proof below.

First though, we define and discuss a few multivariate matching polynomials. The
reader should be aware that our notation will be slightly different from that which
is standard; we do this to emphasize the connection between the matching and inde-
pendence polynomials. We give examples of all these polynomials in Figure 1.
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Given any graph G, we define the multi-affine vertex matching polynomial of G as
follows.

µV (G) ≡ µV (G)(x) :=
∑
M⊂E

M,matching

∏
{u,v}∈M

−xuxv.

Notice that the univariate restriction of µV (G) is the univariate matching polynomial
used by Godsil and Heilmann–Lieb, but with the degrees inverted. So, for instance,
Heilmann and Lieb’s upper bound on the absolute value of the roots of the matching
polynomial would translate to a bound away from zero for this inverted polynomial.
We will discuss this further later. We also define the multiaffine edge matching poly-
nomial of G as follows.

µE(G) ≡ µE(G)(x) :=
∑
M⊂E

M,matching

∏
e∈M

xe.

We now give the proof of real stability of the vertex matching polynomial, and show
its connection to the edge matching polynomial.

Theorem 3.1 ([3, 7, 13]). For any graph G, the vertex matching polynomial µV (G)
is real stable.

Proof. Let MAP (“Multi-Affine Part”) denote the linear operator on multivariate
polynomials which removes any terms which are not multi-affine. By [3], this operator
preserves real stability. We then have the following.

µV (G)(x) = MAP

 ∏
{u,v}∈E

(1− xuxv)

 .

Since (1−xuxv) is real stable and the product of real stable polynomials is real stable,
this implies the result. �

This then implies real-rootedness of the univariate matching polynomial via uni-
variate restriction. As for the edge matching polynomial, we don’t quite have real
stability. However, we do have same-phase stability, which still implies real-rootedness
of the univariate restriction.

Corollary 3.2. For any graph G, the edge matching polynomial µE(G) is same-phase
stable.

Proof. Let Π↓ be the projection operator, which sends all variables xv to a single
variable x. Fixing (te)e∈E ∈ R|E|+ , we have the following.

µE(G)(−tx2) =
∑
M⊂E

M,matching

∏
e∈M
−tex2 = (Π↓ ◦MAP)

 ∏
{u,v}∈E

(1− texuxv)

 .

By closure properties of real stability and the fact that te > 0 implies (1− texuxv) is
real stable, the right-hand side of the above equation is real-rooted. So, µE(G)(−tx2)
is real-rooted, which implies µE(G)(tx) is real-rooted. (In fact, it has all its roots on
the negative part of the real line.) Since t was arbitrary, this implies the result. �

It’s well-known that matchings of graphs are related to independent sets of line
graphs. This connection is made particularly clear by considering the (multivariate)
edge matching polynomial, as we will see in the next section.
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ab

c

d e

f

µE(C6, x) = 1 + xab + xbc + xcd + xde + xef + xfa +
xabxcd + xabxde + xabxef + xbcxde + xbcxef + xbcxfa +
xcdxef + xcdxfa + xdexfa + xabxcdxef + xbcxdexfa

µV (C6, x) = 1 − xaxb − xbxc − xcxd − xdxe − xexf −
xfxa + xaxbxcxd + xaxbxdxe + xaxbxexf + xbxcxdxe +
xbxcxexf + xbxcxfxa + xcxdxexf + xcxdxfxa +
xdxexfxa − xaxbxcxdxexf − xbxcxdxexfxa

I(C6, x) = 1 + xa + xb + xc + xd + xe + xf + xaxc +
xaxd+xaxe+xbxd+xbxe+xbxf +xcxe+xcxf +xdxf +
xaxcxe + xbxdxf

Figure 1. A small graph C6 with associated independence polyno-
mial, vertex/edge matching polynomials.

3.3. The Independence Polynomial. The univariate independence polynomial of
a graph is another well-studied graph polynomial. However, consideration of its roots
has proven a bit more difficult. For example, the independence polynomial of a graph
is not real-rooted in general, and it has only been about a decade since the first proof
of real-rootedness for claw-free graphs was published in [8]. Since then a number of
proofs of real-rootedness have appeared, along with interesting results about location
and modulus of certain roots [1, 6, 10, 14].

Here, we give another proof of real-rootedness for claw-free graphs by proving some-
thing stronger: namely, that the multivariate independence polynomial of a graph is
same-phase stable if and only if the graph is claw-free. In their original proof, Chud-
novsky and Seymour show real-rootedness using an intricate recursion based on a
combinatorial structure known as a “simplicial clique”. By encoding the recursive
compatibility using our notion of same-phase stability, we are able to avoid the in-
troduction of simplicial cliques and use simpler graph structures in the recursion.
Same-phase stability of the edge matching polynomial then serves as the base case.

Before giving this proof, we need to set up the relevant notation. Given any graph
G, we define the multi-affine independence polynomial of G as follows.

