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Odd length in Weyl groups

Francesco Brenti & Angela Carnevale

Abstract We define for any crystallographic root system a new statistic on the corresponding
Weyl group which we call the odd length. This statistic reduces, for Weyl groups of types A,
B, and D, to the each of the statistics by the same name that have already been defined and
studied in [8], [12], [13], and [3]. We show that the sign-twisted generating function of the odd
length always factors completely, and we obtain multivariate analogues of these factorizations
in types B and D.

1. Introduction
A new statistic on the symmetric group was introduced in [8] in relation to formed
spaces. This statistic combines combinatorial and parity conditions and is now known
as the odd length. Similar statistics were introduced and studied in [13] and [14] in
typeB in relation to local factors of representation zeta functions of certain groups and
in type D in [3]. The sign-twisted distribution of the odd length on certain quotients
of the hyperoctahedral group of rank n is closely related to the number of n × n
symmetric matrices of given rank over finite fields (see [13] for the conjecture relating
these quantities and [4] for a proof). In [8] and [14] closed product formulas were
conjectured for the signed generating function of the odd length over all quotients
of the symmetric and hyperoctahedral groups, respectively. These conjectures were
proved in [4] in types A and B and independently in [9] in type B.

In this paper we define, for any crystallographic root system, a new statistic on the
corresponding Weyl group. We compute this statistic combinatorially for the classical
root systems of types A, B, C, and D. As a consequence we verify that this statistic
coincides, in types A, B, and D, with each of the odd length statistics defined and
studied in these types in [3, 8, 9, 13, 14]. Our combinatorial computation of the odd
length in the classical types shows that it is the sum of some more fundamental
statistics and we compute the sign-twisted multivariate generating functions of these
statistics in types B and D. These results reduce to results in [8], [14], and [4] when all
the variables are equal. We also show that the signed generating function of the odd
length factors completely for any crystallographic root system. In type E8 this result
is due to John Stembridge, who in [15] also provides a unified description of these
factorizations. More precisely, in [15] Stembridge gives a, different, case by case proof
of the factorization result, and shows that the factors themselves can be described in
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terms of the degrees of the free generators of the polynomial invariants of a canonically
associated reflection group.

The organization of the paper is as follows. In the next section we recall some
definitions, notation and results that are used in the sequel. In § 3 we define a new
statistic on any Weyl group, which we call the odd length. This statistic depends on
the choice of a simple system in the root system of the Weyl group and we show that
its generating function over the Weyl group only depends on the root system. Using
a convenient choice of simple systems we compute combinatorially the odd length
of any element of any Weyl group of classical type and verify that it coincides, in
types A, B, and D, with the odd length statistics already defined in [8, 13, 14, 3] in
these types. In § 5 and § 6 we compute, motivated by the results in § 3, the signed
multivariate distributions of certain statistics over the Weyl groups of types B and D
and show that they factor as products of binomials in almost all cases. In § 7 we show,
using previous results and computer calculations, that the signed generating function
of the odd length factors completely for all irreducible crystallographic root systems.
Finally, in § 8, we study the signed generating function of another statistic, defined
in terms of reflections. Its definition is suggested by the results in § 5, it is defined on
any Coxeter system, and we prove product formulas for its signed generating function
on all Weyl groups.

2. Preliminaries
In the following V is a real vector space endowed with a symmetric bilinear form
(·, ·). A reflection is a linear operator s on V which sends some nonzero vector α to
its negative and fixes pointwise the hyperplane Hα orthogonal to it. For v ∈ V the
action of s = sα is given by:

sαv = v − 2 (α, v)
(α, α)α.

It is easy to see that sα is an involution in O(V ), the group of orthogonal trans-
formations of V . Finite reflection groups are finite subgroups of O(V ) generated by
reflections. We are interested in Coxeter groups of type A, B and D, which arise as
reflection groups of crystallographic root systems.

Definition 2.1. Let V , (·, ·) be as before. A finite subset Φ ⊂ V of nonzero vectors is
a crystallographic root system if it spans V and satisfies:

(1) Φ ∩ Rα = {α,−α} for all α ∈ Φ
(2) sαΦ = Φ for all α ∈ Φ
(3) 2 (α,β)

(α,α) ∈ Z for all α, β ∈ Φ.
Vectors in Φ are called roots.

The group W generated by the reflections {sα, α ∈ Φ}, is the Weyl group of Φ.
We call a subset ∆ ⊆ Φ a simple system if it is a basis of the R−span of Φ in V and

if moreover each α ∈ Φ is a linear combination of elements of ∆ with all nonnegative
or all nonpositive coefficients. It is well known that simple systems exist (for details
see [7]) and that for crystallographic root systems all the roots are integer linear
combinations of simple roots. The group W is indeed generated by S = {sα, α ∈ ∆},
the set of simple reflections. Moreover (W,S) is a Coxeter system. For an element
w = sα1 · · · sαr ∈ W and a root α we let w(α) denote the action of w on α as
composition of the reflections sα1 , . . . , sαr

.
We follow [1] for notation and terminology about Coxeter groups. In particular,

for a Coxeter system (W,S) associated with a root system as above, we let `∆ be the
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Coxeter length and T be the set of reflections
T = {w−1sw : w ∈W, s ∈ S}.

For I ⊆ S we define the quotient
IW := {w ∈W : DL(w) ⊆ S r I},

where DL(w) = {s ∈ S : `∆(sw) < `∆(w)}. We define similarly DR(w). The
parabolic subgroup WI is the subgroup generated by I. The following result is well
known (see, e.g. [1, Proposition 2.4.4]).

Proposition 2.2. Let (W,S) be a Coxeter system, J ⊆ S, and w ∈ W . Then there
exist unique elements Jw ∈ JW and Jw ∈ WJ such that w = Jw

Jw. Furthermore
`∆(w) = `∆(Jw) + `∆(Jw).

For ∆ = {αs, s ∈ S}, we let Φ+
∆ denote the set of roots that are nonnegative linear

combinations of simple roots, and Φ−∆ = −Φ+
∆, so Φ∆ = Φ+

∆ ∪ Φ−∆.
For α ∈ Φ, α =

∑
s∈S csαs, we call height of α (with respect to ∆) the sum of the

coefficients of the linear combination:
(2.1) ht∆(α) :=

∑
s∈S

cs.

For a Coxeter system (W,S) as above, the Coxeter length has an interpretation in
terms of the action of W on Φ:
(2.2) `∆(w) = |{α ∈ Φ+ : w(α) ∈ Φ−}|,
that is, for any element w ∈W it counts the number of positive roots sent to negative
roots by its action as a composition of reflections.

Let now Φ be a crystallographic irreducible root system of type A, B, C, or D. We
consider, in particular, for each of these types the following root systems:

(1) Φ = {±(ei − ej), 1 6 i < j 6 n}, for type An−1,
(2) Φ = {±(ei ± ej), 1 6 i < j 6 n} ∪ {±ei, i ∈ [n]}, for type Bn,
(3) Φ = {±(ei ± ej), 1 6 i < j 6 n} ∪ {±2ei, i ∈ [n]}, for type Cn,
(4) Φ = {±(ei ± ej), 1 6 i < j 6 n}, for type Dn.

For these systems, we will consider in the sequel the following convenient choices of
simple systems:

(1) ∆ = {(ei+1 − ei), i ∈ [n− 1]}, for type An−1,
(2) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {e1}, for type Bn,
(3) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {2e1}, for type Cn,
(4) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {e1 + e2}, for type Dn.

We recall here that for suitable sets of generators, the groups W (Φ) are not only
Coxeter groups, but they have very nice combinatorial descriptions as permutation
groups. We employ here, for these groups, notation from [1, Chapter 8]. In particular,
we write SBn for the group of signed permutations of degree n, namely permutations
σ of [−n, n] satisfying σ(i) = −σ(−i) for all i ∈ [−n, n]. We write SDn for the group
of even signed permutations of degree n, subgroup of SBn consisting of signed per-
mutations with an even number of negative entries in their restriction to [n]. Given
σ ∈ SBn we write σ = [a1, . . . , an] to mean that σ(i) = ai for all i ∈ [n] (called window
notation of the signed permutation σ). We also use, for (even) signed permutations,
the disjoint cycle notation.

