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Rank two non-commutative Laurent
phenomenon and pseudo-positivity

Dylan C. Rupel

Abstract We study polynomial generalizations of the Kontsevich automorphisms acting on
the skew-field of formal rational expressions in two non-commuting variables. Our main result
is the Laurentness and pseudo-positivity of iterations of these automorphisms. The resulting
expressions are described combinatorially using a generalization (studied in [10]) of the com-
binatorics of compatible pairs in a maximal Dyck path developed by Lee, Li, and Zelevinsky
in [8].

By specializing to quasi-commuting variables we obtain pseudo-positive expressions for rank
2 quantum generalized cluster variables. In the case that all internal exchange coefficients are
zero, this quantum specialization provides a positive combinatorial construction of counting
polynomials for Grassmannians of submodules in exceptional representations of valued quivers
with two vertices.

Let k be any field of characteristic zero. Write K = k(X,Y ) for the skew-field of ratio-
nal functions in non-commuting variables X and Y . Intuitively, writing π : k(X,Y )→
k(x, y) for the commutative specialization, we may formally invert any elementW ∈ K
for which π(W ) 6= 0; this idea has been made precise in [16] by considering iterated
localizations of the free algebra k〈X,Y 〉.

For any nonzero polynomial P ∈ k[z], consider the following k-linear automorphism
of K:

FP :
{
X 7→ XYX−1

Y 7→ P (Y )X−1.

We remark for later use that the element Q := XYX−1Y −1 is fixed by FP for any
nonzero polynomial P . Also note that F−1

P is given by X 7→ P (X)Y −1 and Y 7→
Y XY −1.

Fix nonzero monic polynomials P1, P2 ∈ k[z] such that P1(0) = 1 = P2(0), say

Pi(z) = pi,0 + pi,1z + · · ·+ pi,di−1z
di−1 + pi,diz

di

with pi,0 = pi,di = 1 for i = 1, 2. Set A+ = Z>0[p1,i, p2,j : 0 6 i 6 d1, 0 6 j 6 d2] and
call this the pseudo-positive semiring associated to P1 and P2.

We will write P̄1(z) := zd1P1(z−1) and P̄2(z) := zd2P2(z−1) for the polynomials
obtained from P1 and P2 by reversing the order of the coefficients. Note that these are
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again polynomials of the same form. For notational convenience, for k ∈ Z we define

(1) Pk = pk,0 + pk,1z + · · ·+ pk,dk−1z
dk−1 + pk,dkz

dk =


P̄2 if k ≡ 0 mod 4;
P1 if k ≡ 1 mod 4;
P2 if k ≡ 2 mod 4;
P̄1 if k ≡ 3 mod 4.

Here we use the notation dk := d1 if k is odd and dk := d2 if k is even.
Set X0 := X and Y0 := Y .

Main Theorem. For any m > 0, the elements Xm, Ym ∈ K given by

(2) Xm := FP1FP2 · · ·FPm(X) and Ym := FP1FP2 · · ·FPm(Y )

are contained in the semiring A+〈X±1, Y ±1〉 ⊂ K of pseudo-positive non-commutative
Laurent polynomials.

Remark. When P1 and P2 are monic and of the same degree but P1(0) = P2(0) 6= 1,
this result also holds and can be deduced from the Main Theorem by passing to an
appropriate algebraic extension of k, then rescaling all variables. The same is true
when the coefficients p1,0, p1,d1 , p2,0, p2,d2 6= 0 are arbitrary but satisfy a balancing
condition which we leave as an exercise for the reader to work out. In the absence of
such a balancing condition the definitions of the polynomials Pk should be adjusted
according to the exchange polynomial mutation rules developed by Chekhov and
Shapiro [4]. Also, since FP (X) = QY for any polynomial P , we have Xm+1 = QYm
for m > 0; in particular, the claim for the Xm follows from the claim for the Ym.

Remark. If d1d2 6 3, the Main Theorem can be observed quite explicitly by com-
puting X1, X2, . . . , Xm by hand for

m =


4 if d1d2 = 0;
5 if d1d2 = 1;
6 if d1d2 = 2;
8 if d1d2 = 3;

and observing in each case that these are given by pseudo-positive non-commutative
Laurent polynomials with Xm = QXQ−1. The combinatorics below can be adapted
to these cases, however in everything that follows we assume d1d2 > 4 as such cases
may be treated more uniformly.

For the following example, observe that the Ym for m > 2 may alternatively be
computed via the following non-commutative analogue of generalized cluster exchange
relations:

(3) YmQYm−2 = 1 + pm,1Ym−1 + · · ·+ pm,dm−1Y
dm−1
m−1 + Y dmm−1.

Example. Let P1 = 1 + p1,1z + p1,2z
2 + z3 and P2 = 1 + p2,1z + z2. Then the first

few non-commutative generalized cluster variables Ym are given by:

Y1 = (1 + p1,1Y + p1,2Y
2 + Y 3)X−1, Y2 = (1 + p2,1Y1 + Y 2

1 )Y −1Q−1,

Y3 = (1 + p1,2Y2 + p1,1Y
2
2 + Y 3

2 )Y −1
1 Q−1.

While Y2 is manifestly an element of A+〈X±1, Y ±1〉, a highly nontrivial cancella-
tion must occur in the expansion of Y3 in order for it to be a pseudo-positive non-
commutative Laurent polynomial. Such cancellations indeed occur and we obtain the
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expansion

Y3 =
(
XY −3 + p1,2(p2,1 + Y1)Y −1 + p1,1(p2,1 + Y1)Y −2

+p1,1(1 + p2,1Y1 + Y 2
1 )XY −1X−1(p2,1 + Y1)Y −1

+(p2,1 + Y1)Y −3 + (1 + p2,1Y1 + Y 2
1 )XY −1X−1(p2,1 + Y1)Y −2

+(1 + p2,1Y1 + Y 2
1 )XY −1X−1(1 + p2,1Y1 + Y 2

1 )XY −1X−1(p2,1 + Y1)Y −1
)
Q−1.

The automorphisms FPk are generalizations of automorphisms of K introduced by
Kontsevich [7] which are recovered in the binomial case when p1,i = 0 = p2,j for
1 6 i 6 d1 − 1 and 1 6 j 6 d2 − 1. In this binomial case, Kontsevich conjectured
the Laurentness and positivity of the non-commutative cluster variables Xm and Ym.
This terminology is justified by specializing to commutative variables through which
we recover the initial cluster mutations in the rank two cluster algebra [6] associated

to the exchange matrix
[

0 d2
−d1 0

]
after composing with the transposition of initial

cluster variables. In the binomial case, Laurentness was established by Usnich [15]
when d1 = d2 = 2, and by Berenstein and Retakh [2] for arbitrary polynomial degrees.
Positivity in the binomial case was proven by Di Francesco and Kedem [5] when
d1d2 = 4, by Lee and Schiffler [9] for d1 = d2, and by the author [12] for arbitrary
polynomial degrees.

The Laurentness of Xm and Ym was established by Usnich [14] in the special case
where Pk = P1 for all k ∈ Z. We will prove the Main Theorem by providing a
combinatorial construction of the elements Ym, called non-commutative generalized
cluster variables. This combinatorics was studied by the author [10] to construct
greedy bases for (commutative) rank two generalized cluster algebras by building
upon the notion of compatible pairs in a maximal Dyck path developed by Lee, Li,
and Zelevinsky [8] for constructing greedy bases of rank two cluster algebras.

For a = (a1, a2) ∈ Z2
>0, let D := Da denote the lattice path in the rectangle

[0, a1] × [0, a2] which begins at (0, 0) takes unit length East and North steps to end
at (a1, a2) and is maximal among all such Dyck paths that never pass above the main
diagonal of the rectangle [0, a1] × [0, a2]. In other words, no lattice point of D lies
strictly above the main diagonal and any lattice point which lies strictly above D also
lies strictly above the main diagonal. Label the edges of D as E = {1, . . . , a1 + a2},
where this bijection of ordered sets respects the natural order on edges from (0, 0)
to (a1, a2). There is a partition E = H t V , where H (resp. V ) denotes the set of
horizontal (resp. vertical) edges of D.

For edges e, e′ ∈ E, we write ee′ for the subpath of D beginning with e traveling
North-East and ending with e′. By convention, this path will be empty if e is to the
North-East of e′, while the path ee contains the single edge e. Let ee′ (resp. ee′)
denote the path obtained from ee′ by removing the edge e (resp. e′). Write (ee′)H
(resp. (ee′)V ) for the set of horizontal (resp. vertical) edges in the path ee′. We
abbreviate |ee′|H := |(ee′)H | and |ee′|V := |(ee′)V |.

Remark 1.1. In [8] and [10], the definition for subpaths ee′ of D includes a “wrap-
around” condition whereby ee′ is non-empty for e′ < e, however following [10, Re-
mark 2.21] such a condition will not be necessary in our situation and all relevant
results quoted from [10] will be modified accordingly.

Definition 1.2. A grading ω : E → Z>0 (on the edges) of D is called compatible if:
for every h ∈ H and v ∈ V , there exists an edge e along the path hv so that at least
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one of the following holds:

e 6= v and |he|V =
∑

h′∈(he)H

ω(h′);(HGC)

e 6= h and |ev|H =
∑

v′∈(ev)V

ω(v′).(VGC)

Recall that d1, d2 ∈ Z>0 denote the degrees of the exchange polynomials P1 and
P2 respectively. We say that a grading ω of D is (d1, d2)-bounded if ω(h) 6 d1 for all
h ∈ H and ω(v) 6 d2 for all v ∈ V . For the remainder of the paper we will restrict
to such bounded gradings ω, though we continue to write ω : E → Z>0 throughout.
This notion of compatible gradings was introduced in [10] building upon the notion of
compatible subsets of E developed in [8] which can be recovered when ω(h) ∈ {0, d1}
for h ∈ H and ω(v) ∈ {0, d2} for v ∈ V .

For a (d1, d2)-bounded grading ω, we associate the non-commutative monomial
wtω(e) to each edge e ∈ E as follows:

(4) wtω(e) =
{
p1,ω(e)Y

ω(e)X−1 if e ∈ H;
p2,d2−ω(e)X

ω(e)+1Y −1X−1 if e ∈ V .

Thus we may associate a non-commutative Laurent monomial to each (d1, d2)-
bounded grading ω by taking the product of the associated non-commutative weights
in the natural order along the path D:
(5) YD(ω) := wtω(1) wtω(2) · · ·wtω(a1 + a2).
Define YD :=

∑
ω
YD(ω), where the sum ranges over all (d1, d2)-bounded compatible

gradings ω of D.
We will mainly be interested in the maximal Dyck paths Dm := Dam for integer

vectors am ∈ Z2, m > 1, defined recursively by

(6) a0 = (0,−1), a1 = (1, 0), am−1 + am+1 =
{
d2am if m is odd;
d1am if m is even.

These vectors are precisely the almost positive roots in the root system associated to

the Cartan matrix
[

2 −d2
−d1 2

]
which describe the denominator vectors of cluster vari-

ables. The Main Theorem is an immediate consequence of the following combinatorial
construction of the non-commutative generalized cluster variables Ym.

Theorem 1.3. For m > 1, we have YDm = Ym.

Example 1.4. We continue the example from above with P1 = 1 + p1,1z+ p1,2z
2 + z3

and P2 = 1 + p2,1z + z2.
For m = 1, we get a1 = (1, 0) so that D1 = . This maximal Dyck path consists

of a single horizontal edge which may be assigned any of the weights 0, 1, 2, 3, a situa-
tion which we denote by the dashed edge . Summing the monomial contributions
coming from (4) for each choice of weight, we get

YD1 = X−1 + p1,1Y X
−1 + p1,2Y

2X−1 + Y 3X−1 = Y1

and this same equality holds for any dashed edge below.
For m = 2, we get a2 = (2, 1) so that D2 = . In this case, the compatible

weightings of the edges in D2 are given by

0 1 2
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where we again use a dashed line to indicate that a horizontal edge may be assigned
any of the weights 0, 1, 2, 3 without affecting compatibility. Summing the monomial
contributions coming from (4) for each choice of weight, we get

YD2 = Y 2
1 XY

−1X−1 + Y1X
−1p2,1X

2Y −1X−1 +X−1X−1X3Y −1X−1 = Y2.

For m = 3, we get a3 = (5, 3) so that D3 = . In this case, the

compatible weightings of the edges in D3 are given by

0 0 2
0 0 2

0 2

0 0 2
0 0 2

0 1

0 0 2
0 0 2

0

0
0

0

To describe the non-commutative generalized cluster variables Y1, Y2, Y3 above as
pseudo-positive non-commutative Laurent polynomials we consider the following roots
and corresponding maximal Dyck paths:

a1 = (1, 0) D1 =
a2 = (2, 1) D2 =

a3 = (5, 3) D3 =

Our proof of Theorem 1.3 requires a careful understanding of the recursive struc-
ture of the maximal Dyck paths Dm which we will establish in the next section. In
Section 3, we further develop the combinatorics of compatible gradings of Dm intro-
duced in [10]. The main aim there is to understand gradings which behave nicely with
respect to the recursive structure developed in Section 2. These results produce nicely
factorizable summands of YDm , facilitating an inductive proof of Theorem 1.3. Sec-
tion 4 puts these combinatorial results together to establish Theorem 1.3. We finish
with Section 5 discussing the specialization from non-commutative variables to quasi-
commuting variables. A main goal of this section is proving Corollary 5.7 which gives
a positive combinatorial construction of counting polynomials for Grassmannians of
subrepresentations in rigid indecomposable valued quiver representations.

Notation. We adopt the following notational conventions throughout the paper.
• For integers a < b, set [a, b] = {a, a+ 1, . . . , b}.
• Given any quantity α defined using the tuple (d1, d2) or the pair of poly-
nomials (P1, P2), let α′ denote the same quantity defined using the tuple
(d′1, d′2) = (d0, d1) or the polynomials (P ′1, P ′2) = (P0, P1). In particular,
p′1,j = p2,d2−j and p′2,j = p1,j when equation (4) is applied to a (d′1, d′2)-
bounded grading ω′ on Da′m .

• Equations that will be referenced globally will be assigned numbers, those
that are referenced only locally (i.e. within a single proof) will be assigned
symbols (e.g. † or ‡). In particular, symbols labeling equations will be reused
but this should not lead to any confusion.
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2. Maximal Dyck Paths
In this section we study the recursive structure present in the maximal Dyck paths
Dm. To accomplish this, we note that the vectors am can be written more explicitly
in terms of two-parameter Chebyshev polynomials um,k (m, k ∈ Z) defined recur-
sively by:

(7) u0,k = 0, u1,k = 1, um+1,k+1 = dkum,k − um−1,k−1,

where dk denotes the degree of the polynomial Pk in equation (1). Then, for m > 1,
we have am = (um,1, um−1,2). Write a′m = (u′m,1, u′m−1,2) = (um,2, um−1,1) and set
D′m = Da′m for m > 1.

Remark 2.1. To see the equivalence with equation (6), one must use the identities
um,k = um,k+1 for m odd and dkum,k = dk+1um,k+1 for m even.

We record the next simple observation for future use.

Lemma 2.2. For positive integers d1, d2 and any integers m, k, we have um,k+1um−2,k <
um−1,k+1um−1,k.

Proof. We work by induction on m, the case m = 2 is the trivial inequality 0 < 1.
For m > 3, we have

um,k+1um−2,k = dkum−1,kum−2,k − um−2,k−1um−2,k

< dkum−1,kum−2,k − um−3,k−1um−1,k

= um−1,k+1um−1,k,

where the inequality uses induction. The case m 6 1 can be handled similarly. �

In order to establish a recursive structure for Dm we will show that the maximal
Dyck paths Dm and D′m are intimately related.

Lemma 2.3. For m > 1, the following hold.
(a) The maximal Dyck path D′m+1 can be obtained from Dm via replacing each

horizontal edge, together with the ` vertical edges which immediately follow it,
by d1 − ` horizontal edges followed by a vertical edge.

(b) The maximal Dyck path Dm+1 can be obtained from D′m via replacing each
horizontal edge, together with the ` vertical edges which immediately follow it,
by d2 − ` horizontal edges followed by a vertical edge.

Proof. We prove (a) as (b) will immediately follow by interchanging the roles of d1
and d2. Let D′ denote the lattice path obtained from Dm as in (a). It follows from
the definition that D′ will contain d1um,1 − um−1,2 = um+1,2 horizontal edges and
um,1 vertical edges. We need to show that D′ does not cross above the main diagonal
and that it is maximal with this property.

Write v′1, . . . , v′um,1 for the vertical edges of D′ and for 1 6 r 6 um,1 suppose v′r
is immediately preceded by exactly `r horizontal edges of the same height. Suppose
there exists t so that v′t passes above the main diagonal, this is equivalent to the
inequality t

t∑
r=1

`r

>
um,1
um+1,2

. Using the equality um+1,2 = d1um,1− um−1,2, this may be

rewritten as

(†)
d1t−

t∑
r=1

`r

t
>
um−1,2

um,1
.
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But by construction of D′, we see that d1 − `r is the number of vertical edges imme-
diately following the r-th horizontal edge of Dm. Thus, by rewriting the numerator as

d1t−
t∑

r=1
`r =

t∑
r=1

(d1−`r) in the inequality (†), we see that the subpath of Dm contain-

ing the first t horizontal edges and the vertical edges immediately following these hor-
izontal edges will cross above the main diagonal of the rectangle [0, um,1]× [0, um−1,2],
a contradiction. Thus D′ is a Dyck path, i.e. it does not pass above the main diagonal.

To see that D′ is maximal, suppose there exists a lattice point (s, t) strictly above
D′ which does not lie above the main diagonal. Without loss of generality, we may

take s =
t∑

r=1
`r − 1 and get the inequality t

t∑
r=1

`r−1
6 um,1

um+1,2
. Using the equality

um+1,2 = d1um,1 − um−1,2, this may be rewritten as

(‡)
d1t−

t∑
r=1

`r + 1

t
6
um−1,2

um,1
.

Now considering the same initial segment of Dm as above, we see that the point

(t, d1t−
t∑

r=1
`r+1) lies strictly above Dm, but the inequality (‡) implies this point does

not lie above the main diagonal of the rectangle [0, um,1]× [0, um−1,2], contradicting
the maximality of Dm. Thus we may conclude that D′ = D′m+1 is the maximal Dyck
path in the rectangle [0, um+1,2]× [0, um,1]. �

With this we obtain the recursive structure of Dm. In what follows we always

assume d1d2 > 4 and take δm =
{

1 if dm−1 = 1 and m 6= 3;
0 if dm−1 6= 1 or m = 3.

Corollary 2.4. The maximal Dyck paths Dm, m > 1, admit the following recursive
structure:

(a) D1 consists of a single horizontal edge;
(b) D2 consists of d2 horizontal edges followed by a single vertical edge;
(c) for m > 3, the Dyck path Dm can be constructed by concatenating dm−1−δm

copies of Dm−1 followed by a copy of Dm−1 with its first Dm−2−δm removed.

For the remainder of the paper we will understand the notationDm−1rDm−2−δm to
mean the terminal subpath of Dm−1 obtained by removing its first copy of Dm−2−δm
as in Corollary 2.4.

Remark 2.5. The roles of d1 and d2 must be interchanged when applying Corollary 2.4
to D′m.

Proof. Parts (a) and (b) are immediate from the definitions of D1 and D2. Part (c)
with m = 3 follows from Lemma 2.3 and part (b) since D′2 consists of d1 horizontal
edges followed by a vertical edge.

We establish part (c) by induction on m > 4. Notice that by Remark 2.5 the
claimed recursive structures of Dm and D′m−1 are the same for m > 5, thus we obtain
the result for Dm if we know the result for D′m−1 by applying the construction from
Lemma 2.3. Hence it suffices to establish the claimed recursive structure for D4.

If d3 6= 1, then δ4 = 0 and the structure of D4 is immediately deduced from
Lemma 2.3 and part (c) for D′3. If d3 = 1, then D′2 consists of a single horizontal
edge followed by a single vertical edge and D′3 consists of d2 − 1 = d4 − 1 copies of
D′2 followed by a vertical edge. Applying Lemma 2.3 to D′3 shows that D4 consists of
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d4− 2 copies of D3 followed by a copy of D3 with its first horizontal edge (i.e. its first
D1) removed. This establishes part (c) for D4 and completes the proof. �

Corollary 2.6. For m > 2, if the last edge of Dm is omitted, the resulting lat-
tice path identifies with an initial subpath of the maximal Dyck path Cm obtained by
concatenating dm copies of Dm−1.

Proof. We work by induction on m, the case m = 2 following immediately from
Corollary 2.4(b).

Assume m > 3. By part (c) of Corollary 2.4, in comparing Dm to Cm the first
dm − 1 − δm copies of Dm−1 inside Dm may be ignored and the problem reduces to
comparing the final Dm−1 rDm−2−δm subpath of Dm with the maximal Dyck path
Dm−1. For m = 3, removing the final edge of Dm−1 r Dm−2−δm produces d2 − 1
consecutive horizontal edges which clearly identifies with an initial subpath of Dm−1.
Assume m > 4. There are two cases to consider.

• If dm−1 6= 1, Dm−1 consists of dm−1 − 1 − δm−1 copies of Dm−2 followed
by a copy of Dm−2 rDm−3−δm−1 . It follows that comparing Dm−1 rDm−2
with Dm−1 reduces to comparing Dm−2 r Dm−3−δm−1 with Dm−2. But by
induction, we know that we obtain an initial subpath of Dm−2 by removing
the last edge of Dm−2 rDm−3−δm−1 .

• When dm−1 = 1, the maximal Dyck path Dm−1 is just Dm−2 rDm−3. But
Dm−2 consists of dm− 2 copies of Dm−3 followed by a copy of Dm−3 rDm−5
and so Dm−1 consists of dm−3 copies of Dm−3 followed by a copy of Dm−3r
Dm−5. Hence comparing Dm−1 r Dm−3 with Dm−1 reduces to comparing
Dm−3 rDm−5 with Dm−3, but by induction we know that removing the last
edge of Dm−3 rDm−5 produces an initial subpath of Dm−3.

The two items above show that we get an initial subpath of Dm−1 by removing the
last edge of Dm−1 rDm−2−δm and thus removing the last edge of Dm produces an
initial subpath of Cm. �

Let Em denote the edges of Dm, where Em = Hm t Vm for horizontal edges
Hm = {h1, . . . , hum,1} and vertical edges Vm = {v1, . . . , vum−1,2}, both labeled in the
natural order along Dm. We may describe the structure of Dm as follows.

Lemma 2.7 ([10, Lemma 3.2]). For m > 2, the following hold.
(a) There are exactly ht(hi) := b(i− 1)um−1,2/um,1c vertical edges of Dm preced-

ing the horizontal edge hi, call this number the height of hi;
(b) There are exactly dp(vt) := dtum,1/um−1,2e horizontal edges of Dm preceding

the vertical edge vt, call this number the depth of vt.

In the natural labeling of edges, Lemma 2.7 gives hi = i + b(i − 1)um−1,2/um,1c
for 1 6 i 6 um,1, m > 1 and vt = t + dtum,1/um−1,2e for 1 6 t 6 um−1,2, m > 2.
In particular, we see that um−1,2 < um,1 implies Dm contains no consecutive vertical
edges, while um,1 < um−1,2 implies Dm contains no consecutive horizontal edges.

For the next result, recall that we work under the assumption d1d2 > 4.

Corollary 2.8. For m > 2 the following hold.
(a) Dm contains at most 1 + δ1 vertical edges of any given depth.
(b) Dm contains no consecutive horizontal edges if and only if d2 = 1.

Proof. For D2, both claims are immediate from Corollary 2.4(b). There are two pos-
sibilities for D3. If d2 = 1, the result for D2 together with Corollary 2.4(c) shows D3
contains no consecutive horizontal edges and that the vertical edges of D3 all have
different depths except vd1−1 and vd1 , which both have depth d1 − 1.
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For d2 > 1, the result for D2 together with Corollary 2.4(c) shows all vertical
edges of D3 have different depths. To see that d2 > 1 implies there are consecutive
horizontal edges in D3 we need to consider two case. When d1 > 1, D3 begins with a
copy of D2 by Corollary 2.4(c) and thus contains consecutive horizontal edges. When
d1 = 1, we must have d2 > 4. But then D3 is just D2 r D1 and, since d2 > 4, it
contains consecutive horizontal edges.

For m > 4, both claims follow by induction using Corollary 2.4(c). �

Analogous statements hold for D′m, with horizontal edges H ′m = {h′1, . . . , h′um,2}
and vertical edges V ′m = {v′1, . . . , v′um−1,1

}, by interchanging the roles of d1 and d2.
The proof of Theorem 1.3 will go by induction. Towards this aim we introduce

notation, following Corollary 2.4, which captures the recursive structure in the edges
of Dm, m > 3.

Definition 2.9. For m > 3 and 1 6 r 6 dm − 1− δm, define the following subsets of
Hm and Vm:

Hm,r = {h(r−1)um−1,1+1, h(r−1)um−1,1+2, . . . , hrum−1,1};
Vm,r = {v(r−1)um−2,2+1, v(r−1)um−2,2+2, . . . , vrum−2,2};

we identify these, for each r, with the horizontal and vertical edges of Dm−1. Also set
Hm,dm−δm = {h(dm−1−δm)um−1,1+1, . . . , hum,1−1, hum,1};
Vm,dm−δm = {v(dm−1−δm)um−2,2+1, . . . , vum−1,2−1, vum−1,2};

we identify these subsets with the horizontal and vertical edges of Dm−1 rDm−2−δm .
As a notational convenience, for 1 6 r 6 dm − 1 − δm and 1 6 i 6 um−1,1 we

write hi,r := h(r−1)um−1,1+i and similarly vt,r := v(r−1)um−2,2+t for 1 6 t 6 um−2,2.
For um−2−δm,1 + 1 6 i 6 um−1,1, set hi,dm−δm := h(dm−1−δm)um−1,1+i−um−2−δm,1

and
set vt,dm−δm := v(dm−1−δm)um−2,2+t−um−3−δm,2

for um−3−δm,2 + 1 6 t 6 um−2,2.

3. Combinatorics of compatible pairs
Let ω : Em → Z>0 be a (d1, d2)-bounded grading of Dm, m > 1. It will be convenient
to write ωH and ωV for the restrictions of ω to Hm and to Vm respectively. In the
absence of a total grading ω, we refer to the maps ωH : Hm → [0, d1] and ωV : Vm →
[0, d2] respectively as horizontal gradings and vertical gradings of Dm. We will often
consider ω to be the pair (ωH , ωV ) and refer to ωH and ωV as being compatible if
Definition 1.2 is satisfied for ω. Since the first condition (HGC) of Definition 1.2 only
involves ωH , we refer to it as the horizontal grading condition. Similarly, we refer to
the second condition (VGC) as the vertical grading condition.

Write supp(ω) := {e ∈ Em : ω(e) 6= 0} and call this the support of ω. Set
supp(ωH) = supp(ω) ∩H and supp(ωV ) = supp(ω) ∩ V . Define |ω|H :=

∑
h∈Hm

ωH(h)

and |ω|V :=
∑
v∈Vm

ωV (v).

3.1. Shadow Statistics. To begin we introduce notation to gain a more delicate
grasp of the compatibility conditions (HGC) and (VGC) from Definition 1.2. For a
horizontal grading ωH : Hm → [0, d1] and any subpath ee′ ⊂ Dm, define the horizontal
shadow statistic

fωH (ee′) := −|ee′|V +
∑

h∈(ee′)H

ωH(h).

We also define the vertical shadow statistic
fωV (ee′) := −|ee′|H +

∑
v∈(ee′)V

ωV (v)
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for each vertical grading ωV : Vm → [0, d2]. It immediately follows from the definitions
that the shadow statistics satisfy the following additivity property with respect to
concatenation of paths:

(8) fωH (e1e3) = fωH (e1e2) + fωH (e2e3) and fωV (e1e3) = fωV (e1e2) + fωV (e2e3)

for edges ei ∈ Em with e2 ∈ e1e3.
The shadow statistics give the following alternative check for compatibility.

Lemma 3.1. Let ω : Em → Z>0 be a compatible grading of Dm. For h ∈ Hm and
v ∈ Vm, the following hold:

(a) if fωH (hv) < 0, then the horizontal grading condition (HGC) is satisfied for
the path hv;

(b) if fωV (hv) < 0, then the vertical grading condition (VGC) is satisfied for the
path hv.

Proof. We prove (a), the proof of (b) is similar.
There is nothing to show when ωH(h) = 0, so assume h ∈ supp(ωH). Then

fωH (hh) > 0 and as e ranges from h to v the value of fωH (he) either increases, stays
the same, or decreases by 1 with each step. Since fωH (hv) < 0, we see that fωH (he)
must eventually take the value 0 with e 6= v, i.e. the horizontal grading condition is
satisfied for the path hv. �

Apart from their relationship to the compatibility conditions (HGC) and (VGC),
the shadow statistics fωH and fωV encode the following important information.
For each subpath ee′ ⊂ Dm, we obtain a factor Yee′(ωH , ωV ) of the monomial
YDm(ωH , ωV ) appearing in equation (5) by only multiplying the weights of edges
along the path ee′.

Lemma 3.2. The quantities fωH (ee′) and fωV (ee′) record the total Y -degree and the
total X-degree respectively of the monomial Yee′(ωH , ωV ).

Proof. A horizontal edge h ∈ (ee′)H contributes a factor of p1,ωH(h)Y
ωH(h)X−1

to Yee′(ωH , ωV ) while a vertical edge v ∈ (ee′)V contributes a factor of
p2,d2−ωV (v)X

ωV (v)+1Y −1X−1. The result now follows by comparing the total Y -
and X-degrees of Yee′(ωH , ωV ) with the definitions of fωH (ee′) and fωV (ee′) respec-
tively. �

For a horizontal grading ωH : Hm → [0, d1], define the local shadow path D(h;ωH)
of a horizontal edge h ∈ Hm to be the shortest nonempty subpath he ⊂ Dm such
that fωH (he) = 0, if there is no such subpath we set D(h;ωH) = hvum−1,2 . Write
DH(h;ωH) := D(h;ωH)∩Hm andDV (h;ωH) := D(h;ωH)∩Vm for the local horizontal
shadow and local vertical shadow of h with respect to ωH . The local shadow path
D(v;ωV ) is defined similarly for a vertical edge v ∈ Vm and a vertical grading ωV :
Vm → [0, d2], where D(v;ωV ) = h1v if there is no edge e 6 v for which fωV (ev) = 0.
The local shadows DH(v;ωV ), DV (v;ωV ) are defined as above.

By definition we have fωH
(
D(h;ωH)

)
= 0 whenever the final edge of D(h;ωH)

is not vum−1,2 . More importantly, writing D(h;ωH) = he, Lemma 3.1 together with
equation (8) imply that fωH (he′) > 0 and fωH (e′e) < 0 for any proper subpaths
he′, e′e ⊂ D(h;ωH). Thus we see for h ∈ supp(ωH) and v ∈ DV (h;ωH) that the
condition (HGC) is not satisfied for the path hv, however for any ωV compatible with
ωH the condition (VGC) is satisfied for h and v. In particular, when ωV is compatible
with ωH , D(v;ωV ) is a proper subpath of D(h;ωH) for any v ∈ DV (h;ωH).

Similar statements hold using the vertical shadow statistic fωV .
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3.2. Recursions. We introduce in this section a recursive construction of gradings
analogous to the recursive operations on Dyck paths from Lemma 2.3.

The shadow of a horizontal grading ωH : Hm → [0, d1] is the collection of
vertical edges in the local vertical shadows of all horizontal edges, i.e. sh(ωH) =⋃
h∈Hm DV (h;ωH). The remote shadow of a horizontal grading ωH : Hm → [0, d1] is

the subset rsh(ωH) ⊂ sh(ωH) obtained by excluding for each d the (up to) ωH(hd)
vertical edges of depth d immediately following hd. The shadow and remote shadow
of a vertical grading ωV : Vm → [0, d2] are defined similarly.
Remark 3.3. The remote shadow rsh(ωH) ⊂ sh(ωH) of a horizontal grading ωH can
be described as the subset consisting of those vertical edges v ∈ sh(ωH) for which
there exists a vertical grading ωV compatible with ωH such that ωV (v) > 0. In
particular, any vertical grading ωV compatible with ωH must satisfy ωV (v) = 0 for
v ∈ sh(ωH) r rsh(ωH).

In order to give a relationship between gradings of Dm and gradings of D′m+1,
we need to partition the remote shadows according to which local shadow contains a
given edge.
Definition 3.4. Let ω : Em → Z>0 be a grading of Dm.

(a) For 1 6 j 6 d 6 um,1, denote by rsh(ωH)j;d the set of v ∈ rsh(ωH) of depth
d such that v ∈ DV (hj ;ωH) and hj is the first horizontal edge before v with
this property. Define the local remote shadow of the edge hj as rsh(hj ;ωH) :=∐
d∈[j+1,um,1]

rsh(ωH)j;d.

(b) For 0 6 ` < t 6 um−1,2, denote by rsh(ωV )t;` the set of h ∈ rsh(ωV ) of
height ` such that h ∈ DH(vt;ωV ) and vt is the first vertical edge after h with
this property. Define the local remote shadow of the edge vt as rsh(vt;ωV ) :=∐
`∈[0,t−2]

rsh(ωV )t;`.

Remark 3.5. By the definition of the remote shadows, it is impossible to have d = j
or ` = t− 1 in Definition 3.4.

Lemma 2.3 establishes a canonical order preserving bijection between the vertical
edges V ′m+1 of D′m+1 and the horizontal edges Hm of Dm which we write as ϕ =
ϕm : V ′m+1 → Hm, ϕ(v′i) = hi for 1 6 i 6 um,1. Thus we obtain a bijection from d1-
bounded horizontal gradings of Dm to d1-bounded vertical gradings of D′m+1 taking
a horizontal grading ωH : Hm → [0, d1] to the vertical grading ϕ∗ωH : V ′m+1 → [0, d1]
given by ϕ∗ωH(v′i) = d1 − ωH(hi).
Remark 3.6. We will abuse notation slightly and also write ϕ∗m for the bijection
between horizontal gradings of D′m and vertical gradings of Dm+1 where the roles of
d1 and d2 need to be interchanged in the definitions above, however this abuse should
not lead to any confusion.

The next result shows that the remote shadows for ωH and ϕ∗ωH are intimately
related.
Lemma 3.7 ([10, Corollary 4.18]). Let ωH : Hm → [0, d1] be a horizontal grading of
Dm. For 1 6 j < d 6 um,1, we have | rsh(ωH)j;d| = | rsh(ϕ∗ωH)d;j−1|.

Thus for 1 6 j < d 6 um,1 we may define a bijection θj;d : rsh(ωH)j;d →
rsh(ϕ∗ωH)d;j−1 which preserves the natural order determined by distance from hj
and from v′d respectively. More explicitly, as the vertical edges of rsh(ωH)j;d are read
from bottom to top the corresponding horizontal edges of rsh(ϕ∗ωH)d;j−1 are read
from right to left.
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For a horizontal grading ωH : Hm → [0, d1], write G(ωH) for the collection of all
(d1, d2)-bounded gradings ω : Em → Z>0 such that the restriction ω|Hm is precisely
ωH and denote by C(ωH) ⊂ G(ωH) the subset of compatible gradings. Let Grsh(ωH) ⊂
G(ωH) denote those gradings ω for which ω(v) = 0 whenever v ∈ Vm r rsh(ωH)
and write Crsh(ωH) := Grsh(ωH) ∩ C(ωH). Define analogous collections of gradings
associated to a vertical grading ωV : Vm → [0, d2].

Define a map Ω = Ωm : Grsh(ωH)→ Grsh(ϕ∗ωH) as follows:

Ω(ωV )(h′) =
{

0 if h′ ∈ H ′m+1 r rsh(ϕ∗ωH);
ωV (v) if h′ = θj;d(v) for v ∈ rsh(ωH)j;d.

Note that Ω admits an obvious inverse map.
Remark 3.8. Given a grading ω : Em → Z>0 of Dm where ωV /∈ Grsh(ωH), the
map Ω may still be applied to ωV to produce a horizontal grading in Grsh(ϕ∗ωH).
This observation will be used without mention in the statements of Lemma 3.9 and
Proposition 3.16 as well as in the proof of Corollary 3.23.

The following result shows that we have some control over the shadow statistics
under this operation. It is also the essential ingredient for understanding the piecewise
compatible gradings introduced in the next section.
Lemma 3.9 ([10, Lemma 4.19]). Let ω : Em → Z>0 be a grading on Dm. Suppose h′ =
θj;d(v) for a vertical edge v ∈ rsh(ωH)j;d ∩ supp(ωV ). Then fΩ(ωV )(h′v′d) = fωV (hjv).

This crucial result also shows that Ω restricts to a map Crsh(ωH) → Crsh(ϕ∗ωH),
i.e. that the pair (Ω(ωV ), ϕ∗ωH) gives a compatible grading of D′m+1 exactly when
ωV ∈ Crsh(ωH).
Proposition 3.10 ([10, Lemma 4.20]). Let ωH : Hm → [0, d1] be a horizontal grading
of Dm. For a vertical grading ωV ∈ Grsh(ωH), we have ωV ∈ Crsh(ωH) if and only if
Ω(ωV ) ∈ Crsh(ϕ∗ωH).
3.3. Piecewise Compatibility. Our goal in this section is to understand which
gradings on Dm, m > 3, are obtained by gluing together compatible gradings on the
Dm−1 subpaths of Dm found in Corollary 2.4(c).
Definition 3.11. Fix m > 3. Consider (d1, d2)-bounded compatible gradings ωr =
(ωH,r, ωV,r) of Dm−1 for 1 6 r 6 dm − δm. We assume
(9) ωV,dm−δm(v) = 0
for v in the first Dm−2−δm subpath of Dm−1 and
(10) ωH,dm−δm(h) = `

for h in the first Dm−2−δm subpath of Dm−1 if h is immediately followed by exactly `
vertical edges inside Dm−2−δm .

Define a grading ω : Em → Z>0 of Dm by

ω(e) =
{
ωH,r(e) if e ∈ Hm,r;
ωV,r(e) if e ∈ Vm,r;

where we identify subsets of edges in Dm with edges of Dm−1 as in Definition 2.9.
We will refer to any grading on Dm obtained in this way as piecewise compatible.
Remark 3.12. Every compatible grading of Dm, m > 3, is piecewise compatible.
Given any grading ω of Dm and 1 6 r 6 dm−δm, we will denote by ωr = (ωH,r, ωV,r)
the grading of Dm−1 obtained by restricting ω to the r-th copy of Dm−1 inside Dm,
where ωdm−δm = (ωH,dm−δm , ωV,dm−δm) denotes the grading on Dm−1 satisfying the
conditions (9) and (10) of Definition 3.11.
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Remark 3.13. When considering piecewise compatible gradings ω : E′m → Z>0 of
D′m we will instead make the following assumptions on the gradings ωH′,d′m−δ′m and
ωV ′,d′m−δ′m of D′m−1:

ωH′,d′m−δ′m(h′) = 0
for h′ in the first D′m−2−δ′m

subpath of D′m−1 and

ωV ′,d′m−δ′m(v′) = d

for v′ in the first D′m−2−δ′m
subpath of D′m−1 if v′ is immediately preceded by exactly

d horizontal edges inside D′m−2−δ′m
.

The next result shows that only the final edge of Dm needs to be considered in
order to verify (global) compatibility of a piecewise compatible grading.

Lemma 3.14. Let ω : Em → Z>0 be a piecewise compatible grading on Dm, m > 3.
Then one of the compatibility conditions (HGC) or (VGC) is satisfied for every h ∈
Hm and every v ∈ Vm r {vum−1,2}. In particular, a piecewise compatible grading on
Dm is compatible if and only if one of the compatibility conditions (HGC) or (VGC)

holds for all paths hvum−1,2 with h ∈
dm−1−δm⊔

r=1
Hm,r.

Proof. Following [10, Remark 2.22], we have a principle of non-interaction between
adjacent Dm−1 subpaths of Dm. More precisely, one of the compatibility condi-
tions (HGC) or (VGC) will always be satisfied for paths hv with h ∈ Hm,r and
v ∈ Vm,s for 1 6 r < s 6 dm − 1 − δm. Since each pair (ωH,r, ωV,r) is compati-

ble, it only remains to verify a compatibility condition for h ∈
dm−1−δm⊔

r=1
Hm,r and

v ∈ Vm,dm−δm .
By Corollary 2.6, we may again apply [10, Remark 2.22] to see that one of the

compatibility conditions will always be satisfied for all v ∈ Vm,dm−δm with v 6= vum−1,2 .
Thus a compatibility conditions only needs to be verified for paths hvum−1,2 with

h ∈
dm−1−δm⊔

r=1
Hm,r to verify compatibility of ω. �

Corollary 3.15. When dm = 1, every piecewise compatible grading of Dm, m > 3,
is compatible.

Proof. When dm = 1, the set of horizontal edges
dm−1−δm⊔

r=1
Hm,r is empty and thus

the compatibility condition of Lemma 3.14 is trivially satisfied. �

Next we observe that piecewise compatible gradings are well-behaved under the
operations ϕ∗ and Ω introduced in Section 3.2.

Proposition 3.16. Let ω : Em → Z>0 be a (d1, d2)-bounded grading on Dm for
m > 3. Then ω is piecewise compatible if and only if (Ω(ωV ), ϕ∗ωH) is piecewise
compatible.

Proof. We prove the forward implication, the other direction can be obtained by
reversing the argument.

Assume ω is piecewise compatible and, for 1 6 r 6 dm− δm, consider h′ ∈ H ′m+1,r
and v′t ∈ V ′m+1,r with h′ < v′t. If h′ /∈ D(v′t;ϕ∗ωH), then the vertical grading condi-
tion (VGC) is satisfied for the path h′v′t. So we assume h′ ∈ D(v′t;ϕ∗ωH) and need
to show that the horizontal grading condition (HGC) is satisfied for the path h′v′t.
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For Ω(ωV )(h′) = 0, there is nothing to check so assume h′ ∈ supp(Ω(ωV )). Set
j − 1 = ht(h′) so that h′ ∈ rsh(ϕ∗ωH)d;j−1 with j < d 6 t. Then Ω(ωV )(h′) = ωV (v),
where v ∈ rsh(ωH)j;d ∩ supp(ωV ) with h′ = θj;d(v).

Note that hj ∈ Hm,r and v ∈ Vm,r, thus by piecewise compatibility the vertical
grading condition (VGC) is satisfied for the path hjv. That is, there exists e ∈ hjv so
that fωV (ev) = 0. By piecewise compatibility, each vertical edge in hje also satisfies
the vertical grading condition with hj . It follows that fωV (hjv) < 0.

By Lemma 3.9, we thus have fΩ(ωV )(h′v′d) < 0 and so the horizontal grading
condition is satisfied for the path h′v′d by Lemma 3.1. Since h′v′d is an initial subpath
of h′v′t, the horizontal grading condition is also satisfied for the path h′v′t. Since h′
and v′t were arbitrary, we see that (Ω(ωV ), ϕ∗ωH) is piecewise compatible. �

We aim now to understand precisely when compatibility fails for a piecewise com-
patible grading. The definition below provides the necessary conditions for a piecewise
compatible grading ω constructed as in Definition 3.11 to be incompatible.