I(G) ≡ I(G)(x) :=
∑
S⊂V

S,independent

∏
v∈S

xv.

Stability properties of the multivariate independence polynomial have been previ-
ously studied by Scott and Sokal. In [17], they observe this polynomial as a specific
case of a more general statistical-mechanical partition function, and generic lower
bounds on the modulus of the roots are studied. In particular, the Lovász local lemma
is used to give a universal lower bound of 1

e·∆ , where ∆ is the maximum degree of G.
As discussed in the notation above, for a given graph G we denote the line graph

of G by L(G). Since line graphs are claw-free, we have the following first step toward
the desired result.

Corollary 3.3. For any graph G, the independence polynomial I(L(G)) of the line
graph of G is same-phase stable.

Proof. By considering the fact that the operator L maps edges to vertices and shared
vertices to edges, we actually have the following identity.

µE(G) = I(L(G)).
The previous corollary gives the desired result. �
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Of course, this is quite far from the claim that all claw-free graphs are same-phase
stable. However, as it turns out, line graphs will serve a base case in our induction on
general claw-free graphs. To illustrate this, we first give the following lemma.

Lemma 3.4. Let G be a connected claw-free graph which is also triangle-free. Then, G
is either a path or a cycle. In particular, G is a line graph.

Proof. Given a vertex v ∈ G, if the degree of v is greater than 2 then we get either a
claw with v as the base or a triangle. We conclude that a graph which is connected,
claw-free, and triangle-free is equivalent to being connected and triangle-free with all
vertices degree 1 or 2. �

With this, we now give the proof of same-phase stability for claw-free graphs,
using the theory of same-phase compatibility developed above. As mentioned in the
introduction, this result is a reformulation of a theorem of Engström given in [9].

Theorem 3.5 (Engström). For any claw-free graph G, the independence polynomial
I(G) is same-phase stable.

Proof. We induct on the number of vertices. If G is disconnected, then its indepen-
dence polynomial is the product of the independence polynomials of its connected
components. The inductive hypothesis on components of G (along with the disjoint
product closure property for same-phase stable polynomials) then implies the result
for G. If G is connected and contains no 3-cliques (triangles), then G is a line graph by
the previous lemma. The line graph corollary then implies the result for G. If neither
of these conditions is satisfied, then G is a connected graph with at least one 3-clique.
Let u, v, w denote the vertices of this 3-clique.

In the independence polynomial I(G), let the variables zu, zv, zw represent the
vertices u, v, w, respectively. Consider the following equivalent expressions of I(G).
I(G) = I(G)|u=v=w=0 + zu∂zu

I(G) + zv∂zv
I(G) + zw∂zw

I(G)
= I(Gr {u, v, w}) + zuI(GrN [u]) + zvI(GrN [v]) + zwI(GrN [w])
= [I((Gr {u}) r {v, w}) + zvI((Gr {u}) rN [v]) + zwI((Gr {u}) rN [w])]

+ zuI(GrN [u])
= [I((Gr {v}) r {u,w}) + zuI((Gr {v}) rN [u]) + zwI((Gr {v}) rN [w])]

+ zvI(GrN [v])
= [I((Gr {w}) r {u, v}) + zuI((Gr {w}) rN [u]) + zvI((Gr {w}) rN [v])]

+ zwI(GrN [w]).
The square-bracketed sections of the last three expressions are proper splittings of
I(G r {u}), I(G r {v}), and I(G r {w}), respectively. By the inductive hypothesis
and the same-phase stability theorem, these proper splittings have terms which are
same-phase compatible. So, the terms of the first expression of I(G) are pairwise
same-phase compatible. By Corollary 2.14, we have that all the terms of the first
expression are same-phase compatible. These terms give a proper splitting of I(G),
and so Theorem 2.18 implies I(G) is same-phase stable. �

An interesting feature of the above proof is the fact that the inductive step did
not use the fact that G is claw-free. This suggests that perhaps the theorem can be
extended to certain clawed graphs. However, the following corollary shows that this
is not the case.

Corollary 3.6. For any graph G, the independence polynomial I(G) is same-phase
stable if and only if G is claw-free (3-star-free).
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Proof. By the above theorem, we only need to show that the independence polynomial
of a graph with a claw is not same-phase stable. To get a contradiction, let G be a
graph such that the vertices u, v, w, x form a claw, and yet I(G) is same-phase stable.
Let p(zu, zv, zw, zx) be the polynomial obtained by evaluating I(G) at zero for all
other variables (besides zu, zv, zw, and zx). By closure properties, p is also same-
phase stable. With this we compute p(tz) for t = (1, 1, 1, 1):

p(z, z, z, z) = 1 + 4z + 3z2 + z3.

This polynomial is not real-rooted, which gives the desired contradiction. �

With this equivalence in mind, one might wonder for what smaller class of graphs
the independence polynomial is actually real stable. A somewhat surprising result is
the following.

Proposition 3.7. For any connected graph G, the independence polynomial I(G) is
real stable if and only if G is complete (2-star-free).

