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A poset structure on the alternating group
generated by 3-cycles

Henri Mühle & Philippe Nadeau

Abstract We investigate the poset structure on the alternating group that arises when the
latter is generated by 3-cycles. We study intervals in this poset and give several enumerative
results, as well as a complete description of the orbits of the Hurwitz action on maximal chains.
Our motivating example is the well-studied absolute order arising when the symmetric group
is generated by transpositions, i.e. 2-cycles, and we compare our results to this case along the
way. In particular, noncrossing partitions arise naturally in both settings.

1. Introduction
Given a group G generated by a finite set T , the (right) Cayley graph Cay(G, T )
is perhaps one of the most fundamental geometric objects attached to it. Recall
that the vertex set of Cay(G, T ) is G, and that its edges are of the form (g, gt)
for g ∈ G, t ∈ T . It comes with a natural graph distance which can be written as
dCay(g, g′) = `T (g−1g′). Here the length `T (g) is the minimum k such that there
exists a factorization g = t1t2 · · · tk where each ti is in T . Such factorizations are
T -reduced and RedT (g) denotes the set of all T -reduced factorizations of g.

The relation defined by u 6T v if and only if `T (v) = `T (u)+ `T (u−1v) is a partial
order on G, graded by `T . RedT (g) is naturally identified with the set of maximal
chains from e to g in this poset. Geometrically, u 6T v holds if and only if u occurs
on a geodesic from the identity e to v in Cay(G, T ).

If we require furthermore that T is closed under G-conjugation, then we can define
a natural action of the braid group on `T (g) strands on the set RedT (g); the Hurwitz
action. Informally, this action can be described as follows: the ith generator of the
braid group shifts the (i+1)st letter of an element in RedT (g) one step to the left, and
conjugates as it goes. The Hurwitz action on closed intervals in (G,6T ) was recently
studied in [31]. For specific groups, the Hurwitz action was studied for instance in
[5, 6, 8, 14, 23, 34, 39].

A well-studied example of this construction is the case where G = SN is the
symmetric group of all permutations of [N ] = {1, 2, . . . , N}, and T is the set of all
transpositions. Whenever we refer to this case we replace the subscript “T ” by “2” in
all of the above definitions. It is a standard fact that `2(x) = N−cyc(x), where cyc(x)
denotes the number of cycles of x. The poset (SN ,62) was for instance studied in
[3]. Moreover, it was observed in [10] that the lattice of noncrossing partitions arises
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as the principal order ideal NCN = [e, c]2 where c is the N -cycle c = (1 2 . . . N).
See [35] for a survey on this lattice, and [27] for some enumerative and structural
properties.

It was in fact in this setting that the Hurwitz action was first considered [25]. One
of the crucial properties, namely that for any x ∈ SN the action is transitive on
Red2(x), is motivated by the enumeration of branched covers of the Riemann sphere
with N given branch points.

In this article, we set out to study the poset (G,6T ) in the case where G = AN
is the alternating group and T is the set of all 3-cycles. In that case we replace the
subscript “T ” by “3”. Note that several articles have been written about ordering
the elements of AN with respect to certain generating sets, mostly for the purpose of
equipping AN with a “Coxeter-like” structure; see [4, 13, 29, 32, 33]. However, none
of these orders fits into the framework described in the first paragraph of this section.

We will show that the poset (AN , `3) has a rich combinatorial structure, which can
be compared to the structure of (SN , `2) mentioned before. Our first main combina-
torial result computes the zeta polynomial of the closed interval [e, c]3 in (AN ,63),
where c = (1 2 . . . N) is a long cycle for N odd. The evaluation of the zeta polynomial
at an integer q yields the number of multichains of length q − 1 in [e, c]3.

Theorem 1.1. