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Graphs of gonality three
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& Julie Yuan

Abstract In 2013, Chan classified all metric hyperelliptic graphs, proving that divisorial go-
nality and geometric gonality are equivalent in the hyperelliptic case. We show that such a
classification extends to combinatorial graphs of divisorial gonality three, under certain edge-
and vertex-connectivity assumptions. We also give a construction for graphs of divisorial go-
nality three, and provide conditions for determining when a graph is not of divisorial gonality
three.

1. Introduction
Tropical geometry studies graphs as discrete analogues of algebraic curves. A motivat-
ing goal of this program is to prove theorems in algebraic geometry using combinatorial
methods, as in [11]. In [2], Baker and Norine define a theory of divisors on combi-
natorial graphs similar to divisor theory on curves, proving a Riemann–Roch type
theorem. This was extended by [17] and [20] to metric graphs, which have lengths as-
sociated to each edge. To model maps between curves, harmonic morphisms between
simple graphs were introduced in [21], extended to multigraphs in [3], and finally to
metric graphs in [8].

An important invariant of an algebraic curve is its gonality. This is the minimum
degree of a divisor of rank 1, or equivalently, the minimum degree of a morphism from
the curve to a line [15, Section 8C]. We can extend these definitions to combinatorial
and metric graphs, using either divisor theory or morphisms from the graph to a tree.
However, unlike in classical algebraic geometry, these two notions of gonality defined
on graphs are in general inequivalent, as demonstrated in [12]. We thus define two
different types of gonality: divisorial gonality and geometric gonality. (Whenever we
refer to the gonality of a graph without specifying which type, we mean the divisorial
gonality.)

Our two notions of gonality happen to agree when either is equal to 1: divisorial
gonality is equal to 1 if and only if the graph is a tree, and the same is true of
geometric gonality [3, Lemma 1.1 and Example 3.3]. This no longer holds when our
graph has higher divisorial gonality; for example, the banana graph, which has two
vertices and n > 2 edges connecting the two vertices, has divisorial gonality 2 and
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geometric gonality n [12]. However, this turns out to be the only such example for
graphs of divisorial gonality 2, as shown by the following result.

Theorem 1.1 (Theorem 1.3 in [8], slightly reordered). Let Γ be a metric graph with
no points of valence 1 and canonical loopless model (G, `). Then the following are
equivalent:

(1) G has (divisorial) gonality 2.
(2) There exists a non-degenerate harmonic morphism ϕ : G→ T where deg(ϕ) =

2 and T is a tree, or |V (G)| = 2.
(3) There exists an involution i : G→ G such that G/i is a tree.

Note that the only (connected) graphs G with |V (G)| = 2 are those belonging to
the family of banana graphs. Hence, Theorem 1.1 implies that, for all other metric
graphs, having divisorial gonality 2 and having geometric gonality 2 are equivalent.

Our main result in this paper is an analogue of Theorem 1.1 for graphs of divisorial
gonality 3. Although Theorem 1.1 is stated for metric graphs, ours holds only for
combinatorial graphs, without the data of lengths associated to the edges.

Theorem 1.2. If G is a 3-edge-connected combinatorial graph, then the following are
equivalent:

(1) G has (divisorial) gonality 3.
(2) There exists a non-degenerate harmonic morphism ϕ : G→ T where deg(ϕ) =

3 and T is a tree.
Moreover, if G is simple and 3-vertex-connected, these statements are also equivalent
to the following condition:

(3) There exists a cyclic automorphism σ : G → G of order 3 that does not fix
any edge of G satisfying the property that G/σ is a tree.

The decision to restrict our attention to 3-vertex-connected graphs in the simple
case is in part supported by Proposition 4.5, which shows that a simple, bridgeless,
trivalent graph that is not 3-vertex-connected must have gonality at least 4. Moreover,
the example graph in Figure 6 shows that 3-edge-connectedness is not a strong enough
assumption to guarantee the existence of a cyclic automorphism of order 3. To justify
our 3-edge-connected assumption for the multigraph case, we point to recent work
by Corry and Steiner, appearing in [13, Theorem 10.24], which shows that for d-
edge-connected graphs with more than d vertices, the set of degree d non-degenerate
harmonic morphisms to a tree is in bijection with divisors of degree d and rank 1 on
the graph. With some extra work to rule out the possibility of hyperellipticity, this
result can be used to prove our main theorem for multigraphs. However, the proof we
present is independently formulated.

Our paper is organized as follows. In Section 2, we establish definitions and nota-
tion, and review previous results on divisors and harmonic morphisms of graphs. In
Section 3, we prove Theorem 3.1, which is the first part of Theorem 1.2 and applies
to general multigraphs. In Section 4, we restrict our attention to simple graphs in
order to prove Theorem 4.1, which adds the third condition in Theorem 1.2. We also
give a criterion for identifying graphs with gonality strictly greater than 3. Finally, in
Section 5, we present a construction for a (proper) subset of graphs of gonality 3.

2. Definitions and Notation
We define a graph G = (V,E) with vertex set V (G) and edge set E(G) to be a finite,
connected, loopless, multigraph. Throughout this paper, all graphs are assumed to
be combinatorial (that is, without lengths assigned to edges) unless otherwise stated.
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Graphs with no multiple edges are called simple. Given a vertex v ∈ V (G) and an
edge e ∈ E(G), we use the notation v ∈ e to indicate that v is an endpoint of e. For
u, v ∈ V (G), define E(u, v) := {e ∈ E(G) : u ∈ e, v ∈ e}. Similarly, for A,B ⊂ V (G)
define E(A,B) := {e ∈ E(G) : e ∈ E(a, b) for some a ∈ A, b ∈ B}. The valence of a
vertex v ∈ V (G) is defined as val(v) := |{e ∈ E(G) : v ∈ e}|. We define the genus of
a graph G as g(G) := |E(G)| − |V (G)|+ 1. A graph of genus 0 is called a tree.

A graph G = (V,E) is k-edge-connected if, for any set W of k − 1 edges, the
subgraph (V,E −W ) is connected. We let η(G) denote the edge-connectivity of the
graph. That is, η(G) is the maximum integer k such that G is k-edge-connected.
A bridge of G is an edge whose deletion strictly increases the number of connected
components of G. A graph is bridgeless if it has no bridges, or equivalently if it is
2-edge-connected.

Similarly, a graph G = (V,E) is k-vertex-connected (or just k-connected) if, for any
set U of k− 1 vertices, the subgraph (V −U,E) is connected. We let κ(G) denote the
vertex-connectivity of the graph. That is, κ(G) is the maximum integer k such that G
is k-vertex-connected. (By convention, we set κ(G) = |V | − 1 if every pair of vertices
in G is joined by an edge.) Since removing a vertex from a graph removes all edges
incident to that vertex, we have that κ(G) 6 η(G) for any graph G.

