
ALGEBRAIC
 COMBINATORICS

Megumi Harada & Martha E. Precup
The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge
conjecture
Volume 2, issue 6 (2019), p. 1059-1108.

<http://alco.centre-mersenne.org/item/ALCO_2019__2_6_1059_0>

© The journal and the authors, 2019.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2019__2_6_1059_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 2, issue 6 (2019), p. 1059–1108
https://doi.org/10.5802/alco.76

The cohomology of abelian Hessenberg
varieties and the Stanley–Stembridge

conjecture

Megumi Harada & Martha E. Precup

Abstract We define a subclass of Hessenberg varieties called abelian Hessenberg varieties,
inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We
give an inductive formula for the Sn-representation on the cohomology of an abelian regular
semisimple Hessenberg variety with respect to the action defined by Tymoczko. Our result
implies that a graded version of the Stanley–Stembridge conjecture holds in the abelian case,
and generalizes results obtained by Shareshian–Wachs and Teff. Our proof uses previous work
of Stanley, Gasharov, Shareshian–Wachs, and Brosnan–Chow, as well as results of the second
author on the geometry and combinatorics of Hessenberg varieties. As part of our arguments, we
obtain inductive formulas for the Poincaré polynomials of regular abelian Hessenberg varieties.

1. Introduction
Hessenberg varieties in type A are subvarieties of the full flag variety F`ags(Cn) of
nested sequences of linear subspaces in Cn. These varieties are parameterized by a
choice of linear operator X ∈ gl(n,C) and Hessenberg function h : {1, 2, . . . , n} →
{1, 2, . . . , n}. We denote the corresponding Hessenberg variety by Hess(X, h). The
geometry and (equivariant) topology of Hessenberg varieties has been studied exten-
sively since the late 1980s [7, 6]. This subject lies at the intersection of, and makes
connections between, many research areas such as geometric representation theory,
combinatorics, and algebraic geometry and topology.

In this manuscript, we are concerned with the connection between the geometry
and topology of Hessenberg varieties and the famous Stanley–Stembridge conjecture in
combinatorics, which states that the chromatic symmetric function of the incompara-
bility graph of a so-called (3+1)-free poset is e-positive, i.e. it is a non-negative linear
combination of elementary symmetric functions [27, Conjecture 5.5] (see also [25]).
Guay-Paquet has subsequently proved that this conjecture, which we refer to below
as the “original Stanley–Stembridge conjecture,” can be reduced to the statement
that the chromatic symmetric function of the incomparability graph of a unit in-
terval order is e-positive [11], and we refer to the latter statement as the ungraded
Stanley–Stembridge conjecture.
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Shareshian and Wachs linked the ungraded Stanley–Stembridge conjecture to Hes-
senberg varieties via the “dot action” Sn-representation on the cohomology ring of a
regular semisimple Hessenberg variety defined by Tymoczko [30], as we now explain.
The Hessenberg variety Hess(S, h) is called a regular semisimple Hessenberg variety
if S is a regular semisimple element of gl(n,C). Shareshian and Wachs established a
bijection between Hessenberg functions and unit interval orders [22, Proposition 4.1];
their bijection associates each Hessenberg function h to the incomparability graph
of a unit interval order, here denoted by Γh. In addition, Shareshian and Wachs de-
fined the chromatic quasisymmetric function XΓ(x, t) of a graph Γ, which refines
Stanley’s chromatic symmetric function in the sense that XΓ(x, 1) is Stanley’s chro-
matic symmetric function. They then formulated a conjecture relating the chromatic
quasisymmetric function of the graph Γh to the image of the character of the dot ac-
tion representation on H∗(Hess(S, h)) under the characteristic map. This conjecture,
known as the Shareshian–Wachs conjecture, provides the link between Hessenberg
varieties and chromatic symmetric (and quasi-symmetric) functions. We discuss it in
greater detail in Section 2.2 below.

Since cohomology rings are naturally graded by degree, the Shareshian–Wachs
conjecture actually suggests that one should consider a graded version of the
Stanley–Stembridge conjecture. Specifically, the “graded Stanley–Stembridge con-
jecture” (see [22, Conjecture 10.4]) states that the coefficient of ti in the chromatic
quasisymmetric function XΓh(x, t) is e-positive. We discuss this refined version of
the ungraded Stanley–Stembridge conjecture in Section 2.2 and state it formally in
Conjecture 2.8. To emphasize, the statement of the Shareshian–Wachs conjecture
provides the necessary link between the cohomology of Hessenberg varieties and the
graded Stanley–Stembridge conjecture, thus yielding a new way of attacking both
the ungraded and the graded versions of the conjecture.

The Shareshian–Wachs conjecture was proved in 2015 by Brosnan and Chow [3]
(also independently by Guay-Paquet [12]) by showing a remarkable relationship be-
tween the Betti numbers of different Hessenberg varieties. (Direct computations of
cohomology rings of certain Hessenberg varieties also yield partial proofs of the
Shareshian–Wachs conjecture; see [1, 2].) As we have explained above, it then fol-
lows that in order to prove the graded Stanley–Stembridge conjecture, it suffices to
prove that the cohomology H2i(Hess(S, h)) for each i is a non-negative combination
of the tabloid representations Mλ [8, Part II, Section 7.2] of Sn for λ a partition of
n. In other words, given the decomposition

(1) H2i(Hess(S, h)) =
∑
λ`n

cλ,iM
λ

in the representation ring Rep(Sn) of Sn, it suffices to show that the coefficients cλ,i
are non-negative.

The above discussion explains the motivation for this manuscript, and we now de-
scribe our main results. Let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a Hessenberg function.
Our approach to the graded Stanley–Stembridge conjecture is by induction. Roughly,
the idea is as follows. From any Hessenberg function h we can construct the corre-
sponding incomparability graph Γh (made precise in Section 2.3). Previous results
of Stanley show that the acyclic orientations of Γh, and their corresponding sets of
sinks, encode information about the coefficients cλ,i. We develop this idea further by
decomposing the set of acyclic orientations according to their sink sets, and make a
key observation (Proposition 4.10) that, if the size of a sink set is maximal, then the
set of acyclic orientations with that fixed sink set corresponds precisely to the set of
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all acyclic orientations on a smaller incomparability graph. This observation sets the
stage for an inductive argument.

Any Hessenberg function corresponds uniquely to a certain subset Ih of the nega-
tive roots of gl(n,C). In this manuscript, in the special case when Ih is abelian (cf.
Definition 3.1 below), we are able to fully implement an argument yielding an induc-
tive formula for the coefficients of the tabloid representations. A rough statement of
our main result is as follows (definitions are in Section 2.1, Section 2.2 and Section 4);
the precise statement is Theorem 6.1. The idea is that the coefficients cλ,i above, as-
sociated to a Hessenberg variety in F`ags(Cn) for n > 3, can be computed using the
coefficients associated to certain Hessenberg varieties in the flag variety F`ags(Cn−2).

Theorem 1.1. Let n > 3 be a positive integer and h : {1, 2, . . . , n} → {1, 2, . . . , n}
be a Hessenberg function such that the ideal Ih is abelian. Let S denote a regular
semisimple element in the Lie algebra of gl(n,C). Let i > 0 be a non-negative integer.
Regard the cohomology H2i(Hess(S, h)) as a Sn-representation using Tymoczko’s dot
action. Then, in the representation ring Rep(Sn) we have the equality

(2) H2i(Hess(S, h)) = c(n),iM
(n) +

∑
T∈SK2(Γh)

 ∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )M
(µ1+1,µ2+1)


where the set SK2(Γh) is a certain collection of subsets of the vertices of Γh and the
coefficients cTµ,i−deg(T ) are the coefficients as in (1) associated to a Hessenberg function
hT : {1, 2, . . . , n− 2} → {1, 2, . . . , n− 2} for a Hessenberg variety in F`ags(Cn−2).

The technical details of the induction argument leading to Theorem 1.1 require
the use, among other things, of Brosnan and Chow’s proof of the Shareshian–Wachs
conjecture, as well as the second author’s combinatorial characterization of the Betti
numbers of regular Hessenberg varieties. In fact, the technical core of the paper con-
sists of two inductive formulas for the Poincaré polynomials of regular Hessenberg
varieties in the abelian case. These formulas are stated in Proposition 6.5 and Propo-
sition 6.6 and are of independent interest.

It is quite straightforward to prove the graded Stanley–Stembridge conjecture for
the abelian case based on our inductive formula in Theorem 1.1, and we record this
argument in Corollary 7.26. Our result generalizes previous results. Indeed, in the
case when h satisfies h(3) = · · · = h(n) = n, Shareshian and Wachs obtained results
on the corresponding chromatic quasisymmetric function which, given Brosnan and
Chow’s proof of the Shareshian–Wachs conjecture, implies Corollary 7.26 for that
case. Separately, Teff [28, Theorem 4.20] proved the case when h corresponds to a
maximal standard parabolic Lie subalgebra p of gl(n,C). Both instances are special
cases of our result, as we explain in Section 3. Separately, we also note that Gebhard
and Sagan have proved the original Stanley–Stembridge conjecture for a collection of
graphs called Kα-chains [10, Corollary 7.7]. Their result does not subsume, nor is it
subsumed by, the case considered in this manuscript, but it is of independent interest.
Since the first version of this manuscript appeared on the arXiv, Cho and Huh have
posted another independent proof of the graded Stanely-Stembridge conjecture in the
same case we consider below [5].

As part of our arguments, we define the height of an ideal of negative roots using
the lower central series of an ideal in a Lie algebra. An ideal is abelian precisely when
the height is either 1 or 0, so we can interpret Theorem 1.1 as a “base case” for an
argument for the graded Stanley–Stembridge conjecture using induction on the height
of the ideal Ih. We intend to explore this further in future work.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1061



Megumi Harada & Martha E. Precup

As already mentioned, the graded Stanley–Stembridge conjecture implies the un-
graded Stanley–Stembridge conjecture simply by summing over all i, or, in the lan-
guage of chromatic quasisymmetric functions, by “setting t equal to 1”. We record
this fact in Proposition 2.11. We note here that the “abelian case” considered in The-
orem 6.1 (and Corollary 7.26) corresponds, in combinatorial language, to the case in
which the vertices of the graph Γh can be partitioned into two disjoint cliques. The
fact that the coefficients cλ =

∑
i>0 cλ,i are non-negative in this case was originally

stated by Stanley in [25, Corollary 3.6] as a corollary to [25, Theorem 3.4]; moreover,
this fact is also equivalent to [27, Remark 4.4]. However, [25, Theorem 3.4] is incorrect
as stated [24], and the equivalence of [27, Remark 4.4] and [25, Corollary 3.6] is not
explicit in [27, 25]. Thus, our Corollary 7.26 (together with Proposition 2.11) records
a new and explicit proof of this fact.

We now give a brief overview of the contents of the paper. Section 2 is devoted to
background material. Specifically, Section 2.1 is a crash course on Hessenberg vari-
eties. Section 2.2 establishes the terminology for discussing the Sn-representations
H2i(Hess(S, h)), and gives a more detailed account of the relation between the
Stanley–Stembridge conjecture and our results. Section 2.3 recalls the language of
incomparability graphs in the setting of Hessenberg functions and states a result
of Stanley connecting acyclic orientations on this graph to the Sn-representations
above. Section 2.4 recounts Gasharov’s definition of a Ph-tableau and a result relating
these Ph-tableaux to the same Sn-representations above. We then begin our work in
earnest in Section 3 where we define abelian Hessenberg varieties and briefly discuss
the relation between this notion and the cases of Hessenberg varieties previously
studied in the literature. In Section 4 we focus attention on the sink sets of an acyclic
orientation of an incomparability graph, and introduce the notion of sink-set size.
In Section 5 we link the subjects of Sections 3 and 4 using a new invariant of an
ideal called the height. Sections 6 and 7 form the technical core of the paper, where
we state and prove our main results. Finally, Section 8 states a conjecture which, if
true, would represent a first step towards generalizing the techniques in this paper to
prove the full Stanley–Stembridge conjecture for all possible heights.

2. The setup and background
Let n be a positive integer. We denote by [n] the set of positive integers {1, 2, . . . , n}.
We work in type A throughout, so GL(n,C) is the group of invertible n× n complex
matrices and gl(n,C) is the Lie algebra of GL(n,C) consisting of all n × n complex
matrices.

2.1. Hessenberg varieties. Hessenberg varieties in Lie type A are subvarieties of
the (full) flag variety F`ags(Cn), which is the collection of sequences of nested linear
subspaces of Cn:

F`ags(Cn) := {V• = ({0} ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn) | dimC(Vi) = i}.

A Hessenberg variety in F`ags(Cn) is specified by two pieces of data: a Hessenberg
function and a choice of an element in gl(n,C). We have the following.

Definition 2.1.A Hessenberg function is a function h : [n]→ [n] such that h(i) > i
for all i ∈ [n] and h(i+ 1) > h(i) for all i ∈ [n− 1]. We frequently write a Hessenberg
function by listing its values in sequence, i.e. h = (h(1), h(2), . . . , h(n)).

We now introduce some terminology associated to a given Hessenberg function.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1062



Abelian Hessenberg varieties and the Stanley–Stembridge conjecture

Definition 2.2. Let h : [n] → [n] be a Hessenberg function. The associated Hessen-
berg space is the linear subspace H of gl(n,C) specified as follows:

(3)
H := {A = (aij)i,j∈[n] ∈ gl(n,C) | aij = 0 if i > h(j)}

= spanC{Eij | i, j ∈ [n] and i 6 h(j)}

where Ei,j is the usual elementary matrix with a 1 in the (i, j)-th entry and 0’s
elsewhere.

It is important to note that H is frequently not a Lie subalgebra of gl(n,C).
However, it is stable under the conjugation action of the usual maximal torus T (of
invertible diagonal matrices) in GL(n,C), and the Eij appearing in (3) are exactly
the T -eigenvectors. It is also straightforward to see that

(4) [b, H] ⊆ H

where [·, ·] denotes the usual Lie bracket in gl(n,C) and b = Lie(B) is the Lie algebra
of the Borel subgroup B of upper-triangular matrices in GL(n,C).

Let h ⊆ gl(n,C) denote the Cartan subalgebra of diagonal matrices, and let ti
denote the coordinate on h reading off the (i, i)-th matrix entry along the diagonal.
Denote the root system of gl(n,C) by Φ. Then the positive roots Φ+ of gl(n,C) are
Φ+ = {ti − tj | 1 6 i < j 6 n} where γ = ti − tj ∈ Φ+ corresponds to the root
space spanned by Eij , denoted gγ . Similarly, the negative roots Φ− of gl(n,C) are
Φ− = {ti − tj | 1 6 j < i 6 n}. We denote the simple positive roots in Φ+ by
∆ = {αi := ti − ti+1 | 1 6 i 6 n− 1}.

Note that the pairs (i, j) with i > j and i 6 h(j) correspond precisely to those
negative roots γ ∈ Φ− whose associated root spaces gγ are contained in H. Motivated
by this, we fix the following notation:

Φ−h := {ti − tj ∈ Φ− | Eij ∈ H} = {ti − tj | i > j and i 6 h(j)}

and
Φh := Φ−h t Φ+ = {ti − tj ∈ Φ | i 6 h(j)}.

It is clear that h is uniquely determined by either Φ−h or Φh.
Recall that an ideal (also called an upper-order ideal) I of Φ− is defined to be a

collection of (negative) roots such that if α ∈ I, β ∈ Φ−, and α + β ∈ Φ−, then
α+ β ∈ I. The relation (4) immediately implies that

Ih := Φ− r Φ−h
is an ideal in Φ−. We call it the ideal corresponding to h. In fact, the association
taking a Hessenberg function to its corresponding ideal Ih defines a bijection from
the set of Hessenberg functions to ideals in Φ−, as noted by Sommers and Tymoczko
in [23, Section 10].

It is conceptually useful to express the sets Φh,Φ−h , and Ih pictorially. We illustrate
this by an example.

Example 2.3. Let n = 6. Figure 1 contains the pictures corresponding to the Hes-
senberg function h = (3, 4, 5, 6, 6, 6). The leftmost square grid contains a star in the
(i, j)-th box exactly if the (i, j)-th matrix entry is allowed to be non-zero for A ∈ H,
or equivalently, either i = j, or, the corresponding root ti − tj of gl(n,C) is con-
tained in Φh. The center square grid contains a star in the (i, j)-th box precisely if
the corresponding root is contained in Φ−h . Finally, the rightmost grid contains a star
in the (i, j)-th box if and only if the corresponding root is contained in Ih, i.e. it is
the complement of Φh. This illustrates why some authors refer to Ih as (the roots
corresponding to) the “opposite Hessenberg space”.
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Φh :

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ?

? ? ? ?

? ? ?

Φ−h :

?

? ?

? ?

? ?

? ?

Ih :
?

? ?

? ? ?

Figure 1. The pictures of Φh, Φ−h , and Ih for h = (3, 4, 5, 6, 6, 6).

Let h : [n] → [n] be a Hessenberg function and X be an n × n matrix in gl(n,C),
which we also consider as a linear operator Cn → Cn. Then the Hessenberg variety
Hess(X, h) associated to h and X is defined to be

(5) Hess(X, h) := {V• ∈ F`ags(Cn) | XVi ⊂ Vh(i) for all i ∈ [n]} ⊂ F`ags(Cn)}.

In this paper we focus on certain special cases of Hessenberg varieties. Let λ =
(λ1, λ2, . . . , λn) be a composition of n in the sense that λ1 + λ2 + · · · + λn = n and
λi > 0 for all i. A linear operator is regular of Jordan type λ if its standard Jordan
canonical form has block sizes given by λ1, λ2, etc., and no two distinct blocks have
the same eigenvalue. Note that if g ∈ GL(n,C), then Hess(X, h) and Hess(gXg−1, h)
can be identified via the action of GL(n,C) on F`ags(Cn) [29]. For concreteness in
what follows, for a given λ as above we set the notation

Xλ is a (fixed) regular matrix in Jordan canonical form of Jordan type λ

and we refer to the corresponding Hessenberg variety Hess(Xλ, h) as a regular Hes-
senberg variety.

Two special cases are of particular interest. Namely, if λ = (n, 0, . . . , 0) = (n), then
we may take the corresponding regular operator to be the regular nilpotent operator
which we denote by N, i.e. N is the matrix whose Jordan form consists of exactly
one Jordan block with corresponding eigenvalue equal to 0. The regular Hessenberg
variety Hess(N, h) is called a regular nilpotent Hessenberg variety. Similarly let S
denote a regular semisimple matrix in gl(n,C), i.e. a matrix which is diagonalizable
with distinct eigenvalues. This corresponds to the other extreme case, namely, λ =
(1, 1, 1, . . . , 1). We call Hess(S, h) a regular semisimple Hessenberg variety.

2.2. The Stanley–Stembridge conjecture in terms of Tymoczko’s dot ac-
tion representation. As already discussed in the Introduction, the main motiva-
tion of this manuscript is to study a graded version of the Stanley–Stembridge con-
jecture (Conjecture 2.8 below), stated in terms of the Sn-representation on the co-
homology rings of regular semisimple Hessenberg varieties defined by Tymoczko [30].
Tymoczko’s dot action preserves the grading on these cohomology rings (which is
concentrated in even degrees). The structure of this section is as follows. We first
review basic facts and establish notation for partitions and Sn-representations. We
then give in Conjecture 2.8 a precise statement of the graded Stanley–Stembridge
conjecture. We also state the ungraded Stanley–Stembridge conjecture, and briefly
recount how a solution to Conjecture 2.8 implies the ungraded Stanley–Stembridge
conjecture (cf. discussion in [3, 22]). The rest of the section is a brief review of stan-
dard representation theory facts and a statement of a fundamental result of Brosnan
and Chow.
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A partition of n is a sequence λ = (λ1, λ2, . . . , λn) ∈ Zn satisfying λ1 + λ2 + · · ·+
λn = n and λ1 > λ2 > · · · > λn > 0. If λ is a partition of n we write λ ` n. We say a
partition λ ` n has k parts and write parts(λ) = k if λk 6= 0 and λk+1 = · · · = λn = 0.
(Alternatively, λ has k parts if and only if the Young diagram corresponding to λ has
precisely k rows.) For simplicity if parts(λ) = k then we write λ = (λ1, . . . , λk) instead
of λ = (λ1, . . . , λk, 0, 0, . . . , 0). Moreover, for ν ` n a partition of n, we let Sν ⊆ Sn

denote the Young subgroup ofSn corresponding to ν. Concretely, if ν = (ν1, ν2, . . . , νk)
has k parts then Sν is the subgroup

S1,...,ν1 ×Sν1+1,...,ν1+ν2 × · · · ×S(
∑k−1

`=1
ν`)+1,...,n ⊆ Sn

where Si,i+1,...,j denotes the permutations of the set {i, i+ 1, . . . , j} for each 1 6 i <
j 6 n.