Proposition 2.3. Let ∆ ⊆ Φ and S be as above. Then (W (Φ), S) is isomorphic to:
(1) the symmetric group Sn, with Coxeter generators the simple transpositions

(i, i+ 1), for i = 1 . . . n− 1, if Φ is of type An−1;
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(2) the group of signed permutations SBn , with Coxeter generators the simple
transpositions (i, i+1)(−i,−i−1), for i = 1 . . . n−1, and sB0 = [−1, 2, . . . , n],
if Φ is of type Bn or Cn;

(3) the group of even signed permutations SDn , with Coxeter generators the
simple transpositions (i, i + 1)(−i,−i − 1), for i = 1 . . . n − 1, and
sD0 = [−2,−1, 3, . . . , n], if Φ is of type Dn.

Moreover, with the above choices of simple systems, the Coxeter length has combina-
torial interpretations in terms of statistics on the window notation. In particular, for
σ ∈W (Φ)

`∆(σ) =


inv(σ), if Φ is of type A,
inv(σ) + neg(σ) + nsp(σ), if Φ is of type B or C,
inv(σ) + nsp(σ), if Φ is of type D,

where inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|, neg(σ) = |{i ∈ [n] : σ(i) < 0}| and
nsp(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) + σ(j) < 0}|.

In the sequel, we write ` for `∆ when using the above combinatorial interpretations
of the Coxeter length.

3. Odd length
In this section we define, for any crystallographic root system Φ, a new statistic on the
corresponding Weyl group W (Φ). While this statistic, which we call the odd length,
depends on the choice of a simple system ∆ ⊆ Φ, we show that its generating function
over the corresponding Weyl group does not. We then compute combinatorially this
new statistic for the classical Weyl groups, for a natural choice of simple system, and
show that it coincides with each of the statistics by the same name that have already
been defined and studied in [4, 3, 8, 13, 14].

Definition 3.1. Let Φ be a crystallographic root system and W = W (Φ) be the cor-
responding Weyl group. Let ∆ ⊆ Φ be a simple system for Φ, and let Φ+

∆ and Φ−∆ be
the corresponding sets of positive and negative roots. Given a positive root α ∈ Φ+

∆,
we let ht∆(α) be its height, relative to ∆. For any w ∈W , we let

(3.1) L∆(w) := |{α ∈ Φ+
∆ : ht∆(α) ≡ 1 (mod 2), w(α) ∈ Φ−∆}|.

We call L∆(w) the odd length of σ, and we call odd roots the positive roots of odd
height.

Our object of interest in this work is the sign-twisted generating function of the
odd length over the Weyl group. We now show that this generating function does not
depend on the simple system used to compute L∆ and `∆.

Proposition 3.2. Let Φ be a crystallographic root system and ∆,∆′ ⊆ Φ be simple
systems for Φ. Then there exists u ∈W such that

L∆′(w) = L∆(u−1wu)

for all w ∈W .

Proof. It is well known (see, e.g. [7, § 1.4]) that under our hypotheses there exists
u ∈ W such that u(∆) = ∆′, and so u(Φ+

∆) = Φ+
∆′ . From this it follows easily that
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for any α ∈ Φ+
∆ we have that ht∆(α) = ht∆′(u(α)). Therefore

L∆′(w) = |{α ∈ Φ+
∆′ : ht∆′(α) ≡ 1 (mod 2), w(α) ∈ Φ−∆′}|

= |{β ∈ Φ+
∆ : ht∆′(u(β)) ≡ 1 (mod 2), w(u(β)) ∈ Φ−∆′}|

= |{β ∈ Φ+
∆ : ht∆(β) ≡ 1 (mod 2), w(u(β)) ∈ u(Φ−∆)}|

= L∆(u−1wu)

for all w ∈W . �

Corollary 3.3. Let Φ,∆,∆′ be as before. Then∑
w∈W

x`∆(w)yL∆(w) =
∑
w∈W

x`∆′ (w)yL∆′ (w).

In particular,
∑
w∈W (−1)`∆(w)yL∆(w) =

∑
w∈W (−1)`∆′ (w)yL∆′ (w).

Proof. By Proposition 3.2, there exists u ∈ W with L∆′(w) = L∆(u−1wu) for all
u ∈W . Similarly, `∆′(w) = `∆(u−1wu) for all w ∈W . Hence∑

w∈W
x`∆′ (w)yL∆′ (w) =

∑
w∈W

x`∆(u−1wu)yL∆(u−1wu) =
∑
v∈W

x`∆(v)yL∆(v). �

We now derive combinatorial descriptions of L∆ for the root systems of types A, B,
C, and D, for the same choice of simple systems used in Proposition 2.3. For σ ∈ SBn
we let, following [4],

oneg(σ) := |{i ∈ [n] : σ(i) < 0, i ≡ 1 (mod 2)}|
onsp(σ) := |{(i, j) ∈ [n]× [n] : i < j, σ(i) + σ(j) < 0, j − i ≡ 1 (mod 2)}|,
oinv(σ) := |{(i, j) ∈ [n]× [n] : i < j, σ(i) > σ(j), j − i ≡ 1 (mod 2)}|,

and define similarly their “even” analogues eneg, ensp, and einv.

Proposition 3.4. Let Φ be a crystallographic root system of type A, B, C, or D, and
∆ ⊆ Φ be the simple system considered in Proposition 2.3. Then

L∆(σ) =


oinv(σ), if Φ is of type A
oneg(σ) + oinv(σ) + onsp(σ), if Φ is of type B,
neg(σ) + oinv(σ) + ensp(σ), if Φ is of type C,
oinv(σ) + onsp(σ), if Φ is of type D,

for all σ in the Weyl group of Φ.

Proof. In all types a simple computation shows that ht∆(−ei + ej) = j − i, for all
1 6 i < j 6 n. Furthermore, if Φ is of type B then one obtains that ht∆(ei) = i for
all 1 6 i 6 n and ht∆(ei + ej) = i + j for all 1 6 i < j 6 n. If Φ is of type C then
ht∆(ei + ej) = i+ j − 1 for all 1 6 i 6 j 6 n. Finally, ht∆(ei + ej) = i+ j − 2 for all
1 6 i < j 6 n if Φ is of type D. �

So, for example, if n = 5, and σ = [3,−1,−4,−2, 5] ∈ SB5 , then L∆(σ) = 6, if Φ is
of type B, while L∆(σ) = 8 if Φ is of type C.

Proposition 3.4 shows that in types A, B, and D, with the choice of simple system
made there, L∆ coincides with the odd length L defined and studied in [4, 3, 8, 13, 14].

We note the following simple consequence of Proposition 3.4.
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Proposition 3.5. Let Φ be a crystallographic root system of type A, B, C, or D, let
∆ ⊆ Φ be the simple system considered in Proposition 2.3, let W be the corresponding
Weyl group, and let w0 be the longest element of W . Then

L∆(w0) =


bn2 cd

n
2 e, if Φ is of type An−1,(

n+1
2
)
, if Φ is of type Bn,(

n+1
2
)
, if Φ is of type Cn,

2bn2 cd
n
2 e, if Φ is of type Dn.

4. Type A

We showed in the previous section that the odd length combinatorially defined for
type A coincides with L∆ for a very natural choice of simple system of type An−1.
Product formulas for the sign-twisted distribution of this statistic over all quotiens of
the symmetric groups were proved in [4]. For later use (see Section 6), we prove here
that the signed generating function of L∆(= oinv) over Sn is the same as the one over
the set of unimodal permutations, whose definition we now recall.

Definition 4.1. Let σ ∈ Sn. We say that i ∈ [2, n− 1] is a peak if σ(i− 1) < σ(i) >
σ(i+ 1).

Definition 4.2. We say that a permutation σ ∈ Sn is unimodal if it has no peaks.
We denote by Un the set of unimodal permutations.

It is easy to see that peaks (and valleys) allow the definition of involutions that
preserve the number of odd inversions and change the length by ±1. In the following
lemma we use in particular “the highest peak” to define an involution of this type.

Proposition 4.3. Let n ∈ N. Then∑
σ∈Sn

(−1)`(σ)xoinv(σ) =
∑
σ∈Un

(−1)`(σ)xoinv(σ).

Proof. Let σ ∈ Sn r Un. Let Rσ := {σ(i) : i peak} be the set of the values of the
images of the peaks of σ. By hypothesis Rσ is non-empty. Let r be such that σ(r) =
maxRσ and define the involution σr := σ(r − 1, r + 1). Then `(σr) = `(σ)± 1 while
oinv(σr) = oinv(σ). Thus∑

σ∈Sn

(−1)`(σ)xoinv(σ) =
∑
σ∈Un

(−1)`(σ)xoinv(σ),

as desired. �

In fact, a finer result holds: the signed generating function is the same when re-
stricted to chessboard elements, defined in [13], whose definition we recall here.

Definition 4.4. We say that a permutation σ ∈ Sn, resp. a signed permutation σ ∈
SBn , is chessboard if σ(i) ≡ i (mod 2) for all i ∈ [n] or if σ(i) ≡ i + 1 (mod 2) for
all i ∈ [n]. We write C(Sn), resp. C(SBn ), for the subgroup of the chessboard elements
of the relative group and for X ⊂ Sn, resp. X ⊂ SBn , we denote C(X) = X ∩ C(Sn),
resp. C(X) = X ∩ C(SBn ).

Remark 4.5. As the involution defined in the proof of Proposition 4.3 preserves the
parity of the entries in all positions, the same equality holds true when restricting the
supports of the sums on both sides to chessboard elements,

(4.1)
∑

σ∈C(Sn)

(−1)`(σ)xoinv(σ) =
∑

σ∈C(Un)

(−1)`(σ)xoinv(σ).
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5. Types B and C

In this section we study the signed multivariate distributions of the statistics oneg,
eneg, oinv, onsp, and ensp over the groups of signed permutations SBn . In almost all
cases we show that these factor as product of binomials. In particular, we obtain the
signed generating function of L∆ for root systems of types (B and) C.

We begin with the following lemmas. Their proofs are straightforward verifications
from the definitions and are therefore omitted. We first fix some notation used for the
rest of this section.

Definition 5.1. Let n ∈ N, n > 2. For σ ∈ Bn−1 we let σ̃ := [σ(1), . . . , σ(n−1),−n],
σ̂ := [n, σ(1), . . . , σ(n− 1)] and σ̌ := [−n, σ(1), . . . , σ(n− 1)].

Lemma 5.2. Let n ∈ N, n > 2 and keep notation from Definition 5.1. Let δ := n − 1
(mod 2). Then:

oneg(σ̃) = oneg(σ) + 1− δ eneg(σ̃) = eneg(σ) + δ
oinv(σ̃) = oinv(σ) +

⌈
n−1

2
⌉

einv(σ̃) = einv(σ) +
⌊
n−1

2
⌋

onsp(σ̃) = onsp(σ) +
⌈
n−1

2
⌉

ensp(σ̃) = ensp(σ) +
⌊
n−1

2
⌋
.

Lemma 5.3. Let n ∈ N, n > 2 and keep notation from Definition 5.1. Then:
oneg(σ̂) = eneg(σ) eneg(σ̂) = oneg(σ)
oinv(σ̂) = oinv(σ) +

⌈
n−1

2
⌉

einv(σ̂) = einv(σ) +
⌊
n−1

2
⌋

onsp(σ̂) = onsp(σ) ensp(σ̂) = ensp(σ).

Lemma 5.4. Let n ∈ N, n > 2 and keep notation from Definition 5.1. Then:
oneg(σ̌) = eneg(σ) + 1 eneg(σ̌) = oneg(σ)
oinv(σ̌) = oinv(σ) einv(σ̌) = einv(σ)
onsp(σ̌) = onsp(σ) +

⌈
n−1

2
⌉

ensp(σ̌) = ensp(σ) +
⌊
n−1

2
⌋
.

The key observation to prove the formulas for the signed multivariate distributions
is the following, which is analogous to [3, Lemma 3.3].

Lemma 5.5. Let σ ∈ SBn , s ∈ {oneg, eneg, onsp, ensp}, and a ∈ [±n] r {±1,±n}.
Then, if σ∗ := σ(a− 1, a+ 1)(−a+ 1,−a− 1), one has:

s(σ∗) = s(σ), `(σ∗) = `(σ)± 1.

Furthermore, if a = σ−1(n), then oinv(σ∗) = oinv(σ).

In the following we let, for n ∈ N,

Fn(x1, x2, y, z1, z2) :=
∑
σ∈SB

n

(−1)`(σ)x
oneg(σ)
1 x

eneg(σ)
2 yoinv(σ)z

onsp(σ)
1 z

ensp(σ)
2 .

The signed multivariate distributions that we study in this section are specializations
of the polynomials Fn.

Theorem 5.6. Let n ∈ P. Then

Fn(x1, x2, y, 1, z)

=



n−1∏
i=1

(1 + (−1)iyd i
2 e)
bn−2

2 c∏
i=0

(1− x1x2z
2i), if n ≡ 0 (mod 2),

(1− x1z
n−1

2 )
n−1∏
i=1

(1 + (−1)iyd i
2 e)
bn−2

2 c∏
i=0

(1− x1x2z
2i), if n ≡ 1 (mod 2),
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Proof. We proceed by induction on n ∈ P, the result being easy to check if n 6 2.
Assume n > 3. Let f(σ) = (−1)`(σ)x

oneg(σ)
1 x

eneg(σ)
2 yoinv(σ)zensp(σ) for all σ ∈ SBn . By

Lemma 5.5 we have:

Fn(x1, x2, y, 1, z) =
∑
{σ∈SB

n :
σ(n)=n}

f(σ) +
∑
{σ∈SB

n :
σ(−n)=n}

f(σ) +
∑
{σ∈SB

n :
σ(1)=n}

f(σ) +
∑
{σ∈SB

n :
σ(−1)=n}

f(σ)

=
∑

σ∈SB
n−1

(f(σ) + f(σ̃) + f(σ̂) + f(σ̌))(5.1)

where σ̃, σ̂, σ̌ are as in 5.1. But, by Lemmas 5.2, 5.3, and 5.4 we have

f(σ̃) = x
1−δ(n)
1 x

δ(n)
2 yd

n−1
2 ezb

n−1
2 c(−1)n−1f(σ),

f(σ̂) = (−1)n−1yd
n−1

2 e(−1)`(σ)x
eneg(σ)
1 x

oneg(σ)
2 yoinv(σ)zensp(σ),

f(σ̌) = x1z
bn−1

2 c(−1)`(σ)x
eneg(σ)
1 x

oneg(σ)
2 yoinv(σ)zensp(σ),

for all σ ∈ SBn−1.
Suppose now that n ≡ 0 (mod 2). Then by our induction hypotheses we have∑

σ∈SB
n

f(σ) = (1− x2y
n
2 z

n−2
2 )Fn−1(x1, x2, y, 1, z) + (x1z

n−2
2 − y n

2 )Fn−1(x2, x1, y, 1, z)

= (1− x2y
n
2 z

n−2
2 )(1− x1z

n−2
2 )

n−2∏
i=1

(1 + (−1)iyd i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)

+ (x1z
n−2

2 − y n
2 )(1− x2z

n−2
2 )

n−2∏
i=1

(1 + (−1)iyd i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)