2.1. Divisor Theory on Graphs. We now review the key concepts of divisor theory
on graphs, as developed in [1]. A divisor D on a graph G is a Z-linear combination
of vertices. We will often explicitly write out divisors with the notation

D =
∑

v∈V (G)

D(v) · (v),

where D(v) denotes the value of D at v. The set of all divisors Div(G) on a graph G
forms an abelian group under component-wise addition. The degree of a divisor D is
defined as the sum of its integer coefficients:

deg(D) :=
∑

v∈V (G)

D(v).

For a fixed k ∈ Z, let Divk(G) be the set of all divisors of degree k on G. A divisor
D is effective if, for all v ∈ V (G), D(v) > 0. Let Div+(G) be the set of all effective
divisors on a graph G and for k ∈ Z>0, let Divk

+(G) be the set of all effective divisors
of degree k on G. For a given effective divisor D, we define the support of D as

supp(D) := {v ∈ V (G) : D(v) > 0}.

The Laplacian L(G) of a graph G is the |V | × |V | matrix with entries

Lv,w =
{

val(v) if v = w

−|E(v, w)| if v 6= w.

We use ∆ : Div(G) → Div(G) to denote the Laplace operator associated with the
Laplacian matrix. A principal divisor is a divisor in the image of ∆. We use Prin(G)
to denote the set of principal divisors on a graph G, i.e. Prin(G) = ∆(Div(G)). Notice
that Prin(G) is a normal subgroup of Div0(G). We can therefore define the Jacobian
Jac(G) of a graph G as the quotient group Div0(G)/Prin(G).

Now, define an equivalence relation ∼ on divisors such that D ∼ E if and only if
D−E ∈ Prin(G). We say in this case that D and E are linearly equivalent and define
the linear system associated with a divisor D as

|D| := {E ∈ Div+(G) : E ∼ D}.
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For a divisor D ∈ Div(G), we define the rank of D as r(D) := −1 if |D| = ∅, and
otherwise as

r(D) := max{k ∈ Z : |D − F | 6= ∅ for all F ∈ Divk
+(G)}.

The gonality of a graph G is defined as

gon(G) := min{deg(D) : D ∈ Div+(G), r(D) > 1}.

Later, when we need to distinguish between two different types of gonality, this will
be referred to as divisorial gonality.

2.2. Baker–Norine Chip–Firing. The definition of gonality provided in the pre-
vious section has an equivalent statement in terms of chip-firing games on graphs.
In a chip-firing game, we think about placing integer numbers of poker chips on the
vertices of our graph. A negative number of poker chips corresponds to a vertex being
“in debt”. A chip-firing move involves selecting a vertex v ∈ V (G), subtracting val(v)
chips from v, and adding |E(v, v′)| chips to each v′ adjacent to v.

The Baker–Norine chip-firing game is played with the following rules:
(1) One player places k chips on the vertices V (G) of a graph G in any arrange-

ment.
(2) Another player (the adversary) chooses a vertex v ∈ V (G) from which to

subtract a chip, possibly putting v into debt.
(3) The first player wins if they can reach a configuration of chips where no vertex

is in debt via a sequence of chip-firing moves. Otherwise, the adversary wins.
Notice that these “chip configurations” correspond to divisors on graphs. By stan-

dard results as in [2], chip-firing moves correspond to subtracting principal divisors;
the divisors present before and after chip-firing are equivalent; and the gonality of a
graph is equivalent to the minimum number of chips k required to guarantee that the
first player has a winning strategy in the Baker–Norine chip-firing game. Hence, we
define a winning divisor D to be a divisor satisfying r(D) > 1.

Since chip-firing is a commutative operation, we can chip-fire from an entire subset
A ⊂ V (G) at once by sending a chip along each edge outgoing from the subset. Let
1A denote the indicator vector on A. Then, given a divisor D, the resulting divisor
after chip-firing from the subset A is D −∆1A. We define the outdegree of A from a
vertex v ∈ A to be the number of edges leaving A from v, so

outdegv(A) := |E({v}, V (G)−A)|.

Hence, a chip-firing move from a subset A ⊂ V (G) sends outdegv(A) chips from each
vertex v ∈ A into V (G) − A. The total outdegree of A is defined as outdegA(A) :=∑

v∈A outdegv(A). The following result is proven in [23].

Lemma 2.1.Given an effective divisor D and an equivalent effective divisor D′, there
exists a finite sequence of subset-firing moves which transforms D into D′ without
ever inducing debt in any vertex of the graph.

This means that if we have a divisor D with r(D) > 1, then we can move at least
one chip onto every vertex of our graph (in turn) without ever putting any of the
vertices of the graph into debt. For a given divisor D, we say D is v-reduced with
respect to some vertex v ∈ V (G) if

(1) for each v′ ∈ V (G)− {v}, D(v′) > 0, and
(2) for any nonempty subset A ⊂ V (G) − {v}, there exists v′ ∈ A such that

outdegv′(A) < D(v′).
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This means that every vertex (except possibly v) is out of debt, and that there exists
no way to fire from any subset of V (G) − {v} without inducing debt. The following
two results are proven in [2]:

Lemma 2.2.Given a divisor D ∈ Div(G) and a vertex v ∈ V (G), there exists a unique
v-reduced divisor D′ such that D′ ∼ D.

We will use Redv(D) to denote this unique v-reduced divisor.

Lemma 2.3. For a divisor D ∈ Div(G), r(D) > 1 if and only if Redv(D)(v) > 1 for
each v ∈ V (G).

Thus, we can determine if a divisor is winning divisor by checking that, for each
v ∈ V (G), the associated v-reduced divisor satisfies v ∈ supp(Redv(D)). Furthermore,
given a divisor D and a vertex v for which D is effective away from v, Algorithm 1,
developed by Dhar in [14], computes Redv(D).

Algorithm 1: Dhar’s Burning Algorithm
Data: Graph G, vertex v ∈ V (G), and divisor D ∈ Div(G), D(v′) > 0 for

v′ 6= v
Result: Redv(D)

1 V ′ := {v}, E′ := {e ∈ E(G) : v ∈ e};
2 while V ′ 6= V (G) do
3 if D(v′) < |{e ∈ E′ : v′ ∈ e}| for some v′ ∈ V (G) then
4 V ′ = V ′ + {v′}, E′ = E′ + {e ∈ E(G) : v′ ∈ e};
5 end
6 else
7 return Alg(G, v,D −∆1V (G)−V ′);
8 end
9 end

10 return D;

We offer the following intuitive explanation of Algorithm 1. We begin with a graph
G, a vertex v, and a divisor D, which is assumed to be effective away from v. Then
we “start a fire” at the vertex v. As the fire spreads through the graph, chips on
vertices act as “firefighters”, protecting their vertex from the encroaching flames. To
determine which vertices and edges of the graph catch on fire, we repeat the following
two steps until no new vertices or edges burn.