Following Fulton [8, Part II, Section 7.2], we denote by Mλ the complex vector
space with basis the set of tabloids {T} of shape λ, where λ is a partition of n.
Since Sn acts on the set of tabloids, Mλ is a Sn-representation. Our main theorem
concerns the decomposition of H2i(Hess(S, h)) into Mλ’s, but to study this, we first
decompose H2i(Hess(S, h)) into irreducible representations. Denote by Sλ the Specht
module corresponding to λ. It is well-known that each Sλ is irreducible and that
any irreducible Sn-representation is isomorphic to Sλ for some λ [8, Section 7.2,
Proposition 1]. Thus we conclude that there exist non-negative integers dλ and dλ,i
such that

(6) H∗(Hess(S, h)) ∼=
⊕
λ`n

dλSλ and H2i(Hess(S, h)) ∼=
⊕
λ`n

dλ,iSλ

as Sn-representations. Note dλ =
∑
i>0 dλ,i for any λ.

There is a well-known formula, called Young’s rule, for the decomposition of Mλ

into Specht modules. We need some terminology. Recall that the dominance order on
partitions [8, page 26] is defined as

λ E ν if and only if λ1 + · · ·+ λi 6 ν1 + ν2 + · · ·+ νi for all i.

The following lemmas are straightforward. Let 6 lex denote the usual lexicographic
order on Zn.

Lemma 2.4. Let λ, ν be partitions of n. If λ E ν then λ 6 lex ν.

Lemma 2.5. Let λ, ν be partitions of n. If λ E ν then parts(ν) 6 parts(λ).

We define the following total order on partitions:

(7) λ 4 ν ⇔ def (parts(ν) < parts(λ)) or (parts(ν) = parts(λ) and λ 6 lex ν).

In words, this total order first compares partitions based on the number of parts, and
then breaks ties using the usual lex order. The following is immediate from the above
two lemmas.

Lemma 2.6. The order 4 is a refinement of the dominance order, i.e. for λ, ν ` n, if
λ E ν then λ 4 ν.

For a pair of partitions λ and ν of n, the Kostka number Kνλ is defined [8,
Part I, Section 2.2] to be the number of semistandard Young tableaux of shape ν
and weight/content λ.

Fact 2.7 ([4, Lemma 3.7.3]). For λ, ν partitions of n, we have Kνλ 6= 0 if and only if
λ E ν. Moreover, Kλλ = 1 for all partitions λ ` n.
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Let K := (Kνλ) denote the Kostka matrix with entries the Kostka numbers with
partitions listed in decreasing order with respect to 4. By Lemma 2.6 and Fact 2.7
above, K is upper-triangular and has 1’s along the diagonal, and in particular, is
invertible over Z. Young’s rule [8, Section 7.3, Corollary 1] states that

(8) Mλ ∼= Sλ ⊕
(⊕
ν.λ

(Sν)⊕Kνλ
)

as Sn-representations. Since the Kostka matrix is invertible over Z, (8) implies the
{Mλ} form a Z-basis for the representation ring Rep(Sn) of Sn. Therefore there
exist unique integers cλ and cλ,i such that

(9) H∗(Hess(S, h)) =
∑
λ`n

cλM
λ and H2i(Hess(S, h)) =

∑
λ`n

cλ,iM
λ

as elements in Rep(Sn). Note that, a priori, the coefficients cλ and cλ,i may be
negative. We also have cλ =

∑
i>0 cλ,i for all λ ` n. We can now formulate the graded

Stanley–Stembridge conjecture which motivates this manuscript; the terminology will
be justified below.

Conjecture 2.8. Let n be a positive integer and h : [n] → [n] be a Hessenberg
function. Then the integers cλ,i appearing in (9) are non-negative.

The main theorem of this manuscript (Theorem 6.1) allows us to deduce the above
conjecture in the special case that h is abelian (cf. Definition 3.1). Before proceeding
we take a moment to explain how a proof of Conjecture 2.8 implies the ungraded
Stanley–Stembridge conjecture. Since this story has been recorded elsewhere (e.g. [3,
22]) we will be brief. We begin with a statement of the ungraded Stanley–Stembridge
conjecture. An incomparability graph of a unit interval order is a finite graph Γ =
(V,E) whose vertices are (distinct) closed unit intervals on the real line, with a single
edge joining unit intervals with non-empty intersection. For any finite graph Γ =
(V,E), a coloring of Γ is a function κ : V → {1, 2, 3, . . .} assigning the “color” κ(v)
to each v ∈ V and κ is proper if for every edge e = {u, v} in E, κ(u) 6= κ(v). The
chromatic symmetric function XΓ(x1, x2, . . .) is defined as

XΓ(x) = XΓ(x1, x2, . . .) =
∑

proper κ:V→{1,2,...}

xκ

where xκ :=
∏
v∈V xκ(v). It is not hard to see that XΓ is symmetric in the variables

{xi}. A symmetric function is said to be e-positive if it can be expressed as a non-
negative linear combination of the elementary symmetric functions eλ. The following
is the ungraded Stanley–Stembridge conjecture, which is related to many other deep
conjectures, e.g. about immanants.

Conjecture 2.9. (Stanley–Stembridge conjecture) Let Γ = (V,E) be the incompara-
bility graph of a unit interval order. Then XΓ(x) is e-positive.

(In fact, the Stanley–Stembridge conjecture is stated more generally, but Guay-Paquet
showed in [11] that the above special case implies the general version.) Shareshian and
Wachs linked the Stanley–Stembridge conjecture in [22] to the theory of Hessenberg
varieties as follows. For the discussion below, we assume the vertex set V of Γ is a
finite subset of {1, 2, . . .}. Shareshian and Wachs consider a refinement of Stanley’s
chromatic symmetric polynomial by defining

XΓ(x, t) :=
∑

proper κ:V→{1,2,3,...}

tascκxκ
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where
asc(κ) := |{e = {i, j} ∈ E | i < j and κ(i) < κ(j)}|.

This polynomial is called the chromatic quasisymmetric function. Evidently, evaluat-
ing XΓ(x, t) at t = 1 recovers Stanley’s XΓ(x). Shareshian and Wachs further conjec-
tured that the coefficients of the ti in XΓ(x, t) are related to Hessenberg varieties as
follows. Specifically, they show [22, Proposition 4.1] that any incomparability graph Γ
of a unit interval order arises as the incomparability graph of an appropriately chosen
Hessenberg function h : {1, 2, . . . , n} → {1, 2, . . . , n}. Let ch : Rep(Sn) → ΛQ :=
Λ ⊗ Q denote the characteristic map from the representation ring of Sn to the ring
of symmetric functions in the variables x = (x1, x2, . . .) with rational coefficients. It
is well-known that ch(Mλ) = hλ and ch(Sλ) = sλ, where the hλ (respectively sλ)
are the complete symmetric (respectively Schur) functions. Also let ω : ΛQ → ΛQ
denote the standard (“Frobenius”) involution on the space of symmetric functions
which takes hλ to the elementary symmetric function eλ and vice versa. We now state
the conjecture of Shareshian and Wachs [22] which is now a theorem thanks to the
work of Brosnan and Chow [3].

Theorem 2.10 ([3, Theorem 129]). Let Γ be the incomparability graph of a unit in-
terval order and h be the corresponding Hessenberg function. Then the coefficient of
ti in the chromatic quasisymmetric function XΓ(x, t) is ω(ch(H2i(Hess(S, h)))).

We can now make precise the argument that deduces the classical Stanley–
Stembridge conjecture from the graded Stanley–Stembridge conjecture (Conjec-
ture 2.8).

Proposition 2.11. Let Γ and h be as above. If H2i(Hess(S, h)) =
∑
λ`n cλ,iM

λ ∈
Rep(Sn) and the cλ,i are non-negative for all λ ` n, then XΓ(x) is e-positive.

Proof. By construction of the map ch, we have ch(H2i(Hess(S, h))) = ch(
∑
cλ,iM

λ) =∑
cλ,i ch(Mλ) =

∑
cλ,ihλ is a non-negative linear combination of the hλ. Thus

ω(ch(H2i(Hess(S, h)))) =
∑
cλ,iω(hλ) =

∑
cλ,ieλ is a non-negative combination of

the eλ. By Theorem 2.10 the coefficient of ti in the chromatic quasi-symmetric poly-
nomial XΓ(x, t) is e-positive; by evaluation at t = 1, the same is true for XΓ(x). �

The remainder of this section will be a review of some standard facts in the rep-
resentation theory of Sn as well as a fundamental result of Brosnan and Chow on
Hessenberg varieties.

The following lemma is straightforward and probably well-known. Let V = ⊕`>0V`
be a graded Sn-representation, i.e. Sn preserves each subspace V`. Let dλ,V and cλ,V
(respectively dλ,V` , cλ,V`) denote the integers associated to V (respectively V` for each
` > 0) given by the decomposition of V (respectively V`) into Sλ’s and Mλ’s as
elements of Rep(Sn).

Lemma 2.12. Let k be a positive integer. Suppose dλ,V = 0 for all λ ` n with more
than k parts. Then

(1) dλ,V` = 0 for all λ ` n with more than k parts and for all ` > 0,
(2) cλ,V = 0 for all λ ` n with more than k parts, and
(3) cλ,V` = 0 for all λ ` n with more than k parts and for all ` > 0.

Proof. Since dλ,V =
∑
` dλ,V` , if dλ,V = 0 then dλ,V` = 0 for all `. This proves (1).

To prove (2), recall first that Young’s rule implies dV = KcV where dV and cV are
vectors with entries dλ,V and cλ,V respectively, ordered in such a way that the indexing
partitions decrease with respect to 4. We have already seen that K is an upper-
triangular matrix with 1s along the diagonal. Hence K−1 has the same properties.
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Also, since the total order 4 orders partitions by the number of parts, the given
hypothesis on the dλ,V ’s implies that the vector dV has coordinates all equal to 0
below a certain point. Since cV = K−1dV , we conclude that cV must have the same
property. The last claim follows from (1) by an argument identical to the discussion
above, applied to V` instead of V . �

Next we recall some facts which we later use to show that two representations are
isomorphic. Given any finite-dimensional representation V of Sn and any partition ν
of n, we may consider V Sν , the Sν-stable subspace of V . The following is well-known
(see e.g. [3, Proposition 10]).

Proposition 2.13. Let V and W be finite-dimensional representations of Sn. Then
V and W are isomorphic as Sn-representations if and only if

dim V Sν = dim WSν for all partitions ν ` n.

In the setting of the representation ring, there is a similar statement. For two
partitions λ, ν of n, we set the notation

(10) Nλ,ν := dim(Mλ)Sν .

Let N = (Nλ,ν) denote the matrix with these entries. From [26] we know that

Nλ,ν =
∑
µ`n

Kµ,λKµ,ν and hence N = KTK

where K = (Kλµ) is the Kostka matrix and KT denotes the transpose of K. In partic-
ular, since K is invertible over Z, it follows that N is invertible over Z. Now suppose
we have two elements

∑
aλM

λ,
∑
bλM

λ in Rep(Sn) where aλ, bλ ∈ Z for all λ ` n.
By definition,

∑
aλM

λ =
∑
bλM

λ if and only if aλ = bλ for all λ ` n, or equiva-
lently, a = b where a = (aλ)λ`n and b = (bλ)λ`n are (column) vectors with entries
aλ, bλ respectively. Since N is invertible, the following analogue of Proposition 2.13
for Rep(Sn) is immediate.

Proposition 2.14. Let
∑
λ`n aλM

λ,
∑
λ`n bλM

λ be elements in Rep(Sn). The fol-
lowing are equivalent:

(1)
∑
λ`n aλM

λ =
∑
λ`n bλM

λ in Rep(Sn),
(2) Na = Nb, and
(3)

∑
λ`n aλ dim(Mλ)Sν =

∑
λ`n bλ dim(Mλ)Sν for all ν ` n.

The above discussion shows that proving equality in the representation ring can be
viewed as a linear algebra problem. In the case in which these vectors a = (aλ)λ`n and
b = (bλ)λ`n have coordinates equal to 0 below a certain point, it will be convenient to
further simplify the problem. We now make this more precise. Fix a positive integer k.
Let πk(a), πk(b), πk(K), πk(N) denote the submatrices obtained from a,b, K,N by
taking the only those entries corresponding to partitions with 6 k parts. For K and
N , this refers to entries whose row and column indices are partitions with 6 k parts.
(Intuitively, this corresponds to taking the “top parts” of a,b and the “upper-left
corners” of K and N .)

Lemma 2.15. Let
∑
aλM

λ,
∑
bλM

λ be elements in Rep(Sn). Let k be a positive
integer. Suppose that aλ = bλ = 0 for all λ ` n with more than k parts. Then the
following are equivalent:

(1)
∑
aλM

λ =
∑
bλM

λ,
(2) πk(N)πk(a) = πk(N)πk(b), and
(3)

∑
aλ dim(Mλ)Sν =

∑
bλ dim(Mλ)Sν for all ν ` n with 6 k parts.
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Sketch of the proof. It is straightforward to see that the essential claim is that πk(N)
(the “upper-left corner” of N) is invertible. Recall that N = KTK and K is upper-
triangular. Hence πk(N) = πk(KT )πk(K). Moreover, πk(KT ) = πk(K)T and since K
is upper-triangular with 1’s along the diagonal, the upper-left corner πk(K) has the
same properties, and in particular is invertible. Thus πk(N) is also invertible. �

Finally, we recall a fundamental result of Brosnan and Chow which identifies the
dimension of the subspaces H∗(Hess(S, h))Sν with the dimension of the cohomology
of a regular Hessenberg variety and which we use repeatedly below.

Theorem 2.16 ([3, Theorem 127]). Let n be a positive integer and h : [n] → [n] a
Hessenberg function. Let ν ` n be a partition of n, Xν a regular operator of Jordan
type ν, and S a regular semisimple operator. Then for each non-negative integer i,

dim(H2i(Hess(S, h)))Sν = dimH2i(Hess(Xν , h)).

2.3. Incomparability graphs, acyclic orientations, and Stanley’s theo-
rem. In this section we recall some graph-theoretic data which can be constructed
from a Hessenberg function. Let n be a positive integer and suppose h : [n] → [n] is
a Hessenberg function.

Definition 2.17.We define the incomparability graph Γh = (V (Γh), E(Γh)) associ-
ated to h as follows. The vertex set V (Γh) is [n] = {1, 2, . . . , n}. The edge set E(Γh)
is defined as follows: {i, j} ∈ E(Γh) if 1 6 j < i 6 n and i 6 h(j).

The incomparability graph is a visual representation of the set of roots Φ−h . In
particular, it is straightforward to see that the roots of Φ−h are in bijection with the
edges of Γh.

Example 2.18. The incomparability graphs for h = (2, 4, 4, 4) and h = (3, 4, 5, 5, 5)
are given below.

1 2 3 4 1 2 3 4 5

Recall that an orientation ω of (the edges of) a graph is an assignment of a direction
(i.e. orientation) to each edge e ∈ E(Γh). Equivalently, ω assigns to each edge e a
source and a target; we notate the source (respectively target) of e according to the
orientation ω by srcω(e) (respectively tgtω(e)). A (directed) cycle is a sequence of
vertices starting and ending at the same vertex whose edges are oriented consistently
with the order of the vertices in the sequence. We say that an orientation ω is acyclic
if there are no (directed) cycles in the corresponding oriented graph. Let

A(Γh) := {ω | ω is an acyclic orientation of Γh}
denote the set of all acyclic orientations of Γh. Moreover, given an orientation ω, a
sink associated to ω is a vertex v of the graph such that, for all edges e incident to
the vertex v, the edge “points towards v”, i.e. tgtω(e) = v for all edges e incident to
v. It will turn out to be extremely important to pay close attention to the number of
sinks associated to a given orientation. Thus we define
(11) Ak(Γh) := {ω ∈ A(Γh) | ω has exactly k sinks}.
Since every acyclic orientation has at least one sink [21, Section 8.6, Exercise 4], we
have A(Γh) =

⊔
k>1Ak(Γh).

The following is a result of Shareshian and Wachs [22, Theorem 5.3] which general-
izes a theorem of Stanley. Following their terminology, for an orientation ω of Γh, we let
(12) asc(ω) := |{e = {a, b} ∈ E(Γh) | srcω(e) = a, tgtω(e) = b, and a < b}|.
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In other words, if Γh is drawn as in Example 2.18 with the labels of the vertices
increasing from left to right, then asc(ω) is the total number of edges which “point
to the right”.

Theorem 2.19 ([22, Theorem 5.3]). Let n be a positive integer and h : [n] → [n] a
Hessenberg function. Let cλ,i denote the coefficients appearing in (9). Then for each i,∑

λ`n, parts(λ)=k

cλ,i = |{ω | ω ∈ Ak(Γh) and asc(ω) = i}|.

Since there is only one partition of n with exactly 1 part, namely λ = (n), and
because the representation M (n) corresponding to this partition is the trivial repre-
sentation [8], we may immediately conclude the following, which will be important to
us later on.

Corollary 2.20.Under the conditions in the above theorem, the multiplicity of the
trivial representation in H2i(Hess(S, h)) is the number of acyclic orientations ω of
Γh with exactly 1 sink such that asc(ω) = i. Equivalently, for λ = (n) the trivial
partition, we have

c(n),i = |{ω | ω ∈ A1(Γh) and asc(ω) = i}|.

The following is also immediate from Theorem 2.19 by summing over k.

Corollary 2.21.Under the conditions in the above theorem we have∑
λ`n

cλ,i = |{ω |ω ∈ A(Γh) and asc(ω) = i}|.

2.4. Ph-tableaux and a result of Gasharov. Recall that the goal of the present
manuscript is to prove a result about the coefficients cλ and cλ,i appearing in (9), for
certain cases of Hessenberg functions h. We have also seen that the coefficients dλ
from (6) are intimately related to the cλ. In preparation for the arguments in the
following sections, we now take a moment to recall a combinatorial object called a
Ph-tableau, and the result of Gasharov which computes the dλ’s in terms of Ph-
tableaux.

Definition 2.22. Fix a Hessenberg function h : [n] → [n]. A Ph-tableau of shape λ
is a filling of a Young diagram of shape λ ` n with the integers of [n] such that

(1) each integer 1, 2, . . . , n appears exactly once,
(2) if i ∈ [n] appears immediately to the right of j ∈ [n] then i > h(j), and
(3) if i ∈ [n] appears immediately below j ∈ [n] then j 6 h(i).

Example 2.23. Let n = 5 and let h = (2, 3, 4, 5, 5). Then there are nine Ph-tableaux
of shape (2, 2, 1):

1 3
2 4
5

1 4
2 5
3

1 3
2 5
4

1 4
3 5
2

1 5
2 4
3

2 4
1 3
5

2 4
1 5
3

2 5
1 4
3

3 5
2 4
1

Recall that every partition λ ` n has a dual partition λ∨ whose Young diagram
is the transpose of the Young diagram of λ. The following theorem, which gives a
positive, combinatorial formula for the coefficients dλ, is due to Gasharov [9]. There is
also a graded version of the theorem, due to Shareshian and Wachs [22, Theorem 6.3],
but we will only need the ungraded version below.

Theorem 2.24. Let n be a positive integer and let h : [n] → [n] be a Hessenberg
function. Let dλ denote the coefficients appearing in (6). Then

dλ = |{ Ph-tableaux of shape λ∨ }|.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1070



Abelian Hessenberg varieties and the Stanley–Stembridge conjecture

3. Abelian Hessenberg varieties
In the previous sections we outlined the motivation behind this paper and recalled
some background. We are finally ready to begin our own arguments in earnest, and
the first task is to establish the terminology (and hypothesis) which allows us to make
our arguments – namely, the definition of an abelian ideal and an abelian Hessenberg
variety. We also briefly discuss how our special case relates to other situations that
have been studied previously in the literature.

In Section 2 we defined an ideal of Φ− associated to a Hessenberg function h. We
now introduce the definition which is central to this manuscript.

Definition 3.1.We say that an ideal I ⊆ Φ− is abelian if α+β /∈ Φ− for all α, β ∈ I.

The notion of abelian ideals is not new in the context of Lie theory. However, as
far as we are aware, its use in the study of Hessenberg varieties is new. The following
definition is not essential to this paper but we include it because it frequently arises
in the literature.

Definition 3.2. Let I be an ideal in Φ−. We say that I is strictly negative if −∆∩ I
is empty.

Note that if I = Ih is the ideal of Φ− associated to a Hessenberg function h, then
−∆ ∩ I is empty if and only if −∆ ⊆ Φh. The following is well-known, which partly
explains why it is common practice in the study of Hessenberg varieties to assume
that Ih is strictly negative.

Lemma 3.3 ([19, Theorem 3.4]). Let h be a Hessenberg function and X ∈ gl(n,C) be a
semisimple matrix. Then the corresponding semisimple Hessenberg variety Hess(X, h)
is connected if and only if Ih is strictly negative.

Example 3.4. In the case n = 4, there are 8 abelian ideals in Φ−. The reader
may check that these correspond to the Hessenberg functions (1, 4, 4, 4), (2, 2, 4, 4),
(2, 3, 4, 4), (2, 4, 4, 4), (3, 3, 3, 4), (3, 3, 4, 4), (3, 4, 4, 4) and (4, 4, 4, 4). Among these,
those that are strictly negative are

(4, 4, 4, 4), (3, 4, 4, 4), (3, 3, 4, 4), (2, 4, 4, 4), (2, 3, 4, 4).
and their corresponding ideals Ih are, respectively,

∅, {t4 − t1}, {t4 − t1, t4 − t2}, {t4 − t1, t3 − t1}, {t4 − t1, t4 − t2, t3 − t1}.

The following extends the notion of abelian ideals to their corresponding Hessen-
berg varieties.

Definition 3.5.We say that the Hessenberg variety Hess(X, h) and the corresponding
Hessenberg function h are abelian, if Ih is abelian.

Recall that Hessenberg functions are in bijection with natural unit interval orders
as shown by Shareshian and Wachs in [22, Proposition 4.1]. Under this identification,
the Hessenberg function h is abelian if and only if the longest chain (i.e. totally ordered
subset) of the associated natural unit interval order has length one. We thank Timothy
Chow for the following remark.

Remark 3.6. There is also a purely combinatorial characterization of abelian Hes-
senberg functions as follows. Define the index index(h) of a Hessenberg function
to be the largest integer i such that h(i) < n. Then h is abelian if and only if
h(1) > index(h). Indeed, if i is the index of h and h(1) < i, then ti−t1, tn−ti ∈ Ih since
h(1) < i 6 h(i) < n and (ti− t1)+ (tn− ti) = tn− t1 ∈ Φ− implying Ih is not abelian.
On the other hand, if Ih is not abelian, then there exist roots tj − tk, tk − t` ∈ Ih, so
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that j > k > ` and j > h(k) and k > h(`). Now, since h(k) < j 6 n, the index i of h
is at least k, so we conclude that h(1) 6 h(`) < k 6 i.

Abelian ideals of Φ− (or equivalently, of Φ+) are the source of many combinatorial
and Lie-theoretic formulas. The number of abelian ideals in the negative roots Φ− of
gl(n,C) grows exponentially in n. This is a special case of a result by D. Peterson, as
recorded by Kostant in [16, Theorem 2.1].

Proposition 3.7 (Peterson, [16, Theorem 2.1]). Let g be any semisimple Lie algebra
and let Φ− denote its set of negative roots. Then there are exactly 2rk(g) abelian ideals
in Φ−, where rk(g) denotes the rank of g.

Remark 3.8.We can also ask: how many ideals in Φ− are both abelian and strictly
negative? Suppose h : [n]→ [n] is a Hessenberg function such that its corresponding
ideal I = Ih is abelian. Suppose in addition that Ih is not strictly negative. Then the
corresponding Hessenberg space H is a maximal, standard parabolic Lie subalgebra
of sl(n,C). In particular,∣∣{ abelian ideals of Φ− which are strictly negative }

∣∣ = 2n−1 − (n− 1).

The set of abelian, strictly-negative Hessenberg varieties contains examples studied
previously. For instance, suppose n is positive and n > 3. For any strictly negative
Hessenberg function of the form h = (m1,m2, n, n, . . . , n), Shareshian and Wachs
proved results on the associated chromatic quasisymmetric polynomial which, when
paired with Brosnan and Chow’s Theorem 2.10, proves Conjecture 2.8 for that case. It
is not difficult to see that such a Hessenberg function is abelian using the alternative
definition of an abelian Hessenberg function given in Remark 3.6.

In addition, the representation H∗(Hess(S, h)) for the Hessenberg function h asso-
ciated to any standard parabolic subalgebra p was determined to be a direct sum of
Mλ’s by Teff [28, Theorem 4.20]. When p is a maximal parabolic subalgebra, the cor-
responding Hessenberg function is abelian so this is another special case of our result.

Example 3.9. Consider h = (3, 4, 5, 6, 6, 6), as in Example 2.3. This Hessenberg func-
tion corresponds to the abelian ideal

Ih = {t4 − t1, t5 − t1, t5 − t2, t6 − t1, t6 − t2, t6 − t3}.

However h is not of the form (m1,m2, 6, 6, 6, 6), nor is it the Hessenberg function
corresponding to a standard parabolic subalgebra. Therefore h is an example of a
Hessenberg function for which our proof of Conjecture 2.8 is new.

4. Sink sets, maximum sink set size, and an inductive description
of acyclic orientations

The results in Section 2.3 make it evident that the set of acyclic orientations, and the
cardinalities of the sink sets associated to them, play a crucial role in determining the
coefficients cλ,i. The contribution of this manuscript is to further develop this circle
of ideas by analyzing the sink sets themselves. We also pay close attention to those
sinks sets which are of maximal cardinality. Below, we make these ideas more precise.

4.1. Sink sets and induced subgraphs. Our first lemma gives several equivalent
characterizations of a subset of V (Γh) which can appear as a set of sinks for some
acyclic orientation. We prepare some terminology. First, for a fixed Γh and acyclic
orientation ω of Γh, let

sk(ω) := {v ∈ V (Γh) | v is a sink of ω}

Algebraic Combinatorics, Vol. 2 #6 (2019) 1072



Abelian Hessenberg varieties and the Stanley–Stembridge conjecture

denote the set of sinks of ω. We say sk(ω) is a sink set. Recall that an independent
set of vertices in Γh is a subset of V (Γh) such that no two of them are connected by
an edge in Γh. An independent set of vertices in the graph Γh corresponds to a chain
in the associated natural unit interval order. We have the following.

Lemma 4.1. Let h : [n] → [n] be a Hessenberg function and Γh be the associated
incomparability graph. Let T = {`1 < `2 < · · · < `k} be a subset of V (Γh) for k a
positive integer. Then the following are equivalent:

(1) T is a sink set, i.e. there exists an acyclic orientation ω ∈ Ak(Γh) such that
T = sk(ω),

(2) `i+1 > h(`i) for all i ∈ [k − 1], and
(3) T is an independent set in Γh.

In particular, the cardinality of any maximum independent subset of vertices is equal
to the cardinality of any maximum sink set.

Proof. We first show that (1) implies (2). Suppose T is a sink set. We wish to show
`i+1 > h(`i) for all i, 1 6 i 6 k − 1. If k = 1, the condition is vacuous and there is
nothing to check. If k > 1, suppose for a contradiction that there exists i ∈ [k−1] with
`i+1 6 h(`i). Then by construction of Γh there exists an edge e between `i and `i+1.
For any orientation ω of Γh, we must have either tgtω(e) = `i or tgtω(e) = `i+1, and
not both. Thus `i and `i+1 cannot be simultaneously contained in sk(ω), contradicting
the fact that T is a sink set.

Next we prove that (2) implies (3). Note that since `1 < `2 < · · · < `k by assump-
tion, if `i+1 > h(`i) for all i ∈ [k−1] then it follows that `b > h(`a) for any pair a < b,
a, b ∈ [k]. By construction of Γh this implies there are no edges in Γh connecting any
two of the vertices in T . Hence, by definition, T is an independent set.

Finally we prove (3) implies (1). Suppose T is an independent set. Choose any total
ordering of the vertices, beginning with the vertices in T . This total ordering uniquely
determines an acyclic orientation ω of the Γh by requiring that tgtω(e) be the least
vertex incident to e. Any such orientation satisfies the condition that sk(ω) = T .

The last claim of the lemma follows immediately from the equivalence of (1)
and (3). �

As already mentioned, we wish to focus on the sink sets themselves, not just the
acyclic orientations which give rise to them. Let P(V (Γh)) be the power set of V (Γh).
We let

SK(Γh) := {sk(ω) | ω ∈ A(Γh)} ⊆ P(V (Γh))
denote the set of all subsets of V (Γh) which can arise as the sink set of some acyclic
orientation. Similarly, we let SKk(Γh) denote the subset of SK(Γh) consisting of sink
sets of cardinality k. By definition, we have

(13) Ak(Γh) =
⊔

T∈SKk(Γh)

{ω ∈ Ak(Γh) | sk(ω) = T}.

We call this the sink set decomposition and it is conceptually central to our later
arguments. Indeed, recall that the statements of Theorems 2.19, Corollary 2.20, and
Corollary 2.21 relate the coefficients cλ,i to cardinalities of certain subsets of Ak(Γh)
for various k. Thus, the set of sink sets SKk(Γh) provides a way to further decompose
Ak(Γh), and refine our understanding of the cλ,i. More concretely, we now define a
graph Γh−T on n−|T | vertices using the data of the original graph Γh together with
the data of a sink set T . This construction will be critical for the induction argument
in Sections 6 and 7.
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Let k > 1 and suppose T ∈ SKk(Γh). Intuitively, the graph Γh − T is obtained
from Γh by “deleting” T . Moreover, we will identify this graph as the incomparability
graph of a certain Hessenberg function hT . We proceed in steps. The underlying set of
vertices V (Γh−T ) is defined to be V (Γh)rT . We also define the edge set E(Γh−T )
as follows: two vertices in V (Γh − T ) are connected in Γh − T if and only if there
exists an edge connecting them in E(Γh). In graph theory Γh−T is called the induced
subgraph corresponding to the vertices V (Γh) r T ⊆ V (Γh).

In what follows it will sometimes be useful to label the vertices of Γh − T by the
integers {1, 2, . . . , n− k} = [n− k] rather than V (Γh)− T = [n] r T . Intuitively, this
is straightforward: we simply re-label the vertices V (Γh − T ) = V (Γh) r T by [n− k]
using the ordering induced by the ordering on the original V (Γh). More precisely, for
each 1 6 j 6 n, let j′ denote the number of vertices i ∈ T such that i 6 j. The
function φT : [n]→ [n− k] defined by φT (j) = j − j′ is surjective from [n] to [n− k]
and restricts to a bijection between [n] r T and [n− k].

Example 4.2. Consider the graph Γh for h = (3, 4, 5, 5, 5) and let T = {2, 5}. Then
T is indeed a sink set, for the following acyclic orientation of Γh.

1 // !!
2 3oo // !!

4
}} // 5

We also draw the (unoriented) graphs Γh and Γh−T in the figure below. In the figure
for Γh, the vertices of T and all incident edges to T are highlighted in red. The red
edges and vertices are then deleted to obtain Γh − T (with re-labelled vertices).

1 2 3 4 5 1 2 3
In this case, φT (1) = 1, φT (3) = 2, and φT (4) = 3.

Using the above bijection φT : [n] r T → [n − k] we may define a function hT :
[n− k]→ [n− k] by setting
(14) hT (φT (i)) := φT (h(i))
for all i ∈ [n] r T . Our next claim is that the smaller graph Γh − T is in fact the
incomparability graph of hT , so Γh − T ∼= ΓhT . Note that in Example 4.2, the above
construction yields the Hessenberg function hT = (2, 3, 3).

A reader familiar with the language of unit interval orders may note that the lemma
below states that the result of deleting a chain from a unit interval order is still a unit
interval order. Although the statement is clear in that context, we include a proof
below in the language of Hessenberg functions for those readers who are not familiar
with unit interval orders.

Lemma 4.3. Let T ∈ SKk(Γh) and let Γh−T and hT be defined as above. Then hT is
a Hessenberg function, and Γh − T = ΓhT .

Proof. First we show that hT is a Hessenberg function. Since φT and its inverse
φ−1
T : [n − k] → [n] r T are non-decreasing and h is non-decreasing by definition of

Hessenberg functions, it follows that hT is also non-decreasing. Next, the facts that
h(i) > i and φT is non-decreasing imply that

hT (φT (i)) = φT (h(i)) > φT (i)
for all i ∈ [n] r T . Therefore hT is a Hessenberg function.

Second, we wish to show that Γh − T is the incomparability graph of hT . To do
this, fix i, j ∈ [n] r T satisfying i < j. It suffices to show that in Γh − T , there
exists an edge between φT (i) and φT (j) if and only if φT (j) 6 hT (φT (i)) = φT (h(i)).
Note there exists an edge between φT (i) and φT (j) in Γh − T if and only if there
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exists an edge between i and j in Γh by definition of Γh − T . This holds if and
only if j 6 h(i) by definition of Γh. This implies φT (j) 6 φT (h(i)) since φT is non-
decreasing. On the other hand, given that φT (j) 6 φT (h(i)) we must show j 6 h(i).
Suppose for a contradiction that j > h(i). Then we must have φT (h(i)) 6 φT (j).
This means φT (j) = φT (h(i)). Since φT is injective on [n] r T and j ∈ [n] r T ,
this means h(i) ∈ T . Moreover, it follows from the definition of φT that h(i) > j.
This contradicts the initial assumption that j > h(i), so we conclude j 6 h(i) as
desired. Finally, φT (j) 6 φT (h(i)) if and only if φT (j) 6 hT (φT (i)) by definition of
hT , completing the proof. �

We have already observed that the edges of an incomparability graph Γh associated
to a Hessenberg function are in one-to-one correspondence with the set of negative
roots in Φ−h . Our construction of a “smaller” graph ΓhT ∼= Γh−T , suggests that there
should be a correspondence between negative roots in Φ−hT and a certain subset of Φ−h
which is determined by T . We now make this precise. By Lemma 4.3, we may describe
the roots Φ−hT and the ideal IhT corresponding to hT using those of h as follows:

Φ−hT = {tφT (i) − tφT (j) | ti − tj ∈ Φ−h and i, j /∈ T}

and
IhT = {tφT (i) − tφT (j) | ti − tj ∈ Ih and i, j /∈ T}.

In our computations below, it will also be convenient to consider the subset of negative
roots in Φ−h and Ih which correspond to Φ−hT and IhT , respectively, under the map
φT . We set the notation

Φ−h [T ] := {ti − tj | ti − tj ∈ Φ−h and i, j /∈ T}

and
Ih[T ] := {ti − tj | ti − tj ∈ Ih and i, j /∈ T}.

There is an obvious bijection from Φ−h [T ] to Φ−hT and Ih[T ] to IhT given by ti − tj 7→
tφT (i) − tφT (j).

Finally, we observe that the construction of the smaller graph Γh − T ∼= ΓhT
from the data of Γh also extends to orientations. Specifically, let ω ∈ Ak(Γh) be any
acyclic orientation such that sk(ω) = T . Then the orientation ω naturally induces, by
restriction, an orientation on Γh−T = ΓhT (since the edges of Γh−T are a subset of
those of Γh). We denote this acyclic orientation on ΓhT by ωT .

Example 4.4.We continue with Example 4.2. In the pictures below, we draw an
orientation ω of Γh on the left, and its corresponding induced orientation ωT of ΓhT
on the right. For visualization purposes the sink set T and its incident edges are
highlighted in red.

1 // 2 3oo}} !!
4oo //}}

5 1 2oo 3oo

4.2. Sink sets of maximal cardinality and an inductive description of
acyclic orientations. The main observation of the present section, recorded in
Proposition 4.10, is that if k is maximal, then the sets appearing on the RHS of
the sink set decomposition (13) are in bijective correspondence with the set of all
acyclic orientations corresponding to the graphs ΓhT for T ∈ SKk(Γh). Moreover, this
natural bijection gives a tight relationship between the number of ascending edges
asc(ω) of the orientation ω of the original graph Γh with the number asc(ωT ) of the
induced orientation on the smaller graph ΓhT , where ωT is described at the end of
Section 4.1 above. These ascending edge statistics record the degree – i.e. the grading
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in H∗(Hess(S, h)) – in Theorem 2.19 and Corollary 2.20, so it is this relation which
allows us to prove our “graded” results in Section 7.2.

We begin by making precise the notion of a sink set of maximum possible size.

Definition 4.5.We define the maximum sink-set size m(Γh) to be the maximum of
the cardinalities of the sink sets sk(ω) associated to all possible acyclic orientations
of Γh, i.e.
(15) m(Γh) = max{|sk(ω)| | ω ∈ A(Γh)}.

Note that the maximum clearly exists since |sk(ω)| is bounded above by n. Fur-
thermore, by Lemma 4.1, the maximal sink-set size of Γh is also the cardinality of a
maximum independent set of vertices in Γh.

Example 4.6. Continuing Example 4.2, the sink set T = {2, 5} given in that example
is in fact maximal, i.e. m(Γh) = 2. Indeed, in this case any set of three vertices must
have at least one edge incident with two of them, and thus cannot be independent.
Finally, we note that for this orientation we have asc(ω) = 5, i.e. there are 5 edges
pointing to the right.

Let m = m(Γh) be the maximum sink-set size for a fixed incomparability graph Γh
and Hessenberg function h as in Definition 4.5. We need some terminology. Suppose
T ∈ SK(Γh). Any acyclic orientation ω with sink set T must have some number of
edges oriented to the right, as determined by the vertices in T .

Definition 4.7. Suppose T ∈ SK(Γh). We define the degree of T to be
deg(T ) := min{asc(ω) | ω ∈ A(Γh), sk(ω) = T}.

The next lemma shows that in practice it is easy to compute deg(T ) for any T ∈
SK(Γh). Suppose T = {`1 < `2 < · · · < `k} is an independent set. We explicitly
construct an acyclic orientation ω of Γh with sink set precisely T as follows. We first
consider the set of edges e in Γh which are incident to a vertex in T . Note that any
such e is incident to only one vertex, say `i, in T , because T is independent. We assign
an orientation to any such e by requiring tgtω(e) = `i. Next consider all edges in Γh
which are not incident to any vertex in T . To any such edge e = {v, v′} where v < v′

we assign the orientation which makes the edge “point to the left”; more precisely,
tgtω(e) = v. The above clearly defines an acyclic orientation ω on Γh.

Lemma 4.8. Let T ∈ SK(Γh). Then
(16) deg(T ) =

∣∣{e = {`, `′} ∈ E(Γh) | `′ ∈ T, ` < `′}
∣∣.

Moreover, |Φ−h | > |Φ
−
hT
|+ deg(T ).

Proof. We begin with the first claim. Let ω denote the orientation of Γh constructed
above. It can be verified that the edges which point to the right with respect to ω are
precisely those which connect a vertex `′ ∈ T to a smaller vertex ` < `′. Thus asc(ω)
is equal to the RHS of (16) and hence deg(T ) 6 RHS by definition. To prove equality,
we claim that for any ω′ ∈ A(Γh) with sk(ω′) = T we must have asc(ω′) > asc(ω).
But the fact that sk(ω′) = T implies that any edge of the form e = {`, `′} for ` < `′

and `′ ∈ T must satisfy tgtω(e) = `′, i.e. e must point to the right. It follows that
asc(ω′) > asc(ω) as desired.

For the second claim, recall that the edges of Γh (respectively ΓhT ) are in bijection
with Φ−h (respectively Φ−hT ). By definition of hT we know |Φ−h | is equal to |Φ

−
h [T ]| =

|Φ−hT | plus the total number of edges incident to any vertex of T . By (16), deg(T )
is less than or equal to the total number of vertices incident to a vertex in T so the
claim follows. �
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Before stating our main proposition we illustrate with our running example.