Proof. If G is a complete graph, then the independence polynomial of G is 1 +∑
v∈V xv, which is real stable. On the other hand, suppose G is some connected

incomplete graph such that I(G) is real stable. By incompleteness and connected-
ness, G contains an induced path P of length at least 2. (E.g., consider the shortest
path between two non-adjacent vertices.) In fact, we can assume P is of length ex-
actly 2 by removing all but 3 consecutive vertices. Notice that P is now an induced
2-star. Evaluating I(G) at 0 the variables xv for which v 6∈ P , we obtain I(P ), the
independence polynomial of P . Closure properties imply I(P ) is real stable.

Labeling the vertices of P as u, v, w, we then have

I(P )(x) = 1 + xu + xv + xw + xuxw,

which, for x0 = (−1, 1,−1), gives

∂xu
I(P )(x0) · ∂xw

I(P )(x0) = 0 < 1 = ∂xuxw
I(P )(x0) · I(P )(x0).

That is, I(P ) is not strongly Rayleigh. So, I(P ) is not real stable, which is the desired
contradiction. �

4. Root Bounds
In addition to proving real rootedness of the matching polynomial, Heilmann and
Lieb established bounds on the modulus of roots of the matching polynomial. Since
we use the inverted matching polynomial, this result bounds the roots, λ, of µV (G)
away from zero:

|λ| > 1
2
√

∆− 1
.

Since µV (G)(x) = I(L(G))(−x2) this result can be stated equivalently as a bound
on the root closest to zero, λ1, for the independence polynomial of line graphs. To do
this note that the maximum degree, ∆, of a graph is equal to the clique size, ω, of its
line graph.

λ1(I(L(G))) 6 1
4(ω − 1) .

Since all line graphs are claw-free graphs, we can seek out similar bounds for the
independence polynomial of claw-free graphs. In what follows, we adapt the methods
of Godsil to determine such root bounds for a certain subclass of claw-free graphs,
namely those which contain a simplicial clique. (Although we were able to avoid
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simplicial cliques in the proof of real-rootedness, they turn out to be crucial to gen-
eralizing the Heilmann–Lieb root bound.) We then discuss how the bound does not
extend to all claw-free graphs.

To this end, we first discuss Godsil’s original divisibility result which was key to
his proof of the Hielmann–Lieb root bound. We do this in the multivariate world,
though, so as to provide context for the later results on the independence polynomial.

4.1. Path Trees. A basic element of Godsil’s proof of the root bound is the notion
of a path tree of a graph. We now define this notion as he did, and subsequently
discuss what needs to be altered in order to apply it to the multivariate matching
polynomial.

Definition 4.1. Given a graph G and a vertex v, we define the (labeled) path tree
Tv(G) of G with respect to v recursively as follows. If G is a tree, we define Tv(G) = G,
and we say that v is the root of Tv(G). We also label the vertices of Tv(G) using the
vertices of G. (In the recursive step, we will continue to label using vertices of G.)

For an arbitrary graph G, we first consider the forest which is the disjoint union of
the labeled trees Tw(Gr {v}) for each w ∈ N(v). We then define Tv(G) by appending
a vertex (the root) labeled v and connecting it to the roots of each of these trees.

Remark 4.2. Figure 2 gives an example of a path tree. Note that it is defined in such
a way that the paths stemming from v in G and from the root, v in Tv(G), are in
order preserving bijection (where the order on paths is the subpath ordering).

In Godsil’s proof of the root bound for the matching polynomial, he shows that
the univariate vertex matching polynomial of G divides that of Tv(G) for any v.
In the multivariate world, this divisibility relation won’t be possible, a priori, since
there are potentially far more vertices (and hence, variables) in Tv(G) than in G.
However, using the labeling of the vertices described above, we can in fact extend this
divisibility result. We now formalize this notion of labeling, so as to easily generalize
it to all relevant multivariate graph polynomials.

Let G,H be two graphs, and let φ : G → H be a graph homomorphism. We call
this homomorphism a labeling of G by H. For a graph G, we define the relative vertex
matching polynomial (with respect to φ) as follows.

µφV (G) ≡ µφV (G)(x) :=
∑

M⊂E(G)
M,matching

∏
{u,v}∈M

−xφ(u)xφ(v).

We define the relative edge matching polynomial and the relative independence poly-
nomial (with respect to φ) analogously. When unambiguous, we will remove the φ
superscript from the notation. Notice that the univariate specialization of each of the
normal matching and independence polynomials is the same as that of the relative
matching and independence polynomials, for any φ. This notion then gives us a way to
compare multivariate matching and independence polynomials from different graphs
without destroying any univariate information.

Now, consider the labeling of vertices described in the construction of Tv(G) above.
This can extended to a graph homomorphism, φv : Tv(G) → G in a unique way.
Specifically, the vertices of Tv(G) are mapped to the vertices of G via the labeling
given above (e.g., the root of Tv(G) maps to v ∈ G, the neighbors of the root are
mapped to the neighbors of v ∈ G, etc.). An edge {u,w} of Tv(G) is then mapped to
the edge {Tv(u), Tv(w)} in G, which exists by the inductive construction given above.