(1) If an edge is adjacent to a burning vertex, then that edge also catches fire and
begins to burn.

(2) If a vertex is adjacent to more burning edges than it has chips, then that
vertex begins to burn.

Once a stable state is reached, we chip-fire from the set of unburnt vertices. Then we
begin the burning process again starting at v. If at any point the entire graph burns,
the algorithm terminates and outputs the resulting divisor.

We refer the reader to [4] for a proof that Algorithm 1 terminates and that the
resulting divisor is indeed Redv(D). As a corollary of Lemma 2.3, we have the following
result.

Corollary 2.4. For an effective divisor D ∈ Div+(G), if there exists some v ∈ V (G)
such that v /∈ supp(D) and for which beginning Dhar’s burning algorithm at v results
in the entire graph burning, then r(D) < 1.
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2.3. Riemann–Roch for Graphs. For a graphG, we define the canonical divisor as

K :=
∑

v∈V (G)

(val(v)− 2)(v).

The canonical divisor has degree 2g(G)−2. In [2], Baker and Norine prove the following
Riemann–Roch theorem for graphs, analogous to the classical Riemann–Roch theorem
on algebraic curves:

Theorem 2.5 (Riemann–Roch for graphs). If G is a graph with D ∈ Div(G),

r(D)− r(K −D) = deg(D) + 1− g(G).

Notice that this implies r(K) = g(G) − 1. As a consequence, we can prove the
following result:

Proposition 2.6. If G is a graph with genus g(G) 6 2, then gon(G) 6 2.

Proof. If g(G) = 0, then G must be a tree, giving gon(G) = 1. If g(G) = 1 and
D ∈ Div(G) satisfies deg(D) = 2, then by Riemann–Roch for graphs, we see that

r(D) = deg(D) + 1− g + r(K −D)
= 2 + r(K −D) = 2 + (−1) = 1,

where r(K −D) = −1 since deg(K −D) < 0. Finally, if g(G) = 2, then the canonical
divisor K has deg(K) = 2 and r(D) = 1, providing an upper bound on the gonality
of G. �

2.4. Harmonic Morphisms of Graphs. We now turn to another notion of gonality
called geometric gonality, which is defined in terms of maps between graphs. If G and
G′ are graphs, a morphism ϕ : G → G′ is a map sending V (G) → V (G′) and
E(G)→ E(G′) ∪ V (G′), satisfying the following two conditions:

(1) if e = uv ∈ E(G) and ϕ(u) = ϕ(v), then ϕ(e) = ϕ(u) = ϕ(v)
(2) if e = uv ∈ E(G) and ϕ(u) 6= ϕ(v), then ϕ(e) = ϕ(u)ϕ(v).

This definition comes from [3]. Morphisms defined on graphs are sometimes indexed,
as in [12]. In this paper, we will only consider non-indexed morphisms. For a vertex
v ∈ V (G), we define the multiplicity of ϕ at v with respect to an edge e′ 3 ϕ(v) as

mϕ(v) := |{e ∈ E(G) : v ∈ e, ϕ(e) = e′}|,

for some choice of e′ ∈ E(G′) incident with ϕ(v). A morphism is harmonic if the
value of mϕ(v) does not depend on the choice of e′ ∈ E(G′). A harmonic morphism
is non-degenerate if mϕ(v) > 0 for all v ∈ V (G). We define the degree of a harmonic
morphism to be

deg(ϕ) := |{e ∈ E(G) : ϕ(e) = e′}| = |ϕ−1(e′)|,

for some choice of e′ ∈ E(G′). The degree of a harmonic morphism is well-defined
and independent of the choice of e′ [3, Lemma 2.4]. Figure 1 depicts an example of
a non-degenerate harmonic morphism. Notice that for each edge e ∈ T = ϕ(G), we
have |ϕ−1(e)| = 3.

We define the geometric gonality of a graph G to be

ggon(G) := min{deg(ϕ) : ϕ : G→ T is a non-degenerate
harmonic morphism onto a tree T}.

We remark that there are multiple inequivalent notions of geometric gonality de-
fined in the literature. In particular, some authors consider refinements of the original
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Figure 1. A non-degenerate harmonic morphism of degree 3 from
G→ T

graph [10], while other authors only consider graph morphisms that are also homomor-
phisms [22, Section 1.3]. The results in our paper hold specifically for the definition
of geometric gonality given above.

2.5. Bounds on Gonality. The following result is stated in [12] and proven here
for the reader’s convenience.

Lemma 2.7. For a graph G, gon(G) > min{|V (G)|, η(G)}.

Proof. Suppose that D ∈ Div+(G) is a divisor with deg(D) < min{|V (G)|, η(G)}.
This means that D does not contain all of the vertices of G in its support, nor can
we fire from any subset of supp(D) because any such subset A ⊆ supp(D) will have
outdegA(A) >

∑
v∈A D(v). Hence, D is not a winning divisor. �

The treewidth tw(G) of a graph G is defined to be the minimum width amongst all
possible tree decompositions of G. The following result is proven in [24].

Lemma 2.8. For a graph G, gon(G) > tw(G).

It is shown in [7] that, for a simple graph G, tw(G) > min{val(v) : v ∈ V (G)}.
Hence, we have the following result.

Lemma 2.9. For a simple graph G, gon(G) > min{val(v) : v ∈ V (G)}.

We also have the following “trivial” upper bound on gonality.

Lemma 2.10. For a graph G, gon(G) 6 |V (G)|.

This upper bound is typically only attained when the edge-connectivity of the
graph is high relative to the number of vertices. In fact, if G has a vertex v which is
not incident to any multiple edges, then gon(G) 6 |V (G)| − 1, since placing one chip
on every vertex except v results in a winning divisor.

3. Multigraphs of Gonality Three
In this section, we will prove the following result, which is simply the first part of
Theorem 1.2 and applies to all multigraphs of edge-connectivity at least 3.

Theorem 3.1. If G is a 3-edge-connected graph, then the following are equivalent:
(1) G has gonality 3.
(2) There exists a non-degenerate harmonic morphism ϕ : G→ T where deg(ϕ) =

3 and T is a tree, or |V (G)| = 3.

One approach to proving this result would be to apply [13, Theorem 10.24] with
d = 3 for the direction (1) implies (2), and then argue that if (2) holds then hyperel-
lipticity is not possible. Here we present a different approach, which will also lay the
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groundwork for the subsequent section. We will first prove some preliminary results,
which will allow us to define an equivalence relation on the vertices of G. From here,
the map from G to the resulting quotient graph provides our non-degenerate harmonic
morphism.