Example 4.9. Consider the graph Γh for h = (3, 4, 5, 5, 5) as in Example 4.2. As
already noted in Example 4.6, in this example we have m(Γh) = 2 and T = {2, 5} is
a sink set of maximal cardinality. In the figure below we draw all acyclic orientations
ω ∈ A(Γh) such that sk(ω) = {2, 5}. The sink set T and incident edges are highlighted
in red, and the corresponding acyclic orientation of ΓhT is displayed to the right.

1 // 2 3oo}} !!
4oo //}}

5 1 2oo 3oo

1 // !!
2 3oo !!

4oo //}}
5 1 // 2 3oo

1 // 2 3oo}} !!// 4 //}}
5 1 2oo // 3

1 // !!
2 3oo !!// 4 //}}

5 1 // 2 // 3
In this example, we have deg(T ) = 3.

In the example above, we obtain every acyclic orientation of ΓhT by restricting
from an acyclic orientation of Γh with sink set T . The next proposition shows that
this is always the case when T is not a strict subset of any other sink set. Note that
this property may hold even if T does not have maximal cardinality. For example, the
reader can check that T = {3} in the ongoing example for h = (3, 4, 5, 5, 5) satisfies
this property despite the fact that |T | = 1 < 2 = m(Γh).

Proposition 4.10. Let h : [n]→ [n] be a Hessenberg function and let T ∈ SKk(Γh) be
a sink set which is not a strict subset of any other sink set. Then the restriction map
(17) {ω ∈ Ak(Γh) | sk(ω) = T} → A(ΓhT ), ω 7→ ωT

is a bijection. Furthermore, for any ω ∈ Ak(Γh) with sk(ω) = T we have
asc(ω) = deg(T ) + asc(ωT ).

Proof. We first claim that the given restriction map is injective. To see this, recall
from Lemma 4.3 that ΓhT = Γh − T and Γh − T is obtained from Γh by deleting the
vertices T and the edges incident to T . Now note that any orientation ω satisfying
sk(ω) = T must have the property that tgtω(e) = v for any v ∈ T and any edge
e incident to v, by the definition of a sink. In other words, the orientation ω is
determined on edges incident to T by the condition sk(ω) = T . Thus the restriction
map ω 7→ ωT , which forgets the orientations incident to T , is injective. Next we claim
that the map is surjective. Recall that the equality ΓhT = Γh − T identifies V (ΓhT )
with V (Γh) r T and the edges of ΓhT with the edges in Γh which are not incident
to T . Now suppose ω′ ∈ A(ΓhT ). Define an orientation ω′′ on Γh by orienting all
the edges incident to a vertex in T towards that vertex, and orienting the remaining
edges using the orientation of ω′. We claim that ω′′ is an acyclic orientation such that
sk(ω′′) = T . This would show that the restriction map is surjective since (ω′′)T = ω′

by the definition of ω′′.
From the construction of ω′′ it follows that T ⊆ sk(ω′′). Since T is not a strict

subset of any other sink set for Γh, it also follows that sk(ω′′) = T . To finish the proof
it suffices to show that ω′′ is acyclic. Suppose for a contradiction that ω′′ contains an
oriented cycle. Since ω′ ∈ A(ΓhT ), such a cycle must include at least one vertex v of
T . An oriented cycle can contain a vertex only if that vertex has at least one edge
oriented towards that vertex and one edge oriented outwards from that vertex. But
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since v is a sink, this is impossible. Therefore no such oriented cycle can exist and
ω′′ ∈ A(Γh) as desired.

Finally, consider ω ∈ Ak(Γh) such that sk(ω) = T and recall that asc(ω) counts
the number of edges which point to the right in ω. By Lemma 4.8, deg(T ) counts
those edges incident to T that are oriented to the right and asc(ωT ) counts those
edges oriented to the right in the induced subgraph on the vertices V (Γh)− T . Since
these two sets of edges are mutually disjoint and together comprise all the edges of Γh
pointing to the right, asc(ω) = deg(T )+asc(ωT ) for all ω ∈ {ω ∈ Ak(Γh) | sk(ω) = T}
as desired. �

5. The height of an ideal
In this section we introduce an integer invariant associated to an ideal I in Φ− called
the height of I. A (nonempty) ideal I is abelian precisely when its height is 1. In this
sense, the case of abelian ideals is the “base case” of an inductive argument based
on height. For a Hessenberg function h, we then observe a connection between the
height of Ih and the maximum sink set size m(Γh) defined in the previous section.
This connection, together with the past results of Stanley, Shareshian–Wachs, and
Gasharov as well as some standard representation theory, allows us to significantly
simplify the process of proving Conjecture 2.8 in the abelian case.

Given an ideal I ⊆ Φ−, recall that we may form an ideal in the Borel subalgebra
of lower triangular matrices in gl(n,C). Namely, let I = ⊕γ∈Igγ be the ideal of root
spaces corresponding to the roots in I. The lower central series of I is the sequence
of ideals defined inductively by

I1 = I, and Ij = [I, Ij−1] for all j > 2.

We define the lower central series of ideals in Φ− analogously, by letting Ij ⊆ Φ− be
the unique ideal of negative roots such that Ij = ⊕γ∈Ijgγ .

Definition 5.1. The height of an ideal I ⊆ Φ−, denoted ht(I), is the length of its
lower central series. More concretely,

ht(I) := max{k > 1 | Ik 6= ∅}.

If I = ∅, then we adopt the convention that ht(I) = 0. It is not hard to see that the
height is well-defined, i.e. the maximum always exists.

As in the case of abelian ideals and Hessenberg functions, we can interpret the
height of the ideal Ih using the language of unit interval orders. Indeed, the height
of Ih is exactly the length of the longest chain in the natural unit interval order
associated to h; as proved in Proposition 5.8 below. Intuitively, the height of an ideal
measures how “non-abelian” it is.

Example 5.2. Consider the Hessenberg function h = (2, 4, 4, 5, 5), with ideal

Ih = {t3 − t1, t4 − t1, t5 − t1, t5 − t2, t5 − t3}.

Then Ih is not abelian since (t3 − t1) + (t5 − t3) = t5 − t1 ∈ Φ−. We see that,

I1 = Ih, I2 = {t5 − t1}, and Ij = ∅ for all j > 3

so ht(Ih) = 2.

To connect the notions of the height of the ideal Ih and maximal sink sets of Γh
(or, equivalently, maximal chains in the associated natural unit interval order), we
will use certain subsets of roots in Φ−, defined below.
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Definition 5.3. Let R ⊆ Φ−. We say R is a subset of height k if there exist integers
q1, q2, . . . , qk, qk+1 ∈ [n] such that q1 < q2 < · · · < qk < qk+1 and R = {tq2 − tq1 , tq3 −
tq2 , . . . , tqk+1 − tqk}. We let Rk(I) denote the set of all subsets of height k in an ideal
I, and define R(I) :=

⊔
k>0Rk(I).

Remark 5.4. It is straightforward to show that R ⊆ Φ− is a subset of height k if and
only if there exists w ∈ Sn such that w(R) is a subset of simple roots corresponding
to k consecutive vertices in the Dynkin diagram for gl(n,C).

If R ⊆ Φ− is a subset of height k, then we may write R = {β1, β2, . . . , βk} where
βi = tqi+1 − tqi for the integers q1, q2, . . . , qk, qk+1 ∈ [n] given in the definition above.
Therefore

(18) βi + βi+1 + · · ·+ βj ∈ Φ− for all 1 6 i 6 j 6 k.

The next lemma proves a direct relationship between ht(I) and subsets of maximal
height in I.

Lemma 5.5. Let I be a nonempty ideal in Φ−. Then ht(I) = max{|R| | R ∈ R(I)}.

Proof. Let R be a subset of maximal height in I, so |R| = k where k = max{|R| | R ∈
R(I)}. By definition, there exist q1, q2, . . . , qk, qk+1 ∈ [n] such that q1 < q2 < · · · <
qk < qk+1 and R = {β1, β2, . . . , βk} where βi = tqi+1 − tqi for each 1 6 i 6 k. Using
the definition of the Lie bracket and [14, Proposition 8.5] we get that

gβ1+···+βi = [gβi , gβ1+···+βi−1 ] ⊆ [I, Ii−1] = Ii
for all 2 6 i 6 k. In particular, gβ1+···+βk ⊆ Ik so Ik 6= ∅ and therefore ht(I) > k.

Seeking a contradiction, suppose ht(I) = k′ > k. Note that k > 1 since I is
nonempty, so we have k′ > 2. We claim that if this is the case, then Rk′(I) 6= ∅,
contradicting the assumption that k is maximal. Recall that Ii denotes the i-th ideal
in the lower central series of I = I1. By definition, if ht(I) = k′ then Ik′ 6= ∅. Let
γk′ ∈ Ik′ so gγk′ ⊆ Ik′ = [I, Ik′−1]. By definition of the Lie bracket, there exists
γk′−1 ∈ Ik′−1 and αk′ ∈ I such that γk′ = αk′ + γk′−1. Applying the same reasoning,
gγk′−1 ⊆ Ik′−1 = [I, Ik′−2] so there exists γk′−2 ∈ Ik′−2 and αk′−1 ∈ I such that
γk′−1 = αk′−1 + γk′−2. Continue in this way to obtain γi ∈ Ii for each 1 6 i 6 k′ and
αi ∈ I for each 2 6 i 6 k′ such that

(19) γi = αi + γi−1 for all 2 6 i 6 k′.

Set α1 = γ1 and consider the set R′ = {α1, α2, . . . , αk′−1, αk′}. For each i such that
1 6 i 6 k′, αi ∈ Φ− so we may write αi = tai − tbi for some ai, bi ∈ [n] such that
bi < ai. We will prove the following claim.

Claim. Suppose i is an integer such that 2 6 i 6 k′. Then there exists an ordering
{a′1, a′2, . . . , a′i} of the set {a1, a2, . . . , ai} so that if {b′1, b′2, . . . , b′i} is the corresponding
re-ordering of the set {b1, b2, . . . , bi}, i.e. the ordering so that

{α1, α2, . . . , αi} = {ta′1 − tb′1 , ta′2 − tb′2 , . . . , ta′i − tb′i}

holds, then b′j = a′j−1 for all 2 6 j 6 i.

Given this claim, consider the case in which i = k′ and let q1 = b′1, q2 =
a′1, . . . , qk′ = a′k′−1, and qk′+1 = a′k′ . We immediately get that q1 < q2 < · · · < qk′ <
qk′+1 since qj = a′j−1 = b′j < a′j = qj+1 for all 2 6 j 6 k′ and

R′ = {tq2 − tq1 , tq3 − tq2 , . . . , tqk′+1 − tqk′}.

Therefore R′ ∈ Rk′(I), so Rk′(I) 6= ∅, which is what we wanted to show.
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We now prove the claim above, using induction on i. If i = 2, consider α1 = ta1−tb1

and α2 = ta2 − tb2 . Equation (19) implies that
(ta1 − tb1) + (ta2 − tb2) = α1 + α2 = γ1 + α2 = γ2 ∈ Φ−.

By definition of Φ− we must have that either a2 = b1 or a1 = b2. If a2 = b1, set a′1 = a2
and a′2 = a1. The corresponding re-ordering of {b1, b2} is b′1 = b2 and b′2 = b1. Then
b′2 = a′1 as desired. Similarly, if a1 = b2, set a′1 = a1 and a′2 = a2. The corresponding
re-ordering of {b1, b2} is b′1 = b1 and b′2 = b2. In this case we also conclude that
b′2 = a′1. Therefore the claim holds for i = 2.

Now assume that for some i such that 2 6 i < k′ there exists a reordering
{a′′1 , a′′2 , . . . , a′′i } of the set {a1, a2, . . . , ai} so that b′′j = a′′j−1 for all 2 6 j 6 i, where
{b′′1 , b′′2 , . . . , b′′i } is the corresponding re-ordering of the set {b1, b2, . . . , bi}. By our as-
sumptions,

(α1 +α2 + · · ·+ αi)+αi+1 = (ta′′1 − tb′′1 + ta′′2 − ta′′1 + · · ·+ ta′′
i
− ta′′

i−1
)+(tai+1− tbi+1)

= (ta′′
i
− tb′′1 )+(tai+1− tbi+1).

On the other hand, Equation (19) implies that (α1 +α2 · · ·+αi)+αi+1 = γi+αi+1 =
γi+1 ∈ Φ−. It follows that either ai+1 = b′′1 or a′′i = bi+1. If ai+1 = b′′1 , set a′1 = ai+1
and a′j = a′′j−1 for all 2 6 j 6 i + 1. The corresponding re-ordering of the set
{b′′1 , b′′2 , . . . , b′′i } is b′1 = bi+1 and b′j = b′′j−1 for all 2 6 j 6 i + 1. It follows that
b′2 = b′′1 = ai+1 = a′1 and for all 3 6 j 6 i+ 1 we get b′j = b′′j−1 = a′′j−2 = a′j−1. Next,
if a′′i = bi+1, set a′j = a′′j for all 1 6 j 6 i and a′i+1 = ai+1. Using exactly the same
reasoning as before (which is even simpler in this case since there are fewer shifts) we
get that b′j = a′j−1 for all 2 6 j 6 i+ 1, proving the induction hypothesis. �

As mentioned above, the height of an ideal gives us another characterization of
abelian ideals.
Proposition 5.6. Let I ⊆ Φ− be a nonempty ideal. Then R1(I) consists of all sin-
gleton sets of the roots in I. Moreover, I is abelian if and only if ht(I) = 1.
Proof. Suppose I is a nonempty ideal. Each root in I is clearly a subset of height 1 in
I. This proves the first claim. Now suppose I is abelian. This implies that there are
no subsets of I of height 2 or more since any such subset would satisfy the summation
conditions of (18). On the other hand, R1(I) 6= ∅ by the above argument. Therefore
ht(I) = 1 by Lemma 5.5. For the converse, suppose ht(I) = 1. By definition of the
lower central series, I2 = [I, I] = {0}. This means there cannot exist β1, β2 ∈ I with
β1 + β2 ∈ Φ−. Therefore I is abelian. �

Remark 5.7. The height of the ideal Ih is related to the bounce number and bounce
path of a Dyck path, which also arise in the theory of Macdonald polynomials. Recall
that there is a standard way to associate a Dyck path πh to a Hessenberg function
h [17, Proposition 2.7]. Given a Dyck path πh, we can define the bounce path of πh
as in [13, Definition 3.1]. The bounce number of πh is then the number of times its
bounce path touches the diagonal. Indeed, it is not hard to see (for instance, using
the characterization of abelian Hessenberg functions given in Remark 3.6) that Ih is
abelian, i.e. the height of Ih is 1, if and only if this bounce number is 1.

Our next goal is to make the connection between the height of Ih and the maximal
sink set size of Γh introduced in Section 4.2. More specifically, we assign to each
sink set T of cardinality k > 2 a unique subset of roots in Ih of height k − 1 as
follows. Suppose T ∈ SKk(Γh) where k > 2. Write T as {`1, `2, . . . , `k} ⊆ [n] where
`1 < `2 < · · · < `k. We define a function SKk(Γh)→ Rk−1(Ih) by
(20) T 7→ RT := {βi = t`i+1 − t`i | 1 6 i 6 k − 1}.
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We need the following.

Proposition 5.8. The map defined in (20) is well-defined, i.e. for any T ∈ SKk(Γh)
with k > 2, the subset RT is an element of Rk−1(Ih). Moreover, the map (20) is a
bijection. In particular, m(Γh) = ht(Ih) + 1.

Proof. Let k > 2 and T ∈ SKk(Γh), with T = {`1, . . . , `k} as above. To see that (20) is
well-defined we must first show that RT = {βi := t`i+1−t`i | 1 6 i 6 k−1} is a subset
of Ih. By Lemma 4.1, `i+1 > h(`(i)) for all i ∈ [k−1]. Therefore each βi = t`i+1−t`i ∈
Ih as desired. The fact that RT is a subset of height k − 1 follows directly from the
definition. We now claim (20) is a bijection. From the definition it is straightforward
to see that it is injective, so it suffices to prove that it is also surjective. Suppose
R ∈ Rk−1(Ih) is a set of height k−1. By definition there exist q1, q2, . . . , qk−1, qk ∈ [n]
such that q1 < q2 < · · · < qk−1 < qk and R = {tq2 − tq1 , tq3 − tq2 , . . . , tqk − tqk−1}.
Consider the set T = {q1, q2, . . . , qk}. Since R ⊆ Ih we know qi+1 > h(qi) for all
i ∈ [k − 1]. Lemma 4.1 now implies that T is a sink set. By definition, R = RT is the
image of T under (20) so our function is surjective. Our last assertion follows directly
from the fact that |SKk(Γh)| = |Rk−1(Ih)| for all k > 2 together with Lemma 5.5.
This completes the proof. �

The above lemma establishes, in particular, a bijection between SK2(Γh), the set
of sink sets of size 2, and R1(Ih). By Proposition 5.6 we know R1(Ih) ∼= Ih is the set
of all singleton subsets of Ih, so this implies that

|SK2(Γh)| = |Ih|.
More concretely, the bijection (20) associates to a sink set T = {j, i} ⊆ [n] with i > j
the subset {ti − tj} ⊆ Ih of height 1.

Example 5.9. Continuing Example 4.2 with the acyclic orientation drawn therein, the
sink set is {2, 5} and the associated (singleton) subset of Ih of height 1 is {t5−t2} ⊆ Ih.

Our next proposition makes the connection between the maximum sink-set size
and the coefficients dλ determining the representation H∗(Hess(S, h)).

Proposition 5.10. Let h : [n]→ [n] be a Hessenberg function. Then
m(Γh) = max{i | dλ 6= 0 for some λ ` n with i parts}

where the dλ are the non-negative coefficients appearing in (6).

We first need the following lemma.

Lemma 5.11. If T = {i1, i2, . . . , ik} is a subset of [n] whose elements fill a single row
in a Ph-tableau, then T is an independent set of vertices in Γh.

Proof. Suppose the elements of T are listed in increasing order (in the order they
appear in the row of the Ph-tableau). By condition (2) in Definition 2.22, we get
ij > h(ij−1) for all j such that 2 6 j 6 k. Lemma 4.1 now implies that T is an
independent set of vertices. �

Proof of Proposition 5.10. Let
ind(Γh) := max{|T | | T ⊆ V (Γh) and T is independent}.

By Lemma 4.1 it suffices to show that
(21) ind(Γh) = max{i | dλ 6= 0 for some λ ` n with i parts}.
Suppose λ ` n is a partition of n with k parts such that dλ 6= 0. By Theorem 2.24
there exists at least one Ph-tableau of shape λ∨. Since λ has k parts, λ∨ has k boxes
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in the first row. By Lemma 5.11 the entries in the first row of this Ph-tableau form an
independent set of vertices in Γh. Therefore the LHS of (21) is greater than or equal
to the RHS.

To prove the opposite inequality, let T = {`1, `2, . . . , `m}, where `1 < `2 < · · · < `m
be an independent subset of vertices in Γh of maximal size. By Lemma 4.1 we know
`i+1 > h(`i) for all i ∈ [m − 1]. Consider the partition λ∨ = (m, 1, . . . , 1) of n of
“hook shape” with first row containing m boxes and all other rows containing only
one box. Also consider the filling of the Young diagram of shape λ∨ given by filling
the top row with `1, . . . , `m in increasing order, and filling the remaining boxes by
[n] r {`1, . . . , `m} in increasing order from top to bottom. We claim that this is a
Ph-tableau of shape λ∨. By construction, conditions (1) and (2) of Definition 2.22
are already met, so we have only to check condition (3). Note that, for a pair i and
j with i appearing immediately below j, the condition (3) (namely, that j 6 h(i))
holds automatically if j < i (since h(i) > i by definition of Hessenberg functions).
Since λ∨ is of hook shape, the only places where condition (3) must be checked is
along the leftmost column of λ∨, and since by construction the filling contains entries
which increase from top to bottom starting at the second row, the argument above
implies that the only remaining place where condition (3) must be checked is for the
entry `1 in the top-left box of λ∨ and the entry `′ := min([n] r {`1, . . . , `m}) in the
unique box in the second row, for which we must show that `1 6 h(`′). Suppose for
a contradiction that `1 > h(`′) (and hence `′ < `1). This implies there is no edge
connecting `′ with `1 for any i, 1 6 i 6 m. Thus T ′ = {`′, `1, . . . , `m} is a sink set of
Γh by Lemma 4.1. Since |T ′| = m + 1, this contradicts the maximality of m = |T |.
Thus `1 6 h(`′) and hence the above filling is indeed a Ph-tableau. By construction of
the λ∨, its dual partition λ hasm > k+1 parts proving that the RHS of Equation (21)
is greater than or equal to the LHS. �

The following is now straightforward. In the case that Ih is abelian, the correspond-
ing restriction on the partitions that can appear in the RHS of (9) is quite striking.

Corollary 5.12. Let h : [n] → [n] be a Hessenberg function and let cλ and cλ,i be
the coefficients appearing in (9). Then cλ = cλ,i = 0 for all λ ` n with more than
m(Γh) = ht(Ih) + 1 parts and for all i > 0. In particular, if Ih is abelian, then
cλ = cλ,i = 0 for all λ ` n with more than 2 parts and for all i > 0.

Proof. It follows from Proposition 5.10 that, under the hypotheses, dλ = 0 for all
λ with more than m(Γh) parts. Now apply Lemma 2.12 to H∗(Hess(S, h)). For the
abelian case, if Ih is non-empty then this follows from Propositions 5.6 and 5.8. If Ih is
empty, then h = (n, n, . . . , n) and Hess(S, h) = F`ags(Cn). The corresponding graph
Γh has the property that every vertex is connected to every other vertex, implying
that m(Γh) = 1 and hence cλ = cλ,i = 0 for all λ with 2 or more parts and all i > 0.
Hence the conclusion holds in this case as well. �

We have already indicated that our strategy for proving Theorem 1.1 is by induc-
tion, using the association of Γh with ΓhT = Γh−T for a sink set T as in Lemma 4.3.
Let ST denote any regular semisimple element in gl(n − |T |,C). It will be useful for
us to know that vanishing conditions on the coefficients of the dot action represen-
tation on H∗(Hess(S, h)) imply vanishing conditions for the analogous coefficients
of H∗(Hess(ST , hT )). To state the lemma precisely we introduce some terminology.
For each partition µ of n − |T | we define cTµ,i (respectively dTµ,i) to be the coeffi-
cient of Mµ (respectively Sµ) for the decomposition of the Sn−|T |-representation
H2i(Hess(ST , hT )) in Rep(Sn−|T |).
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Lemma 5.13. Let h : [n] → [n] be a Hessenberg function, and let T ∈ SKk(Γh) be a
sink set of Γh. Then

(1) m(ΓhT ) 6 m(Γh) and
(2) cTµ = 0 and cTµ,i = 0 for all µ ` (n− |T |) with more than m(Γh) parts and all

i > 0.
In particular, if Ih is abelian and T ∈ SK2(Γh), then cTλ,i = 0 for all λ with more than
2 parts and all i > 0.

Proof. We begin with the first claim. Since ΓhT is by definition an induced subgraph
of Γh, if there exists an independent set of vertices in ΓhT , then the corresponding
subset is also independent in Γh. It follows from Lemma 4.1 thatm(ΓhT ) = max{|T ′| |
T ′ ⊆ V (ΓhT ) is independent in ΓhT } so we concludem(ΓhT ) 6 m(Γh) as desired. The
second statement follows from the first by Corollary 5.12. �

6. An inductive formula for the coefficients of the dot action
In this section, we state our main theorem, which gives an inductive formula which,
in the case when Ih is abelian, expresses Tymoczko’s “dot action” representation on
H2i(Hess(S, h)) as a combination of trivial representations together with a sum of
tabloid representations with coefficients associated to smaller Hessenberg varieties in
F`ags(Cn−2). To illustrate this result, we give an extended example when n = 6. We
also state three technical results – one (simple) lemma and two propositions – and
give a proof of Theorem 6.1 based on these three results. Each of the Propositions
below are themselves inductive formulas, and are of interest in their own right. The
proofs of the two propositions are postponed to Section 7.

Theorem 6.1. Let n be a positive integer and n > 3. Let h : [n] → [n] be a Hes-
senberg function such that Ih is abelian and i > 0 be a non-negative integer. In the
representation ring Rep(Sn) we have the equality

(22) H2i(Hess(S, h)) = c(n),iM
(n)+

∑
T∈SK2(Γh)

 ∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )M
(µ1+1,µ2+1)

 .

We first illustrate the theorem via an extended example.

Example 6.2. Let n = 6 and h = (3, 4, 5, 6, 6, 6) as in Example 2.3. Then Ih is abelian,
and |Ih| = 6. Thus, there are six maximum dimensional sink sets in SK2(Γh). The
graphs below show the acyclic orientation ω ∈ A2(Γh) such that asc(ω) = deg(T ) for
each T ∈ SK2(Γh). In each case, the sink set T and incident edges are highlighted
in red and we display the corresponding acyclic orientation of Γh − T ∼= ΓhT on the
right.

1 2oo !!
3 //oo}}

4 5
}} oo 6oo}}

1 2oo 3oo 4oo

1 2oo 3oo}} !!
4

}} //oo 5 6oo}}
1 2oo 3oo}}

4oo

1 2oo 3oo}}
4oo}} !!

5oo}} // 6 1 2oo 3
}} oo 4

}} oo

1 // 2 3
}} oo !!

4
}} //oo 5 6oo}}

1 2oo 3oo 4oo
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1 // 2 3oo}}
4oo}} !!

5oo}} // 6 1 2oo 3oo 4
}} oo

1
!!

2 //oo 3 4oo}} !!
5oo}} // 6 1 2oo 3oo 4oo

Each of the graphs ΓhT in the right column above corresponds to one of the Hessenberg
functions: (2, 3, 4, 4), (3, 3, 4, 4), (3, 4, 4, 4), (2, 4, 4, 4). Since the graphs are symmetric,
Γ r {1, 5} ∼= Γ r {2, 6} and Hess(S′, (3, 3, 4, 4)) ∼= Hess(S′, (2, 4, 4, 4)) where S′ ∈
gl(n− 2,C) is a regular semisimple element. The representation H∗(Hess(S′, hT )) for
each T ∈ SK2(Γh) is as shown in the table below. The reader can confirm this using
the graded version of Theorem 2.24, namely [22, Theorem 6.3], together with (8).

Hessenberg function hT : (2, 3, 4, 4) (3, 3, 4, 4) (3, 4, 4, 4)
H0(Hess(S′, hT )) M (4) M (4) M (4)

H2(Hess(S′, hT )) M (4) +M (3,1) +M (2,2) 2M (4) +M (3,1) 3M (4)

H4(Hess(S′, hT )) M (4) +M (3,1) +M (2,2) 2M (4) + 2M (3,1) 4M (4) +M (3,1)

H6(Hess(S′, hT )) M (4) 2M (4) +M (3,1) 4M (4) +M (3,1)

H8(Hess(S′, hT )) M (4) 3M (4)

H10(Hess(S′, hT )) M (4)

Next we see that deg({1, 4}) = deg({1, 5}) = deg({1, 6}) = 2, deg({2, 5}) =
deg({2, 6}) = 3, and deg({3, 6}) = 4 from the graphs above. We now have all the
information we need to compute H∗(Hess(S, h)) in all degrees as the shifted sum
of M (µ1+1,µ2+1)’s where M (µ1,µ2) appears in the representations above. The next
two tables show how to shift these representations using deg(T ) in order to obtain
H∗(Hess(S, h)).

T ∈ SK2(Γh): {1, 4} {1, 5} {1, 6}
H2(Hess(S, h))
H4(Hess(S, h)) M (5,1) M (5,1) M (5,1)

H6(Hess(S, h)) M (5,1) +M (4,2) +M (3,3) 2M (5,1) +M (4,2) 3M (5,1)

H8(Hess(S, h)) M (5,1) +M (4,2) +M (3,3) 2M (5,1) +2M (4,2) 4M (5,1) +M (4,2)

H10(Hess(S, h)) M (5,1) 2M (5,1) +M (4,2) 4M (5,1) +M (4,2)

H12(Hess(S, h)) M (5,1) 3M (5,1)

H14(Hess(S, h)) M (5,1)

H16(Hess(S, h))
T ∈ SK2(Γh): {2, 5} {3, 6} {2, 6}
H4(Hess(S, h))
H6(Hess(S, h)) M (5,1) M (5,1)

H8(Hess(S, h)) M (5,1) +M (4,2) +M (3,3) M (5,1) 2M (5,1) +M (4,2)

H10(Hess(S, h)) M (5,1) +M (4,2) +M (3,3) M (5,1) +M (4,2) +M (3,3) 2M (5,1) +2M (4,2)

H12(Hess(S, h)) M (5,1) M (5,1) +M (4,2) +M (3,3) 2M (5,1) +M (4,2)

H14(Hess(S, h)) M (5,1) M (5,1)

H16(Hess(S, h))

For example, we get,

H8(Hess(S, h)) = c(6),4M
(6) + 11M (5,1) + 6M (4,2) + 2M (3,3).
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As mentioned above, we prove Theorem 6.1 using the following three results,
recorded as a Lemma and two Propositions, each of which are themselves inductive
formulas. Indeed, Lemma 6.3 expresses the number Nλ′,λ associated to two partitions
of n in terms of the same value associated to two partitions of the smaller integer
n − 2. Proposition 6.5 gives a formula for the Poincaré polynomial of Hess(N, h) ⊆
F`ags(Cn) in terms of Poincaré polynomials of regular nilpotent Hessenberg varieties
in F`ags(Cn−2), and Proposition 6.6 is of a similar flavor. Throughout the remainder
of this section and the next, for a positive integer n > 3, we let N′ and S′ denote choices
of regular nilpotent and regular semisimple elements, respectively, in g`(n− 2,C).

Lemma 6.3. Let n be a positive integer and n > 3. Let µ = (µ1, µ2) and µ′ = (µ′1, µ′2)
be any partitions of n− 2 with at most 2 parts. Then

(23) dim
(
M (µ1+1,µ2+1)

)S(µ′1+1,µ′2+1)
= dim (Mµ)Sµ′ + 1.

Proof. Recall from (10) and the related discussion that Nµ,µ′ = dim(Mµ)Sµ′ and the
matrix N = (Nµ,µ′) is symmetric. To prove the lemma it clearly suffices to prove the
formula

(24) N(a,b),(c,d) = b+ 1

for any a, b, c, d > 0 integers with a + b = c + d = k for a fixed positive integer k
and a > c, since this would imply that the LHS and RHS of (23) are equal, thus
proving (23). To prove (24), we recall that in general Nµ,µ′ is the number of matrices
A = (aij) with aij > 0 integers such that row(A) = µ and col(A) = µ′ (see [26,
Corollary 7.12.3]), where row(A) is the vector obtained from a matrix by taking row-
wise sums, and col(A) is the vector obtained by taking column-wise sums,

row(A) := (r1, r2, . . .)

where ri =
∑
j aij and

col(A) := (c1, c2, . . .)
where cj =

∑
i aij . In our case, since both (a, b) and (c, d) have only 2 parts, this is

equal to the number of matrices(
α β
γ δ

)
such that α+ β = a, γ + δ = b, α+ γ = c, and β + δ = d.

It is both straightforward to see and well-known that this is the number of ways to
fill a Young diagram of shape (a, b) with c many 1’s and d many 2’s, such that the
rows are weakly increasing. Since there are only 2 rows in this Young diagram, the
filling is completely determined by the number of boxes in the 2nd row which contain
a 1. Since a > c, it follows that d > b, and this number of boxes is between 0 and b.
Thus there are precisely b+ 1 many such fillings, proving (24) as desired. �

Remark 6.4. It is also a well known fact that dim(Mλ)µ = |Sµ\Sn/Sλ|. When
both λ and µ have two parts, there is a set of coset representatives for Sµ\Sn/Sλ

known as bigrassmanian permutations. These elements play an important role in the
combinatorial properties of the symmetric group and in Schubert calculus.

For any X ∈ gl(n,C) and Hessenberg function h : [n] → [n], we denote by
P (Hess(X, h), t) the Poincaré polynomial (with variable t) associated to the Hes-
senberg variety Hess(X, h). For the varieties considered in this paper, all Poincaré
polynomials are concentrated in even degrees.
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Proposition 6.5. Let n be a positive integer and n > 3. Let h : [n] → [n] be a
Hessenberg function such that Ih is abelian. Let N be a regular nilpotent element of
gl(n,C) and N′ be a regular nilpotent element of gl(n− 2,C). Then

P (Hess(N, h), t) =
|Φ−
h
|∑

i=0
c(n),i t

2i +
∑

T∈SK2(Γh)

t2 deg(T )P (Hess(N′, hT ), t).

In particular, the 2i-th Betti number of Hess(N, h) satisfies

dimH2i(Hess(N, h)) = c(n),i +
∑

T∈SK2(Γh)

dimH2i−2 deg(T )(Hess(N′, hT )).

Proposition 6.6. Let n be a positive integer, n > 3. Let h : [n]→ [n] be a Hessenberg
function such that Ih is abelian. Let Xν be the regular element of gl(n,C) associated
to ν = (µ1 + 1, µ2 + 1) ` n and Xµ be a regular element of gl(n− 2,C) associated to
µ = (µ1, µ2) ` (n− 2). Then

(25) P (Hess(Xν , h), t) = P (Hess(N, h), t) +
∑

T∈SK2(Γh)

t2 deg(T )P (Hess(Xµ, hT ), t).

In particular, the 2i-th Betti number of Hess(Xν , h) satisfies

dimH2i(Hess(Xν , h))

= dimH2i(Hess(N, h)) +
∑

T∈SK2(Γh)

dimH2i−2 deg(T )(Hess(Xµ, hT )).

Below, we give a proof of Theorem 6.1 using the three results above. The basic
idea of the proof is as follows. A priori, the assertion of Theorem 6.1 is an equality
in the representation ring Rep(Sn). We first reduce this problem to a collection of
equalities of integers by taking Sν-invariants for varying ν ` n and using Proposi-
tion 2.13. Next, we repeatedly use Brosnan and Chow’s Theorem 2.16 to relate these
Sν-invariant subspaces to the Betti numbers of other regular Hessenberg varieties. In
this manner, the problem is reduced to an induction on the Poincaré polynomials of
regular Hessenberg varieties.

Proof of Theorem 6.1. Since h is an abelian Hessenberg function, we know from
Corollary 5.12 that cλ,i = 0 for all λ ` n with 3 or more parts. In other words,
by the abelian assumption, we know

H2i(Hess(S, h)) =
∑
λ`n

λ has at most 2 parts

cλ,iM
λ.

Therefore the LHS of (22), can be written as a linear combination of Mλ’s for λ with
at most 2 parts. By inspection, the same is true of the RHS of (22) An application
of Lemma 2.15 implies that in order to prove (22) it suffices to prove the equality

(26) dim(H2i(Hess(S, h)))Sν = c(n),i dim(M (n))Sν

+
∑

T∈SK2(Γh)

 ∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(M (µ1+1,µ2+1))Sν


for all ν ` n with at most 2 parts.
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Note that since M (n) is the trivial 1-dimensional Sn-representation, we have
(M (n))Sν = M (n) for all ν ` n, and in particular, dim(M (n))Sν = 1 for all ν ` n. We
also know from Theorem 2.16 that

dim(H2i(Hess(S, h)))Sν = dimH2i(Hess(Xν , h))

where Xν denotes a regular element of gl(n,C) with Jordan block sizes given by ν ` n.
It follows that it suffices to prove

(27) dimH2i(Hess(Xν , h))

= c(n),i +
∑

T∈SK2(Γh)

 ∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(M (µ1+1,µ2+1))Sν


for all ν ` n with at most two parts.

To prove (27) we take cases. First, we consider (27) for the unique case in which
ν ` n has only one part, namely ν = (n). In this case Sν = Sn and Xν is the
n × n nilpotent matrix in Jordan form with a single Jordan block. Recall also that
dim(M (µ1+1,µ2+1))Sn = 1 since the multiplicity of the trivial representation in any
M (µ1+1,µ2+1) is 1. Thus, we first observe that the RHS of (27) is

(28) c(n),i +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )

and second, to simplify (27) further, we recall that the coefficients cTµ,i−deg(T ) appear-
ing there are associated to H2i−2 deg(T )(Hess(S′, hT )) by the equality

H2i−2 deg(T )(Hess(S′, hT )) =
∑

µ`(n−2)

cTµ,i−deg(T )M
µ.

Now the assumption that Ih is abelian implies cTµ,i−deg(T ) = 0 for all µ ` (n− 2) with
more than 2 parts by Lemma 5.13. Thus we have

H2i−2 deg(T )(Hess(S′, hT )) =
∑

µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )M
µ

and taking Sn−2-invariants we obtain

dimH2i−2 deg(T )(Hess(N′, hT )) = dim(H2i−2 deg(T )(Hess(S′, hT )))Sn−2

=
∑

µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )

where the first equality follows from Theorem 2.16. Therefore (28) can be rewritten as

c(n),i +
∑

T∈SK2(Γh)

dimH2i−2 deg(T )(Hess(N′, hT ))

and now (27) follows for the case ν = (n) and Xν = N by Proposition 6.5.
Next, we consider the case in which ν = (µ′1 + 1, µ′2 + 1) ` n for some µ′ =

(µ′1, µ′2) ` (n− 2), i.e. the case in which ν has exactly two parts. Using an argument
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similar to the above, the RHS of (27) for ν = (µ′1 + 1, µ′2 + 1) ` n can be expressed as

c(n),i +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(M (µ1+1,µ2+1))S(µ′1+1,µ′2+1)

= c(n),i +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )
(
dim(Mµ)Sµ′ + 1

)

by Lemma 6.3. Now the above equation becomes:

c(n),i +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(Mµ)Sµ′

= dim(H2i(Hess(N, h))) +
∑

T∈SK2(Γh)

∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(Mµ)Sµ′

where in the last expression, both µ = (µ1, µ2) and µ′ = (µ′1, µ′2) are partitions of
n − 2, and the last equality follows from the case ν = (n) proven above. Since ν =
(µ′1 +1, µ′2 +2), it follows from Proposition 6.6 that to prove (27) it is enough to prove

(29) dimH2i−2 deg(T )(Hess(Xµ′ , hT )) =
∑

µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(Mµ)Sµ′

for each T ∈ SK2(Γh). To see this, recall that the coefficients cTµ,i−deg(T ) are defined
by the equality

H2i−2 deg(T )(Hess(S′, hT )) =
∑

µ`(n−2)

cTµ,i−deg(T )M
µ

in Rep(Sn). Moreover, as in the argument above, since Ih is abelian we know from
Lemma 5.13 that cTµ,i−deg(T ) = 0 for all µ ` (n − 2) with more than 2 parts. This
observation, together with taking Sµ′ -invariants for µ′ = (µ′1, µ′2) ` (n− 2), yields

(30) dim(H2i−2 deg(T )(Hess(S′, hT )))Sµ′ =
∑

µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T ) dim(Mµ)Sµ′ .

Now another application of Theorem 2.16 on the LHS of (30) yields the equality in (29)
as desired. Hence (27) holds for all ν with at most 2 parts, concluding the proof. �

7. Proofs of Propositions 6.5 and 6.6 and the abelian graded
Stanley–Stembridge conjecture

In this section, we prove the two main inductive propositions from the previous sec-
tion. The arguments involve the combinatorics ofSn and root systems. Given all of the
preparation in the previous sections, the arguments are lengthy but not particularly
difficult. Throughout this section we work in the setting of Propositions 6.5 and 6.6
and Theorem 6.1. Thus we always assume that n > 3, that h : [n]→ [n] is a Hessen-
berg function such that Ih is abelian, and that any partition has at most two parts.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1088



Abelian Hessenberg varieties and the Stanley–Stembridge conjecture

7.1. The proof of Proposition 6.5. We begin with a proof of Proposition 6.5.
This is much simpler than the proof of Proposition 6.6, which occupies the bulk of
this section, due to the fact that the cohomology of the regular nilpotent Hessenberg
variety Hess(N, h) is related to the subspace of H∗(Hess(S, h)) which is invariant
under the entire group Sn, as opposed to a Young subgroup Sν for some ν ` n. The
fact that dim(Mλ)Sn = 1 for any partition λ then allows us to use Theorem 2.19 to
translate our problem into the language of acyclic orientations. Our “sink-set decom-
position” (13), and the inductive description of acyclic orientations given in Proposi-
tion 4.10, then yields the result. We now make this sketch precise.