= (1 + x1x2y
n
2 zn−2 − y n

2 − x1x2z
n−2)

n−2∏
i=1

(1+(−1)iyd i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)

and the result follows. Similarly, if n ≡ 1 (mod 2) then we obtain∑
σ∈SB

n

f(σ) = (1+x1y
n−1

2 z
n−1

2 )Fn−1(x1, x2, y, 1, z)+(x1z
n−1

2 +y
n−1

2 )Fn−1(x2, x1, y, 1, z)

= (1 + x1y
n−1

2 z
n−1

2 )
n−2∏
i=1

(1 + (−1)iyd i
2 e)

n−3
2∏
i=0

(1− x1x2z
2i)

+ (x1z
n−1

2 + y
n−1

2 )
n−2∏
i=1

(1 + (−1)iyd i
2 e)

n−3
2∏
i=0

(1− x1x2z
2i)

= (1+x1y
n−1

2 z
n−1

2 +y
n−1

2 +x1z
n−1

2 )
n−2∏
i=1

(1 + (−1)iyd i
2 e)
bn−2

2 c∏
i=0

(1− x1x2z
2i)

= (1 + x1z
n−1

2 )(1 + y
n−1

2 )
n−2∏
i=1

(1 + (−1)iyd i
2 e)
bn−2

2 c∏
i=0

(1− x1x2z
2i),

and the result again follows. �

As an immediate corollary of the previous result we obtain the generating function
for the signed distribution of L∆ for root systems of type C.
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Corollary 5.7. Let n ∈ P. Then∑
w∈W (Φ(Cn))

(−1)`∆(w)xL∆(w) = 1
2

n∏
i=1

(
1 + xb

i
2c
)(

1− xd
i
2e
)
.

Proof. This follows easily from the combinatorial description of L∆ in Proposition 3.4
and Theorem 5.6 by letting x1 = x2 = y = z = x. �

The following result gives the signed multivariate generating functions of
(oneg, oinv, onsp) and (eneg, oinv, onsp) over the hyperoctahedral group SBn . The
proof is analogous to that of Theorem 5.6 and is therefore omitted.

Theorem 5.8. Let n ∈ P. Then
(5.2)

Fn(x, 1, y, z, 1) =


(1− x)(1− y n

2 z
n
2 )
bn−1

2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 0 (mod 2),

(1− x)
bn−1

2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 1 (mod 2),

and
(5.3)

Fn(1, x, y, z, 1) =

(1− x)(z n
2 − y n

2 )
bn−1

2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 0 (mod 2),

0, if n ≡ 1 (mod 2).

Note that the sign-twisted joint distribution of the statistics (oneg, eneg, oinv, onsp)
over SBn does not, instead, factor nicely in general. For example,

F4(x1, x2, y, z, 1)
= (1−y2)(1−x1x2z

2)(1+x1x2y
2z2−x1x2z

2−x2y
2z2 +x1z

2 +x2y
2−x1−y2).

Similarly, the sign-twisted joint distributions of the statistics (oneg, oinv, onsp, ensp)
and (eneg, oinv, onsp, ensp) also do not factor nicely in general. For example,

F4(x, 1, y, z1, z2)
= (1−x)(1−y2)(xy2z4

1z
2
2 +xz3

1z2−xz3
1z

2
2−xz2

1z2−y2z1−y2z2
1z2 +y2z1z2 + 1)

and

F4(1, x, y, z1, z2)
= (1−x)(1−y2)(xy2z3

1z
2
2−xy2z3

1z2 +xy2z2
1z2−xz4

1z
2
2 +z2

1z2−y2 + z1−z1z2).

Analogous observations can be made for the polynomials Fn(x1, x2, y, z1, z2). More
precisely, our computations suggest that

Fn(x1, x2, y, z1, z2) = Hn(x1, x2, y, z1, z2)
bn−1

2 c∏
i=1

(1− y2i)

where Hn(x1, x2, y, z1, z2) is an irreducible polynomial. We have checked that this
holds for n 6 6.

As an immediate corollary of Theorem 5.8 we obtain the following result, which
also follows from [4, Theorem 5.4].
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Corollary 5.9. Let n ∈ N, n > 2. Then∑
w∈W (Φ(Bn))

(−1)`∆(w)xL∆(w) =
n∏
i=1

(1− xi).

Proof. This follows easily from the combinatorial description of L∆ in Proposition 3.4
and Theorem 5.8 by letting y = z = x in (5.2). �

Remark 5.10. In all our formulas, the twist is always given by the sign character
of the relevant Weyl group. There are three other linear characters on groups of
type B: the trivial character, the negative character and the product of negative
and sign character. Character-twisted generating functions for various choices of the
characters have been studied, for instance, in [2, 11, 10]. Note that formulas for
the joint distribution of (oneg, eneg, oinv, ensp) twisted by the character (−1)`+neg

are given by Fn(−x1,−x2, y, 1, z) in Theorem 5.6. We did not investigate, instead,
negative-twisted generating functions involving our statistics.

Remark 5.11. Univariate and multivariate signed generating functions over the
groups of signed permutations and their quotients—analogous to those proved in this
section—proved to have remarkable enumerative applications. As we mentioned in
the Introduction, formulas for the sign-twisted distribution of the odd length over
quotients of signed permutations have applications in the enumeration of symmetric
matrices of fixed rank over finite fields. The coincidence of analogous formulas relating
character-twisted distributions of length-like statistics on quotients of the hyperoc-
tahedral groups and rank enumeration of matrices is an intriguing phenomenon also
observed for generic and antisymmetric matrices, cf. [13], and for traceless matrices,
cf. [5]. Factorizations relating (possibly signed) joint distributions of statistics over
the groups of signed permutations and their restrictions over the symmetric groups
also have applications in this context; see, for instance, [5, Proposition 3.4 and
Conjecture 3.7]. It would be interesting to have similar applications for the product
formulas involving the statistics studied here.

We conclude by noting the following univariate natural special cases of the multi-
variate results in this section. For n ∈ P and σ ∈ SBn we let

Looe(σ) := oneg(σ) + oinv(σ) + ensp(σ)(5.4)
Leoe(σ) := eneg(σ) + oinv(σ) + ensp(σ)
Leoo(σ) := eneg(σ) + oinv(σ) + onsp(σ).

Corollary 5.12. Let n ∈ N, n > 3. Then

(5.5)
∑
σ∈SB

n

(−1)`(σ)xLooe(σ) = (1− xd
n
2 e)

n−1∏
i=1

(1− xi),

(5.6)
∑
σ∈SB

n

(−1)`(σ)xLeoe(σ) = (1− xb
n
2 c)

n−1∏
i=1

(1− xi),

and

(5.7)
∑
σ∈SB

n

(−1)`(σ)xLeoo(σ) = 0.

We will show in § 8 that the statistic Looe has a type-independent description in
terms of reflections.
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6. Type D

As for type B, we derive in this section signed multivariate generating functions for the
statistics oinv, onsp, ensp over the even hyperoctahedral groups. Product formulas for
the sign-twisted distribution of the odd length over the even hyperoctahedral groups
(and some of their quotients) were proved in [3]. There it was also observed that they
coincide with the squares of the analogous formulas for Sn, cf. [3, Corollary 4.2]. The
proof of the result giving some of the signed multivariate generating functions for the
groups SDn also explains the mentioned coincidence. We prove formulas for various
specializations of the polynomial defined, for n ∈ N, as follows

Gn(x, y1, y2) :=
∑
σ∈SD

n

(−1)`(σ)xoinv(σ)y
onsp(σ)
1 y

ensp(σ)
2 .

Our first result shows that the signed joint distribution of oinv and ensp is zero.

Proposition 6.1. Let n ∈ P. Then

(6.1) Gn(x, 1, y) = 0.