Definition 3.17. Let ωH : Hm → [0, d1] be a horizontal grading on Dm, m > 3. We
say a horizontal edge h ∈ Hm is blocking for ωH if the following hold:

• h ∈ Hm rHm,dm−δm ;
• D(h;ωH) = hvum−1,2 ;
• h is the maximal (i.e. furthest to the right) horizontal edge with these proper-
ties.

We call ωH left-justified at a blocking edge hi ∈ Hm if there exists k > i so that
ωH(hj) > 0 for i 6 j 6 k and ωH(hj) = 0 for j > k. Such a horizontal grading is
strongly left-justified at hi if in addition the following hold:

• ωH(hj) = d1 for i 6 j < k;
• fωH (hivum−1,2) = 0.

Let ωV : Vm → [0, d2] be a vertical grading on Dm, m > 3. For a horizontal edge
hi ∈ Hm, ωV is called right-justified with respect to hi if there is a vertical edge
vs ∈ hivum−1,2 so that ωV (vt) > 0 for s 6 t 6 um−1,2 and ωV (vt) = 0 for all vertical
edges vt ∈ (hivs)V . Such a vertical grading is strongly right-justified with respect to
hi if in addition the following hold:

• ωV (vt) = d2 for s < t 6 um−1,2;
• D(vum−1,2 ;ωV ) = hivum−1,2 with fωV (hivum−1,2) = 0.

Proposition 3.18. Let ω : Em → Z>0 be a piecewise compatible grading of Dm,
m > 3, for which ωH admits the blocking edge hi ∈ Hm and ωV is strongly right-
justified with respect to hi. Then ωH is left-justified at hi and supp(ωH)∩hivum−1,2 =
rsh(ωV ) ∩ hivum−1,2 .

Proof. Since ωV is strongly right-justified with respect to hi, we haveD(vum−1,2 ;ωV ) =
hivum−1,2 and thus supp(ωH) ∩ hivum−1,2 ⊂ rsh(ωV ) ∩ hivum−1,2 . To see equality of
these sets we show that they must have the same cardinality.

As ωV is strongly right-justified with respect to hi, we have ωV (v) = d2 for each
vertical edge v ∈ vsvum−1,2 , where s = um−1,2 −

⌊
um,1−i+1

d2

⌋
. This implies ωH(h) = 0

for each horizontal edge h ∈ vsvum−1,2 . Otherwise both grading conditions would fail
for the path hv, where v is the first vertical edge after h, a contradiction with piecewise
compatibility of ω.

Then observe that the vertical edge vs has depth
⌈(

um−1,2−
⌊
um,1−i+1

d2

⌋)
um,1

um−1,2

⌉
by

Lemma 2.7. Using once more that ωV is strongly right-justified with respect to hi,
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we must also have ωH(h) = 0 for each of the um,1 − i+ 1− d2

⌊
um,1−i+1

d2

⌋
horizontal

edges h immediately preceding vs in order for piecewise compatibility to hold.
The above discussion has shown that ωH(hj) = 0 whenever j is larger than the

following quantity:


(
um−1,2 −

⌊
um,1−i+1

d2

⌋)
um,1

um−1,2

−
(
um,1 − i+ 1− d2

⌊
um,1 − i+ 1

d2

⌋)

= i− 1 +


−
⌊
um,1−i+1

d2

⌋
um,1

um−1,2

+ d2

⌊
um,1 − i+ 1

d2

⌋

= i− 1 +


⌊
um,1−i+1

d2

⌋
um−2,1

um−1,2

 ,
where both equalities follow from the identity dn+xe = n+dxe which holds for all real
numbers x and all integers n. This discussion also shows that hivum−1,2 ∩

(
sh(ωV ) r

rsh(ωV )
)

= (hi+dvum−1,2)H , where d =
⌈⌊um,1−i+1

d2

⌋
um−2,1

um−1,2

⌉
. Since D(vum−1,2 ;ωV ) =

hivum−1,2 , it follows that

| rsh(ωV ) ∩ hivum−1,2 | =


⌊
um,1−i+1

d2

⌋
um−2,1

um−1,2

 .
Now observe the inequality


⌊
um,1−i+1

d2

⌋
um−2,1

um−1,2

 6
⌈

(um,1 − i+ 1)um−2,1

d2um−1,2

⌉
=
⌈

(um,1 − i+ 1)um−2,2

d1um−1,1

⌉
,

where the equality can be deduced from the identities in Remark 2.1. By Lemma 2.2,
the last expression above is not larger than

(11)
⌈

(um,1 − i+ 1)um−1,2

d1um,1

⌉
=


um−1,2 −

⌊
(i−1)um−1,2

um,1

⌋
d1

 ,
where the equality follows from right to left using the identities −bxc = d−xe, dn +
xe = n + dxe, and

⌈
dxe
n

⌉
=
⌈
x
n

⌉
which hold for all real numbers x and all positive

integers n.
But hi is blocking and ωH is d1-bounded so that

| supp(ωH) ∩ hivum−1,2 | >
⌈ |hivum−1,2 |V

d1

⌉
=


um−1,2 −

⌊
(i−1)um−1,2

um,1

⌋
d1

 .
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Combining this observation with the inequalities leading up to equation (11), we see
that

| supp(ωH) ∩ hivum−1,2 | >


um−1,2 −

⌊
(i−1)um−1,2

um,1

⌋
d1


>


⌊
um,1−i+1

d2

⌋
um−2,1

um−1,2

 = | rsh(ωV ) ∩ hivum−1,2 |.

But either inequality being strict is impossible since supp(ωH) does not intersect
sh(ωV ) r rsh(ωV ). Thus ωH must be left-justified at hi with

| supp(ωH) ∩ hivum−1,2 | =


um−1,2 −

⌊
(i−1)um−1,2

um,1

⌋
d1

(12)

=


⌊
um,1−i+1

d2

⌋
um−2,1

um−1,2

 = | rsh(ωV ) ∩ hivum−1,2 |.

In particular, supp(ωH) ∩ hivum−1,2 = rsh(ωV ) ∩ hivum−1,2 . �

Remark 3.19. The middle equality of equation (12) does not hold for all i, this
equality is a consequence of the hypotheses and thus provides a necessary condition
for the existence of a piecewise compatible grading as in Proposition 3.18.

The next result will show that this condition is also sufficient and that such gradings
are the only piecewise compatible gradings which are not compatible.

Theorem 3.20. Let ω : Em → Z>0 be a piecewise compatible grading of Dm, m > 3.
(a) If ωH does not admit a blocking edge, then ω is compatible.
(b) Suppose ωH admits a blocking edge hi but ω is not compatible. Then the

following hold:
(i) D(vum−1,2 ;ωV ) = hivum−1,2 with fωV (hivum−1,2) = 0;
(ii) ωH is left-justified at hi and ωV is strongly right-justified with respect to

hi.
If in addition m > 4, the following also hold:
(iii) fωH (hivum−1,2) = 0;
(iv) ωH must be strongly left-justified at hi;
(v) ht(hi+1) = ht(hi) + δ1 when | supp(ωH) ∩ hivum−1,2 | > 1.

Remark 3.21. When dm = 1, the hypotheses of Theorem 3.20 cannot apply by Corol-
lary 3.15.

Proof. If ωH does not admit a blocking edge, any horizontal edge h ∈ Hm has a local
shadow path of the form D(h;ωH) = he with e < vum−1,2 , i.e. the horizontal grading
condition is satisfied for h and vum−1,2 . By Lemma 3.14, this implies ω is compatible.
This establishes (a).

From now on we assume ωH admits a blocking edge hi and dm 6= 1. There are two
possible cases. First consider the case ht(hi) > um−1,2 − d1. Since by definition hi is
not contained in the final Dm−1 r Dm−2−δm subpath of Dm, we must have d1 > 2
and so this case can occur only if one of the following holds:

• m = 3 with d1 6= 1;
• m = 4 with d1, d2 6= 1;
• m = 5 with d2 = 1.
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When m = 4 or m = 5 above, we must have hi = hum−1,1,dm−1−δm (see Definition 2.9
for notation).

Let ` = ht(hi). Then, since d1 6= 1 in all cases above, each vertical edge in
v`+1vum−1,2 if m = 3 (resp. in hi+1vum−1,2 if m = 4 or m = 5) is immediately
preceded by exactly d2 horizontal edges inside hivum−1,2 while vum−1,2 is immediately
preceded by exactly d2 − 1 horizontal edges. In particular, we see that the horizontal
grading condition fails for the path hivum−1,2 exactly when:

• ωV (v`+1) = dp(v`+1)− i and ωV (v) = d2 for v ∈ (v`+1vum−1,2)V for m = 3;
• ωV (v) = d2 for all v ∈ (hivum−1,2)V for m = 4 or m = 5.

In either case we have D(vum−1,2 ;ωV ) = hivum−1,2 with fωV (hivum−1,2) = 0. Note
that in each of the cases above, ωH is left-justified at hi with k = i in Definition 3.17
and ωV is strongly right-justified with respect to hi. This establishes the claims in
the first part of (b) for these cases. Observe that our assumptions when m = 4 or
m = 5 imply fωH (hivum−1,2) = 0 and that ωH is strongly left-justified at hi. Since
supp(ωH) ∩ hivum−1,2 = {hi}, this establishes the second part of (b) in these cases.

Now assume m > 4 and ht(hi) < um−1,2 − d1. Then there must exist j > i so that
D(hj ;ωH) = hjvum−1,2−` with 1 6 ` 6 ωH(hi) − δ1 (the extra δ1 must be included
here since d2 = 1 implies all horizontal edges of Dm have different heights, in other
words d2 = 1 implies hi is immediately followed by a vertical edge). Assume that j is
chosen so that ` is minimal, in particular when d1 = 1 we must have ` = 1.

By Lemma 3.14, the vertical grading condition must be satisfied for the paths hiv
with v ∈ (hivum−1,2)V . For each such v, we have D(v;ωV ) = hj(v)v for some j(v) > i,
in particular fωV (hj(v)v) = 0. Since hi is blocking, it cannot be contained in the
shadow of any of these vertical edges. Moreover, when d1 = 1, the edge hj will also
not be contained in the shadow of any of these vertical edges. Thus we see that there
are at least 1 + δ2 horizontal edges of the path hivum−1,2−1 lying outside the shadows
of its vertical edges and applying equation (8) shows fωV (hivum−1,2−1) 6 −(1 + δ2).
But by Corollary 2.4 there are d2 − 1 − δ2 horizontal edges immediately preceding
vum−1,2 and, since ωV (vum−1,2) 6 d2, we must have fωV (hivum−1,2) 6 0. We conclude
that one of the following holds:

• D(vum−1,2 ;ωV ) is a proper subpath of hivum−1,2 by Lemma 3.1 and thus ω is
compatible;

• D(vum−1,2 ;ωV ) = hivum−1,2 with fωV (hivum−1,2) = 0 and both compatibility
conditions fail for the path hivum−1,2 .

This establishes claim (i) of (b) in this case. When d1 = 1, we must have
fωH (hivum−1,2) = 0 for otherwise hi could not be blocking. This gives claim (iii)
of (b) when d1 = 1. To complete the proof of (iii) for d1 > 1 and m > 4, we observe
that hi being a blocking edge implies fωH (hivum−1,2) > 0. Our aim then is to show
that fωH (hivum−1,2) > 0 implies the second situation above is impossible.

Indeed, fωH (hivum−1,2) > 0 can only occur if we take ` 6 ωH(hi) − 1 − δ1 above.
But, assuming d1 > 1 and m > 4, there are d2 horizontal edges of Dm immediately
preceding each of the vertical edges

vum−1,2−d1+2+δ1 , vum−1,2−d1+3+δ1 , . . . , vum−1,2−1,

and d2 − 1 horizontal edges immediately preceding vum−1,2 (by Corollary 2.4, the
terminal subpath ofDm containing all these edges identifies with the terminal subpath
D3 r D2 inside D3). It follows that D(vum−1,2 ;ωV ) must be a subpath of hjvum−1,2

and so the vertical grading condition is satisfied for the path hivum−1,2 . In particular,
ω is compatible by Lemma 3.14, this completes the proof of (iii).

The arguments above also establish the following when m > 4, dm 6= 1, and
ht(hi) < um−1,2 − d1:
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• if ωH(hi) < d1 or hi is immediately followed by 1+δ1 vertical edges, then either
d1 = 1 and hi cannot possibly be blocking or there must exist a horizontal
edge hj as in the previous paragraph and compatibility again holds, this
gives (v) once we have established (iv), i.e. once we know that ωH is strongly
left-justified at hi;

• if ωV (vum−1,2−t) < d2 for any 0 6 t 6 d1 − δ1, then the piecewise compatible
grading ω must be compatible.

We prove (iii) and (iv) by induction on m > 3, dm 6= 1. The base case m = 3 of (ii)
was established in the first part of the proof. Suppose m > 4 and ω is not compatible.
By Proposition 3.16 the grading

(
(ϕ∗m−1)−1ωV ,Ω−1

m−1(ωH)
)

=: (ωH′ , ωV ′) of D′m−1
is piecewise compatible, but not compatible by Proposition 3.10. By part (a), there
must be a blocking edge h′j for ωH′ . Applying (ii) to the grading (ωH′ , ωV ′) we see
that ωH′ is left-justified at h′j and ωV ′ is strongly right-justified with respect to this
blocking edge.

When m = 4, we have supp(ωH′) ∩ h′jv′u′
m−2,2

= {h′j} and from the definition of
ϕ∗m−1 we see that ωV is strongly right-justified with respect to hi. This requires the
extra observation above that we had to take k = i in the definition of left-justification
for the case m = 3. For m > 5, claim (iv) applied to the grading (ωH′ , ωV ′) shows
that ωH′ is strongly left-justified at h′j and again the definition of ϕ∗m−1 shows that
ωV is strongly right-justified with respect to hi. By Proposition 3.18, we see that ωH
must be left-justified at hi.

It remains to argue that ωH is strongly left-justified at hi, but this is immediate
from Lemma 3.7 and the definition of the maps θ. Indeed, since ωH′ is strongly
left-justified at its blocking edge h′j , the remote shadows of the horizontal edges
in h′jv

′
um−2,1

are linearly ordered in the opposite order to the horizontal edges in
supp(ωH′) ∩ h′jv′um−2,1

. Since ωV is strongly right-justified with respect to hi, anal-
ogous statements can be made about the remote shadows of the vertical edges in
hivum−1,2 . But the maps θ are compatible with these orderings and so ωV ′ being
strongly right-justified with respect to h′j forces ωH = Ωm−1(ωV ′) to be strongly
left-justified at hi. This completes the proof of (ii) and (iv). �

The next result severely restricts which horizontal edges can be blocking.