Lemma 3.2. If G is a graph with gon(G) = 3, then
(1) g(G) > 3, and
(2) either G is at most 3-edge-connected, or |V (G)| = 3.

Proof. Note that (1) comes as a corollary of Proposition 2.6. For (2), assume that
|V (G)| > 4 and η(G) > 4. Then, by Lemma 2.7, we have gon(G) > 4.

Figure 2. (a): Banana graph, (b): Graph with |V (G)| = 3

If |V (G)| < 3, we know that G is either a single point or the path P2 (both of which
have gonality 1), or that G is a banana graph on two vertices, which has gonality 2
(see Figure 2(a)). Hence, if |V (G)| 6 3 and gon(G) = 3, then |V (G)| = 3. Notice
that, as in Figure 2(b), we can have a 4-edge-connected graph G with gon(G) = 3
and |V (G)| = 3. �

As an aid for the reader, we introduce the 3-edge-connected graph depicted in
Figure 3. After proving each of the following lemmas, we will demonstrate the effect of
the result on this graph, culminating in the construction of a non-degenerate harmonic
morphism down to a tree.

Figure 3. Running example graph used in Section 3

For the next two lemmas, let G be a simple, 3-edge-connected graph with gon(G) =
3, and let D be a divisor on G of rank 1 and degree 3.

Lemma 3.3. For any vertex v ∈ V (G), there is a unique divisor D′ ∈ Div+(G) such
that D ∼ D′ and v ∈ supp(D′).

Algebraic Combinatorics, Vol. 2 #6 (2019) 1204



Graphs of gonality three

Proof. Since r(D) = 1, we know that for any vertex v1 ∈ V (G), there exist (not
necessarily distinct) vertices v2, v3 ∈ V (G) such that D ∼ (v1) + (v2) + (v3). Thus for
any v ∈ V (G), there exists at least one divisor D′ ∈ Div+(G) such that D ∼ D′ and
v ∈ supp(D′).

For uniqueness of D′, consider the Abel–Jacobi map S(k) : Divk
+(G)→ Jac(G) with

basepoint v0, defined as follows:
S(k)((v1) + · · ·+ (vk)) = [(v1)− (v0)] + · · ·+ [(vk)− (v0)],

where [(v)] denotes the equivalence class associated to the divisor (v) under the usual
equivalence relation on divisors. Then, by Theorem 1.8 from [2], S(k) is injective if
and only if G is (k+ 1)-edge-connected. Suppose now that D ∼ (v1) + (v2) + (v3) and
that there exist two other vertices v′2, v′3 satisfying D ∼ (v1) + (v′2) + (v′3). Then, we
see that

(v2) + (v3)− 2(v1) ∼ D − 3(v1) ∼ (v′2) + (v′3)− 2(v1).
Since G is 3-edge-connected, the Abel–Jacobi map with basepoint v1 is injective, and
so up to relabelling we have v2 = v′2 and v3 = v′3. Thus D′ is unique. �

Note that a generalization of Lemma 3.3 for divisors of degree d and rank 1 on
d-edge-connected graphs for arbitrary d ∈ Z>0 is proven in [13].

For a vertex v ∈ V (G), let Dv denote the unique effective divisor satisfying both
Dv ∼ D and v ∈ supp(Dv). Define a new equivalence relation ∼D on V (G) with
v1 ∼D v2 if and only if v1 ∈ supp(Dv2) and v2 ∈ supp(Dv1). The equivalence classes
associated with this relation are

[v]D := {v′ ∈ V (G) : v′ ∈ supp(Dv)}.
We define a morphism ϕ : G→ G/ ∼D in the following way:
(i) If v ∈ V (G), then ϕ(v) = [v]D.
(ii) If e = xy ∈ E(G) and ϕ(x) = ϕ(y), then ϕ(e) = [x]D = [y]D.
(iii) If e = xy ∈ E(G) and ϕ(x) 6= ϕ(y), then ϕ(e) = [e]D (where [e]D has

endpoints [x]D and [y]D).
In our running example from Figure 3, define D to be the divisor with one chip on

every vertex in the left-most 3-cycle of the graph. Figure 4 shows the partitioning of
vertices into equivalence classes on our running example graph, as well as the effect
of ϕ on the graph.

Since we will use this quotient morphism in our proof of Theorem 3.1, we now prove
the following lemma, which will aid us in showing that this morphism is harmonic.

Lemma 3.4. If e = uv ∈ E(G) such that [u]D 6= [v]D, then there exist exactly three
edges between the vertices in [u]D and the vertices in [v]D. Furthermore, for any given
vertex u ∈ [u]D,

|E(u, [v]D)| = Du(u).

Proof. Suppose we have an edge e = uv ∈ E(G) and we begin with the divisor Du

satisfying supp(Du) = [u]D. By Lemmas 2.1 and 2.2, there exists a unique v-reduced
divisor equivalent to Du which can be reached by a finite sequence of chip-firing
moves. Furthermore, by Lemma 3.21 of [23], we never need to fire from the vertex v
itself during the reduction process. Since u and v are connected by an edge, our first
chip-firing move must move at least one chip onto v; otherwise, we would have fired
a collection of vertices not including u, thereby obtaining another effective divisor
D′ with u ∈ supp(D′), which contradicts the uniqueness of Du. However, by the
uniqueness of the divisor Dv with v ∈ supp(Dv), we must have moved all three chips
onto [v]D with this single chip-firing move. This implies that there exist at least three
edges from [u]D to [v]D because only one chip can be sent along any given edge. On
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Figure 4. (a) Vertex partition, (b) Quotient morphism ϕ

the other hand, because we were able to successfully fire our three chips from [u]D
onto [v]D without inducing debt, this also implies that there are at most three edges
and that the number of edges outgoing from each vertex u ∈ [u]D is equivalent to
Du(u). This establishes our claim. �

Note that in our running example, the partition of vertices depicted in Figure 4(a)
shows that there are exactly three edges between every pair of adjacent vertex classes,
and that the number of edges incident with each vertex v in the class is precisely the
number of chips on v in the associated divisor Dv.

Armed with these results, we can now prove the main result of this section.

Proof of Theorem 3.1. We will first show that (1) =⇒ (2). Let G be a graph of
gonality 3. If |V (G)| 6 3, then by the proof of Lemma 3.2, we know that gon(G) = 3
only if |V (G)| = 3.

Assume now that |V (G)| > 3. Since gon(G) = 3, there exists a divisorD ∈ Div+(G)
such that deg(D) = 3 and r(D) = 1. Define the equivalence relation ∼D as before,
with [v]D again referring to the equivalence class associated to v under ∼D. Let ϕ be
the quotient morphism ϕ : G→ G/ ∼D defined above. We will now show that ϕ is a
non-degenerate harmonic morphism of degree 3.