In what follows, we will consider the graph polynomials µφv

V (Tv(G)) and µφv

E (Tv(G)).
For simplicity of notation, we will from now on denote these polynomials µV (Tv(G))
and µE(Tv(G)), respectively. That is, reference to φv will be dropped.
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With this, we now state the generalization of Godsil’s divisibility theorem for the
vertex matching polynomial. We omit the proof, as this theorem turns out to be a
corollary of a more general result related to independence polynomials.

Theorem 4.3 (Godsil). Let v be a vertex of the graph G = (V,E), and let T ≡ Tv(G)
be the path tree of G with respect to v. Further, let µV (T ) ≡ µφv

V (T ) denote the relative
vertex matching polynomial. We then have the following.

µV (G)
µV (Gr v) = µV (T )

µV (T r v) .

Further, µV (G) divides µV (T ).

By univariate specialization, this gives us the first step toward the well-known
Heilmann and Lieb root bound (up to inversion of the input variable). We now attempt
to generalize this divisibility to independence polynomials. First, however, we will need
to develop some path tree analogues.

4.2. Path Tree Analogues.

Induced Path Trees. Given a graph G and a vertex v, the induced path tree T∠v (G)
of G with respect to v is intuitively defined as follows: it is the path tree that is
constructed when only induced paths are considered. That is, we use the recursive
process of creating the usual path tree, only we forbid traversal of vertices which are
neighbors of previously traversed vertices. So, another name that could be used for
this tree is the “neighbor-avoiding” path tree.

We now give an explicit definition of the induced path tree. The crucial difference
between this definition and the definition of the path tree given above is that neighbors
of a vertex are excluded in the recursive step.

Definition 4.4. Given a graph G and vertex v, we define the induced path tree T∠v (G)
of G with respect to v recursively as follows. If G is a tree, we define T∠v (G) = G,
and we say that v is the root of T∠v (G).

For an arbitrary graph G, we first consider the forest which is the disjoint union of
the trees T∠w (GrN [v]∪{w}) for each w ∈ N(v). We then define T∠v (G) by appending a
vertex corresponding to v (the root) and connecting it to the roots of each of these trees.

We also define a slightly different version of the induced path tree. As will be seen,
this adjusted definition is more appropriate for our purposes.

Definition 4.5. Given a graph G and a clique K, the induced path tree T∠K(G) of
G with respect to K is defined as follows. Construct a new graph G∗ by attaching a
new vertex ∗ to G, with the property that {∗, u} ∈ E(G∗) iff u ∈ K. Then, define
T∠K(G) := T∠{∗}(G∗).

Remark 4.6. As with the path tree, we can label the vertices of the induced path
tree in a natural way. This gives rise to graph homomorphisms φv : T∠v (G)→ G and
φK : T∠K(G)→ G∗.

Simplicial Clique Trees. We need two graph theoretic concepts before defining our
final path tree analogue. Given a graph G, let K 6 G be an induced clique. Then, K
is called a simplicial clique if for all u ∈ K, N [u] ∩ (GrK) is a clique as an induced
subgraph of G (or equivalently, as an induced subgraph of G rK). Intuitively, this
means that neighborhoods of each u ∈ K are two cliques joined at u: one is K
itself, and the other consists of the remaining neighbors of u. Simplicial cliques have
been studied frequently in relation to the independence polynomial of a graph, and
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in particular, they were used in Chudnovsky and Seymour’s original proof of real-
rootedness for claw-free graphs.

We further say that a graph G is simplicial if it is claw-free and contains a simplicial
clique. It may at first seem strange as to why “claw-free” is included in this definition.
The main reason is the useful recursive structure that can be extracted from the
following lemma.

Lemma 4.7 ([8]). Let G be claw-free, and let K 6 G be a simplicial clique in G. For
any u ∈ K, N [u] ∩ (GrK) is a simplicial clique in GrK.

Remark 4.8. One can easily check that our definition of a simplicial graph is equiv-
alent to having a recursive structure of simplicial cliques as indicated in the previous
lemma.

A block graph (or clique tree) is a graph in which every maximal 2-connected
subgraph is a clique [16]. As it turns out, block graphs are precisely the line graphs
of trees. From this observation we note that there is a natural tree-like recursive
structure on block graphs. Specifically, let B be a block graph, and let K be a clique
in B. Then, BrK is a “forest of block graphs”. That is, if we refer to K as the “root
clique” in B, then each “root clique” in the forest BrK is connected to some vertex
of K in B.

We now define a special kind of clique tree. Notice that while the term “tree” is
used, the graphs defined here are not actually trees in the usual sense.