Corollary 3.22. Let ω : Em → Z>0 be a piecewise compatible grading of Dm, m > 5,
which is not compatible. Write hi ∈ Hm for the blocking edge of ωH . Then either i = 1
or hi is immediately preceded by a vertical edge.

Proof. By Proposition 3.16 and Proposition 3.10, the grading (ωH′ , ωV ′) :=(
(ϕ∗m−1)−1ωV ,Ω−1

m−1ωH) of D′m−1 is piecewise compatible but not compatible.
Let h′j ∈ H ′m−1 denote the blocking edge of ωH′ . Then since m > 5, we have
| rsh(h′j ;ωH′)| = d2− `, where ` is the number of vertical edges immediately following
h′j . By Lemma 3.7, this implies there are d2− ` horizontal edges of height j− 1 in the
remote shadow of ωV . But there are exactly d2 − ` horizontal edges of height j − 1
inside Dm by Lemma 2.3. Since D(vum−1,2 ;ωV ) = hivum−1,2 , the edge hi lies furthest
to the left among all horizontal edges in rsh(ωV )∩hivum−1,2 , this gives the result. �

We also obtain the following analogue of Proposition 3.18.

Corollary 3.23. Let ω : Em → Z>0 be a piecewise compatible grading of Dm, m > 3,
which is not compatible. If hi ∈ Hm denotes the blocking edge for ωH , then supp(ωV )∩
hivum−1,2 = rsh(ωH) ∩ hivum−1,2 .

Proof. Since ω is not compatible, the grading (Ωm(ωV ), ϕ∗mωH) =: (ωH′ , ωV ′) ofD′m+1
is not compatible by Proposition 3.10, but is piecewise compatible by Proposition 3.16.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1256



Rank two non-commutative Laurent phenomenon and pseudo-positivity

By Theorem 3.20 the grading (ωH′ , ωV ′) satisfies the hypotheses of Proposition 3.18
and so supp(ωH′)∩h′jv′u′m,2 = rsh(ωV ′)∩h′jv′u′m,2 , where h

′
j denotes the blocking edge

of ωH′ .
By piecewise compatibility, we must have supp(ωV ) ∩ hivum−1,2 ⊂ rsh(ωH) ∩

hivum−1,2 since every vertical edge in supp(ωV )∩hivum−1,2 is contained in the shadow
of ωH . If there exists v ∈ rsh(ωH) ∩ hivum−1,2 with ωV (v) = 0, by Lemma 3.7 there
will be a horizontal edge h′ ∈ rsh(ωV ′) ∩ h′jv′u′m,2 with ωH′(h′) = 0, a contradiction.
Therefore we must have supp(ωV ) ∩ hivum−1,2 = rsh(ωH) ∩ hivum−1,2 . �

As a final consequence we show that the piecewise compatible gradings which are
not compatible satisfy a certain upper bound property with respect to compatible
gradings.

Corollary 3.24. Suppose ω : Em → Z>0 is a piecewise compatible grading of Dm,
m > 3, which is not compatible. Write hi for the blocking edge of ωH . Then the
following hold:

(a) for any vertical grading χV ∈ C(ωH) and any edge v ∈ (hivum−1,2)V , we have
χV (v) 6 ωV (v);

(b) for any horizontal grading χH ∈ C(ωV ) and any edge h ∈ (hivum−1,2)H , we
have χH(h) 6 ωH(h).

Proof. We begin by making a few basic observations which allow to deduce part (b)
for Dm from part (a) for D′m−1.

Consider a horizontal grading χH ∈ C(ωV ) and suppose ωH(h) < χH(h) for some
h ∈ (hivum−1,2)H . This implies ωH(h) < d1 since we only consider d1-bounded hori-
zontal gradings. By Theorem 3.20, we have D(vum−1,2 ;ωV ) = hivum−1,2 and so every
edge of hivum−1,2 is in the shadow of ωV . Thus we have

supp(χH) ∩ hivum−1,2 ⊂ rsh(ωV ) ∩ hivum−1,2 = supp(ωH) ∩ hivum−1,2 ,

where the equality comes from Proposition 3.18. By Theorem 3.20, ωH is strongly
left-justified at hi and so the only edge h ∈ supp(ωH)∩ hivum−1,2 which could satisfy
ωH(h) < d1 is h = hi−1+d, where d = | supp(ωH) ∩ hivum−1,2 |.

For m = 3, we have supp(ωH) ∩ hivum−1,2 = {hi}. Since the horizontal grading
condition (HGC) of ωH is not satisfied for the path hivum−1,2 , the inequality ωH(hi) <
χH(hi) implies the horizontal grading condition of χH is also not satisfied for the path
hivum−1,2 . In particular, (χH , ωV ) is not compatible, a contradiction.

Form > 4, consider the compatible grading (ωH′ , χV ′) :=
(
(ϕ∗m−1)−1ωV ,Ω−1

m−1χH
)

of D′m−1 (see Proposition 3.10) and the piecewise compatible grading (ωH′ , ωV ′) :=(
(ϕ∗m−1)−1ωV ,Ω−1

m−1ωH
)
of D′m−1 (see Proposition 3.16). By the definition of Ω, we

have
χV ′(θ−1hi−1+d) = χH(hi−1+d) > ωH(hi−1+d) = ωH′(θ−1hi−1+d).

This contradicts part (a) applied to the grading (ωH′ , ωV ′) of D′m−1 and so there
can be no grading χH as above. Thus part (b) holds for m once we have established
part (a) for m− 1, m > 4.

To continue we suppose there exists a vertical grading χV ∈ C(ωH) such that
χV (v) > ωV (v) for some v ∈ (hivum−1,2)V . As above, this implies 0 < ωV (v) < d2 and
thus v = vum−1,2−t+1, where t = | supp(ωV ) ∩ hivum−1,2 |. In particular, we must have
d2 > 2 and by Corollary 2.8 the Dyck path Dm has no consecutive vertical edges.

Note that, by Proposition 3.18, there are only two possibilities for the height of the
edge hi−1+d. Either ht(hi−1+d) = um−1,2 − t so that vum−1,2−t+1 ∈ rsh(hi−1+d;ωH)
or ht(hi−1+d) = um−1,2 − t− 1 with hi−1+d immediately followed by a single vertical
edge. In the latter case, ωH(hi−1+d) > 1 also implies vum−1,2−t+1 ∈ rsh(hi−1+d;ωH).
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If vum−1,2−t+1 ∈ rsh(hi−1+d;ωH), the horizontal grading condition (HGC) is
not satisfied for the path hi−1+dvum−1,2−t+1 and we have D(vum−1,2−t+1;ωV ) =
hi+dvum−1,2−t+1 by Proposition 3.18. But then for χV as above, the vertical grading
condition (VGC) is not satisfied for the path hi−1+dvum−1,2−t+1. In particular, this
implies (ωH , χV ) is not compatible, a contradiction.

Thus we must have ht(hi−1+d) = um−1,2 − t − 1 with hi−1+d immediately fol-
lowed by exactly one vertical edge and ωH(hi−1+d) = 1. Then, since ωH is strongly
left-justified at hi, we have vum−1,2−t+1 ∈ rsh(hi−2+d;ωH) and so the horizontal grad-
ing condition (HGC) is not satisfied for the path hi−2+dvum−1,2−t+1. If hi−1+d ∈
rsh(vum−1,2−t+1;ωV ), we must have D(vum−1,2−t+1;ωV ) = hi−1+dvum−1,2−t+1. But
then for χV as above, the vertical grading condition (VGC) is not satisfied for the
path hi−2+dvum−1,2−t+1. In particular, this implies (ωH , χV ) is not compatible, a con-
tradiction.

Thus the horizontal edge hi−1+d must lie beyond the shadow of vum−1,2−t+1. By
Proposition 3.18, there can be no horizontal edges of height um−1,2 − t in the remote
shadow of ωV and so we must have ωV (vum−1,2−t+1) = `, where ` < d2 is the number
of horizontal edges immediately preceding vum−1,2−t+1. Form = 3, this can only occur
for t = 1, but vum−1,2 is immediately preceded by d2 − 1 horizontal edges inside D3
and thus ω is compatible, a contradiction.

So we must have m > 4. Consider the piecewise compatible grading (ωH′ , ωV ′) :=(
(ϕ∗m−1)−1ωV ,Ω−1

m−1ωH
)
of D′m−1 (see Proposition 3.16). Since ωV is strongly right-

justified and ωV (vum−1,2−t+1) < d2, the last horizontal edge in supp(ωH′) must be
h′um−1,2−t+1 with ωH′(h′um−1,2−t+1) = d2−`, this being exactly the number of vertical
edges immediately following h′um−1,2−t+1 by Lemma 2.3. Moreover, by Lemma 3.7,
the first vertical edge v′ in rsh(ωH′) lies in the remote shadow of h′um−1,2−t and
ωV ′(v′) = 1. By Corollary 3.23, v′ cannot be immediately preceded by a vertical edge.
But then there exists χV ′ with χV ′(v′) = 2 compatible with ωH′ , a contradiction with
part (b) for D′m−1.

This contradiction shows there can be no vertical χV as above and thus proves (a).
�

4. Proof of Main Theorem
We begin this section with a general statement about non-commutative weights as-
sociated to certain gradings of an arbitrary (i.e. not necessarily maximal) Dyck path,
here we make no boundedness assumptions on the gradings.

Proposition 4.1. Let D be any Dyck path with edges E = H t V , where H =
{h1, . . . , ha1} with a1 > 1 and V = {v1, . . . , va2} denote the sets of horizontal and
vertical edges of D. Write E = {1, 2, . . . , a1 + a2} for the edges of D taken in the
natural order. Let ω : E → Z>0 be any grading of D. Given qi,j ∈ k for i ∈ {1, 2} and
j ∈ Z>0, define non-commutative weights

(13) wtω(e) =
{
q1,ω(e)Y

ω(e)X−1 if e ∈ H;
q2,ω(e)X

ω(e)+1Y −1X−1 if e ∈ V ;

and let YD(ω) = wtω(1) wtω(2) · · ·wtω(a1 + a2). Assume ω is compatible and satisfies
the following:

(1) the local shadow path D(h1;ωH) = D with fωH (D) = 0;
(2) for any other vertical grading χV ∈ C(ωH) and any vertical edge vt ∈ V so

that χV (vs) = ωV (vs) for s < t, we have χV (vt) 6 ωV (vt).
Then YD(ω) = pX−1, where p =

∏a1
i=1 q1,ω(hi) ·

∏a2
t=1 q2,ω(vt).
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Proof. We first note that the coefficient p is immediate from the definition of the
non-commutative edge weights in equation (13). Thus we assume all qi,j = 1 for the
remainder of the proof.

We work by induction on a2. For a2 = 0, assumption 1 implies a1 = 1 and ωH(h1) =
0. The claim follows in this case directly from the definition of the non-commutative
edge weights in equation (13).

Suppose a2 > 1 and consider hi ∈ supp(ωH) with i maximal. Let vr ∈ V denote the
next vertical edge after hi, i.e. the path hivr consists of several consecutive horizontal
edges, say d of them, followed by a single vertical edge. By assumption 1, we have
r < a2. By assumption 2, we have ωV (vr) = d− 1 so that

(†) Yhivr (ω) =
(
Y ωH(hi)X−1)(X−1)d−1(

XdY −1X−1) = Y ωH(hi)−1X−1.

Let D̃ be the Dyck path obtained from D by replacing the path hivr by a single
horizontal edge. Write Ẽ = H̃ t Ṽ for the edges of D̃, where H̃ = {h̃1, . . . , h̃a1−d+1}
and Ṽ = {ṽ1, . . . , ṽa2−1} denote the horizontal and vertical edges of D̃. Define a
grading ω̃ : Ẽ → Z>0 by

ω̃H(h̃j) =


ωH(hj) if j < i;
ωH(hi)− 1 if j = i;
0 if j > i;

ω̃V (ṽs) =
{
ωV (vs) if s < r;
ωV (vs+1) if s > r.

It is not hard to see that ω̃ satisfies assumptions 1 and 2, thus by induction we have
Y
D̃

(ω̃) = X−1. By (†), we have YD(ω) = Y
D̃

(ω̃) and so YD(ω) = X−1 as desired. �

Now we turn to the proof of Theorem 1.3 and return to our standard boundedness
assumptions on gradings.

Lemma 4.2. Let ω : Em → Z>0 be a piecewise compatible grading of Dm, m > 3,
which is not compatible. Denote by hi ∈ Hm the blocking edge of ωH . Set

d = | supp(ωH) ∩ hivum−1,2 | and t = | supp(ωV ) ∩ hivum−1,2 |.

Then for any h ∈ (hihi−1+d)H , we have YD(h;ωH)(ω) = pX−1, where p =
p1,ωH(hi−1+d)p2,d2−ωV (vum−1,2−t+1).

Proof. Since hi is blocking, no local shadow path D(h;ωH) for h ∈ (hihi−1+d)H
contains vum−1,2 . Thus Lemma 3.14 shows ω|D(h;ωH) is compatible. By definition of
local shadow paths, ω|D(h;ωH) satisfies condition 1 of Proposition 4.1. Condition 2
follows directly from Corollary 3.24. The conclusion immediately follows since the
only edges in D(h;ωH) for h ∈ (hihi−1+d)H whose non-commutative weights have
nontrivial coefficients are hi−1+d and vum−1,2−t+1. �

This leads to the following result which is key to our induction argument.

Corollary 4.3. Let ω : Em → Z>0 be a piecewise compatible grading of Dm,
m > 3, which is not compatible. Write hi for the blocking edge of ωH and assume
fωH (hivum−1,2) = 0. Set

d = | supp(ωH) ∩ hivum−1,2 | and t = | supp(ωV ) ∩ hivum−1,2 |.
Then Yhivum−1,2

(ω) = pY XY −1X−1, where p = p1,ωH(hi−1+d)p2,d2−ωV (vum−1,2−t+1).