By Lemma 3.4, we have

mϕ(v) = |{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| = Dv(v),

for each [e]D ∈ E(G/ ∼D) such that [v]D ∈ [e]D. The assumption that |V (G)| > 3
ensures that we have at least one edge between vertices in different equivalence classes.
Since Dv(v) > 0 for each v ∈ [v]D, our morphism is non-degenerate. Furthermore,
since mϕ(v) = Dv(v) does not depend on our choice of [e]D ∈ E(G/ ∼D), our
morphism is harmonic. Hence,

deg(ϕ) =
∑

v∈[v]D

|{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| =
∑

v∈[v]D

Dv(v) = 3.
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We will now show that ϕ(G) = G/ ∼D is a tree. We define the pullback map
ϕ∗ : Div(G′)→ Div(G) associated to a harmonic morphism ϕ : G→ G′ as

(ϕ∗(D′))(v) = mϕ(v) ·D′(ϕ(v)).
For any two vertices x, y ∈ ϕ(G), we see that

ϕ∗((x)) =
∑

v∈V (G),
ϕ(v)=x

mϕ(v) · (v) =
∑

v∈[x]D

Dv(v) · (v)

∼
∑

v′∈[y]D

Dv′(v′) · (v′) =
∑

v′∈V (G),
ϕ(v′)=y

mϕ(v′) · (v′) = ϕ∗((y)).

By Theorem 4.13 from [3], the induced homomorphism ϕ : Jac(G′) → Jac(G) is
injective. Since ϕ∗((x)) ∼ ϕ∗((y)), we find that (x) ∼ (y). Applying Lemma 1.1 of [3]
now shows that G/ ∼D is a tree.

For the reverse direction (2) =⇒ (1), first suppose that |V (G)| = 3. Then, by
Lemma 2.7,

gon(G) > min{η(G), |V (G)|} = 3
and by Lemma 2.10, gon(G) 6 3. Suppose now that there exists a non-degenerate har-
monic morphism ϕ : G→ T such that deg(ϕ) = 3 and T is a tree. Fix x0 ∈ T and let

D = ϕ∗((x0)) =
∑

v∈V (G):ϕ(v)=x0

mϕ(v) · (v).

It is clear that D is effective and by Lemma 2.13 in [3], deg(D) = 3. We claim that
r(D) > 1. Pick x ∈ G. Since T is a tree, by Lemma 1.1 from [3], (ϕ(x)) ∼ (x0). Now,
by Proposition 4.2 (again from [3]),

D = ϕ∗((x0)) ∼ ϕ∗((ϕ(x))) =
∑

v∈V (G):ϕ(v)=ϕ(x)

mϕ(v) · (v)

= mϕ(x) · (x) +
∑

v∈V (G):v 6=x,ϕ(v)=ϕ(x)

mϕ(v) · (v)

= mϕ(x) · (x) + E,

where E is an effective divisor. Notice that because ϕ is non-degenerate, mϕ(x) > 0
so D ∼ c · (x) + E for each x ∈ V (G) where c ∈ Z>0. Hence, we find that r(D) > 1.
By Lemma 2.7, it follows that gon(G) = 3. �

Figure 5. The 3-cube Q3 with gonality 4
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Theorem 3.1 can be applied to determine the geometric gonalities of graphs with
known divisorial gonalities. For example, consider the 3-cube graph Q3 illustrated
in Figure 5, which is 3-edge-connected. It can be computationally verified that
gon(Q3) = 4. Since this graph is not a tree and doesn’t have divisorial gonality
2 or 3, we know by Theorems 1.1 and 3.1 that ggon(Q3) > 4. Figure 5 depicts a
non-degenerate harmonic morphism on Q3 of degree 4, so we must have ggon(Q3) = 4.

We can also apply Theorem 3.1 to certain graphs with bridges, assuming that they
become 3-edge-connected after contracting these bridges. This is due to the following
proposition, which comes as an immediate consequence of Corollary 5.10 in [3] on
rank-preservation under bridge contraction:

Proposition 3.5. If G is a graph and G′ is the graph obtained by contracting every
bridge of G, then gon(G) = 3 if and only if gon(G′) = 3.

4. Simple Graphs of Gonality Three
We now restrict our attention to graphs that are simple. The following theorem ex-
tends Theorem 3.1 by adding an extra equivalent statement, under a stronger con-
nectivity assumption.

Theorem 4.1. If G is a simple, 3-vertex-connected combinatorial graph, then the fol-
lowing are equivalent:

(1) G has gonality 3.
(2) There exists a non-degenerate harmonic morphism ϕ : G → T , where

deg(ϕ) = 3 and T is a tree.
(3) There exists a cyclic automorphism σ : G → G of order 3 that does not fix

any edge of G, such that G/σ is a tree.

Notice that we no longer need to worry about the case where |V (G)| = 3; this
is because there are no simple 3-vertex-connected graphs with exactly 3 vertices.
Also note that while statements (1) and (2) in Theorem 4.1 are nearly identical to
those given in Theorem 1.1, statement (3) now requires the extra condition that the
automorphism σ does not fix any edge of G. In our proof of this theorem, we will
show that this condition is required for the implication (3) =⇒ (2) to hold.

u1

u2

u3

v1

v2

w1

w2

w3

Figure 6. A 3-edge-connected graph of gonality 3 without an auto-
morphism of order 3

We should also remark why we need the stronger assumption that our graph is
3-vertex-connected instead of 3-edge-connected. Consider the graph G in Figure 6.
The divisor (v1) + 2(v2) has positive rank, so G has gonality at most 3; and since
G has K4 as a minor, the treewidth of the graph, and thus its gonality, is at least 3
by [6] and Lemma 2.8. Moreover, G is 3-edge-connected, although it is not 3-vertex-
connected, since removing v1 and v2 disconnects the graph. Finally, let us determine
the automorphism group of G. Any automorphism must send v2 to v2 since it is the
only vertex of valence 5, and v1 to v1 since it is the only vertex not on a cycle of length
3. From there, using adjacency relations of vertices we can determine that Aut(G) is
isomorphic to Z/2Z × Z/2Z × Z/2Z, and can be generated by three automorphisms
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of order 2: one switching u2 and u3, one switching w2 and w3, and one switching
ui with wi for all i in {1, 2, 3}. Since |Aut(G)| = 8, the graph G does not have an
automorphism of order 3, even though it is 3-edge-connected and has gonality 3.