Definition 4.9. Given a simplicial graph G and simplicial clique K 6 G, we define
the (simplicial) clique tree T�K (G) of G with respect to K recursively as follows. If
G = K, we define T�K (G) = G, and we say that K is the “root clique” of T�K (G).

For an arbitrary graph G, we first consider the “forest of simplicial clique trees”
which is the disjoint union of T�Ju

(G r K) for each u ∈ K. (Here, we define Ju :=
N [u] ∩ (G r K).) Note that this is valid, since the previous lemma implies Ju is a
simplicial clique for all u ∈ K. We then define T�K (G) by appending the clique K (the
root clique) and connecting each vertex u ∈ K to each vertex of the root clique of
T�Ju

(GrK).

Remark 4.10. We can label the vertices of the (simplicial) clique tree in the usual
way, and this gives rise to a natural graph homomorphism φK : T�K (G)→ G.

For examples of the induced path tree and the simplicial clique tree, see Figures 2
and 3.

4.3. Divisibility Relations. Given the above definitions, the main goal of this
section is to demonstrate the following theorem. Here, for v ∈ G we define Kv 6 L(G)
via Kv := L({e ∈ E(G) : v ∈ e}). That is, Kv can be thought of as “the clique in
L(G) associated to N [v]”.

Theorem 4.11. Let L be the line graph operator, Tv the path tree operator with respect
to v, T∠K the induced path tree operator with respect to K, and T�K the clique tree
operator with respect to K. Then the following diagram commutes up to isomorphism.

{graphs} {trees}

{simplicial graphs} {simpl. block graphs}

Tv

L L
T∠K

T�K

In the upper left triangle, commutativity is achieved for K = Kv.

This can be broken down into a few results, which we give now.

Algebraic Combinatorics, Vol. 2 #5 (2019) 794



Generalizations of the Matching Polynomial to the Multivariate Independence Polynomial

Lemma 4.12. For any graph G and any v ∈ G, Kv is a simplicial clique of L(G). In
particular, L(G) is simplicial.

Proof. It is easy to see that Kv is a clique. If we consider w ∈ Kv, this corresponds
to an edge ew ∈ E(G) that has v as an endpoint. Then given any two neighbors of w
that are not in Kv, we know they correspond to two edges which share an endpoint
with ew but do not have v as an endpoint. Hence they both share the other endpoint
of ew and are therefore connected in the line graph. This shows that N [w] rKv is a
clique, so Kv is a simplicial clique.

It is well known that line graphs are claw-free, so all line graphs are simplicial. �

Proposition 4.13. For any (nonempty) graph G and any v ∈ V , the induced path
tree of L(G) with respect to Kv is isomorphic to the path tree of G with respect to v.
That is, T∠Kv

(L(G)) ∼= Tv(G).

Proof. First, let G be the graph with one vertex, v. Then, L(G) is the empty graph
and T∠Kv

◦ L(G) is also the graph with one vertex (recall that the operator T∠Kv
adds

an extra vertex to the input graph). On the other hand, Tv(G) is the graph with one
vertex, and the result holds in this case.

Now, let G be a connected graph consisting of two or more vertices, and let v be
some vertex of G. (We can assume WLOG that G is connected, since Tv and T∠Kv

only
deal with connected components of v and Kv, respectively.) We proceed inductively,
adopting the convention that Ku 6 L(G) and K ′u 6 L(G r {v}) are the cliques
associated to N [u] in the respective line graphs.

We first consider Tv(G). For each u ∈ N(v), we have that Tu(Gr {v}) is naturally
a subtree of Tv(G). In fact, Tv(G) can be viewed as the disjoint union of Tu(Gr {v})
for all u ∈ N(v), connected to a single vertex corresponding to v.

We next consider T∠Kv
◦ L(G). Notice that L(Gr {v}) ∼= L(G) rKv. For any u ∈

N(v), this implies T∠K′u ◦L(Gr{v}) ∼= T∠Ju
(L(G)rKv), where Ju := Ku∩(L(G)rKv).

Recall that the T∠K operator adds an extra vertex attached to each vertex of K. So, we
can view T∠Kv

◦ L(G) as the disjoint union of T∠Ju
(L(G) rKv) for all u ∈ N(v), along

with an extra vertex connected to each of the added extra vertices in the disjoint
union.

By the induction hypothesis, we have Tu(G r {v}) ∼= T∠K′u ◦ L(G r {v}) for all
u ∈ N(v). This implies that the two descriptions given above of Tv(G) and T∠Kv

◦L(G),
respectively, are equivalent. Therefore, Tv(G) ∼= T∠Kv

◦ L(G). �

Proposition 4.14. For any simplicial graph G and any simplicial clique K 6 G, the
line graph of the induced path tree of G with respect to K is isomorphic to the clique
tree of G with respect to K. That is, L(T∠K(G)) ∼= T�K (G).

Proof. There is a natural grading on the edges of T∠K(G), where the edges from ∗ to
vertices in K have grading 1, and edges from vertices v ∈ K to vertices in N [v] rK
have grading 2, and so forth. Then under the line graph operation we get a grading
on the vertices of L ◦ T∠K(G).