Proof of Proposition 6.5. We begin by observing that

P (Hess(N, h), t) =
|Φ−
h
|∑

i=0
dimH2i(Hess(N, h))t2i =

|Φ−
h
|∑

i=0
dim(H2i(Hess(S, h)))Snt2i

where the first equality is the definition of the Poincaré polynomial, together with
the fact that dimC(Hess(N, h)) = |Φ−h | [19, Corollary 2.7], and the second equality
is by Brosnan and Chow’s Theorem 2.16. Since H2i(Hess(S, h)) =

∑
ν `n cν,iM

ν by
definition of the coefficients cν,i, by taking Sn-invariants we obtain

P (Hess(N, h), t) =
|Φ−
h
|∑

i=0

(∑
ν`n

cν,i dim(Mν)Sn
)
t2i

=
|Φ−
h
|∑

i=0

(∑
ν`n

cν,i

)
t2i since dim(Mν)Sn = 1

=
|Φ−
h
|∑

i=0

 ∑
ν`n and ν

has at most 2 parts

cν,i

 t2i by Lemma 5.13

=
|Φ−
h
|∑

i=0
c(n),it

2i +
|Φ−
h
|∑

i=0

 ∑
ν`n and ν
has 2 parts

cν,i

 t2i.

A similar argument yields

P (Hess(N′, hT ), t) =
|Φ−
hT
|∑

i=0

 ∑
µ`(n−2)

cTµ,i

 t2i

for any T ∈ SK2(Γh). The above equalities imply that in order to prove the proposition
it suffices to prove

(31)
|Φ−
h
|∑

i=0

 ∑
ν`n and ν
has 2 parts

cν,i

 t2i =
∑

T∈SK2(Γh)

t2 deg(T )
|Φ−
hT
|∑

i=0

 ∑
µ`(n−2)

cTµ,i

 t2i.

Applying Theorem 2.19 and our previous combinatorial analysis of acyclic orientations
we have

(32)
|Φ−
h
|∑

i=0

 ∑
ν`n and ν
has 2 parts

cν,i

 t2i =
|Φ−
h
|∑

i=0
|{ω ∈ A2(Γh) | asc(ω) = i}| t2i
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By our sink-set decomposition from (13) and an application of Proposition 4.10, the
above equation becomes:

(33)
∑

T∈SK2(Γh)

|Φ−
h
|∑

i=0
|{ω ∈ A2(Γh) | asc(ω) = i and sk(ω) = T}| t2i

=
∑

T∈SK2(Γh)

|Φ−
h
|∑

i=deg(T )

|{ωT ∈ A(ΓhT ) | asc(ωT ) = i− deg(T )}| t2i

where the sum over the index i ranges between deg(T ) and |Φ−h | because it follows
from Proposition 4.10 that if sk(ω) = T then asc(ω) > deg(T ). For each T ∈ SK2(Γh)
we shift the index i of the sum appearing on the RHS of (33) to get

(34)
|Φ−
h
|∑

i=deg(T )

|{ωT ∈ A(ΓhT ) | asc(ωT ) = i− deg(T )}| t2i

= t2 deg(T )
|Φ−
h
|−deg(T )∑
i=0

|{ωT ∈ A(ΓhT ) | asc(ωT ) = i}| t2i

= t2 deg(T )
|Φ−
hT
|∑

i=0
|{ωT ∈ A(ΓhT ) | asc(ωT ) = i}| t2i

where the last equality follows from that fact that |Φ−h |−deg(T ) > |Φ−hT | by Lemma 4.8
and |{ω ∈ A(ΓhT ) | asc(ω) = i}| = 0 for all i > |Φ−hT | since asc(ωT ) 6 |E(ΓhT )| =
|Φ−hT | for all ωT ∈ A(ΓhT ). Putting together Corollary 2.21 with the above equa-
tion (34) we obtain

(35)
|Φ−
h
|∑

i=deg(T )

|{ωT ∈ A(ΓhT ) | asc(ωT ) = i− deg(T )}| t2i

= t2 deg(T )
|Φ−
hT
|∑

i=0

 ∑
µ`(n−2)

cTµ,i

 t2i

for each T ∈ SK2(Γh). Finally, Equations (32), (33), and (35) together imply (31) as
desired. �

7.2. Proof of Proposition 6.6. In this section we prove Proposition 6.6. This ar-
gument is the technical heart of this paper and is rather involved, so a sketch of the
overall picture may be helpful. Our starting point is the explicit and purely combina-
torial formula for the Betti numbers b2i of the regular Hessenberg variety Hess(Xν , h)
given by the second author in [20] which expresses b2i as the number of permutations
w ∈ Sn satisfying certain conditions related to ν ` n and h. Our assumptions that Ih
is abelian and that all partitions have at most 2 parts simplifies the combinatorics of
the Poincaré polynomial. From there, the remainder of the argument is a careful anal-
ysis of the sets of permutations in question, which boils down to the combinatorics of
Sn and the root system of type A. There are two points worth mentioning. First, it
turns out to be important that the formula for the Poincaré polynomial in [20] is valid
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for any two-part composition n = ν1 + ν2 where ν = (ν1, ν2) is not necessarily a par-
tition, i.e. we may have ν1 < ν2 instead of the more customary ν1 > ν2. Accordingly,
in this section, the standing hypotheses on ν = (ν1, ν2) are as follows:

ν1, ν2 ∈ Z, ν1 + ν2 = n, ν1 > 0, ν2 > 0.

Allowing this level of generality allows us to prove an important special case in our
arguments below. Secondly, in order to reduce the argument to the special case men-
tioned in the previous sentence, we make use of a set of shortest coset representatives
(also used by the second author in [20]) for the right cosets W\Sn where W ⊆ Sn is
a certain Young subgroup of Sn.

To begin, we state the formula for the Betti numbers of regular Hessenberg varieties
given in [20]. We prepare some terminology. For each w ∈ Sn we define the inversion
set of w as

N−(w) := {γ ∈ Φ− | w(γ) ∈ Φ+},
i.e. for each w ∈ Sn, the set N−(w) consists of the negative roots which become
positive under the action of w. In Lie type A this can be expressed quite concretely.
Indeed, let γ = ti − tj for some i > j. The action of Sn on roots is given by

w(ti − tj) = tw(i) − tw(j).

Thus γ ∈ N−(w) if and only if w(i) < w(j). We may therefore naturally identify the
set N−(w) with the set of ordered pairs

inv(w) := {(i, j) | i > j and w(i) < w(j)}.

We use this identification frequently throughout this section.
We now state (a special case of) the key formula for the Poincaré polynomial

of regular Hessenberg varieties [20, Lemma 2.6], which is the starting point of our
discussion. Let ν = (ν1, ν2) ∈ Z2 such that ν1 + ν2 = n and ν1, ν2 > 0. There is a
corresponding subset Jν of the positive simple roots ∆ given by

Jν := ∆ r {αν} ⊂ ∆ where αν := tν1 − tν1+1

if 0 < ν1 < n and Jν = ∆ otherwise. Recall from Section 2.1 that Xν = X(ν1,ν2)
denotes a matrix in standard Jordan canonical form which is regular of Jordan type
ν. Recall also that the value of the Poincaré polynomial P (Hess(Xν , h), t) when t = 1
is equal to dimH∗(Hess(Xν , h)).

Lemma 7.1 ([20, Lemma 2.6]). Let n be a positive integer, h : [n]→ [n] a Hessenberg
function and ν = (ν1, ν2) as above. Then

(36) P (Hess(Xν , h), t) =
∑
w∈Sn

w−1(Jν)⊆Φh

t2|N
−(w)∩Φ−

h
|.

In particular, evaluating at t = 1, we obtain

P (Hess(Xν , h), 1) = dimH∗(Hess(Xν , h)) = |{w ∈ Sn | w−1(Jν) ⊆ Φh}|.

The exponents appearing in the RHS of (36) can be interpreted concretely in terms
of the Hessenberg function. Indeed, under the identification of N−(w) with inv(w),
the set N−(w) ∩ Φ−h corresponds to

invh(w) := {(i, j) | i > j, w(i) < w(j), and i 6 h(j)}.

Next, we analyze the indexing set of the summation on the RHS of (36), i.e. we
study the set of w ∈ Sn such that w−1(Jν) ⊆ Φh. Let ν = (ν1, ν2). Then Jν = ∆ r
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{αν}. Thus for any w ∈ Sn with w−1(Jν) ⊆ Φh, we have that either w−1(∆) ⊆ Φh, or,
w−1(Jν) ⊆ Φh and w−1(αν) ∈ Ih. Motivated by this observation we consider the set

Dν := {w ∈ Sn | w−1(Jν) ⊆ Φh and w−1(αν) ∈ Ih}.
With this notation in place we obtain from Lemma 7.1 that

(37)

P (Hess(Xν , h), t) =
∑
w∈Sn

w−1(∆)⊆Φh

t2|N
−(w)∩Φ−

h
| +

∑
w∈Dν

t2|N
−(w)∩Φ−

h
|

= P (Hess(N, h), t) +
∑
w∈Dν

t2|N
−(w)∩Φ−

h
|

where the second equality follows from an application of Lemma 7.1 to the case
ν = (n), the trivial composition with ν1 = 0 or ν2 = 0, and for which we may take
X(n) = N and J(n) = ∆. The discussion above indicates that the key step in the
proof of Proposition 6.6 is the following.

Proposition 7.2.Under the notation and assumptions of Proposition 6.6, in partic-
ular with ν = (µ1 + 1, µ2 + 1) ` n, we have

(38)
∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
T∈SK2(Γh)

t2 deg(T )P (Hess(Xµ, hT ), t)

where µ = (µ1, µ2) ` (n− 2).

In order to prove Proposition 7.2, first recall from Proposition 5.8 that there is a
bijection SK2(Γh)→ R1(Ih) which assigns each sink set T of cardinality 2 to a unique
singleton set RT ∈ R1(Ih). Under this correspondence, if RT = {β}, we write β = βT .
Moreover, by Proposition 5.6, for any Hessenberg function h, the ideal Ih bijectively
corresponds to R1(Ih) by β ↔ {β}. With this in mind, for each β ∈ Ih, we set the
notation

Dν(β) := {w ∈ Sn | w−1(Jν) ⊆ Φh and w−1(αν) = β}.
From the above discussion it is straightforward to see that

(39) Dν =
⊔
β∈Ih

Dν(β) =
⊔

T∈SK2(Γh)

Dν(βT ).

We can now rewrite (38) as

(40)
∑

T∈SK2(Γh)

∑
w∈Dν(βT )

t2|N
−(w)∩Φ−

h
| =

∑
T∈SK2(Γh)

t2 deg(T )P (Hess(Xµ, hT ), t).

The proof of this equality consists of two parts. We first show an ungraded version of
this equality (i.e. we prove that the equation above holds when we evaluate at t = 1)
and then address the graded case. We need some additional notation for our proof.

Suppose β = ta− tb ∈ Ih. Recall that this is equivalent to the conditions a > b and
a > h(b). If w ∈ Dν(β) then by definition of Dν(β) we must have

w−1(tν1 − tν1+1) = tw−1(ν1) − tw−1(ν1+1) = ta − tb,
or equivalently
(41) w(a) = ν1 and w(b) = ν1 + 1,
so the b-th entry in the one-line notation of w is ν1 + 1 and the a-th entry is ν1.

In the arguments that follow it will be useful to choose a specific element of Dν(β)
for each β ∈ Ih. We define this element as follows.

Definition 7.3. Suppose β = ta − tb ∈ Ih. We define a permutation in Sn, denoted
wν,β, by:
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(1) wν,β(a) = ν1 and wν,β(b) = ν1 + 1 (i.e. wν,β satisfies the condition (41)) and
(2) the remaining entries in the one-line notation of wν,β list the integers [n] r
{ν1, ν1 + 1} in increasing order from left to right.

Example 7.4. Let n = 6 and β = t5 − t2, so a = 5 and b = 2. Let ν = (4, 2).
Then wν,β(2) = ν1 + 1 = 5 and wν,β(5) = ν1 = 4, and the remaining entries are
filled, in increasing order, by [6] r {4, 5} = {1, 2, 3, 6}. The one-line notation of wν,β
is [1 5 2 3 4 6] where condition (41) determines the entries in bold.

We need the following.

Lemma 7.5. Let wν,β be as above and suppose Ih is abelian. Then
(1) If (i, j) ∈ inv(wν,β) then {i, j} ∩ {a, b} 6= ∅, and
(2) wν,β ∈ Dν(β).

Proof. To prove (1), we will show the contrapositive, i.e. if {i, j} ∩ {a, b} = ∅ then
(i, j) /∈ inv(wν,β). Suppose (i, j) is such that i > j and {i, j} ∩ {a, b} = ∅. Since
{i, j} ∩ {a, b} = ∅ we have {wν,β(i), wν,β(j)} ∩ {ν1, ν1 + 1} = ∅, and it follows that
wν,β(i) > wν,β(j) by condition (2) in Definition 7.3. Therefore (i, j) /∈ inv(wν,β).

Now we prove (2). By definition, w−1
ν,β(αν) = β so we need only show that

w−1
ν,β(Jν) ⊆ Φh. We take cases. First consider the case in which α ∈ Jν and

α + αν ∈ Φ, i.e. α and αν correspond to adjacent vertices in the Dynkin dia-
gram. Seeking a contradiction, suppose w−1

ν,β(α) ∈ Ih. Since α + αν ∈ Φ we also
have w−1

ν,β(α + αν) = w−1
ν,β(α) + w−1

ν,β(αν) ∈ Ih since Ih is an ideal. On the other
hand, this is a contradiction since Ih is abelian. Next, consider the case in which
α + αν /∈ Φ, i.e. α and αν are not adjacent in the Dynkin diagram. This means that
α = ti− ti+1 where {i, i+1}∩{ν1, ν1 +1} = ∅. Condition (2) in Definition 7.3 implies
w−1
ν,β(i) < w−1

ν,β(i+ 1) since i, i+ 1 ∈ [n] r {ν1, ν1 + 1}. Therefore w−1
ν,β(α) ∈ Φ+ ⊆ Φh

as desired. �

With the element wν,β chosen as above, we can now construct some explicit maps
which will be useful for our induction argument. Recall the bijection φT : [n] r T →
[n−|T |] defined in Section 4.1 by φT (j) = j−j′ where j′ denotes the number of vertices
i ∈ T such that i 6 j. We now consider this bijection for the case in which T = {a, b}
more carefully. This bijection allows us to view gl(n − 2,C) as a Lie subalgebra of
gl(n,C). We make this identification more precise in equations (43), (44), and (45)
below.

Viewing Sn as the automorphism group of the set [n] of letters {1, 2, . . . , n}, there
is a stabilizer subgroup

(42) Stab(a, b) := {w ∈ Sn | w(a) = a,w(b) = b} ∼= Aut([n] r {a, b})

of Sn which is naturally isomorphic to Sn−2 via the map

(43) τ 7→ xτ :=
[
φT (τ(1))φT (τ(2)) · · · φ̂T (b) · · · φ̂T (a) · · ·φT (τ(n))

]
where the marked entries are deleted. In what follows we will frequently identify
Stab(a, b) with Sn−2. We have the following.

Lemma 7.6. Let w ∈ Sn such that w(a) = ν1 and w(b) = ν1 + 1. Then there exists a
unique τ ∈ Stab(a, b) such that w = wν,βτ . In particular, there is a well-defined map

Ψν,β : {w ∈ Sn | w(a) = ν1, w(b) = ν1 + 1} → Sn−2

defined by Ψν,β(w) = xτ where xτ is the unique element in Sn−2 corresponding to
τ ∈ Stab(a, b) via (43).
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Sketch of proof. The hypotheses on w completely determine the a-th and b-th entries
in its one-line notation. The other entries must be a permutation of the set [n]r{a, b},
and the hypotheses on w place no condition on this permutation. Recall that for wν,β
and any permutation τ in Sn, right-composition with τ “acts on positions”, i.e. if
wν,β sends i to wν,β(i), then wν,βτ must send i to wν,β(τ(i)). Thus if τ stabilizes a
and b, then w = wν,βτ still satisfies w(a) = ν1 and w(b) = ν1 + 1. Moreover, it is
straightforward to see that such a τ is unique, making Ψν,β well-defined. �

Example 7.7. Let n = 5, β = t5 − t2, and ν = (3, 2). Then a = 5, b = 2, and ν1 = 3.
Let h = (3, 4, 5, 5, 5), which is abelian, and Ih contains β. The table below gives an
explicit description of the map Ψν,β defined in Lemma 7.6.

w ∈ S5 such that w(5) = 3 and w(2) = 4 τ ∈ S5 xτ ∈ S3[
1 4 2 5 3

] [
1 2 3 4 5

] [
1 2 3

][
2 4 1 5 3

] [
3 2 1 4 5

] [
2 1 3

][
1 4 5 2 3

] [
1 2 4 3 5

] [
1 3 2

][
2 4 5 1 3

] [
3 2 4 1 5

] [
2 3 1

][
5 4 1 2 3

] [
4 2 1 3 5

] [
3 1 2

][
5 4 2 1 3

] [
4 2 3 1 5

] [
3 2 1

]
There is a natural Lie subalgebra of gl(n,C) obtained by “setting the variables in

rows/columns a and b equal to zero”. More precisely, we have a natural Lie algebra
isomorphism,

(44) {X ∈ gl(n,C) | Xij = 0 if {i, j} ∩ {a, b} 6= ∅} ∼= gl(n− 2,C)

defined explicitly on the basis {Eij | {i, j} ∩ {a, b} = ∅} of the LHS by Eij 7→
EφT (i)φT (j) and extended linearly. Recall that in Section 4.1 we proved that each sink
set T ∈ SK2(Γh) corresponds to a Hessenberg function hT : [n − 2] → [n − 2] whose
incomparability graph is obtained by deleting the vertices in T and any incident edges
from Γh. In fact, this is the Hessenberg function which corresponds to the Hessenberg
space H ∩ gl(n − 2,C) under the identification in (44), and φT can also be used to
give an explicit map between the corresponding root systems. Using the notation of
this section, T = {a, b} so β = βT = ta − tb. We let

Φ[T ] := {ti − tj | 1 6 i, j 6 n; {i, j} ∩ {a, b} = ∅} ⊆ Φ

and ΦT denote the root system of gl(n− 2,C). Now there is an explicit isomorphism
of root systems

(45) Φ[T ] ∼= ΦT defined by ti − tj 7→ tφT (i) − tφT (j).

where Φ[T ] is viewed as a subroot system of Φ (since Φ[T ] is closed under addition in
Φ). Moreover, if Φ−[T ] := Φ− ∩ Φ[T ], Φh[T ] := Φh ∩ Φ[T ], and Φ−h [T ] := Φ−h ∩ Φ[T ]
then these subsets of Φ[T ] correspond to Φ−T , ΦhT , and Φ−hT respectively via (45).

Remark 7.8. The root system isomorphism given in (45) is compatible with the
corresponding identification Stab(a, b) ∼= Sn−2 given in (43). If τ ∈ Stab(a, b) and
ti − tj ∈ Φ[T ] then τ(ti − tj) ∈ Φ[T ] and

tk − t` = τ(ti − tj)⇔ tφT (k) − tφT (`) = xτ (tφT (i) − tφT (j)).

In particular, (45) maps N−(τ) to N−(xτ ).

Example 7.9. Continuing Example 7.7, we get

Φ−[T ] = {t3 − t1, t4 − t1, t4 − t3}
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since T = {2, 5}. Pictorially, to obtain Φ[T ] (respectively Φ−[T ]) from Φ (respectively
Φ−) we simply remove those roots in the a-th and b-th rows and columns. The picture
below illustrates the case T = {2, 5}.

Φh :

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ?

? ? ?

ΦhT :
? ? ?

? ? ?

? ?

Lemma 7.10. Let T ∈ SK2(Γh) and let β = βT be the corresponding element of Ih.
Let wν,β be the permutation of Definition 7.3 associated to β = βT .

(1) If αi = ti − ti+1 is adjacent to αν in the Dynkin diagram (equivalently, i =
ν1 − 1 or i = ν1 + 1), then w−1

ν,β(αi) 6∈ Φ[T ].
(2) If αi is not adjacent to αν in the Dynkin diagram, then w−1

ν,β(αi) ∈ Φh[T ].

Furthermore, the set w−1
ν,β(Jν)∩Φ[T ] becomes the subset Jµ for µ = (µ1, µ2) ` (n− 2)

via the identification in (45).