Proof. We define, for σ ∈ SDn , the following involution:

σ =
{
σs1, if ||σ−1(1)| − |σ−1(2)|| ≡ 2 (mod 2)
σsD0 , if ||σ−1(1)| − |σ−1(2)|| ≡ 1 (mod 2).

It is clear that in both cases `D(σ) = `D(σ) ± 1. We now show that, for all σ ∈ SDn ,
ensp(σ) = ensp(σ) and oinv(σ) = oinv(σ).

Consider σ for which the entries of absolute values 1 and 2 appear at an even
distance. In this case the involution is defined by right multiplication by s1, that is it
exchanges these values. As the involution involves no sign changes, ensp(σ) = ensp(σ).
The only inversion involved is between positions at even distance, thus oinv(σ) =
oinv(σ). Similar reasoning shows that these equalities hold also in the other case.
This implies the result. �

Similarly to Corollary 5.12, the previous result implies the following result about
the univariate signed generating function of the statistic

Loe(σ) := oinv(σ) + ensp(σ).

Corollary 6.2. Let n > 2. Then

(6.2)
∑
σ∈SD

n

(−1)`D(σ)xLoe(σ) = 0.

We now study the signed bivariate generating function of (oinv, onsp), that refines
the one of the odd length L∆ in type D. We will need some preliminary results.

The next lemma shows that, as in the case of the symmetric and hyperoctahedral
groups, the signed generating function of the odd length over SDn is the same when
restricted to chessboard elements. We prove a finer result, namely that this holds also
for the signed bivariate generating function of odd inversions and odd negative sum
pairs.

Lemma 6.3. Let n > 2. Then

Gn(x, y, 1) =
∑

σ∈C(SD
n )

(−1)`D(σ)xoinv(σ)yoneg(σ).
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Proof. Let σ ∈ SDn rC(SDn ). Then there exists i ∈ [n−1] such that σ−1(i) ≡ σ−1(i+1)
(mod 2). Let i be minimal with this property and define σ∗ = siσ. It is a well defined
involution on SDn rC(SDn ). Clearly oinv(σ∗) = oinv(σ) and onsp(σ∗) = onsp(σ), while
`D(σ∗) = `D(σ)± 1. This implies the thesis. �

Recall that for σ ∈ SDn the descent set is Des(σ) = {i ∈ [0, n− 1] : σ(i) > σ(i+ 1)},
where we set σ(0) := −σ(2). Also, recall that Sn is naturally isomorphic to the
parabolic subgroup (SDn )[n−1] of SDn , and that SDn can be written as

SDn = TnSn,

where Tn = {τ ∈ SDn : Des(τ) ⊆ {0}}. That is, every even signed permutation σ ∈ SDn
can be uniquely written as σ = σ[n−1]σ[n−1], with σ[n−1] ∈ Tn and σ[n−1] ∈ Sn.
Moreover,

`D(σ) = `D(σ[n−1]) + `D(σ[n−1]),
we refer the reader to [1, Chapter 8.2] for further details. This last property does not
hold in general for L∆. It does, however, for L∆ on a special subset of chessboard
elements of SDn , which we now define.

Definition 6.4. We say that an even signed permutation σ is a good chessboard
element if σ, σ[n−1] and σ[n−1] are chessboard elements. We write gC(SDn ) for good
chessboard elements of SDn .

In the following lemma we show that the odd inversions and the odd negative
sum pairs (and thus the odd length L∆) are additive with respect to the parabolic
factorization SDn = TnSn on good chessboard elements.

Lemma 6.5. Let σ ∈ gC(SDn ). Then
oinv(σ) = oinv(σ[n−1]) + oinv(σ[n−1]) and onsp(σ) = onsp(σ[n−1]) + onsp(σ[n−1]),

where σ = σ[n−1]σ[n−1], σ[n−1] ∈ C(Tn) and σ[n−1] ∈ C(Sn).

Proof. Let σ be a good chessboard element. The set of inversions of σ and σ[n−1]
coincide. Moreover it is clear that oinv(σ[n−1]) = 0, thus

oinv(σ) = oinv(σ[n−1]) = oinv(σ[n−1]) + oinv(σ[n−1]).

Since by assumption σ[n−1] is a chessboard element, the relative parities of pairs with
negative sum are the same as for σ. Clearly onsp(σ[n−1]) = 0, thus

onsp(σ) = onsp(σ[n−1]) = onsp(σ[n−1]) + onsp(σ[n−1]). �

We show now that the signed bivariate generating function equals the one over
good chessboard elements. The result follows from its analogue for type B.

Lemma 6.6. Let n > 2. Then
Gn(x, y, 1) =

∑
σ∈gC(SD

n )

(−1)`D(σ)xoinv(σ)yonsp(σ).

Proof. The lemma follows by [13, Lemma 16 and Lemma 19], observing that the
involution defined in [13, Lemma 19] restricts to an involution on the relevant subset
of SDn , since it does not involve sign changes. �

The next theorem implies (and gives a direct proof of) [3, Corollary 4.2].

Theorem 6.7. Let n > 2. Then

Gn(x, y, 1) =
(∑
σ∈Sn

(−1)`(σ)xoinv(σ)

)(∑
σ∈Sn

(−1)`(σ)yoinv(σ)

)
.
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Proof. Thanks to Lemmas 6.6 and 6.5 the sum on the left hand side can be rewritten
as

Gn(x, y, 1) =
∑

σ∈gC(SD
n )

(−1)`D(σ)xoinv(σ)yonsp(σ)

=

 ∑
σ∈C(Tn)

(−1)`D(σ)yonsp(σ)

 ∑
σ∈C(Sn)

(−1)`(σ)xoinv(σ)

 .(6.3)

We claim that the first factor of (6.3) equals the signed distribution of the odd inver-
sions on the symmetric group. Consider the map

| · | : SDn → Sn, σ = [σ(1), . . . , σ(n)] 7→ |σ| = [|σ(1)|, . . . , |σ(n)|].
Its restriction to C(Tn) is a bijection onto C(Un), the set of chessboard unimodal
permutations. It is easy to see that (odd) negative sum pairs of elements of C(Tn) are
(odd) inversions of their images in C(Un) through | · |. More precisely, for σ ∈ C(Tn)

nsp(σ) = inv(|σ|), onsp(σ) = oinv(|σ|).
This observation proves that indeed∑

σ∈C(Tn)

(−1)`D(σ)yonsp(σ) =
∑

σ∈C(Un)

(−1)`(σ)yoinv(σ),

which together with (6.3) and (4.1) yields the result. �

Setting y = x gives the known result for the signed distribution of the odd length
over SDn (cf. [3, Theorem 4.1 and Corollary 4.2]).

Corollary 6.8. Let n > 2. Then

∑
w∈W (Φ(Dn))

(−1)`∆(Dn)(w)xL∆(Dn)(w) =

 ∑
w∈W (Φ(An−1))

(−1)`∆(Dn)(w)xL∆(Dn)(w)

2

.

7. Signed generating functions for Weyl groups
We summarize in this section the results obtained for the signed generating functions
of the odd length on the classical Weyl groups, and we record some computations that
we made for the exceptional types. The signed generating functions for the exceptional
types were computed with the Python package PyCox (see [6]) and SageMath ([12]).
The main result of this section (Theorem 7.5) follows immediately from the results in
§ 5, § 6 and these computer calculations. However, we believe that a more conceptual
proof would be interesting, so we provide such a proof for the infinite families of
classical Weyl groups. We feel that the results presented for this proof are interesting
in their own right.

We begin with some preliminary lemmas about bijections that preserve the parity
of the height of the roots and the odd length of certain elements.