Similarly T�K (G) has a natural grading on the vertices by grading K as grade 1,
and for every vertex v ∈ K, grading the clique N [v] rK as grade 2, and so forth.

Now we can induct on the number of vertices in G. The result is obviously true
for the graph with one vertex. It is then clear that the first grades of L ◦ T∠K(G) and
T�K (G) are isomorphic: they are both cliques of size K. We then label the vertices of
the first grade in L ◦T∠K(G) by vertices in K as follows. Each vertex of the first grade
comes from an edge in T∠K(G) of the form {∗, v}, for some v ∈ K. So, we label this
first-grade vertex in L ◦ T∠K(G) by “v”.
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In L ◦ T∠K(G), this vertex labeled “v” connects to edges in G from v to vertices
in N [v] rK in T∠K(G). In this way we see viewing the sub-clique tree (obtained by
looking at v and all of the grades below it) rooted at the vertex labeled v in L◦T∠K(G)
is L ◦ T∠N [v]rK(G). Likewise by looking at the vertex labeled v in T�K (G) we see the
sub-clique tree obtained by looking at v and all grades below it is exactly T�N [v]rK(G),
by definition of the simplicial clique tree. By induction our claim is proved. �

a

b c

v *

s

y z

ww
P Tv(P ) ∼= T∠{s}(L(P ))
s

y z

w

s

y z

ww
L(P ) L(Tv(P )) ∼= T�{s}(L(P ))

Figure 2. An example of a graph and its line graph, induced path
tree and simplicial clique tree as in Theorem 4.11.

There are two comments to be made about this diagram. First, we can consider
the induced path tree operator as some sort of “inverse” or “adjoint” to the line graph
operator. In fact, for G ∈ {trees} (resp. G ∈ {simpl. block graphs}) we have that T∠K
is the left (resp. right) inverse of L.

Second, consider the outer rectangle of the diagram. We see that the line graph
operator “passes” the path tree operator to the clique tree operator. So, if Godsil’s
divisibility relation can be shown to hold between a simplicial graph and its clique
tree, we will be able to derive the same relation between a graph and its path tree as a
corollary. (The corollary will actually be for the edge matching polynomial. A simple
argument then gives the result for the vertex matching polynomial, as we will see
below.)

We now generalize Godsil’s theorem.

Theorem 4.15. Let K be a simplicial clique of the simplicial graph G = (V,E), and
let T ≡ T�K (G) be the clique tree of G with respect to K. Further, let I(T ) ≡ IφK (T )
denote the relative independence polynomial. We then have the following.

I(G)
I(GrK) = I(T )

I(T rK) .
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W6 T�{a,b}(W6)

Figure 3. An example of a graph, its induced path tree and simpli-
cial clique tree. W6 is not a line graph.

Proof. We induct on |V (G)|. Note that if G is a simplicial block graph, then T = G,
and so the result is true.

For the general case we get:

I(G)
I(GrK) =

I(GrK) +
∑
v∈K xvI(GrN [v])

I(GrK)

= 1 +
∑
v∈K

xvI(T�N [v](GrK) rN [v])
I(T�N [v](GrK))

= 1 +
∑
v∈K

xvI(T�N [v](GrK) rN [v])
∏
w∈K,w 6=v I(T�N [w](GrK))

I(T�K (G) rK)

= 1 +
∑
v∈K

xvI(T�K (G) rN [v])
I(T�K (G) rK)

=
I(T�K (G) rK) +

∑
v∈K xvI(T�K (G) rN [v])

I(T�K (G) rK)

= I(T�K (G))
I(T�K (G) rK)

.

In the above we use the recursion formula for the independence polynomial ex-
panding at a clique and the fact that N [v] is a simplicial clique in GrK when K is
a simplicial clique. Notice also that the relative independence polynomial I ≡ IφK is
needed in order for the last equality to hold. �
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Remark 4.16. We compute the independence polynomials of the appropriate graphs
from Figure 2 to illustrate the divisibility relations proved in the preceding theorem:

I(L(P ), x) = 1 + xs + xy + xz + xw + xsxw,

I(T�{s}(L(P ))) = (1 + xs + xy + xz + xw + xsxw) · (1 + xw) = I(L(P ), x) · (1 + xw).

The proof we gave for the previous theorem is essentially the one Godsil gives for
his original theorem, except that we deal with simplicial cliques rather than vertices.
The previous theorem now yields the following corollaries.

Corollary 4.17. I(G) divides I(T�K (G)) for any simplicial graph G with simplicial
clique K.

Proof. We have seen that GrK is a simplicial graph. The previous theorem can be
written as:

I(T�K (G))
I(G) = I(T�K (G) rK)

I(GrK) =
∏
v∈K I(T�N [v]rK(GrK))

I(GrK) .

Then since N [v] r K is a simplicial clique in G r K, by induction we have the
denominator divides any term in the numerator, so the right hand side is a polynomial,
as desired. �

Corollary 4.18. Given a simplicial graph G, we have that λ1(G) 6 −1
4(ω−1) .

Proof. By the previous corollary we have λ1(G) 6 λ1(T�K (G)). Then by the commuta-
tivity of the diagram, we have seen T�K (G) = L(T∠K(G)). Hence we have λ1(T�K (G)) 6
−1

4(ω−1) is equivalent to the identical root bound on µE(T∠K(G)). Godsil provides
bounds on this root by relating the matching polynomial of a tree to its charac-
teristic polynomial, and then bounding the roots of the characteristic polynomial by
its maximal degree ∆. Since the maximum degree of the vertices in T∠K(G) is ω, we
get our desired bound. �

Remark 4.19. In their original paper, Heilmann and Lieb prove a root bound for
weighted matching polynomials, where one puts weights on the vertices. Since the
previous corollary works in the multivariate case, one could use this framework to
derive similar results for weighted independence polynomials.

4.4. Other Bound on λ1. Briefly we mention some easy lower bounds on λ1(G).
In what follows we let G be any graph. First we note how modifying our graph by
removing edges or removing vertices affects λ1(G).

Proposition 4.20. Let G be any graph, v a vertex in that graph, and e = {u,w} an
edge in the graph.

(1) λ1(Gr v) 6 λ1(G),
(2) λ1(Gr e) 6 λ1(G).

Proof. To prove these we need the following recurrences:
I(G) = I(Gr v) + xI(GrN [v])
I(G) = I(Gr e)− x2I(Gr (N [u] ∪N [w])).

To prove the first statement we prove the following statement by induction: Given
any H ⊂ V (G), we have I(GrH) is nonnegative on the interval [λ1(G),∞). If GrH
is not the empty graph, then I(GrH) is not the zero polynomial so this implies that
λ1(GrH) 6 λ1(G). If GrH is the empty graph it is trivially true.

For |V (G)| = 1, it is easily checked to be true. Assuming this to be true for
|V (G)| 6 n − 1, let G be a graph with |V (G)| = n. Then if H = G, we noted this
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is trivially true. Then it suffices to show that λ1(G r v) 6 λ1(G). By induction we
know I(GrN [v]) is nonnegative on [λ1(Gr v),∞). Then we know xI(GrN [v]) is
nonpositive on [λ1(Grv), 0) (all the roots of independence polynomials are negative).
By the recurrence relation, I(G) at λ1(Gr v) is nonpositive, so by the intermediate
value theorem I(G) has a root in [λ1(Gr v), 0), as desired.

To prove the second claim, since Gr (N [u]∪N [w]) is a induced subgraph of Gre,
we have I(G r (N [u] ∪ N [w])) is nonnegative on [λ1(G r e),∞). By the recurrence,
we have that I(G) evaluated at λ1(Gr e) is nonpositive, and so by the intermediate
value theorem we see λ1(Gr e) 6 λ1(G). �

Using this we can get the following simple lower bound on λ1:

Proposition 4.21. −1
ω 6 λ1(G).

Proof. Let Kω 6 G be the largest clique in G. Then by our previous proposition we
have λ1(Kω) 6 λ1(G). We have I(Kω) = 1 + ωx, so λ1(Kω) = −1

ω . �

These results hold for all graphs, but combining these with our previous results for
simplicial graphs G, we see:

−1
ω
6 λ1(G) 6 −1

4(ω − 1) .

5. Failure of the Root Bounds
Recall we have the following inclusions of types of graphs:

{Line Graphs} ⊂ {Simplicial Graphs} ⊂ {Claw-Free Graphs}

The root bounds for the matching polynomial carry over to the independence poly-
nomial for line graphs. And by extending the proof method of Godsil, we demonstrated
the equivalent root bounds for simplicial graphs. The natural next question is: how
general can the graphs get before the root bound fails?

In what follows we provide a claw-free graph (which is not simplicial) for which the
root bound fails. We then provide a much weaker root bound for claw-free graphs. It
is unknown whether this weaker root bound is tight due to our lack of examples of
claw-free graphs which are not simplicial.

5.1. Schläfli Graph. The Schläfli graph is the unique strongly regular graph with
parameters 27, 16, 10, 8. It is the complement of the Clebsch graph, the intersection
graph of the 27 lines on a cubic surface. The Clebsch graph is triangle free, and hence
the Schläfli graph is claw-free. We refer the reader to [5] for a comprehensive reference
on the Schläfli graph and related graphs.

Keeping in mind that our root bound is equivalent to the statement λ1(G) ·4 · (ω−
1) 6 −1, we calculate the following.

Lemma 5.1. We have the following:
(i) The independence polynomial of the Schläfli graph is 45t3 + 135t2 + 27t+ 1.
(ii) The clique size of the Schläfli graph is 6.
(iii) λ1(Schläfli graph) · 4 · (ω − 1) > −1.