Now, let D be a divisor of degree 3 and rank 1 on a graph of gonality 3. Recall the
equivalence relation ∼D on V (G) resulting from Lemma 3.3: v1 ∼D v2 if and only if
v1 ∈ supp(Dv2) and v2 ∈ supp(Dv1). We will use this relation to define a permutation
σ of the vertices of G, which we will then prove to be a cyclic automorphism of order
3. First, we need the following lemma.
Lemma 4.2. Let G be a simple, 3-vertex-connected graph with gon(G) = 3, and with
D ∈ Div+(G) such that r(D) = 1 and deg(D) = 3. If D ∼ (v1) + (v2) + (v3), then
either v1 = v2 = v3 or v1, v2, and v3 are all distinct.
Proof. Suppose for the sake of contradiction that there exists a divisor D′ ∈ Div+(G)
such thatD′ ∼ D andD′ = 2(v1)+(v2) where v1 6= v2. Let v0 ∈ V (G) be distinct from
v1 and v2, and start Dhar’s burning algorithm at v0. Since G is 3-vertex-connected,
the graph G−{v1, v2} is connected, so every vertex in G besides v1 and v2 will burn.
Since val(v2) > 3 and since G is simple, there are at least two edges connecting v2
to G− {v1, v2}. Both these edges are burning, so v2 burns since it only has one chip.
At this point the whole graph besides v1 is burning. Since val(v1) > 3, there are at
least three burning edges incident to v1. Since v1 has two chips, v1 burns, and thus
the entire graph burns. This shows that D′ is v0-reduced. Since v0 /∈ supp(D′), D′ is
not a winning divisor, which is a contradiction to D′ ∼ D. �

Figure 7. Three possible edge cases for Lemma 3.4

Now, we again consider the equivalence classes [v]D of V (G) under the relation
∼D. Recall from Lemma 3.4 that if uv ∈ E(G) and [u]D 6= [v]D, then there are
exactly three edges between the vertices in [u]D and in [v]D. By Lemma 4.2, we have
|[v]D| = 1 or |[v]D| = 3 for each vertex v ∈ V (G). The cases depicted in Figure 7 are
thus the only possible edge configurations between equivalence classes. Furthermore,
note that the third case in Figure 7 is impossible because we cannot send all three
chips along a single edge at once.

Define σ : V (G) → V (G) to be the map which permutes the vertices of each
equivalence class [v]D in the following fashion: Choose a vertex v1 ∈ V (G) such that
| supp(Dv1)| = 3. Such a vertex must exist because otherwise, since our graph is
connected and not a single vertex, we would be in the third case of Figure 7. For
the unique vertices v1, v2, v3 ∈ [v1]D, let σ(v1) = v2, σ(v2) = v3, and σ(v3) = v1.
For each edge from a vertex in [v1]D to a vertex in another equivalence class [u1]D,
define σ as follows. If e = v1u1 ∈ E(G) with | supp(Du1)| = 3, then let σ(u1) = u2
where u2 ∈ [u1]D is the unique vertex such that σ(v1)u2 ∈ E(G). Then we must have
σ(u2) = u3 where u3 is the unique vertex with σ(v2)u3 ∈ E(G). On the other hand,
if | supp(Du1)| = 1, then let σ act as the identity on u1.
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Let this process, where vertex classes induce orderings on their adjacent vertex
classes, propagate outwards. If we reach a situation where a vertex class with one
vertex induces an order on a vertex class with three vertices, pick some arbitrary
ordering on those three vertices and define σ accordingly. We will show that the
order chosen does not matter, and that this process provides us with our desired
automorphism.
Proposition 4.3. The map σ is a cyclic automorphism of order 3 that does not fix
any edge of G.
Proof. Since our graph G is connected, the propagation process induces an order on
each vertex class in G. We now argue that we never run into the problem that the
induced orderings are incompatible with each other. Suppose for the sake of contra-
diction that we have a vertex class [v]D with one ordering induced by an adjacent
class [u]D and another ordering induced by an adjacent class [w]D. It is clear that
[u]D 6= [w]D and that |[v]D| = 3. However, this implies that there are at least two
paths from each vertex in our original vertex class [v1]D into [v]D. Consider the di-
visor Dv with [v]D ∈ supp(Dv), and begin Dhar’s burning algorithm at our starting
vertex from [v1]D. We will show that no matter how the algorithm runs, we reach a
contradiction, either to r(D) > 1 or to [u]D 6= [w]D.

Let va, vb, vc be the three vertices in [v]D. First, assume that at least one vertex in
[v]D burns, say va. Since G is 3-vertex-connected, it is still connected after removing
vb and vc, so every other vertex in G must burn. We also know that val(vb) and val(vc)
are both at least 3, and so these vertices are adjacent to at least two burning vertices.
Since each has one chip, both of these vertices (and thus the entire graph) will burn.
This is a contradiction, since r(D) > 1.

Now assume none of va, vb, and vc burns. Since there are two burning edges coming
into [v]D, one from [u]D and one from [w]D, these burning edges must be incident to
different vertices among va, vb, and vc; otherwise one of these vertices would burn.
When the whole graph does not burn, Dhar’s burning algorithm fires chips from all
unburnt vertices, which moves a chip to [u]D and a chip to [w]D. This yields a rank 1
divisor of degree 3 with support in both [u]D and [w]D, a contradiction to [u]D 6= [w]D
by Lemma 3.3.

Having reached a contradiction in all cases, we know that the propagation process
can never lead to incompatible orderings. Notice also that if e = uv ∈ E(G), then
σ−1(u)σ−1(v) ∈ E(G) because σ−1(u) = σ2(u) and σ−1(v) = σ2(v). Hence, we
have shown that σ is an automorphism. By definition, σ is cyclic and we have
already demonstrated that σ has order 3. Finally, we see that σ does not fix any
edge of G because we have already shown that we cannot have an edge between two
equivalence classes with one vertex each (recall that the third edge case in Figure 7
is impossible). �

We may now define the same quotient morphism ϕ : G→ G/ ∼D as in Section 3.
However, notice that our equivalence classes of V (G) can now be viewed as orbits
under the action of σ. Thus, G/ ∼D= G/σ.
Proposition 4.4. The quotient morphism ϕ : G → G/σ is harmonic and nondegen-
erate. Moreover, G/σ is a tree.

The proof of this proposition will be similar to an argument from the proof of
Theorem 3.1, when we showed that the quotient map from G to G/ ∼D was harmonic
of degree 3, and that G/ ∼D was a tree.