Lemma 7.1. Let Φ be a crystallographic root system, W its Weyl group, and s, t, s̃, t̃ ∈
S be such that m(s, s̃) = m(s, t) = m(t, t̃) = 3, and m(s, r) = 2 for all r ∈ Sr{s, t, s̃},
m(t, r) = 2 for all r ∈ S r {s, t, t̃}. Then

ht(α) ≡ ht(sts(α)) (mod 2)
for all α ∈ Φ and

L∆(wsts) = L∆(w)
for all w ∈W such that |DR(w) ∩ {s, t}| = 1.
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Proof. Let α =
∑
r∈S crαr. Then

sts

(∑
r∈S

crαr

)
=

∑
r∈Sr{s,t,s̃,t̃}

crαr + sts(csαs) + sts(cs̃αs̃) + sts(ctαt) + sts(ct̃αt̃)

=
∑

r∈Sr{s,t,s̃,t̃}

crαr + cs(−αt) + cs̃(αs̃ + αs + αt) + ct(−αs)

+ ct̃(αt̃ + αs + αt)

=
∑

r∈Sr{s,t}

crαr + αt(ct̃ + cs̃ − cs) + αs(ct̃ + cs̃ − ct).

Therefore
ht(sts(α)) = ht(α)− 2cs − 2ct + 2cs̃ + 2ct̃,

and the first equality follows.
Let α ∈ Φ+. Then sts(α) < 0 if and only if sα ∈ {s, t, sts}, that is if and only if

α ∈ {αs, αt, αsts}. But αsts = s(αt), and, since m(s, t) = 3, we have αsts = αt + αs.
So sts(α) < 0 if and only if α ∈ {αs, αt, αs+αt}. Furthermore, the map α 7→ sts(α) is
a bijection of Φ+ r {αs, αt, αsts} which, by what we just proved, preserves the parity
of the height. So we have

L∆(w) = |{α ∈ Φ+ : w(α) < 0, ht(α) ≡ 1 (mod 2)}|
= |{α ∈ Φ+ r {αs, αt, αs + αt} : w(α) < 0, ht(α) ≡ 1 (mod 2)}|

+ |{α ∈ {αs, αt, αs + αt} : w(α) < 0, ht(α) ≡ 1 (mod 2)}|
= |{β ∈ Φ+ r {αs, αt, αs + αt} : wsts(β) < 0, ht(β) ≡ 1 (mod 2)}|

+ |{α ∈ {αs, αt} : w(α) < 0}|
= |{β ∈ Φ+ r {αs, αt, αs + αt} : wsts(β) < 0, ht(β) ≡ 1 (mod 2)}|

+ |DR(w) ∩ {s, t}|
= |{β ∈ Φ+ r {αs, αt, αs + αt} : wsts(β) < 0, ht(β) ≡ 1 (mod 2)}|

+ |DR(wsts) ∩ {s, t}|
= L∆(wsts). �

The next lemma is the analogue of Lemma 7.1 for the case of two commuting
generators.

Lemma 7.2. Let Φ be a crystallographic root system, W its Weyl group, and s, t, s̃ ∈ S
be such that m(s, s̃) = m(t, s̃) = 3, and m(s, t) = m(s, r) = m(t, r) = 2 for all
r ∈ S r {s, t, s̃}. Then

ht(α) ≡ ht(st(α)) (mod 2)
for all α ∈ Φ and

L∆(wst) = L∆(w)
for all w ∈W such that |DR(w) ∩ {s, t}| = 1.

Proof. Let α =
∑
r∈S crαr. Then

st

(∑
r∈S

crαr

)
=

∑
r∈Sr{s,t,s̃}

crαr + st(csαs) + st(ctαt) + st(cs̃αs̃)

=
∑

r∈Sr{s,t,s̃}

crαr − csαs − ctαt + cs̃(αt + αs + αs̃).
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Therefore
ht(st(α)) = ht(α)− 2cs − 2ct + 2cs̃,

and the first equality follows.
Let α ∈ Φ+. Then st(α) < 0 if and only if sα ∈ {s, t}, that is if and only if

α ∈ {αs, αt}. Furthermore, the map α 7→ st(α) is a bijection of Φ+ r {αs, αt} which,
by what we have just proved, preserves the parity of the height. So we have

L∆(w) = |{α ∈ Φ+ : w(α) < 0, ht(α) ≡ 1 (mod 2)}|
= |{α ∈ Φ+ r {αs, αt} : w(α) < 0, ht(α) ≡ 1 (mod 2)}|

+ |{α ∈ {αs, αt} : w(α) < 0, ht(α) ≡ 1 (mod 2)}|
= |{β ∈ Φ+ r {αs, αt} : wst(β) < 0, ht(β) ≡ 1 (mod 2)}|

+ |{α ∈ {αs, αt} : w(α) < 0}|
= |{β ∈ Φ+ r {αs, αt} : wst(β) < 0, ht(β) ≡ 1 (mod 2)}|+ |DR(w) ∩ {s, t}|
= |{β ∈ Φ+ r {αs, αt, αs + αt} : wsts(β) < 0, ht(β) ≡ 1 (mod 2)}|

+ |DR(wst) ∩ {s, t}|
= L∆(wsts). �

The following lemmas are straightforward computations and their verification is
omitted.

Lemma 7.3. Let Φ be a crystallographic root system of type Bn or Cn and W = W (Φ)
be its Weyl group. Then

L∆(ws0) =
{
L∆(w), if Φ is of type Bn
L∆(w) + 1 if Φ is of type Cn,

for all w ∈W such that sB0 6∈ DR(w).

Lemma 7.4. Let Φ be a crystallographic root system of type type Cn or Dn and W =
W (Φ) be its Weyl group. Then

(7.1) L∆(usn−1 · · · s1) = L∆(u) + L∆(sn−1 · · · s1) = L∆(u) +
⌊n

2

⌋
.

for all u ∈WI where I := S r {sn−1}.

We can now give a more conceptual proof of the main result of this section.

Theorem 7.5. Let Φ be a crystallographic root system. Then∑
w∈W (Φ)

(−1)`∆(w)xL∆(w)

=



n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
, if Φ is of type An−1,

n∏
i=1

(1− xi), if Φ is of type Bn,

1
2

n∏
i=1

(1 + (−1)i−1xb
i
2c)(1 + (−1)ixd

i
2e), if Φ is of type Cn,

n∏
i=2

(1 + (−1)i−1xb
i
2c)2, if Φ is of type Dn.
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Moreover,

∑
w∈W (Φ)

(−1)`∆(w)xL∆(w) = (1− x2)2(1− x4)(1− x6), if Φ is of type F4,

∑
w∈W (Φ)

(−1)`∆(w)xL∆(w) = (1− x2)2, if Φ is of type G2,

∑
w∈W (Φ)

(−1)`∆(w)xL∆(w) =
4∏
i=1

(1− x2i), if Φ is of type E6,

∑
w∈W (Φ)

(−1)`∆(w)xL∆(w) =
8∏
i=2

(1− xi), if Φ is of type E7.

Proof. We proceed by induction using, in all four infinite cases, the good behaviour
of the Coxeter length and of the odd length with respect to a special parabolic de-
composition of the respective Weyl groups.

Let S be the generating set of W as in § 2, and I ⊆ S. Then

(7.2)
∑
w∈W

(−1)`∆(w)xL∆(w) =
∑
u∈IW

∑
w∈WIu

(−1)`∆(w)xL∆(w).

Let Φ be of type An−1 and I := S r {sn−1}. It is not hard to see that the elements
of IW are:

(7.3) {e, sn−1, sn−1sn−2, . . . , sn−1 · · · s2, sn−1 · · · s2, sn−1 · · · s2s1}.

Fix 2 6 i 6 n − 2 and let w ∈ WIsn−1 · · · si+1si. That is, w = usn−1 · · · si+1si for a
u ∈WI . Then

`∆(wsi−1) = `∆(usn−1 · · · si+1sisi−1)
= `∆(u) + `∆(sn−1 · · · sisi−1)
= `∆(u) + n− i+ 1 > `∆(w),

while

`∆(wsi) = `∆(usn−1 · · · si+1)
= `∆(u) + `∆(sn−1 · · · si+1)
= `∆(u) + n− i− 1 < `∆(w),

so

|DR(w) ∩ {si, si−1}| = 1 for all w ∈WIsn−1 · · · si+1si.