Proof. One can calculate the independence polynomial and clique size using any com-
puter algebra system; we used Sage.

To show our graph breaks the root bound it suffices to show that I(G)(t/20) has
a root in (−1, 0). In fact we can easily calculate that I(G)(−1/20) = −29/1600 while
I(G)(0) = 1, so there is a root in (−1, 0). �
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5.2. Weaker Root Bounds for Claw-free Graphs. Given any claw-free graph
G, we can introduce a simplicial clique by modifying the graph as follows:

Lemma 5.2. Let G be a claw-free graph. Given any vertex v ∈ G, we can form a
new graph Sv(G) by connecting all of N [v] together to form a clique. Then, Sv(G) is
claw-free and {v} is a simplicial clique in Sv(G).

Proof. It is clear that {v} will be a simplicial clique in Sv(G). To see that Sv(G) is
claw-free, suppose one of the added edges creates a claw. Then we have u,w ∈ N(v)
and a claw with some u as the internal node and w as a leaf. Since we have connected
all of the neighbors of v together, we must have the other two leaves of the claw
outside of N [v]. However these two vertices therefore are not connected to v or each
other, and hence form a claw with u as the internal node and v as the other leaf. This
provides a contradiction since G is claw-free. �

When analyzing the clique tree of Sv(G) starting at the newly formed simplicial
clique {v}, we notice that the first rung of the clique tree is {v}, the second rung
is N(v), and beyond that are clique trees that live in G r N [v]. This observation
immediately yields the following:

Proposition 5.3. Given any claw-free graph G and a vertex v ∈ G, we have:

λ1(Sv(G)) 6 −1
4 ·max{ω − 1,deg(v)} .

This yields the following root bound for G:

λ1(G) 6 −1
4 ·max{ω − 1, δ} .

Proof. By Proposition 4.20, we have λ1(G) 6 λ1(Sv(G)). To optimize the bound we
pick the vertex v which has minimal degree in the graph, δ. �

In the Schläfli graph we have a large gap between the clique size of 6 and minimal
degree of 16. We think that other non-simplicial claw-free graphs with a large gap
between clique size and minimal degree may provide good candidates for studying
this root bound. Further, finding a family of graphs which require this looser bound
could assist in showing how optimal this bound is for non-simplicial claw-free graphs.

6. Other Remarks
Above, we presented independence polynomials analogues to the real-rootedness (sub-
sequently real stability) and the root bounds of the matching polynomial. We expect
other results about the matching polynomial to be generalizable to the independence
polynomial. In what follows we list a few examples and comment on these.

In [11], Fisher and Solow remark that I(G)−1 can be viewed as a generating func-
tion which enumerates the number of n letter words, where the letters are the vertices
of the graph and two letters commute iff they have an edge between them on the graph.
Similarly in [12], Godsil shows that x(x2nµV (G,x−1))′

x2nµV (G,x−1) is a generating function in x−1 for
closed tree-like walks in G. We believe that there is a multivariate generalization of
Fisher and Solow’s remark by working in the ring Z[x1, . . . , xn] where variables com-
mute if and only if they correspond to vertices in the graph G which share an edge.
Godsil’s tree-like result should be a combinatorial consequence of the more general
Fisher and Solow result.
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In a previous paper of Bencs, Christoffel–Darboux like identities are established
for the independence polynomial [1]. One can similarly establish multivariate general-
izations of these identities. By generalizing in this way, one can give a single identity
that implies all the others through simple multivariate operations.

Another area of interest is studying independent sets in hypergraphs. One can
naturally define the multivariate independence polynomial of a hypergraph. Namely
given a hyper graph G = (V,E) a set S ⊂ V is independent if e 6⊂ S for all edges
e ∈ E. If two edges are comparible in G (e ⊂ f), then we note that by removing
f from the edge set we do not change the independent sets of G. If G contains any
edges of size one, then that vertex never shows up in the independence polynomial
so we can further reduce G by removing that vertex. Thus we can do this to obtain
the reduction, G̃, of G which has the same multivariate independence polynomial and
has no comparable edges and no edges of size 1.

Proposition 6.1. Given a hypergraph G, I(G, x) is same-phase stable if and only if
G̃ is a 2-uniform claw-free graph.

Proof. As noted, I(G, x) = I(G̃, x), so if G̃ is 2-uniform and claw-free we see I(G, x)
is same-phase stable by previous results. If G̃ is not 2-uniform, then we have some
edge e with |e| > 2. If I(G̃, x) were same-phase stable then we could restrict to the
subgraph of vertices in e and obtain a same-phase stable independence polynomial.
Since no other edges are comparable to e by construction of G̃, we have this subgraph
only contains the edge e. Then we can diagonalize to get the independence polynomial
(1+x)n−xn. If I(G̃, x) were same-phase stable, this polynomial would be real rooted.
However this would imply that its derivatives were real rooted, namely (1+x)3−x3 =
1 + 3x+ 3x2 would be real rooted, a contradiction. �
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