Proof. We distinguish two cases as in the proof of Theorem 3.20. First consider the
case ht(hi) > um−1,2 − d1 in which one of the following holds: m = 3 with d1 6= 1,
m = 4 with d1, d2 6= 1, or m = 5 with d2 = 1. In each of these cases supp(ωH) ∩
hivum−1,2 = {hi} and by assumption ωH(hi) = um−1,2−ht(hi). We use the description
of ω from the proof of Theorem 3.20 in each case.
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For m = 3 with d1 6= 1, set δ = 1 if hi is immediately followed by a vertical edge
and δ = 0 otherwise. Then we have

Yhivu2,2
(ω) =

(
p1,ωH(hi)Y

ωH(hi)X−1)(XY −1X−1)δ(X−1)ωV (vum−1,2−t+1)

×
(
p2,d2−ωV (vum−1,2−t+1)X

ωV (vum−1,2−t+1)+1Y −1X−1)
×
[(
X−1)d2(

Xd2+1Y −1X−1)]ωH(hi)−2−δ(
X−1)d2−1(

Xd2+1Y −1X−1)
= p
(
Y ωH(hi)−1−δX−1)[XY −ωH(hi)+2+δX−1

](
X2Y −1X−1)

= pY XY −1X−1.

For m = 4 with d1, d2 6= 1 or m = 5 with d2 = 1, we have p = 1 and so

Yhivum−1,2
(ω) =

(
Y d1X−1)(XY −1X−1)1+δ1

[(
X−1)d2(

Xd2+1Y −1X−1)]d1−2−δ1

×
(
X−1)d2−1(

Xd2+1Y −1X−1)
=
(
Y d1−1−δ1X−1)[XY −d1+2+δ1X−1

](
X2Y −1X−1)

= Y XY −1X−1.

Now suppose ht(hi) < um−1,2 − d1 so that | supp(ωH) ∩ hivum−1,2 | > 1 and, by
Theorem 3.20(iii), ht(hi+1) = ht(hi) + δ1. By Lemma 4.2, we have YD(hi+1;ωH)(ω) =
pX−1. As in the proof of Theorem 3.20, we have ωH(hi) = d1 and ωV (vum−1,2−`) = d2
for 0 6 ` 6 d1 − δ1. Combining these observations, we get

Yhivu+m−1,2(ω) =
(
Y d1X−1)(XY −1X−1)δ1[

pX−1][(X−1)d2−1(
Xd2+1Y −1X−1)]

×
[(
X−1)d2(

Xd2+1Y −1X−1)]d1−2−δ1(
X−1)d2−1(

Xd2+1Y −1X−1)
= p
(
Y d1−1−δ1X−1)[XY −d1+2+δ1X−1

](
X2Y −1X−1)

= pY XY −1X−1. �

For m > 1, we consider summands of YDm given as follows:

(14) YDm =
∑

ωH :Hm→[0,d1]

YDm(ωH), YDm(ωH) :=
∑

ωV ∈C(ωH)

YDm(ωH , ωV ).

Our goal will be to understand the action of FP0 on each of these summands. The
first step is given by the following factorization results which allow for an induction
argument.

Lemma 4.4. Let ωH : Hm → [0, d1] be a horizontal grading of Dm, m > 3. Write

Y pcDm(ωH) =
∑

ω:Em→Z>0

YDm(ω),

where the sum ranges over piecewise compatible gradings ω of Dm for which ω|Hm =
ωH . Then there is the following factorization:

(15) Y pcDm(ωH)

=YDm−1(ωH,1)YDm−1(ωH,2) · · ·YDm−1(ωH,dm−1−δm)pX |Hm−2−δm |YDm−1(ωH,dm−δm),
where

p =
{
p
|Vm−2−δm |−2|Hm−2−δm |
1,1 p

|Hm−2−δm |−|Vm−2−δm |
1,2 if d2 = 1 and m > 3;

p
−|Vm−2−δm |
1,1 if d2 > 1 or m = 3.
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Proof. By the assumptions on the horizontal grading ωH,dm−δm of Dm−1 from Def-
inition 3.11, each term contributing to YDm−1(ωH,dm−δm) begins with the monomial
p−1X−|Hm−2−δm | associated to the initial Dm−2−δm subpath of Dm−1. To see the
coefficient p−1, we observe the following:

• when d2 > 1, there are |Vm−2−δm | horizontal edges of Dm−2−δm which are
immediately followed by a single vertical edge and all other horizontal edges
are not immediately followed by any vertical edges;

• when d2 = 1, each horizontal edge is immediately followed by a vertical edge
and so there are |Vm−2−δm |− |Hm−2−δm | horizontal edges of Dm−2−δm which
are immediately followed by exactly two vertical edges (see Corollary 2.8)
and the remaining 2|Hm−2−δm |−|Vm−2−δm | horizontal edges are immediately
followed by a single vertical edge.

Using the notation of Definition 2.9, for any grading ω : Em → Z>0 there is the
factorization

YDm(ω) = Yh1,1vum−2,2,1
(ω) · · ·Yh1,dm−1−δmvum−2,2,dm−1−δm

(ω)
Yhum−2−δm,1+1,dm−δmvum−2,2,dm−δm

(ω).

The result then immediately follows from the definition of piecewise compatible grad-
ings in Definition 3.11. �

Using Remark 3.13 instead of Definition 3.11, we obtain a similar factorization for
piecewise compatible gradings of D′m+1. Below we use the notation Y ′D′m(ωV ′) :=∑
ωH′∈C(ωV ′ )

Y ′D′m(ωH′ , ωV ′) for a vertical grading ωV ′ : V ′m → [0, d1]. Note that
d′m+1 = dm, d′m = dm−1, and so δ′m+1 = δm when m > 3 + δ′m+1.

Lemma 4.5. Let ωV ′ : V ′m+1 → [0, d1] be a vertical grading of D′m+1 for m > 3+δ′m+1.
Write

Y ′
pc
D′m+1

(ωV ′) =
∑

ω′:E′m+1→Z>0

Y ′D′m+1
(ω′),

where the sum ranges over piecewise compatible gradings ω′ of D′m+1 for which
ω′|V ′m+1

= ωV ′ . Then there is the following factorization:

(16) Y ′
pc
D′m+1

(ωV ′)

=Y ′D′m(ωV ′,1)Y ′D′m(ωV ′,2) · · ·Y ′D′m(ωV ′,dm−1−δm)pXY |V
′
m−1−δm |X−1Y ′D′m(ωV ′,dm−δm),

where

p =
{
p
|Hm−2−δm |−2|Hm−2−δm |
1,1 p

|Hm−2−δm |−|Vm−2−δm |
1,2 if d2 = 1;

p
−|Vm−2−δm |
1,1 if d2 > 1.

Proof. By the assumptions on the vertical grading ωV ′,dm−δm from Remark 3.13, each
term contributing to Y ′D′m(ωV ′,dm−δm) begins with the monomial p−1XY −|V

′
m−1−δm |X−1

associated to the initial D′m−1−δm subpath of D′m. The coefficient p−1 here can be
seen as follows. Applying Lemma 2.3(a), we see that the structure of D′m−1−δm is
determined by the structure of Dm−2−δm observed in the last part of the previous
proof. More precisely, we have the following:

• when d2 > 1, there are |Vm−2−δm | vertical edges of D′m−1−δm which are
immediately preceded by d1 − 1 horizontal edges and all other vertical edges
are immediately followed by d1 horizontal edges;
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• when d2 = 1, there are |Vm−2−δm | − |Hm−2−δm | vertical edges of D′m−1−δm
which are immediately preceded by d1−2 horizontal edges and the remaining
2|Hm−2−δm | − |Vm−2−δm | vertical edges are immediately preceded by d1 − 1
horizontal edges.

Then observe that in the computation of Y ′D′m(ωV ′,dm−δm) the coefficients are given
by p′2,d1−k = p1,k for k = 1, 2. �

The analogous factorization in the special case where m = 3 and δ′4 = 1 is handled
in the following result which is proven exactly as Lemma 4.4.

Lemma 4.6. Suppose d2 = 1. Let ωV ′ : V ′4 → [0, d1] be a vertical grading of D′4. Write

Y ′
pc
D′4

(ωV ′) =
∑

ω′:E′4→Z>0

Y ′D′4(ω′),

where the sum ranges over piecewise compatible gradings ω′ of D′4 for which ω′|V ′4 =
ωV ′ . Then there is the following factorization:

(17) Y ′
pc
D′4

(ωV ′) = Y ′D′3(ωV ′,1)Y ′D′3(ωV ′,2) · · ·Y ′D′3(ωV ′,d1−2)XY ′D′3(ωV ′,d1−1).

The factorizations above concerned sums over piecewise compatible gradings. Our
goal is to understand sums over compatible gradings, however it will be easier to first
focus on piecewise compatible gradings which are not compatible.

Lemma 4.7. Let ωH : Hm → [0, d1] be a horizontal grading of Dm, m > 3, for which
there exists a vertical grading ω∗V : Vm → [0, d2] of Dm so that (ωH , ω∗V ) is piecewise
compatible but not compatible. Write

Y ncDm(ωH) =
∑

ω:Em→Z>0

YDm(ω),

where the sum ranges over piecewise compatible gradings ω of Dm which are not
compatible and satisfy ω|Hm = ωH . Let hi ∈ Hm denote the blocking edge of ωH and
set

d = | supp(ωH) ∩ hivum−1,2 | and t = | supp(ω∗V ) ∩ hivum−1,2 |.

Let s =
⌈

i
um−1,1

⌉
denote the index so that hi ∈ Hm,s. Define a horizontal grading

χH : Hm−1 → [0, d1] of Dm−1 with χH(h) = ωH,s(h) for h ∈ (h1,shi)H and χH(h) = `
for h ∈ (hivum−2,2,s)H if h is immediately followed by exactly ` vertical edges in this
copy of Dm−1. Then there is the following factorization:

(18) Y ncDm(ωH)

= YDm−1(ωH,1) · · ·YDm−1(ωH,s−1)YDm−1(χH)p1X
|hivum−2,2,s|Hp2Y XY

−1X−1,

where p2 = p1,ωH(hi−1+d)p2,d2−ω∗V (vum−1,2−t+1) and

p1 =
{
p
|hivum−2,2,s|V −2|hivum−2,2,s|H
1,1 p

|hivum−2,2,s|H−|hivum−2,2,s|V
1,2 if d2 = 1;

p
−|hivum−2,2,s|V
1,1 if d2 > 1.

Proof. Using the notation of Definition 2.9, for any grading ω : Em → Z>0 there is
the factorization

YDm(ω) = Yh1,1vum−2,2,1
(ω) · · ·Yh1,s−1vum−2,2,s−1(ω)Yh1,shi

(ω)Yhivum−1,2
(ω).

By definition of χH , every term of YDm−1(χH) ends with the monomial

p−1
1 X−|hivum−2,2,s|H .

Algebraic Combinatorics, Vol. 2 #6 (2019) 1262



Rank two non-commutative Laurent phenomenon and pseudo-positivity

Theorem 3.20 shows that any piecewise compatible grading ω : Em → Z>0 of Dm

which is not compatible agrees with (ωH , ω∗V ) on the path hivum−1,2 . The result then
immediately follows from Corollary 4.3 and the definition of piecewise compatible
gradings in Definition 3.11. �

The next result gives an analogous factorization for sums over piecewise compatible
gradings of D′m+1 which are not compatible.

Lemma 4.8. Let ωV ′ : V ′m+1 → [0, d1] be a vertical grading of D′m+1, m > 3, for which
there exists a horizontal grading ω∗H′ : H ′m+1 → [0, d2] of D′m+1 so that (ω∗H′ , ωV ′) is
piecewise compatible but not compatible. Write

Y ′
nc
D′m+1

(ωV ′) =
∑

ω:E′m+1→Z>0

Y ′D′m+1
(ω),

where the sum ranges over piecewise compatible gradings ω of D′m+1 which are not
compatible and satisfy ω|V ′m+1

= ωV ′ . Let h′j ∈ H ′m+1 denote the blocking edge of ω∗H′ ,
where ht(h′j) = i− 1, and set

d = | supp(ωV ′) ∩ h′jv′u′m,2 | and t = | supp(ω∗H) ∩ h′jv′u′m,2 |.

Let s =
⌈

i
um−1,1

⌉
denote the index so that h′j ∈ H ′m+1,s. Define a horizontal grading

χV ′ : V ′m → [0, d1] of D′m with χV ′(v′) = ωV ′,s(v′) for v′ ∈ (h′1,sh
′
j)V and χV ′(v′) = `

for v′ ∈ (h′jv′u′
m−1,2,s

)V if v′ is immediately preceded by exactly ` horizontal edges in
this copy of D′m. Then there is the following factorization:

(19) Y ′
nc
D′m+1

(ωV ′)

=Y ′D′m(ωV ′,1) · · ·Y ′D′m(ωV ′,s−1)Y ′D′m(χV ′)p1XY
|h′jvu′

m−1,2,s
|V
X−1p2Y XY

−1X−1,

where p2 = p1,d1−ωV (v′
u′
m,2−d+1

)p2,d2−ω∗H(h′
j−1+t) and

p1 =
{
p
|hivum−2,2,s|V −2|hivum−2,2,s|H
1,1 p

|hivum−2,2,s|H−|hivum−2,2,s|V
1,2 if d2 = 1;

p
−|hivum−2,2,s|V
1,1 if d2 > 1;

with hivum−2,2,s being the subpath in the s-th copy of Dm−1 inside Dm.

Proof. By definition of χV ′ , every term of Y ′D′m(χV ′) ends with the monomial

p−1
1 XY

−|h′jv
′
u′
m−1,2,s

|V
X−1. To see the coefficient p−1

1 , note that by Lemma 2.3 the
structure of D′m is determined by the structure of Dm−1.

Theorem 3.20 shows that any piecewise compatible grading ω : E′m+1 → Z>0 of
D′m+1 which is not compatible agrees with (ω∗H′ , ωV ′) on the path h′jv′u′m,2 . The result
then immediately follows from Corollary 4.3 and the definition of piecewise compatible
gradings in Definition 3.11. �

4.1. Proof of Main Theorem. We work by induction on m > 1. From the defini-
tion of the non-commutative weights in equation (4), we immediately see

YD1 = P1(Y )X−1 = FP1(Y ) = Y1

and

YD2 =
d2∑
`=0

(P1(Y )X−1)d2−`(X−1)`(p2,d2−`X
`+1Y −1X−1)

= P2(P1(Y )X−1)XY −1X−1 = FP1FP2(Y ) = Y2.
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Write YD2 =
∑

ωH :H2→[0,d1]
YD2(ωH). We will show that FP0(YD2(ωH)) = Y ′D′3

(ϕ∗2ωH)

for each horizontal grading ωH : H2 → [0, d1]. Fix a horizontal grading ωH : H2 →
[0, d1]. If supp(ωH) = ∅, then

YD2(ωH) = (X−1)d2P0(X)XY −1X−1

and so
FP0(YD2(ωH)) = (XY −1X−1)d2(XP0(Y )X−1)(XYX−1)(P0(Y )X−1)−1(XY −1X−1)

= (XY −1X−1)d2XYXY −1X−1

= (XY −1X−1)d2−1X2Y −1X−1

= Y ′D′3(ϕ∗2ωH).