Furthermore, the map w 7→ wsi−1sisi−1 is a bijection of WIsn−1 · · · si+1si onto itself.
By Lemma 7.1 we have that L∆(wsi−1sisi−1) = L∆(w) for all w ∈ WIsn−1 · · · si,
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implying that the sum over the elements in WIsn−1 · · · si+1si is zero. Therefore∑
u∈IW

∑
w∈WIu

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑

w∈WIsn−1···s1

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑

w∈WIw0

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑
w∈WI

(−1)`∆(ww0)xL∆(ww0)

=
∑
w∈WI

(−1)`(w)xL∆(w) + (−1)`∆(w0)xL∆(w0)
∑
w∈WI

(−1)−`∆(w)x−L∆(w)

=
n−1∏
i=1

(1 + (−1)i−1xb
i
2c) + (−1)n−1xb

n
2 c

n−1∏
i=2

(xb
i
2c + (−1)i−1)(−1)i−1

=
n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
,

where we have used our induction hypothesis. This proves the first equality.
Let now Φ be of type Bn or Cn, and I := S r {sn−1}. It is not hard to see that

the elements of IW are:
(1) e,
(2) sn−1sn−2 · · · si, for 2 6 i 6 n− 1,
(3) sn−1sn−2 · · · s2s1,
(4) sn−1sn−2 · · · s2s1s0,
(5) sn−1sn−2 · · · s2s1s0 · · · si, for 1 6 i 6 n− 2,
(6) sn−1sn−2 · · · s2s1s0s1s2 · · · sn−1.

Using the same argument as for type A, it is easy to see that the signed generating
function of the odd length is zero on cosets with representatives of the form (2).
Moreover, for i ∈ [n−2], the map w 7→ wsisi+1si is a bijection of each of the cosets of
the form (5) onto themselves. Arguing as before one can see that the signed generating
function is zero also on these cosets. Finally, the map w 7→ ws0 is clearly a bijection
between WIsn−1 . . . s1 and WIsn−1 . . . s1s0. This, together with Lemma 7.3 and our
induction hypothesis, yields, in type Bn,∑
u∈IW

∑
w∈WIu

(−1)`∆(w)xL∆(w) =
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑
w∈WI

(−1)`∆(ww0)xL∆(ww0)

=
∑
w∈WI

(−1)`∆(w)xL∆(w)

+ (−1)`∆(w0)xL∆(w0)
∑
w∈WI

(−1)−`∆(w)x−L∆(w)

=
n−1∏
i=1

(1− xi) + (−1)nx(n+1
2 )

n−1∏
i=1

(1− x−i)

=
n∏
i=1

(1− xi),

proving the second equality.
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When Φ is of type Cn, on the other hand, Lemmas 7.3 and 7.4 and the bijection
w 7→ ws0 between WIsn−1sn−2 . . . s1 and WIsn−1sn−2 . . . s1s0 yield∑

u∈IW

∑
w∈WIu

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑
w∈WI

(−1)`∆(ww0)xL∆(ww0)

+ (−1)n−1xb
n
2 c

∑
w∈WI

(−1)`∆(w)xL∆(w)

+ (−1)nxd
x
2 e
∑
w∈WI

(−1)`∆(w)xL∆(w)

= (1 + (−1)n−1xb
n
2 c)(1 + (−1)nxd

n
2 e)

∑
w∈WI

(−1)`∆(w)xL∆(w),

which, together with our induction hypothesis, yields the third equality.
Let now Φ be of type Dn, and I := S r {sn−1}. The elements of IW are:
(1) e,
(2) sn−1sn−2 · · · si, for 2 6 i 6 n− 1,
(3) sn−1sn−2 · · · s2s1,
(4) sn−1sn−2 · · · s2s0,
(5) sn−1sn−2 · · · s2s0s1s2 · · · si, for 2 6 i 6 n− 2,
(6) sn−1sn−2 · · · s2s0s1s2 · · · sn−1.

By the same arguments as before, the signed distribution over cosets of type (2)
and (5) is zero. Therefore the sum in (7.2) becomes∑

u∈IW

∑
w∈WIu

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑

w∈WIsn−1···s2s0s1···sn−1

(−1)`∆(w)xL∆(w)

+
∑

w∈WIsn−1···s2s0

(−1)`∆(w)xL∆(w) +
∑

w∈WIsn−1···s2s1

(−1)`∆(w)xL∆(w)

=
∑
w∈WI

(−1)`∆(w)xL∆(w) +
∑

w∈WIw0

(−1)`∆(w)xL∆(w)

+ 2
∑
u∈WI

(−1)`∆(usn−1···s1)xL∆(usn−1···s1),

where, for the last equality, we have used the bijection defined in Lemma 7.2 with
s = s0, t = s1. But Lemma 7.4 and our induction hypothesis allow us to rewrite this
last equation as∑

w∈W
(−1)`∆(w)xL∆(w) = (1 + (−1)n−1xb

n
2 c)2

∑
w∈WI

(−1)`∆(w)xL∆(w)

=
n∏
i=2

(1 + (−1)i−1xb
i
2c)2

which yields the fourth equality. �

We have been unable to carry out the computation in type E8 with the computing
resources at our disposal. When this paper was in the final stages of preparation John
Stembridge showed a product formula also for type E8.
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Theorem 7.6. [15, Theorem 6.1]

∑
w∈E8

(−1)`∆(w)xL∆(w) = (1− x8)
8∏
i=1

(1− x2i)

He also gave a unified description of these factorizations and a conceptual proof of
all of them [15].

Remark 7.7. We record here the functions used to compute the generating functions
with PyCox.

def f(n):
W = coxeter("W",n)
y = var(’y’)
A = allcoxelms(W)
Or = [i for i in range(W.N) if mod(sum((W.roots[i])),2)==1]
B = [W.coxelmtoperm(A[i][j]) for i in range(len(A))

for j in range(len(A[i]))]
return sum((-1)^(W.permlength(v)) * x^(oddr(v,W.N,Or)) for v in B)

def oddr(v,n,Or):
return sum(1 for j in Or if v[j]>n-1)

Remark 7.8. In light of Remark 5.11 and of the observations in the introduction,
it would be interesting to have enumerative applications of geometric flavour for the
formulas we proved.

8. Odd reflections
In this section we introduce, for any finite Coxeter system (W,S), a statistic defined in
terms of odd reflections. We also prove product formulas for its sign-twisted generating
function over reducible finite Coxeter systems, for the dihedral groups, and for all Weyl
groups. We start with its definition.

Definition 8.1. Let (W,S) be a Coxeter system and let w ∈W . We let

LT (w) := |{t ∈ T : `(wt) < `(w) and `(t) ≡ 1 (mod 4)}|.

We first show that it is enough to compute the signed generating function of LT
over irreducible finite Coxeter systems.

Proposition 8.2. Let (W,S) be a finite Coxeter system, and A,B ⊆ S be such that
S = A ∪ B, A ∩ B = ∅, and m(a, b) = 2 for all a ∈ A and b ∈ B. Then LT (uv) =
LT (u) + LT (v) for all such u ∈WA and v ∈WB. In particular∑

w∈W
(−1)`(w)xLT (w) =

∑
u∈WA

(−1)`(u)xLT (u)
∑
v∈WB

(−1)`(v)xLT (v).