Proof. To prove (1), recall that w−1
ν,β(ν1) = a and w−1

ν,β(ν1 + 1) = b by definition. If
αi = ti − ti+1 is adjacent to αν in the Dynkin diagram then

w−1
ν,β(αi) = tw−1

ν,β
(i) − tw−1

ν,β
(i+1) =

{
tw−1

ν,β
(ν1−1) − ta if i = ν1 − 1

tb − tw−1
ν,β

(ν1+2) if i = ν1 + 1 .

In either case, w−1
ν,β(α) /∈ Φ[T ].

Now we prove (2). If αi = ti−ti+1 is not adjacent to αν in the Dynkin diagram, then
it is certainly the case that w−1

ν,β(αi) ∈ Φ[T ] since {i, i+ 1} ∩ {ν1, ν1 + 1} = ∅ implies
{w−1

ν,β(i), w−1
ν,β(i + 1)} ∩ {a, b} = ∅. In addition w−1

ν,β(αi) ∈ Φh since wν,β ∈ Dν(β) by
Lemma 7.5.

From (1) and (2) it follows that γ ∈ w−1
ν,β(Jν) ∩ Φ[T ] only if γ = w−1

ν,β(α) for some
α = ti − ti+1 ∈ Jν such that α is not adjacent to αν in the Dynkin diagram. In this
case, {w−1

ν,β(i), w−1
ν,β(i + 1)} ∩ {a, b} = ∅. Furthermore, since the entries in positions

n r {a, b} of the one-line notation for wν,β increase from left to right it follows that
φT (w−1

ν,β(i + 1)) = φT (w−1
ν,β(i)) + 1. In other words, αφT (i) = tφT (i) − tφT (i+1) is a

positive simple root in ΦT . Therefore the set w−1
ν,β(J) for J ⊆ ∆ defined by

• J = {α1, . . . , αν1−2, αν1+2, . . . , αn−1} if 2 < ν1 < n− 2, or
• J = {α3, . . . , αn−1} if ν1 = 1, or
• J = {α4, . . . , αn−1} if ν1 = 2, or
• J = {α1, . . . , αn−4} if ν1 = n− 2, or
• J = {α1, . . . , αn−3} if ν1 = n− 1

corresponds to a subset of positive simple roots in ΦT . Finally, since (45) is an iso-
morphism of root systems, it preserves the addition of roots. Thus if two simple roots
in J are adjacent in the Dynkin diagram for gl(n,C), then their images under w−1

ν,β

and (45) are also adjacent in the Dynkin diagram for gl(n − 2,C). It follows that
w−1
ν,β(J) = w−1

ν,β(Jν) ∩ Φ[T ] is the subset Jµ via the identification given in (45). �

Example 7.11.Using the same set-up from Examples 7.7 and 7.9, we have Jν =
{α1, α2, α4} since ν = (3, 2). We track what happens to each of these simple roots
under the action of w−1

ν,β (where wν,β =
[
1 4 2 5 3

]
) and subsequent identification
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with simple roots in gl(n− 2,C) below.

Jν :

?

?

?

→ w−1
ν,β(Jν) :

?

?

? → Jµ = J(2,1) :
?

In addition, we consider the restriction of Ψν,β to the set Dν(β). The table from
Example 7.7 becomes

w ∈ Dν(β) τ ∈ Stab(a, b) xτ ∈ S3[
1 4 2 5 3

] [
1 2 3 4 5

] [
1 2 3

][
2 4 1 5 3

] [
3 2 1 4 5

] [
2 1 3

][
1 4 5 2 3

] [
1 2 4 3 5

] [
1 3 2

][
5 4 1 2 3

] [
4 2 1 3 5

] [
3 1 2

][
5 4 2 1 3

] [
4 2 3 1 5

] [
3 2 1

]
since w =

(
2 4 5 1 3

)
does not satisfy the condition that w−1(Jν) ⊆ Φh. In addition,

we note that the image of Dν(β) under Ψν,β consists of those x ∈ S3 such that
x−1(Jµ) ⊆ ΦhT . Our next lemma proves that this is true in general.

The next lemma identifies each Dν(β) with the set of permutations satisfying the
“Hessenberg conditions” for Hess(Xµ, hT ), the smaller Hessenberg variety associated
to hT and µ ` (n− 2).

Lemma 7.12. Let τ ∈ Stab(a, b). The following are equivalent:
(1) τ−1(w−1

ν,β(Jν)) ⊆ Φh and
(2) τ−1(w−1

ν,β(Jν) ∩ Φ[T ]) ⊆ Φh[T ].
In particular, the map Ψν,β defined in Lemma 7.6 restricts to a bijection

Ψν,β : Dν(β)→ {x ∈ Sn−2 | x−1(Jµ) ⊆ ΦhT }
where β = βT .

Proof. The fact that (1) implies (2) is clear since τ preserves Φ[T ] and Φh[T ] =
Φh ∩ Φ[T ]. To prove that (2) implies (1), assume τ−1(w−1

ν,β(Jν) ∩ Φ[T ]) ⊆ Φh[T ] and
let γ ∈ τ−1(w−1

ν,β(Jν)) so τ(γ) = w−1
ν,β(α) for some α ∈ Jν . Either α is adjacent to αν

in the Dynkin diagram or it is not. We consider each case.
If α is not adjacent to αν in the Dynkin diagram, then statement (2) of Lemma 7.10

implies that w−1
ν,β(α) ∈ w−1

ν,β(Jν)∩Φ[T ] so γ = τ−1(w−1
ν,β(α)) ∈ τ−1(w−1

ν,β(Jν)∩Φ[T ]) ⊆
Φh[T ] ⊆ Φh. Now assume α is adjacent to αν in the Dynkin diagram, and for the
sake of contradiction suppose that γ = τ−1(w−1

ν,β(α)) ∈ Ih. Now α + αν ∈ Φ and
(wν,βτ)−1(α), (wν,βτ)−1(αν) are both elements of Ih. Their sum must also be an
element of Ih, contradicting the assumption that Ih is abelian.

The last assertion of the Lemma now follows directly from the last assertion of
Lemma 7.10, the identifications in (43), (45), and Remark 7.8. �

We are now ready to prove an ungraded version of Proposition 7.2, i.e. for t = 1.

Proposition 7.13.Under the notation and assumptions of Proposition 6.6, let T ∈
SK2(Γh) and let β = βT as above. Then
(46) |Dν(β)| = dimH∗(Hess(Xµ, hT ))
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where µ = (µ1, µ2) ` (n − 2). In particular, the ungraded version of Proposition 7.2
holds, i.e.

|Dν | =
∑

T∈SK2(Γh)

dimH∗(Hess(Xµ, hT )).

Proof. In the setting of the proposition, µ = (µ1, µ2) is a partition of n − 2. Recall
from Lemma 7.1 that
(47) dimH∗(Hess(Xµ, hT )) = |{x ∈ Sn−2 | x−1(Jµ) ⊆ ΦhT }|.
Thus to prove (46) it suffices to show that
(48) |Dν(βT )| = |{x ∈ Sn−2 | x−1(Jµ) ⊆ ΦhT }|
but Lemma 7.12 establishes a bijective correspondence between the two sets in ques-
tion, so (48) holds. Now the decomposition

Dν =
⊔

T∈SK2(Γh)

Dν(βT )

from (39) immediately yields

|Dν | =
∑

T∈SK2(Γh)

|Dν(βT )| =
∑

T∈SK2(Γh)

dimH∗(Hess(Xµ, hT ))

where the second equality uses (47) and (48) above. This concludes the proof. �

We now turn our attention to the graded case, namely Proposition 7.2. The diffi-
culty is that the inversion sets N−(w)∩Φ−h ∼= invh(w) for w ∈ Dν(β) are not related
to the inversions sets N−(τ) ∩ Φ−h [T ] ∼= invhT (xτ ) by a simple formula. To remedy
this, we need to shift each w ∈ Dν(β) by an appropriate translation, namely w 7→ σνw
where σν is the permutation defined below.
Definition 7.14.Define σν ∈ Sn by the following conditions:

(1) σν(ν1) = 1 and σν(ν1 + 1) = 2, and
(2) the remaining entries in the one-line notation of σν list the integers [n]r{1, 2}

in increasing order from left to right, i.e.

σν(i) =
{
i+ 2 if i < ν1
i if i > ν1 + 1 .

Note that σν is uniquely determined by the value of ν1.
Example 7.15.Using the same set-up as in Examples 7.7 and 7.9, recall that n = 5,
ν = (3, 2), and β = t5 − t2. Since ν1 = 3 and ν1 + 1 = 4 we get

σν =
[
3 4 1 2 5

]
where condition (1) in Definition 7.14 determines the entries in bold and condition (2)
determines the rest. Consider the translation w 7→ σνw for each w ∈ Dν(β), displayed
in the table below.

w ∈ Dν(β) σνw ∈ S5[
1 4 2 5 3

] [
3 2 4 5 1

][
2 4 1 5 3

] [
4 2 3 5 1

][
1 4 5 2 3

] [
3 2 5 4 1

][
5 4 1 2 3

] [
5 2 3 4 1

][
5 4 2 1 3

] [
5 2 4 3 1

]
Note that translation by σν sends 4 7→ 2 and 3 7→ 1 in the one-line notation for w, but
the rest of the entries of w remain in the same relative order in the one-line notation
for σνw as they were in the one-line notation of w.
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The next lemma shows that translating the set Dν(β) by σν does not change the
inversions of w that are also elements of Φ−[T ].

Lemma 7.16. Suppose σν is defined as above. For all w ∈ Dν(β) we have

N−(σνw) ∩ Φ−[T ] = N−(w) ∩ Φ−[T ].

Proof. Recall that Φ−[T ] = {ti − tj ∈ Φ− | {i, j} ∩ {a, b} = ∅}. By definition,
w(a) = ν1 and w(b) = ν1 + 1 so σνw(a) = 1 and σνw(b) = 2. Thus the a-th and b-th
entry of σνw in one-line notation is determined. By Condition (2) in Definition 7.14,
σν preserves the relative order of the values in the one-line notation of w which are
not in positions a or b. It follows that for (i, j) with {i, j} ∩ {a, b} = ∅ and i > j, we
have (i, j) ∈ inv(w) if and only if (i, j) ∈ inv(σνw). �

The next lemma relates the grading computation for σνw to the grading computa-
tion for τ , up to a translation by deg(T ). This explains why it is useful to introduce
the translation by σν . One of the key points in the proof is that the LHS of (49) can
be related to the edges of Γh which contribute to the computation of deg(T ).

Lemma 7.17. Let w ∈ Dν(β) for some β = βT ∈ Ih corresponding to T ∈ SK2(Γh). Let
w = wν,βτ be the decomposition of w given in Lemma 7.6 for a unique τ ∈ Stab(a, b).
Then

(49) |N−(σνw) ∩ Φ−h | = deg(T ) + |N−(τ) ∩ Φ−h [T ]|.

Proof. Since Φ− = (Φ− r Φ−[T ]) t Φ−[T ] we also have

Φ−h = (Φ−h ∩ (Φ− r Φ−[T ])) t (Φ−h ∩ Φ−[T ]).

Since Φ−h ∩ Φ−[T ] is the set Φ−h [T ] by definition, we conclude

|N−(σνw) ∩ Φ−h | = |N
−(σνw) ∩ Φ−h ∩ (Φ− r Φ−[T ])|+ |N−(σνw) ∩ Φ−h [T ]|.

Hence to prove (49) it suffices to prove that

(50) |N−(σνw) ∩ Φ−h ∩ (Φ− r Φ−[T ])| = deg(T )

and

(51) N−(σνw) ∩ Φ−h [T ] = N−(τ) ∩ Φ−h [T ].

We first prove (50). By definition, Φ−rΦ−[T ] = {ti−tj ∈ Φ− | {i, j}∩{a, b} 6= ∅}.
Since w ∈ Dν(β), we know w(a) = ν1 and w(b) = ν1 + 1 by (41), and by construction
of σν this implies σνw(a) = 1 and σνw(b) = 2. It follows that 1 is in the a-th position
of the one-line notation for σνw and 2 is in the b-th position. Using the identification
N−(σνw) ∼= inv(σνw), we obtain

N−(σνw) ∩ (Φ− r Φ−[T ]) = {(b, j) | 1 6 j < b} ∪ {(a, j) | 1 6 j < a}

and therefore

N−(σνw) ∩ Φ−h ∩ (Φ− r Φ−[T ])
= {(b, j) | 1 6 j < b and b 6 h(j)} ∪ {(a, j) | 1 6 j < a and a 6 h(j)}.

Since T = {a, b}, the elements in the sets above correspond to edges of Γh that are
incident to the vertices in T and which must be oriented to the right in order for a
and b to be sinks. Thus, (50) now follows immediately from Lemma 4.8.

Next, in order to prove (51) we note that N−(σνw)∩Φ−[T ] = N−(w)∩Φ−[T ] by
Lemma 7.16. Intersecting both sides with Φ−h we obtain

(52) N−(σνw) ∩ Φ−h [T ] = N−(w) ∩ Φ−h [T ].
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Next we claim
(53) N−(w) ∩ Φ−h [T ] = N−(τ) ∩ Φ−h [T ].
As in the argument above, to see this it suffices to prove N−(w) ∩Φ−[T ] = N−(τ) ∩
Φ−[T ], since (53) follows by intersecting both sides with Φ−h .

Suppose ti − tj ∈ N−(w) ∩ Φ−[T ]. We wish to show ti − tj ∈ N−(τ) ∩ Φ−[T ].
By assumption we know i > j and {i, j} ∩ {a, b} = ∅ and wν,βτ(i) = w(i) <
w(j) = wν,βτ(j). Suppose in order to obtain a contradiction that τ(i) > τ(j).
Then (τ(i), τ(j)) ∈ inv(wν,β) by the above. Moreover, since τ ∈ Stab(a, b) and
{i, j} ∩ {a, b} = ∅, we have {τ(i), τ(j)} ∩ {a, b} = ∅ also. This contradicts part (1)
of Lemma 7.5. Thus τ(i) < τ(j), or equivalently ti − tj ∈ N−(τ) ∩ Φ−[T ] as desired.
Conversely, suppose ti − tj ∈ N−(τ) ∩ Φ−[T ]. Then τ(i) < τ(j) and {τ(i), τ(j)} ∩
{(a, b)} = ∅ and wν,βτ(i) < wν,βτ(j) by condition (2) of Definition 7.3. Hence
ti− tj ∈ N−(w)∩Φ[T ]. From the above it follows that N−(w)∩Φ[T ] = N−(τ)∩Φ[T ]
and we obtain (53). Now (51) follows from (53) and (52). �

Example 7.18.We confirm the results of Lemmas 7.16 and 7.17 for n = 5, ν = (3, 2),
and β = t5 − t2. This is the case considered in Example 7.15, where h = (3, 4, 5, 5, 5).
The table below displays each w ∈ Dν(β) and computes N−(w)∩Φ−h [T ] and N−(w)∩
Φ−h ∩ (Φ− r Φ−[T ]). Here we use the identification inv(w) ∼= N−(w).

w ∈ Dν(β) N−(w) ∩ Φ−[T ] N−(w) ∩ Φ−h ∩ (Φ− r Φ−[T ])[
1 4 2 5 3

]
∅ {(3, 2), (5, 4)}[

2 4 1 5 3
]

{(3, 1)} {(3, 2), (5, 4)}[
1 4 5 2 3

]
{(4, 3)} {(4, 2), (5, 3)}[

5 4 1 2 3
]

{(3, 1), (4, 1)} {(2, 1), (3, 2), (4, 2)}[
5 4 2 1 3

]
{(3, 1), (4, 1), (4, 3)} {(2, 1), (3, 2), (4, 2)}

Now we do the same computation for σνw.
w ∈ Dν(β) σνw N−(σνw) ∩ Φ−[T ] N−(σνw) ∩ Φ−h ∩ (Φ− r Φ−[T ])[
1 4 2 5 3

] [
3 2 4 5 1

]
∅ {(2, 1), (5, 3), (5, 4)}[

2 4 1 5 3
] [

4 2 3 5 1
]

{(3, 1)} {(2, 1), (5, 3), (5, 4)}[
1 4 5 2 3

] [
3 2 5 4 1

]
{(4, 3)} {(2, 1), (5, 3), (5, 4)}[

5 4 1 2 3
] [

5 2 3 4 1
]

{(3, 1), (4, 1)} {(2, 1), (5, 3), (5, 4)}[
5 4 2 1 3

] [
3 2 4 3 1

]
{(3, 1), (4, 1), (4, 3)} {(2, 1), (5, 3), (5, 4)}

The information in the tables above confirms the results of Lemma 7.16. The graph
below shows the orientation ω of Γh with the property that sk(ω) = {2, 5} and
asc(ω) = deg(T ).

1 // 2 3oo}} !!
4oo //}}

5
From the graph, we see deg(T ) = 3, so the table above also confirms |N−(σνw)∩Φ−h ∩
(Φ− r Φ−[T ])| = deg(T ) for all w ∈ Dν(β). Finally, we consider each τ ∈ Stab(2, 5)
such that w = wν,βτ and compute both N−(τ) ∩ Φ−h [T ] and N−(σνw) ∩ Φ−h [T ].

w ∈ Dν(β) τ ∈ Stab(2, 5) N−(τ) ∩ Φ−h [T ] N−(σνw) ∩ Φ−h [T ][
1 4 2 5 3

] [
1 2 3 4 5

]
∅ ∅[

2 4 1 5 3
] [

3 2 1 4 5
]

{(3, 1)} {(3, 1)}[
1 4 5 2 3

] [
1 2 4 3 5

]
{(4, 3)} {(4, 3)}[

5 4 1 2 3
] [

4 2 1 3 5
]

{(3, 1)} {(3, 1)}[
5 4 2 1 3

] [
4 2 3 1 5

]
{(3, 1), (4, 3)} {(3, 1), (4, 3)}
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This table confirms that N−(w) ∩ Φ−h [T ] = N−(σνw) ∩ Φ−h [T ] = N−(τ) ∩ Φ−h [T ] as
shown in the proof of Lemma 7.17.

Corollary 7.19. Let ν = (ν1, ν2) = (µ1 + 1, µ2 + 1) ` n and σν be defined as above.
Then ∑

σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
| =

∑
T∈SK2(Γh)

t2 deg(T ) P (Hess(Xµ, hT ), t).

Proof. Under the identifications in (43) and (45), τ becomes xτ and Φ−h [T ] becomes
Φ−hT . By Remark 7.8 we have that |N−(τ) ∩ Φ−h [T ]| = |N−(xτ ) ∩ Φ−hT |. Therefore∑

σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
| =

∑
T∈SK2(Γh)

∑
σνw :w∈Dν(βT )

t2|N
−(σνw)∩Φ−

h
|

since Dν =
⊔
T∈SK2(Γh)Dν(βT ). We now obtain∑

σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
| =

∑
T∈SK2(Γh)

∑
σνwν,βτ : τ∈Stab(a,b)

x−1
τ (Jµ)⊆ΦhT

t2|N
−(σνw)∩Φ−

h
|

=
∑

T∈SK2(Γh)

t2 deg(T )
∑

xτ∈Sn−2
x−1
τ (Jµ)⊆ΦhT

t
2|N−(xτ )∩Φ−

hT
|

by applying Lemma 7.12 and Lemma 7.17. Finally, Lemma 7.1 implies that previous
expression is equal to ∑

T∈SK2(Γh)

t2 deg(T )P (Hess(Xµ, hT ), t)

as desired. �

We now consider the special case ν = (n − 1, 1), which turns out to be critical.
Note that X(1,n−1) and Xν are conjugate. The basic trick in our proof below is to
remember that the isomorphism class of Hessenberg varieties is preserved under con-
jugation, so in particular the Hessenberg varieties Hess(Xν , h) and Hess(X(1,n−1), h)
are isomorphic and hence have the same Poincaré polynomial.

Proposition 7.20. Suppose ν = (n− 1, 1) ` n. Then

(54)
∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
|.