Suppose supp(ωH) 6= ∅. Let hi be the last horizontal edge in supp(ωH). Then
(ωH , ωV ) will be compatible if and only if ωV (v1) 6 d2 − i. This gives

YD2(ωH)

= (p1,ω(h1)Y
ω(h1)X−1)· · ·(p1,ω(hi)Y

ω(hi)X−1)(X−1)d2−i
d2−i∑
`=0

p2,d2−`X
`+1Y −1X−1.

Applying FP0 gives

FP0(YD2(ωH))

=
(
p1,ω(h1)(P0(Y )X−1)ω(h1)XY −1X−1) · · · (p1,ω(hi)(P0(Y )X−1)ω(hi)XY −1X−1)
× [XY −1X−1]d2−i

d2−i∑
`=0

p2,d2−`(XYX−1)`+1(P0(Y )X−1)−1(XY −1X−1)

= (P0(Y )X−1)ω(h1)(X−1)d1−ω(h1)(p1,ω(h1)X
d1−ω(h1)+1Y−1X−1)· · ·(P0(Y )X−1)ω(hi)−1

×

(
d2−i∑
`=0

p2,d2−`Y
`X−1

)
(X−1)d1−ω(hi)(p1,ω(hi)X

d1−ω(hi)+1Y −1X−1)

[
(X−1)d1(Xd1+1Y −1X−1)

]d2−i−1(X−1)d1−1(Xd1+1Y −1X−1)
= Y ′D′3(ϕ∗2ωH).

Suppose m > 3 and let ωH : Hm → [0, d1] be a horizontal grading of Dm. Following
Theorem 3.20, there are two cases to consider.

(a) Suppose that (ωH , ωV ) is compatible for every piecewise compatible grading
(ωH , ωV ) of Dm. Then Lemma 4.4 shows there is the factorization

(†) YDm(ωH)

=YDm−1(ωH,1)YDm−1(ωH,2)· · ·YDm−1(ωH,dm−1−δm)pX |Hm−2−δm |YDm−1(ωH,dm−δm),
where

p =
{
p
|Vm−2−δm |−2|Hm−2−δm |
1,1 p

|Hm−2−δm |−|Vm−2−δm |
1,2 if d2 = 1;

p
−|Vm−2−δm |
1,1 if d2 > 1.

If m > 3 + δ′m+1, we may apply Lemma 4.5 to conclude by induction that
FP0(YDm(ωH)) = Y ′D′m+1

(ϕ∗mωH).
It remains to consider the case m = 3 with δ′4 = 1, i.e. d2 = 1. In this

case D2 consists of a single horizontal edge followed by a single vertical
edge and, by Corollary 2.4(c), D3 consists of d1 − 1 copies of D2 followed
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by a single vertical edge, in particular D3 ends with two consecutive ver-
tical edges. The factorization (†) still holds in this case and by induction
we have FP0(YD2(ωH,r)) = Y ′D′3

(ϕ∗2ωH,r) for 1 6 r 6 d1. In particular,
by Lemma 4.6 to see that FP0(YD3(ωH)) = Y ′D′4

(ϕ∗3ωH) it suffices to com-
pare FP0

(
YD2(ωH,d1−1)pXYD2(ωH,d1)

)
with XY ′D′3(ωV ′,d1−1), where we write

ωV ′ = ϕ∗3ωH .
There are two cases to consider. If ω(hd1−1) = 0, we have YD2(ωH,d1−1) =

(X−1)P0(X)XY −1X−1 and so

FP0(YD2(ωH,d1−1)) = (XY −1X−1)(XP0(Y )X−1)(XYX−1)(P0(Y )X−1)−1XY −1X−1

=X2Y −1X−1.

The same calculation shows FP0

(
YD2(ωH,d1)

)
= X2Y −1X−1 by the assump-

tions on ωH,d1 in Definition 3.11. But then, since p = 1 in this case, we have

FP0

(
YD2(ωH,d1−1)pXYD2(ωH,d1)

)
= (X2Y −1X−1)(XYX−1)(X2Y −1X−1)
= X3Y −1X−1

= X(X−1)d1−1(Xd1+1Y −1X−1),

which is exactly XY ′D′3(ωV ′,d1−1).
When hd1−1 ∈ supp(ωH), we have YD2(ωH,d1−1) = p1,ω(hd1−1Y

ω(hd1−1)−1X−1

so that

FP0

(
YD2(ωH,d1−1)

)
= (P0(Y )X−1)ω(hd1−1)−1(X−1)d1−ω(hd1−1)p1,ω(hd1−1)X

d1−ω(hd1−1)+1Y −1X−1.

We saw above that FP0

(
YD2(ωH,d1)

)
= X2Y −1X−1 and so

FP0

(
YD2(ωH,d1−1)pXYD2(ωH,d1)

)
= (P0(Y )X−1)ω(hd1−1)−1(X−1)d1−ω(hd1−1)−1p1,ω(hd1−1)X

d1−ω(hd1−1)+1Y −1X−1,

which is exactly XY ′D′3(ωV ′,d1−1). The claim then follows by induction from
Lemma 4.6.

(b) Suppose there exists a vertical grading ω∗V : Vm → [0, d2] of Dm so that
(ωH , ω∗V ) is piecewise compatible, but not compatible. By Theorem 3.20, there
must exist a blocking edge hi for ωH . Set

d = | supp(ωH) ∩ hivum−1,2 | and t = | supp(ω∗V ) ∩ hivum−1,2 |.

By Proposition 3.10 and Proposition 3.16, (Ωmω∗V , ϕ∗mωH) is a piecewise
compatible grading of D′m+1 which is not compatible. Let D(v′u′m,2 ;ϕ∗mωH) =
h′jv
′
u′m,2

and observe that ht(h′j) = i − 1 by definition of Ωm. By Proposi-
tion 3.18, Lemma 3.7, and Corollary 3.23, we have

| supp(Ωmω∗V ) ∩ h′jv′u′m,2 | = | rsh(ϕ∗mωH) ∩ h′jv′u′m,2 | = | rsh(ωH) ∩ hivum−1,2 |

= | supp(ωV ) ∩ hivum−1,2 |.

Moreover, we have

| supp(ϕ∗mωH) ∩ h′jv′u′m,2 | = um,1 − i+ 1− | supp(ωH) ∩ hivum−1,2 |+ δ,

where δ = 0 if ωH(hi−1+d) = d1 and δ = 1 otherwise. If then follows from
the definitions of ϕ∗m and Ωm that the coefficients p2 agree in Lemma 4.7 and
Lemma 4.8.
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Using the notation of Lemma 4.4 and Lemma 4.7, we have

YDm(ωH) = Y pcDm(ωH)− Y ncDm(ωH).

By induction we have FP0(YDm−1(ωH,r)) = Y ′D′m(ϕ∗m−1ωH,r) for 1 6 r 6
dm − δm and FP0(YDm−1(χH)) = Y ′D′m(χV ′). It follows that

FP0

(
Y pcDm(ωH)

)
= Y ′

pc
D′m+1

(ϕ∗mωH) and FP0

(
Y ncDm(ωH)

)
= Y ′

nc
D′m+1

(ϕ∗mωH).

Since Y ′D′m+1
(ϕ∗mωH) = Y ′

pc
D′m+1

(ϕ∗mωH)− Y ′ncD′m+1
(ϕ∗mωH), the result follows.

Remark 4.9. Our proof of the Main Theorem developed a combinatorial model for
the analogue (2) of initial cluster mutations. It would be interesting and highly non-
trivial to understand the direct combinatorial interpretation for the non-commutative
exchange relations (3).

5. Specializations
In this section we consider the specialization to quantum generalized cluster variables.
Assume v ∈ k is transcendental over Q. Define the quantum torus algebra T := Tv =
k〈Z1, Z2 : Z1Z2 = v2Z2Z1〉 and let F denote the skew-field of fractions of T . It will
be convenient to consider elements Za := v−a1a2Za1

1 Za2
2 for a = (a1, a2) ∈ Z2, these

form a k-basis of T .
Recall the notation (1) for the polynomials Pk, k ∈ Z. Consider quantum generalized

cluster variables Z(α)
k ∈ F , α, k ∈ Z, defined recursively by

(20) Z
(α)
1 = Z1, Z

(α)
2 = Z2, Z

(α)
k−1Z

(α)
k+1 = Pα+k(vZ(α)

k ).

Observe that equation (20) immediately implies Z(α)
k Z

(α)
k+1 = v2Z

(α)
k+1Z

(α)
k for all

α, k ∈ Z.
For a fixed α ∈ Z, the quantum generalized cluster algebra A(α)

v (P1, P2) ⊂ F is the
k-subalgebra generated by the Z(α)

k , k ∈ Z. Although they are defined as elements
of F , the quantum generalized cluster variables actually live in T . We give a direct
proof here, however the combinatorial construction below provides an alternate proof.
See [1] for a proof of this result in the special case when P1 = P 1 and P2 = P 2.

Theorem 5.1. Each quantum generalized cluster variable Z
(α)
k is an element of

T ⊂ F .

Proof. Consider the monomial vdα+kZ
(α)
k−1(Z(α)

k+2)dα+k . Expanding Z
(α)
k−1 in terms of

Z
(α)
k and Z(α)

k+1 using equation (20) gives vdα+kZ
(α)
k−1(Z(α)

k+2)dα+k as

vdα+kPα+k(vZ(α)
k )(Z(α)

k+1)−1(Z(α)
k+2)dα+k

= v−dα+kPα+k(vZ(α)
k )(Z(α)

k+2)dα+k(Z(α)
k+1)−1

=
dα+k∑
i=0

pα+k,iv
−dα+k+i[(Z(α)

k )i(Z(α)
k+2)i − 1

]
(Z(α)

k+2)dα+k−i(Z(α)
k+1)−1

+ Pα+k+2(v−1Z
(α)
k+2)(Z(α)

k+1)−1

=
dα+k∑
i=0

pα+k,iv
dα+k−i

[
(Z(α)

k )i(Z(α)
k+2)i − 1

]
(Z(α)

k+1)−1(Z(α)
k+2)dα+k−i

+ (Z(α)
k+1)−1Pα+k+2(vZ(α)

k+2).
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But for 0 6 i 6 dαk , the term (Z(α)
k )i(Z(α)

k+2)i − 1 above is a polynomial in Z(α)
k+1 with

no constant term and so
[
(Z(α)

k )i(Z(α)
k+2)i− 1

]
(Z(α)

k+1)−1 is a polynomial in Z(α)
k+1. Thus

we may solve for Z(α)
k+3 = (Z(α)

k+1)−1Pα+k+2(vZ(α)
k+2) above and see that this generalized

cluster variable can be written as a polynomial in k[Z(α)
k−1, Z

(α)
k , Z

(α)
k+1, Z

(α)
k+2]. A similar

calculation shows Z(α)
k−2 ∈ k[Z(α)

k−1, Z
(α)
k , Z

(α)
k+1, Z

(α)
k+2]. Then by induction we see Z(α)

k ∈
k[Z(α)

0 , Z
(α)
1 , Z

(α)
2 , Z

(α)
3 ] ⊂ T for all α, k ∈ Z. �

Remark 5.2. The proof above actually shows more. We see from this proof that

A(α)
v (P1, P2) = k[Z(α)

k−1, Z
(α)
k , Z

(α)
k+1, Z

(α)
k+2]

for each α, k ∈ Z.

Define the quantum specialization πv : K→ F by

(21) πv(X) = vZ1, πv(Y ) = v−1Z2.

Note that for Q = XYX−1Y −1 we have πv(Q) = v2. For α ∈ Z, set X(α)
0 = X and

for m > 1 define elements X(α)
m , X

(α)
−m ∈ K by

X(α)
m = FPα+1FPα+2 · · ·FPα+m(X) and X

(α)
−m = F−1

Pα
F−1
Pα−1

· · ·F−1
Pα−m+1

(X)

and observe that Theorem 1.3 provides a combinatorial construction of each X
(α)
m .

The following specialization result will provide a combinatorial construction of the
quantum generalized cluster variables Z(α)

m .

Theorem 5.3. For m,α ∈ Z, we have πv(X(α+1)
m ) = vZ

(α)
m+1.

Proof. We work by induction on m. Since X(α)
0 = X and X(α)

1 = QY for all α ∈ Z,
the cases m = 0, 1 follow immediately from equation (21).

For any nonzero polynomial P ∈ k[z], define a k-linear automorphism µP : F →
F given by µP (Z1) = Z2 and µP (Z2) = Z−1

1 P (vZ2). These satisfy the functional
identities πv ◦ FP = µP ◦ πv. Note that µ−1

P (Z1) = P (vZ1)Z−1
2 and µ−1

P (Z2) = Z1 so
that πv ◦ F−1

P = µ−1
P ◦ πv.

Moreover, observe that µPα+2(Z2) = Z
(α)
3 and µ−1

Pα+1
(Z1) = Z

(α)
0 for α ∈ Z. By

the symmetry of the exchange relations (20), these imply µPα+2(Z(α+1)
m ) = Z

(α)
m+1 and

µ−1
Pα+1

(Z(α−1)
m+2 ) = Z

(α)
m+1 for any α,m ∈ Z. Indeed, by induction on m > 3 we have

Z
(α)
m+1 =

(
Z

(α)
m−1

)−1
Pα+m

(
vZ(α)

m

)
= µPα+2

((
Z

(α+1)
m−2

)−1
Pα+m

(
vZ

(α+1)
m−1

))
= µPα+2

(
Z(α+1)
m

)
.

Similarly, by induction on m 6 −2 we have

Z
(α)
m+1 =

(
Z

(α)
m−1

)−1
Pα+m

(
vZ(α)

m

)
= µ−1

Pα+1

((
Z(α−1)
m

)−1
Pα+m

(
vZ

(α−1)
m+1

))
= µ−1

Pα+1

(
Z

(α−1)
m+2

)
.

Thus, by induction on m > 1 we see

πv

(
X(α+1)
m

)
= πv

(
FPα+2

(
X

(α+2)
m−1

))
= µPα+2

(
πv

(
X

(α+2)
m−1

))
= µPα+2

(
vZ(α+1)

m

)
= vZ

(α)
m+1
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and by induction on m 6 −1 we see

πv

(
X(α+1)
m

)
= πv

(
F−1
Pα+1

(
X

(α)
m+1

))
= µ−1

Pα+1

(
πv

(
X

(α)
m+1

))
= µ−1

Pα+1

(
vZ

(α−1)
m+2

)
= vZ

(α)
m+1. �

Applying the quantum specialization πv to Theorem 1.3, Theorem 5.3 gives the fol-
lowing combinatorial construction of the quantum generalized cluster variables Z(α)

m .
For notational convenience, we restrict to the quantum generalized cluster variables
Zm := Z

(3)
m .