Proof. Under these hypotheses it is well known that the map (u, v) 7→ uv is a bijection
betweenWA×WB andW , and that T = TA∪TB where TA and TB are the reflections
of the parabolic subgroups WA and WB , respectively. Furthermore {t ∈ T : `(uvt) <
`(uv)} = {t ∈ TA : `(ut) < `(u)}∪{t ∈ TB : `(vt) < `(v)} for all u ∈WA and v ∈WB .
So `(uv) = `(u) + `(v) and LT (uv) = LT (u) + LT (v) for all such u and v and the
result follows. �

The following result shows that the polynomial
∑
w∈W (−1)`(w)xLT (w) is always

either symmetric or antisymmetric.
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Proposition 8.3. Let (W,S) be a finite Coxeter system, and w0 be its longest element.
Then LT (ww0) = LT (w0w) = LT (w0)− LT (w) for all w ∈W . In particular∑

w∈W
(−1)`(w)xLT (w) = (−1)`(w0)xLT (w0)

∑
w∈W

(−1)`(w)
(

1
x

)LT (w)
.

Proof. It is well known (see, e.g. [1, Proposition 2.3.4]) that multiplication on the right
(or left) by w0 is an antiautomorphism for Bruhat order. Hence, `(ww0t) < `(ww0)
if and only if `(wt) > `(w) for all t ∈ T , so LT (ww0) = LT (w0)− LT (w). The result
follows. �

While LT is not an extension of L∆ to all Coxeter groups, the two functions do
coincide on simply laced Weyl groups.

Proposition 8.4. Let Φ be an irreducible root system of simply laced type, ∆ be a
simple system for Φ, and (W,S) be the corresponding Weyl group and generating set.
Then

`S(sα) = 2 ht∆(α)− 1
for all α ∈ Φ+. In particular, LT (w) = L∆(w) for all w ∈W .

Proof. It is easy to verify the result for the root systems of types A and D. Indeed,
in both types a simple computation using Proposition 2.3 shows that `S((i, j)) =
2(j−i)−1 = 2 ht∆(ej−ei)−1 and `S((i, j)(−i,−j)) = 2(j−i)−1 = 2 ht∆(ej−ei)−1 for
all 1 6 i < j 6 n. Furthermore, `S((i,−j)(j,−i)) = 2(i+j−2)−1 = 2 ht∆(ei+ej)−1
if Φ is of type D, for all 1 6 i < j 6 n. One can verify by computer that the result
also holds for the exceptional types. �

As we mentioned in § 5, one of the statistics defined in (5.4) has a type-independent
description. We prove here that it coincides with LT .

Proposition 8.5. Let σ ∈ SBn . Then
LT (σ) = oneg(σ) + oinv(σ) + ensp(σ).

Proof. It is well known (see, e.g. [1, §8.1]) that the reflections of SBn are given by
(8.1) T = {(i, j)(−i,−j) : 1 6 i < |j| 6 n} ∪ {(i,−i) : i ∈ [n]}.
Furthermore, an easy computation using the description given in Proposition 2.3
shows that

`B((i,−i)) = 2i− 1
`B((i, j)(−i,−j)) = 2(j − i)− 1, for 1 6 i < j 6 n

`B((i,−j)(−i, j)) = 2(i+ j)− 3, for 1 6 i < j 6 n,

so the result follows. �

The next result shows that the signed generating function of LT always factors as
product of binomials for finite Weyl groups and for the dihedral groups.

Theorem 8.6. Let (W,S) be an irreducible finite Coxeter system. Then

∑
w∈W

(−1)`(w)xLT (w) =



n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
, if W is of type An−1,

(1− xd
n
2 e)

n−1∏
i=i

(1− xi), if W is of type Bn,
n∏
i=2

(1 + (−1)i−1xb
i
2c)2, if W is of type Dn.
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Moreover,

∑
w∈W

(−1)`(w)xLT (w) =



(1− x2)2(1− x4)2, if W is of type F4,
4∏
i=1

(1− x2i), if W is of type E6,
8∏
i=2

(1− xi), if W is of type E7,

(1− x8)
8∏
i=1

(1− x2i), if W is of type E8,

and

∑
w∈W

(−1)`(w)xLT (w) =
{

1− xdm
2 e, if m ≡ 1 (mod 2),

(1− xdm
4 e)2, if m ≡ 0 (mod 2),

if W is of type I2(m).

Proof. In the simply laced types the result follows immediately from Theorem 7.5,
Theorem 7.6 and Proposition 8.4. The result for type B follows from Proposition 8.5
and Corollary 5.12.

Let now (W,S) be a Coxeter system of type I2(m). Let {a, b} := S and let, for
brevity, vk(b, a) := baba . . .︸ ︷︷ ︸

k

for all k ∈ N.

Let m ≡ 0 (mod 2), m = 2n. Then

`(v2r+1(b, a)) =
{

2r + 1, if 2r + 1 6 2n,
2n− (2r + 1− 2n), if 2n 6 2r 6 4n− 1,

so

`(v2r+1(b, a)) ≡
{

2r + 1 (mod 4), if 2r + 1 6 2n,
−(2r + 1) (mod 4), if 2n+ 1 6 2r + 1 6 4n,

for all 0 6 r 6 2n − 1. Hence LT (v2k+1(a, b)) = k + 1, if 2k + 1 6 n, while
LT (v2k+1(a, b)) = dn2 e + d 2k+1−n

2 e = k + 1 if 2n − 1 > 2k > n and n ≡ 1 (mod 2),
and LT (v2k+1(a, b)) = dn2 e+ b

2k+1−n
2 c = k if 2n−1 > 2k > n and n ≡ 0 (mod 2). So

LT (v2k+1(a, b)) =
{
k + 1, if 2k + 1 6 n,
k + c, if n 6 2k 6 2n− 1.

where c := 1 if n ≡ 1 (mod 2), and c := 0 otherwise. Similarly,

LT (v2k(a, b)) =
{
k, if 2k 6 n,
k + c, if n < 2k 6 2n.
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Therefore,∑
w∈W

(−1)`(w)xLT (w)

= 1 +
2n−1∑
k=1

(
(−1)`(vk(a,b))xLT (vk(a,b)) + (−1)`(vk(b,a))xLT (vk(b,a))

)
+ (−1)`(v2n(a,b))xLT (v2n(a,b))

= 1 + 2
2n−1∑
k=1

(−1)kxLT (vk(a,b)) + xn+c

= 1 + 2
(
n−1∑
k=1

xLT (v2k(a,b)) −
n−1∑
k=0

xLT (v2k+1(a,b))

)
+ xn+c

= 1 + 2

bn
2 c∑

k=1
xk +

n−1∑
k=bn

2 c+1

xk+c −
bn−1

2 c∑
k=0

xk+1 −
n−1∑

k=bn−1
2 c+1

xk+c

+ xn+c

= 1 + 2(−c x
n+1

2 + (c− 1)xn
2 ) + xn+c

= (1− xdn
2 e)2.

Let now m ≡ 1 (mod 2), m = 2n+ 1, n ∈ P. Then, similarly

`(v2r+1(b, a)) =
{

2r + 1, if 2r + 1 6 2n+ 1,
4n+ 2− (2r + 1), if 2n+ 2 6 2r + 1 6 4n+ 2,

so `(v2r+1(b, a)) ≡ 2r + 1 (mod 4) for all 0 6 r 6 2n. Hence LT (v2k+1(b, a)) = k + 1
for 1 6 2k + 1 6 2n+ 1, and LT (v2k(b, a)) = k for 0 6 2k 6 2n. Therefore,∑

w∈W
(−1)`(w)xLT (w)

= 1 +
2n∑
k=1

(
(−1)`(vk(a,b))xLT (vk(a,b)) + (−1)`(vk(b,a))xLT (vk(b,a))

)
+ (−1)`(v2n+1(a,b))xLT (v2n+1(a,b))

= 1 + 2
2n∑
k=1

(−1)kxd k
2 e − xn+1

= 1− xn+1. �

For finite Coxeter systems in general, there seems to be no analogous factorization
phenomenon. For example, one can compute that if (W,S) is a Coxeter system of
type H3 then

∑
w∈W (−1)`(w)xLT (w) = (1 + 4x+ 6x2 + 9x3 + 6x4 + 4x5 + x6)(1− x)3.
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