Proof. Consider the two partitions ν = (n− 1, 1) and ν′ = (1, n− 1) of n. As already
noted above, Hess(Xν , h) ∼= Hess(Xν′ , h) and hence the two Hessenberg varieties
have the same Poincaré polynomial. Notice that in both cases, the partition µ of n−2
corresponding to the compositions defined by ν = (ν1, ν2) = (µ1 + 1, µ2 + 1) and
ν′ = (ν′1, ν′2) = (µ1 +1, µ2 +1) is the trivial partition of n−2 and in particular the Xµ
which appears in the RHS of both Proposition 7.2 and Corollary 7.19 for both cases
ν = (n−1, 1) and ν′ = (1, n−1), may be taken to be N′, the regular nilpotent element
of gl(n− 2,C). Also observe that σν′ is the identity permutation by definition, since
ν′1 = 1 in this case.
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From the above considerations we obtain:
P (Hess(Xν , h), t) = P (Hess(Xν′ , h), t)

= P (Hess(N, h), t) +
∑

w :w∈Dν′

t2|N
−(w)∩Φ−

h
|

= P (Hess(N, h), t) +
∑

σν′w :w∈Dν′

t2|N
−(σν′w)∩Φ−

h
|

= P (Hess(N, h), t) +
∑

T∈SK2(Γh)

t2 deg(T ) P (Hess(N′, hT ), t)

= P (Hess(N, h), t) +
∑

σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
|

where the second equality is by Lemma 7.1 and (37) applied to ν′ = (1, n − 1), the
third follows from the fact that σν′ = e, and the fourth (respectively fifth) equality
is by applying Corollary 7.19 to ν′ = (1, n − 1) (respectively ν = (n − 1, 1)). On the
other hand we also know

P (Hess(Xν , h), t) = P (Hess(N, h), t) +
∑

w :w∈Dν

t2|N
−(w)∩Φ−

h
|

by Lemma 7.1 and (37) applied to ν = (n− 1, 1). Since the RHS of both of the above
equalities must be equal, the equality in (54) follows. �

The Proposition above proves a special case of our desired formula–namely, it
implies that Proposition 7.2 holds for X(n−1,1) when combined with Corollary 7.19.
We now reduce to this special case using calculations involving the shortest coset
representative.

Let ν = (ν1, ν2) ` n. Consider the Young subgroup Wν := S(ν1+1,1,...,1) of Sn

defined as permutations of {1, 2, . . . , ν1 + 1} = [ν1 + 1]. Note that Wν is the Weyl
group of gl(ν1 + 1,C) viewed as a subalgebra of gl(n,C) by identifying it with the
upper left-hand (ν1 + 1) × (ν1 + 1) corner of the matrices in gl(n,C). We will need
the following for our proof of Proposition 7.2 below (see e.g. [15, Section 5]).

Lemma 7.21.Any w ∈ Sn can be factored uniquely as w = yz for some y ∈Wν and
z ∈ νW := {v ∈ Sn | v−1(αi) ∈ Φ+ for all i = 1, . . . , ν1}.

Moreover, N−(w) = N−(z) t z−1N−(y).

The set νW is known as the set of shortest coset representatives for Wν\Sn. The
factors y and z in the decomposition given in Lemma 7.21 have a straightforward
interpretation in terms of the one-line notation of w. More specifically, we can describe
the one-line notation of z as follows. Suppose

w = [w(1) w(2) · · · w(n)]
is the one-line notation of w. In order to obtain the one-line notation for z, we look
at the entries in w which lie in {1, 2, . . . , ν1 + 1}, and re-write them in increasing
order from left to right. All other entries remain unchanged. The result is the one-line
notation for z.

Example 7.22. For example, if n = 7 and ν1 + 1 = 4 and w = [6 4 1 7 2 5 3] where
the numbers in boldface correspond to the entries in {1, 2, 3, 4}, by re-ordering just
these entries we obtain z = [6 1 2 7 3 5 4]. Now y is simply the element of S4 ⊆ S7
which permutes {1, 2, 3, 4} to the ordering that was found in the original w, so in this
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example y = [4 1 2 3 5 6 7] which can also be viewed (since y stabilizes {5, 6, 7}) as
y = [4 1 2 3] ∈ S4.

Example 7.23. Let n = 5 and ν = (3, 2) so ν1 = 3 and ν1 + 1 = 4 as in Example 7.7.
Then Wν = S{1,2,3,4} ∼= S4. The set of shortest coset representatives for S4 r S5
consist of the permutations w for which the values of {1, 2, 3, 4} appear in increasing
order in the one-line notation of w. Thus there are 5 elements in νW in this case:

νW = {[1 2 3 4 5], [1 2 3 5 4], [1 2 5 3 4], [1 5 2 3 4], [5 1 2 3 4]}.

Example 7.24. To illustrate the decomposition N−(w) = N−(z) t z−1N−(y) we
consider the example w = (6, 4, 1, 7, 2, 5, 3), z = (6, 1, 2, 7, 3, 5, 4) as in Example 7.22.
Then

N−(z) = {(2, 1), (3, 1), (5, 1), (6, 1), (7, 1), (5, 4), (6, 4), (7, 4), (7, 6)}

and N−(y) = {(2, 1), (3, 1), (4, 1)} so

z−1N−(y) = {(3, 2), (5, 2), (7, 2)}.

The reader can check that N−(w) = N−(z) t z−1N−(y).

The following result is a special case of [18, Proposition 5.2].

Lemma 7.25. Suppose h : [n] → [n] is a Hessenberg function and H ⊆ gl(n,C) is the
associated Hessenberg space. Given z ∈ Sn, let ż ∈ GL(n,C) denote the corresponding
permutation matrix. For every z ∈ νW

Hz := żHż−1 ∩ gl(ν1 + 1,C)

is a Hessenberg space of gl(ν1 + 1,C).

As for Lemma 7.21 above, there is a straightforward way to interpret the Hessen-
berg space Hz in terms of the one-line notation for z ∈ νW . Recall from Definition 2.2
that H is spanned by {Eij | i 6 h(j)}, which implies żHż−1∩gl(ν1 +1,C) is spanned
by {Eij | i, j ∈ [ν1 + 1] and z−1(i) 6 h(z−1(j))}. Now let hz : [ν1 + 1] → [ν1 + 1]
denote the Hessenberg function corresponding to Hz. From the definition we obtain
Φhz = zΦh ∩ Φν where Φν := {ti − tj | 1 6 i, j 6 ν1 + 1} ⊆ Φ is the root system
of gl(ν1 + 1,C) considered as a subroot system of Φ. Similarly, Ihz = zIh ∩ Φν is the
ideal of Φ−ν corresponding to hz.

We are finally ready to prove Proposition 7.2. The main idea is to decompose the
set Dν by subdividing the elements according to their shortest coset representative.
This allows us to reduce to the case in which y ∈ Wν and J(ν1,ν2) ∩ Φν = J(ν1,1), the
special case from Proposition 7.20.

Proof of Proposition 7.2. We first claim that it suffices to prove that for all ν =
(ν1, ν2) = (µ1 + 1, µ2 + 1) ` n, we have

(55)
∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
|.

Indeed, given (55) it follows from Corollary 7.19 that

(56)
∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
T∈SK2(Γh)

t2 deg(T ) P (Hess(Xµ, hT ), t)

which is the desired claim of Proposition 7.2. We now proceed to prove (55).
Given w ∈ Dν , let w = yz with y ∈ Wν and z ∈ νW be the decomposition from

Lemma 7.21 and let σν be as above. Note that, by definition, σν ∈Wν . It follows that
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σνw = (σνy)(z), where σνy ∈ Wν and z ∈ νW , is the decomposition of σνw from
Lemma 7.21 above. Thus

N−(w) = N−(z) t z−1N−(y)

and
N−(σνw) = N−(z) t z−1N−(σνy).

In particular,

|N−(w) ∩ Φ−h | = |N
−(z) ∩ Φ−h |+ |z

−1N−(y) ∩ Φ−h |.

Next note that the action of z gives a bijective correspondence between z−1N−(y)∩Φ−h
and

N−(y) ∩ zΦ−h = N−(y) ∩ zΦ−h ∩ Φν = N−(y) ∩ Φ−hz
where the first equality holds since N−(y) ⊆ Φν and the second equality is by defini-
tion of hz. Thus

(57) |N−(w) ∩ Φ−h | = |N
−(z) ∩ Φ−h |+ |N

−(y) ∩ Φ−hz |.

Similarly |N−(σνw) ∩ Φ−h | = |N−(z) ∩ Φ−h |+ |N−(σνy) ∩ Φ−hz |.
For each z ∈ νW , define

Dν,z := {w ∈ Dν | w = yz for some y ∈Wν}.

Note that Dν,z may be empty for some z. However, Lemma 7.21 guarantees that

Dν =
⊔

z∈νW
Dν,z.

Fix z such that Dν,z 6= ∅ and let y ∈ Sν such that w = yz ∈ Dν,z. We have that
w−1(Jν) ⊆ Φh and w−1(αν) ∈ Ih if and only if y−1(Jν) ⊆ zΦh and y−1(αν) ∈ zIh.
Next we claim that these two conditions hold if and only if y−1(Jν ∩ Φν) ⊆ Φhz
and y−1(αν) ∈ Ihz . The implication in the forward direction is straightforward since
we can intersect both conditions with Φν and y ∈ Sν preserves Φν . Thus it suffices
to show the reverse implication. By the definition of Φhz and Ihz , it in fact suffices
to show that y−1(Jν) ⊆ zΦh. Note that Jν r (Jν ∩ Φν) = {αν1+1, . . . , αn−1}. Since
we already know y−1(Jν ∩ Φν) ⊆ zΦh, it is enough to show y−1(αs) ∈ zΦh for
ν1 + 1 6 s 6 n− 1. We take cases. For s with ν1 + 2 6 s 6 n− 1, the fact that y ∈ Sν

implies y−1(αs) = αs, and now the assumption that w = yz lies in Dν implies the
desired result. For s = ν1 + 1, suppose for a contradiction that y−1(αν1+1) 6∈ zΦh.
Then by definition of the ideal Ih we have y−1(αν1+1) ∈ zIh. On the other hand, by
assumption y−1(αν1) also lies in zIh. Since αν1 and αν1+1 are adjacent in the Dynkin
diagram (equivalently, αν1 + αν1+1 ∈ Φ) and since Ih is an ideal, we conclude that
y−1(αν1) + y−1(αν1+1) ∈ zIh, i.e. w−1(αν1) +w−1(αν1+1) ∈ Ih where both w−1(αν1)
and w−1(αν1+1) are elements of Ih, but this contradicts the fact that Ih is an abelian
ideal. Hence we must have y−1(αν1+1) ∈ zΦh, as desired.

In addition, Jν∩Φν = J(ν1,1) when viewed as a subset of simple roots in gl(ν1+1,C).
The above considerations allow us to conclude

(58) {y ∈Wν | yz ∈ Dν,z} = {y ∈Wν | y−1(J(ν1,1)) ⊆ Φhz and y−1(αν) ∈ Ihz}

where the RHS is equal to the set D(ν1,1) ⊆ Wν corresponding to the Hessenberg
function hz : [ν1 + 1] → [ν1 + 1]. Finally, since the z action on the set Φ is an
automorphism it is straightforward from the definitions to see that Ih abelian implies
that Ihz is abelian. Moreover, from its definition it follows that σ(ν1,1) can be identified
with σν via the inclusion Wν

∼= Sν1+1 ↪→ Sn, since the first part of each of the
partitions ν = (ν1, ν2) and (ν1, 1) is the same.
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The arguments above imply that∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
z∈νW

∑
yz∈Dν,z

t2|N
−(z)∩Φ−

h
|+2|N−(y)∩Φ−

hz
|

using (57) and the decomposition Dν =
⊔
z∈νW Dν,z. We obtain∑

w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
z∈νW

t2|N
−(z)∩Φ−

h
|
∑

y∈D(ν1,1)

t2|N
−(y)∩Φ−

hz
|

=
∑
z∈νW

t2|N
−(z)∩Φ−

h
|

∑
σ(ν1,1)y : y∈D(ν1,1)

t2|N
−(σ(ν1,1)y)∩Φ−

hz
|

by applying (58) and Proposition 7.20 to the above. Finally, the fact that σ(ν1,1) = σν
allows us to apply (57) to σνw = (σνy)(z); the RHS of the above equation becomes∑
z∈νW

∑
σνyz : yz∈Dν,z

t2|N
−(z)∩Φ−

h
|+2|N−(σνy)∩Φ−

hz
| =

∑
z∈νW

∑
σνw :w∈Dν,z

t2|N
−(σνw)∩Φ−

h
|

=
∑

σνw :w∈Dν

t2|N
−(σνw)∩Φ−

h
|

proving (55), as desired. �

The proof of our main technical proposition is now a simple matter.

Proof of Proposition 6.6. As already noted in (37), we obtain

P (Hess(Xν , h), t) = P (Hess(N, h), t) +
∑
w∈Dν

t2|N
−(w)∩Φ−

h
|

from Lemma 7.1. Now Proposition 7.2 says∑
w∈Dν

t2|N
−(w)∩Φ−

h
| =

∑
T∈SK2(Γh)

t2 deg(T )P (Hess(Xµ, hT ), t)

so the desired statement follows immediately. �

7.3. Proof of the graded Stanley–Stembridge conjecture for the abelian
case. We can now prove the graded Stanley–Stembridge conjecture for the abelian
case by induction. We have the following.

Corollary 7.26. Let n be a positive integer and h : [n]→ [n] a Hessenberg function
such that Ih is abelian. Then the integers cλ,i appearing in (9) are non-negative.

Proof. We argue by induction. Our base cases are n = 1 and n = 2. The case n = 1 is
trivial in the sense that the regular semisimple Hesenberg variety under consideration
is just a single point, and the symmetric group is the trivial group. Hence the claim
holds in this case.

The next case n = 2 is the first case in which the corresponding flag variety
F`ags(Cn) = F`ags(C2) ∼= P1 is non-trivial. In this case there are only two Hes-
senberg functions to consider: h = (1, 2) and h = (2, 2). Both cases correspond to
abelian ideals. If h = (1, 2), the corresponding variety Hess(S, (1, 2)) consists of two
points {N,S} (the “north pole” and “south pole” of the P1) and hence its cohomology
is non-zero only in degree 0. In this case, the corresponding Hessenberg space H is
the Borel subalgebra and Teff’s results [28] prove that H0(Hess(S, (1, 2))) ∼= M (1,1).
(The reader may confirm this by computing the corresponding representation directly
using, for example, the explicit description of Tymoczko’s action in [30] via GKM the-
ory.) If h = (2, 2), the variety Hess(S, (2, 2)) is equal to the entire flag variety P1 and
has non-zero cohomology only in degrees 0 and 2. Another direct computation shows
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that H0(Hess(S, (2, 2))) ∼= M (2) and H2(Hess(S, (2, 2))) ∼= M (2). In both cases we
conclude that the S2-representation, in each degree, is a non-negative sum of tabloid
representations. Thus the claim of the theorem holds in these base cases.

Now suppose n > 3 and let S′ be any regular semisimple element of gl(k,C) for
k for 1 6 k 6 n − 1. Suppose also by induction that for any Hessenberg function
h′ : [k]→ [k] with Ih′ abelian, we have that

H2i(Hess(S′, h′)) =
∑
λ`k

c′λ,iM
λ

where the c′λ,i are all non-negative. We wish to show that the corresponding statement
is true for k = n. To see this, fix i > 0. Suppose h : [n]→ [n] is a Hessenberg function
such that Ih is abelian. We wish to show that

H2i(Hess(S, h)) =
∑
λ`n

cλ,iM
λ

where each cλ,i ∈ Z and cλ,i > 0.
On the other hand, by Theorem 6.1 we know

H2i(Hess(S, h)) = c(n),iM
(n) +

∑
T∈SK2(Γh)

 ∑
µ`(n−2)
µ=(µ1,µ2)

cTµ,i−deg(T )M
(µ1+1,µ2+1)

 .

On the RHS of the above equality, the coefficient c(n),i is non-negative by Corol-
lary 2.20. Moreover, in the summation expression on the RHS, each µ is a par-
tition of n − 2 and cTµ,i−deg(T ) is the coefficient of Mµ in the decomposition of
H2i−2 deg(T )(Hess(S′, hT )). Since h is an abelian Hessenberg function, hT is also
abelian by Lemma 5.13, and therefore each coefficient cTµ,i−deg(T ) is non-negative by
the induction hypothesis. Thus, the above equality expresses H2i(Hess(S, h)) as a
non-negative linear combination of tabloid representations. This completes the induc-
tive step and hence the proof of the theorem. �

8. A conjecture for the general case
Although we prove our main result, Theorem 1.1, for abelian Hessenberg varieties
only, much of the framework and analysis in Sections 4 and 5 is general. In par-
ticular the analysis of maximal sink sets of the graph Γh in Section 4 shows that
every acyclic orientation of Γh corresponding to such a sink set T is obtained in-
ductively from an acyclic orientation of the smaller graph ΓhT on n − |T | vertices.
Using Theorem 2.19, this indicates a correspondence between the representations
H∗(Hess(S, h)) and H∗(Hess(S′, hT )), where S′ denotes a regular semisimple ele-
ment in gl(n−|T |, hT ). Suppose λ ` n has m(Γh) parts. We now conjecture a formula
for the coefficient of Mλ occurring in H∗(Hess(S, h)) as a function of the coefficients
of Mµ occurring in H∗(Hess(S′, hT )) where µ ` (n− |T |).

Conjecture 8.1. Let h : [n]→ [n] be a Hessenberg function and λ ` n be a partition
with exactly m = m(Γh) parts. Let µ = (µ1, µ2, . . . , µm) be the partition of n − |T |
such that λ = (µ1 + 1, µ2 + 1, . . . , µm + 1). Then for all i > 0,

cλ,i =
∑

T∈SKm(Γh)

cTµ,i−deg(T ).

This conjecture extends the results of Theorem 6.1 to arbitrary regular semisimple
Hessenberg varieties. However, unless the Hessenberg variety is abelian (i.e. unless
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m(Γh)6 2), this formula does not determine the entire representationH∗(Hess(S, h)).
The next example demonstrates this.

Example 8.2. Suppose n = 7 and h = (3, 4, 5, 6, 7, 7, 7). In this case, m(Γh) = 3 so h
is not an abelian. We will show that Conjecture 8.1 correctly predicts the coefficients
of Mλ for λ ` 7 with exactly three parts. Note that, in this case, there is only one
maximal sink set, namely T = {1, 4, 7}. The graph below shows the acyclic orientation
ω ∈ A2(Γh) such that asc(ω) = deg({1, 4, 7}). The vertices in {1, 4, 7} and incident
edges are highlighted in red, and we display the corresponding acyclic orientation of
Γh − T ∼= ΓhT on the right.

1 2oo !!
3 //oo}}

4 5
!!}} oo 6 //oo}}
7 1 2oo 3oo 4oo

The graphs above show that deg({1, 4, 7}) = 4 and hT = (2, 3, 4, 4). The table below
computes the representation H∗(Hess(ST , hT )) as a sum of tabloid representations
in each degree.

H0(Hess(S′, hT )) M (4)

H2(Hess(S′, hT )) M (4) +M (3,1) +M (2,2)

H4(Hess(S′, hT )) M (4) +M (3,1) +M (2,2)

H6(Hess(S′, hT )) M (4)

The next table shows the tabloid representations corresponding to partitions with 3
parts that occur as summands of H∗(Hess(S, h)) in Rep(S7).

H8(Hess(S, h)) M (5,1,1)

H10(Hess(S, h)) M (5,1,1) +M (4,2,1) +M (3,3,1)

H12(Hess(S, h)) M (5,1,1) +M (4,2,1) +M (3,3,1)

H14(Hess(S, h)) M (5,1,1)

These tables confirm Conjecture 8.1. Although the conjectured formula correctly de-
termines the tabloid representations Mλ appearing for λ with three parts, it does not
determine the entire representation. For example,

H10(Hess(S, h))

= 32M (7) + 27M (6,1) + 19M (5,2) + 15M (4,3) +M (5,1,1) +M (4,2,1) +M (3,3,1)

and we do not know of an inductive formula for the coefficients of M (6,1), M (5,2), or
M (4,3) at this time.

The formula given in Conjecture 8.1 does not determine the coefficients for Mλ

unless λ has a maximal number of parts. In this sense, this conjecture represents the
tip of an iceberg. To obtain a formula which fully generalizes Theorem 6.1 we need
some idea of how to inductively obtain the coefficients cλ for λ with any number of
parts. We intend to pursue this in future work.
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