Corollary 5.4.
(1) For m > 3, the quantum generalized cluster variable Zm is computed as fol-

lows:
(22) Zm =

∑
ω:Em−2→Z>0

pωv
1−um−2,1−um−3,2+γω+βωZ(−um−2,1+|ωV |,−um−3,2+|ωH |),

where
• the sum ranges over (d1, d2)-bounded compatible gradings ω of Dm−2;
• pω =

∏um−2,1
i=1 p1,ωH(hi)

∏um−3,2
t=1 p2,d2−ωV (vt);

• γω =
∑

e<e′∈Em−2

γω(e, e′) for

(23)

γω(e, e′) =



0 if e ∈ Hm−2 r supp(ωH) or e′ ∈ Vm−2 r supp(ωV );
−2ω(e)ω(e′) if e ∈ supp(ωH) and e′ ∈ supp(ωV );
2ω(e) if e ∈ supp(ωH) and e′ ∈ Hm−2;
2ω(e′) if e ∈ Vm−2 and e′ ∈ supp(ωV );
−2 if e ∈ Vm−2 and e′ ∈ Hm−2;

• βω =
∑

e<e′∈Em−2

βω(e, e′) for

(24) βω(e, e′)

=
{
ω(e)ω(e′) + 1 if e ∈ Hm−2 and e′ ∈ Vm−2 or e ∈ Vm−2 and e′ ∈ Hm−2;
−(ω(e) + ω(e′)) if e, e′ ∈ Hm−2 or e, e′ ∈ Vm−2.

(2) For m 6 0, the quantum generalized cluster variable Zm is computed as fol-
lows:

(25)
Zm =

∑
ω:E′−m+1→Z>0

p′ωv
−1+u′−m+1,1+u′−m,2+γ′ω+β′ωZ(−u′−m,2+|ω|H′ ,−u

′
−m+1,1+|ω|V ′ ),

where
• the sum ranges over (d2, d1)-bounded compatible gradings ω of D′−m+1;
• p′ω =

∏u′−m+1,1
i=1 p2,d2−ωH′ (h′i)

∏u′−m,2
t=1 p1,ωV ′ (v′t);

• γ′ω =
∑

e<e′∈E′−m+1

γ′ω(e, e′) for

γ′ω(e, e′) =



0 if e ∈ V ′−m+1 r supp(ωV ′) or e′ ∈ H ′−m+1 r supp(ωH′);
−2ω(e)ω(e′) if e ∈ supp(ωV ′) and e′ ∈ supp(ωH′);
2ω(e) if e ∈ supp(ωV ′) and e′ ∈ V ′−m+1;
2ω(e′) if e ∈ H ′−m+1 and e′ ∈ supp(ωH′);
−2 if e ∈ H ′−m+1 and e′ ∈ V ′−m+1;
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• β′ω =
∑

e<e′∈E′−m+1

β′ω(e, e′) for

β′ω(e, e′)

=
{
ω(e)ω(e′)+1 if e∈H ′−m+1 and e′ ∈V ′−m+1 or e∈V ′−m+1 and e′ ∈H ′−m+1;
−(ω(e) + ω(e′)) if e, e′ ∈ H ′−m+1 or e, e′ ∈ V ′−m+1.

Proof. We prove part 1, the proof of part 2 is essentially the same where the roles of
X and Y are interchanged in equation (4).

First note that we have Xm−1 = QYm−2 so that vZm = πv(Xm−1) = v2πv(Ym−2),
in particular this accounts for the 1 appearing in the exponent of v in equation (22).
By Theorem 1.3, we may compute Ym−2 by considering compatible gradings on the
maximal Dyck path Dm−2 and thus Zm can be computed by applying the quantum
projection πv to equation (5). Then the exponents of Z1 and Z2 in equation (22) are
immediate from Lemma 3.2. The coefficient pω also follows directly from the definition
of the non-commutative edge weights in equation (4), so for the remainder of the proof
we assume pi,j = 1 for all i and j.

Note that

(26) Z(a1,a2)Z(b1,b2) = va1b2−a2b1Z(a1+b1,a2+b2)

for ai, bi ∈ Z, i = 1, 2. The rest of the exponent of v in equation (22) can be seen as
follows:

(a) for an edge e ∈ Em−2 we have

πv(wtω(e)) =
{
πv(Y ω(e)X−1) if e ∈ Hm−2

πv(Xω(e)+1Y −1X−1) if e ∈ Vm−2

=
{
v−ωH(e)−1Z

ωH(e)
2 Z−1

1 i if e ∈ Hm−2

vω(e)+1Z
ω(e)+1
1 Z−1

2 Z−1
1 if e ∈ Vm−2

=
{
v−1Z(−1,ωH(e)) if e ∈ Hm−2;
v−1Z(ω(e),−1) if e ∈ Vm−2;

The v−1 in each possibility above accounts for the terms −um,1 and −um−1,2
in equation (22).

(b) for e, e′ ∈ Em−2, the quantity γω(e, e′) from equation (23) records the power
of v which appears when commuting powers of Z2 appearing in πv(wtω(e))
past powers of Z1 appearing in πv(wtω(e′));

(c) for e, e′ ∈ Em−2, the quantity βω(e, e′) from equation (24) records the power
of v so that

πv(wtω(e))πv(wtω(e′)) = vγω(e,e′)+βω(e,e′)−2Z(a1,a2)

for appropriate a1, a2 ∈ Z depending on e, e′ ∈ Em−2 (the −2 here accounts
for part (a) above).

Since we have Zm = vπv(YDm−2), the result follows by combining the observations
above. �

Let k = Q(v) for an indeterminate v. When pi,j = 0 for i = 1, 2 and 1 6 j 6 di−1,
the expansions of the quantum generalized cluster variables as elements of T have
been computed [11] using the representation theory of valued quivers as follows. In
this case, we drop the adjective “generalized” and refer to the Z(α)

k simply as quantum
cluster variables.
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Let d = gcd(d1, d2). Consider the quiver Λ with vertices Λ0 = {1, 2} with d arrows
aj : 2 → 1, 1 6 j 6 d. Write Fq for the finite field with q elements and fix an
algebraic closure F of Fq. Let Fqd1 ,Fqd2 ,Fqd ⊂ F denote the extension fields of Fq
of degree d1, d2, d, respectively. Note that Fqd1 and Fqd2 are naturally identified as
vector spaces over Fqd .

A valued representation V = (V1, V2, Vaj ) of Λ consists of Fqdi -vector spaces Vi
for i = 1, 2 and Fqd -linear maps Vaj : V2 → V1 for 1 6 j 6 d. For representations
V = (V1, V2, Vaj ) and W = (W1,W2,Waj ), a morphism θ : V → W consists of Fqdi -
linear maps θi : Vi → Wi for i = 1, 2 such that the following diagram commutes for
1 6 j 6 d:

V1 V2

W1 W2

θ1

Vaj

θ2

Waj

Thus the finite-dimensional valued representations of Λ form a category rep(Λ). In
fact, this category is well-known to be abelian, Fq-linear, and Krull–Schmidt. Write
K(Λ) for the Grothendieck group of the category rep(Λ), then K(Λ) ∼= Z2 where
the class [V ] = (dimF

qd1
V1,dimF

qd2
V2) of a valued representation V of Λ gives its

dimension vector. Define a Z-bilinear pairing 〈·, ·〉 : K(Λ)×K(Λ)→ Z on the natural
basis α1 = (1, 0) and α2 = (0, 1) by

〈αi, αi〉 = di, 〈α1, α2〉 = 0, 〈α2, α1〉 = −d1d2.

For a valued representation V of Λ and a dimension vector e = (e1, e2) ∈ K(Λ),
write Gre(V ) for the Grassmannian of subrepresentations of V with dimension
vector e:

Gre(V ) = {E ⊂ V : [E] = e}.
The quiver Grassmannian Gre(V ) naturally embeds as a closed subvariety in the
product Gre1(V1)×Gre2(V2), in particular it is a projective variety. When V is rigid,
i.e. Ext1(V, V ) = 0, Caldero and Reineke have shown [3] that Gre(V ) is smooth.

Since the field Fq is finite, each Grassmannian Gre(V ) is a finite set. For V rigid,
a result of [13] shows that the number of points in Gre(V ) can be computed by
evaluating a polynomial Pe,V (t) ∈ Z[t] at q = |Fq|. Note that since V is rigid, it is
uniquely determined up to isomorphism by its dimension vector [V ] ∈ K(Λ).

Theorem 5.5 ([13, Corollary 1.2]). Let V be a rigid valued representations of Λ. For
each dimension vector e ∈ K(Λ), there exists a polynomial Pe,V (t) ∈ Z[t] depending
only on the dimension vector of V so that

|Gre(V )| = Pe,V (q).

It was conjectured in [13] that for a rigid representation V the counting polyno-
mials Pe,V (t) have positive coefficients and are unimodal. Corollary 5.7 proves this
positivity conjecture by giving a positive combinatorial construction of these counting
polynomials. It remains an interesting open question to see how this combinatorics
can be used to establish unimodality.

Define the quantum cluster character of a rigid valued representation V of Λ by

ZV =
∑

e∈K(Λ)

v−〈e,v−e〉Pe,V (v2)Z(−v1+d2e2,−v2+d1(v1−e1)),

where [V ] = v = (v1, v2) and e = (e1, e2). Write Pm (resp. Im), m > 1, for the
preprojective (resp. preinjective) valued representations of Λ (definitions can be found
in [11] where it is shown that [Pm] = am and [Im] = a′m). Then the Laurent expansions
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of the non-initial quantum cluster variables Zm, m ∈ Zr {1, 2}, can be computed as
follows.

Theorem 5.6 ([11]). Assume the intermediate exchange coefficients pi,j = 0 for i =
1, 2 and 1 6 j 6 di − 1. Then the following hold:

(a) for m > 3, the quantum cluster variable Zm is equal to ZPm−2 ;
(b) for m 6 0, the quantum cluster variable Zm is equal to ZI−m+1 .

Combining Corollary 5.4 with Theorem 5.6, we obtain a combinatorial construction
of the counting polynomials for Grassmannians of subrepresentations in rigid valued
quiver representations.

Corollary 5.7. For m > 1, the counting polynomials Pe,Pm(t) and Pe,Im(t) are
given by

(27) Pe,Pm(t) =
∑

ω:Em→Z>0

tγω ,

where
• the sum ranges over (d1, d2)-bounded compatible gradings ω of Dm such
that ω(Hm) ⊂ {0, d1}, ω(Vm) ⊂ {0, d2}, | supp(ωH)| = um,1 − e1, and
| supp(ωV )| = e2;

• γω =
∑

e<e′∈Em
γω(e, e′) for

(28) γω(e, e′) =


−d1d2 if e ∈ supp(ωH) and e′ ∈ supp(ωV );
d1 if e ∈ supp(ωH) and e′ ∈ Hm r supp(ωH);
d2 if e ∈ Vm r supp(ωV ) and e′ ∈ supp(ωV );
0 otherwise;

and
(29) Pe,Im(t) =

∑
ω:E′m→Z>0

tγ
′
ω ,

where
• the sum ranges over (d2, d1)-bounded compatible gradings ω of D′m such that
ω(H ′m) ⊂ {0, d2}, ω(V ′m) ⊂ {0, d1}, | supp(ωH′)| = e2, and | supp(ωV ′)| =
u′m,1 − e1;

• γ′ω =
∑

e<e′∈E′m
γ′ω(e, e′) for

γ′ω(e, e′) =


−d1d2 if e ∈ supp(ωV ′) and e′ ∈ supp(ωH′);
d1 if e ∈ supp(ωV ′) and e′ ∈ V ′m r supp(ωV ′);
d2 if e ∈ H ′m r supp(ωH′) and e′ ∈ supp(ωH′);
0 otherwise.

Proof. We prove equation (27), the proof of equation (29) is essentially the same.
By Corollary 5.4 and Theorem 5.6, we have

Pe,Pm(v2) =
∑

ω:Em→Z>0

v−〈e,am−e〉+1−um,1−um−1,2+γω+βω ,

where the sum ranges over all (d1, d2)-bounded compatible gradings of Dm with
ω(Hm) ⊂ {0, d1}, ω(Vm) ⊂ {0, d2}, | supp(ωH)| = um,1 − e1, and | supp(ωV )| = e2.
But observe that

〈e,am − e〉 = d1e1(um,1 − e1) + d2e2(um−1,2 − e2)− d1d2e2(um,1 − e1)
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and under the assumptions on ω we have

βω = d1d2e2(um,1 − e1) + um,1um−1,2 − d1e1(um,1 − e1)

− 2d1

(
um,1 − e1

2

)
− d2e2(um−1,2 − e2)− 2d2

(
e2

2

)
.

Canceling like terms gives

Pe,Pm(v2) =
∑

ω:Em→Z>0

v(um,1−1)(um−1,2−1)−2d1(um,1−e1
2 )−2d2(e2

2 )+γω .

When | supp(ωH)| = 0 and | supp(ωV )| = 0, we have γω = −2|{e, e′ ∈ Em : e < e′, e ∈
Vm, e

′ ∈ Hm}|. But these assumptions imply e = (um,1, 0) so that Pe,Pm(t) = 1 and
thus

(um,1 − 1)(um−1,2 − 1) = 2|{e, e′ ∈ Em : e < e′, e ∈ Vm, e′ ∈ Hm}|.
In particular, the case e ∈ Vm and e′ ∈ Hm can be ignored when computing γω if we
omit the term (um,1 − 1)(um−1,2 − 1) from the exponent of v. Since | supp(ωH)| =
um,1 − e1 and | supp(ωV )| = e2, the cases e, e′ ∈ supp(ωH) and e, e′ ∈ supp(ωV ) can
also be ignored giving

Pe,Pm(v2) =
∑

ω:Em→Z>0

v2γω .

This gives the result since v was an indeterminate. �

Remark 5.8. The exponents in equation (27) are not manifestly positive, however
equation (28) giving the exponents can be refined as follows. Consider e ∈ supp(ωH)
and e′ ∈ supp(ωV ) with e < e′ which contributes a term −d1d2 in equation (28). The
d2 horizontal edges preceding e′ cannot be in the support of ωH by compatibility,
moreover each such horizontal edge h satisfies e < h. In particular, these pairs e < h
together contribute a term d1d2 in equation (28). Thus the negative contribution to
γω will always cancel and equation (27) indeed gives Pe,Pm(t) as a polynomial in t.
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