Proof. Since σ is an automorphism, for each vertex v ∈ V (G) such that v ∈ [v]D,
there exists some edge e ∈ E(G) such that v ∈ e and ϕ(e) = [e]D. (Otherwise G/σ
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would not be connected.) Hence, ϕ is non-degenerate. To show that ϕ is harmonic, fix
a vertex v ∈ V (G) and consider all edges [e]D ∈ E(G/σ) such that ϕ(v) = [v]D ∈ [e]D.
If |[v]D| = 3, then |{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| = Dv(v) = 1, no matter which
edge e we pick. On the other hand, if |[v]D| = 1, then |{e ∈ E(G) : v ∈ e, ϕ(e) =
[e]D}| = Dv(v) = 3, which is also independent of our choice of e. Hence, ϕ is harmonic.

For any given edge [e]D ∈ E(G/σ),

|ϕ−1([e]D)| =
∑

v∈[v]D

|{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| =
∑

v∈[v]D

Dv(v),

for any choice of [v]D such that [v]D ∈ [e]D. Thus, ϕ is a degree 3 morphism. The
same argument from the proof of Theorem 3.1 shows that G/σ is a tree. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We already have the equivalence of (1) and (2) from Theo-
rem 3.1. The implication (1) =⇒ (3) follows from Proposition 4.3.

For (3) =⇒ (2), suppose that there exists a cyclic automorphism σ : G → G of
order 3 that does not fix any edge of G, such that G/σ is a tree. We wish to show that
ϕ : G→ G/σ is a non-degenerate harmonic morphism of degree 3. The argument for
this is nearly identical to the argument from Proposition 4.4. However, the proof of
harmonicity requires a few additional details.

Fix a vertex v ∈ V (G) and consider all edges [e]D ∈ E(G/σ) such that ϕ(v) =
[v]D ∈ [e]D. Since σ has order 3, either |ϕ−1([v]D)| = 3 or |ϕ−1([v]D)| = 1. If
|ϕ−1([v]D)| = 3, then we claim that |{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| = 1, no
matter which edge e we pick. To see this, suppose there are multiple edges e1 = vw1
and e2 = vw2 in this set. Then, without loss of generality, σ(e1) = e2 and since v is
not fixed under σ, we must have σ(v) = w2. But then ϕ sends v and w2 to the same
point, so e2 is mapped to a point rather than an edge, a contradiction. On the other
hand, if |ϕ−1([v]D)| = 1, then we claim that |{e ∈ E(G) : v ∈ e, ϕ(e) = [e]D}| = 3,
no matter which edge e we pick. This is because σ fixes v but does not fix any of its
incident edges. Hence, these edges must cycle around v with order 3. We have now
shown that ϕ is harmonic. By the same computation as in Proposition 4.4, ϕ also has
degree 3. �

Unlike Theorem 3.1, which only relates divisorial and geometric gonalities, Theo-
rem 4.1 allows us to determine divisorial gonalities using information about graph au-
tomorphisms. For example, consider the Frucht graph in Figure 8, which is the smallest
trivalent graph with no nontrivial automorphisms [16]. It is 3-vertex-connected, and
since it has no cyclic automorphisms of order 2 or 3 it must have divisorial gonality
at least 4. It can be computationally verified that the divisor depicted in Figure 8 is
indeed a winning divisor, so the Frucht graph has divisorial gonality 4.

Having proved both Theorem 3.1 and Theorem 4.1 we have established our main re-
sult, Theorem 1.2. We now ask whether it can be strengthened. In particular, since the
condition of being 3-vertex-connected is relatively strong, we might wonder whether
a weaker condition, such as being trivalent, is sufficient for Theorem 1.2 to hold. The
next result shows that this is not the case.

Proposition 4.5. If G is a simple, bridgeless trivalent graph that is not 3-vertex-
connected, then gon(G) > 4.

Proof. First we note that a trivalent graph is 3-vertex-connected if and only if it is
3-edge-connected [9, Theorem 5.12], so our graph G is not 3-edge-connected. Since G
is also bridgeless, it must be exactly 2-edge-connected. This means that there exists
some way to partition G into two subgraphs, H1 and H2, connected by exactly two
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Figure 8. The Frucht graph with gonality 4

edges, as illustrated in Figure 9. Suppose for the sake of contradiction that there exists
D ∈ Div+(G) with deg(D) = 3 and r(D) = 1. Then there exists some divisor D′ ∼ D
such thatD′ has exactly two chips onH1 and one chip onH2: we must be able to move
at least one chip onto both subgraphs, and since there are only two edges connecting
the subgraphs, we can move at most two chips in a single subset firing move.

Figure 9. Simple, trivalent, exactly 2-edge-connected graph

Let v1, v2 ∈ H1 and v3 ∈ H2 be the vertices such that supp(D′) = {v1, v2, v3}.
We will split into two cases: first where removing v1 and v2 disconnects the graph,
and second where removing them leaves the graph connected. We split the former
case into two subcases, depending on the relationship of v1 and v2 to a connected
component of the disconnected graph which does not contain v3.

Assume that removing v1 and v2 disconnects the graph into at least two connected
components. A trivalent 2-edge-connected graph is also 2-vertex-connected, so it fol-
lows that v1 6= v2. Let H3 be one of the connected components which does not contain
v3. This implies that there exists at least one edge incident to both v1 and some vertex
in H3, and that the same holds for v2. Since each vertex is trivalent, by symmetry,
we have at most two edges connecting each vertex in {v1, v2} with vertices in H3.

First we deal with the subcase that there exist at least two edges incident to either
v1 or v2 entering H3, and at least one edge incident to the other vertex entering H3.
Notice that we are at a state where we cannot fire onto H3 without inducing debt
(see the bottom graph in Figure 10). Choose a vertex v0 ∈ H3. Since we are unable
to fire without inducing debt, at least one of our two vertices has fewer chips than
edges incident to H3. Hence, if we begin Dhar’s burning algorithm at v0, everything
in H3 must burn, including at least one of the two vertices with chips. This forces
the other vertex with a chip to burn as well. Since we have only one other vertex
with exactly one chip, this implies that the whole graph burns.

Now we handle the subcase that there exist exactly one edge incident to v1 and
exactly one edge incident to v2 entering H3. Then there exist two vertices v′1, v′2 ∈ H3
which are the endpoints of these edges (see the top graph in Figure 10). We know
that v′1 6= v′2 because G is 2-vertex-connected. Fire onto H3, moving the two chips
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from {v1, v2} onto {v′1, v′2}. Suppose that we can continue firing in this manner,
i.e. moving chips onto two vertices which are each connected by exactly one edge
to the rest of the graph. Since our graph is finite, this process must terminate at
some point. If we are able to hit all vertices in H3, we have a contradiction because
this implies that at least two vertices in H3 are not trivalent. Before hitting all of
the vertices in H3, we reach a state as in the previous case, with at least two edges
incident to either of the two vertices entering the subgraph of H3 that we are unable
to fire onto. (Notice that we cannot fire from either vertex separately either, because
this would imply the existence of a bridge.)

We initially assumed that r(D) = 1, so we have reached a contradiction. Thus, we
know that removing the set {v1, v2} cannot disconnect the graph.

Figure 10. Two cases: removal of {v1, v2} disconnects graph

Now we assume that removing v1 and v2 does not disconnect the graph. Choose a
vertex v′0 ∈ H2 such that v′0 6= v3 (such a vertex exists due to trivalence). If we begin
Dhar’s burning algorithm at v′0, we find that the entirety of H2 must burn, since
there exists only one vertex with a single chip in H2. The fire then spreads across the
two edges incident to H1. Since removing v1 and v2 does not disconnect the graph,
the fire must burn every vertex in H1 except possibly v1 and v2. However, because
our graph is simple, there exists at most one edge between v1 and v2, implying that
each must have at least two incident burning edges. Hence, the whole graph burns,
implying that r(D) < 1. Again, this is a contradiction. We conclude that the gonality
of the graph is at least 4. �

It is worth noting that this result does not extend to multigraphs. Figure 11 depicts
an example of a graph which is bridgeless, trivalent, and not 3-vertex-connected, but
has gonality 3.

Figure 11. Multigraph G with gon(G) = 3
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Corollary 4.6. If G is a simple, bridgeless trivalent graph that is not 3-vertex-
connected, then ggon(G) 6= 3.

Proof. By Proposition 4.5, G does not have gonality 3. Notice that arguing that
(2) =⇒ (1) in the proof of Theorem 3.1 does not require 3-edge-connectivity. Hence,
there exists no non-degenerate harmonic morphism of degree 3 from G to a tree. �

5. Constructing Graphs of Gonality 3
In [8], Chan presents the following construction for all trivalent, 2-edge-connected
graphs of gonality 2. Choose a tree T where each vertex v ∈ V (T ) satisfies val(v) 6 3.

(1) Duplicate T , making two copies T1 and T2.
(2) For each vertex v1 ∈ T1 with val(v1) 6 2, connect it to the matching vertex

in T2 with 3− val(v1) edges.
Every graph constructed in this way is called a ladder. By [8, Theorem 4.9], each

graph arising from this construction has gonality 2, and every 2-edge-connected triva-
lent graph of gonality 2 with genus at least 3 comes from such a construction.

We now provide a similar construction for graphs of gonality 3. In constrast to the
results of [8], not every graph of gonality 3 arises from this construction. For instance,
the complete graph on 4 verticesK4 does not arise from this construction, even though
it is 3-vertex-connected and simple with gonality 3; to see this, note that the number
of vertices in graphs derived from our construction is always a multiple of 3.

Proposition 5.1. Let T be an arbitrary tree that is not a single vertex, and let S ⊂
V (T ) consist of at least two vertices. Construct a graph T (T ) as follows:

(1) Duplicate T twice, for a total of three copies of T . Call these copies T1, T2,
and T3.

(2) For each vertex v1 ∈ T1 with v1 ∈ S and its corresponding vertices v2 ∈ T2 and
v3 ∈ T3, connect each pair of vertices with an edge so that all three vertices
are connected in a 3-cycle.

Then gon(T (T )) = 3.

In the following proof, we refer to the Cartesian product G � H of two graphs G
and H. This is the graph with vertex set V (G)× V (H), and an edge between (u, u′)
and (v, v′) if and only if u′ = v′ and uv ∈ E(G), or u = v and u′v′ ∈ E(H).

Proof. It is clear that the morphism ϕ : T (T )→ T which maps corresponding triples
of vertices {v1, v2, v3} to each other is a non-degenerate harmonic morphism. Notice
that arguing that (2) =⇒ (1) in the proof of Theorem 3.1 does not require 3-edge-
connectivity. Hence, there exists a divisor D on T (T ) such that deg(D) = 3 and
r(D) > 1, meaning gon(T (T )) 6 3.

Since S contains at least two vertices, the graph T (T ) has K2 � K3 as a subgraph.
This graph in turn has K4 as a minor, which is the forbidden minor of graphs of
treewidth 2 [6]. Thus, gon(T (T )) > tw(T (T )) > 3 by Lemma 2.8. We conclude that
gon(T (T )) = 3. �

See Figure 12 for an example of the construction, where we choose S consist of all
vertices of degree at most 2. To instead obtain an at-most-trivalent graph, one could
let S be the set of leaves.

Corollary 5.2. If T is a tree with at least two vertices, then gon(T � K3) = 3.

Proof. Choosing S = V (T ) and performing our construction yields T (T ) = T � K3,
which thus has gonality 3. �
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Figure 12. Construction of T (T )

We can extend our construction to include certain multigraphs. Notice that we
can add arbitrary edges between corresponding triples of vertices (which are already
connected via a 3-cycle) while retaining a graph of gonality 3. This is because we
still have the same non-degenerate harmonic morphism (the added edges are simply
contracted) and because treewidth of a multigraph is equal to the treewidth of the
underlying simple graph.

We can also generalize this construction somewhat to create graphs of gonality
k > 3, although we are more constrained in what set of vertices we can choose for S.
Make k copies of a tree T that has at least two vertices. For each vertex v of T with
val(v) 6 k − 1, connect all the k copies of v to each other with

(
k
2
)
edges. (Including

some vertices with val(v) > k is also allowable.) Call the resulting graph T (T ). Our
construction guarantees that each vertex has valence at least k, so gon(T (T )) > k
by Lemma 2.9. There is a natural harmonic morphism of degree k from T (T ) to T ,
which by the argument from (2) =⇒ (1) in the proof of Theorem 3.1 shows that
gon(T (T )) 6 k. We conclude that gon(T (T )) = k.

6. Future Directions
There are many cases of graphs of gonality 3 that have not yet been covered by our
results. One could consider multigraphs that are not 3-edge-connected, and simple
graphs that are neither 3-vertex-connected nor trivalent. Moreover, all the results in
this paper only hold for combinatorial graphs, as opposed to metric graphs, which
have lengths associated to their edges. A natural generalization of our work would
be to determine the extent to which our results hold for metric graphs. The work
by [8] on hyperelliptic graphs was done in the setting of metric graphs, so some of our
results may extend via similar arguments.

Another natural question would be that of algorithmically testing whether or not
a graph has gonality 3. In general, computing the divisorial gonality of a graph is NP-
hard [18], but it is possible to check if a graph has gonality 2 in O(n logn+m) time [5].
The next step would be to develop an efficient algorithm for determining if a graph has
gonality 3. There is a naïve polynomial time algorithm that enumerates all effective
divisors of degree 3, then tests each such divisor against all possible placements of −1
chips using Dhar’s burning algorithm. However, a more efficient algorithm could be a
helpful computational tool. The criteria we present in Theorem 1.2 may be useful for
this endeavor.
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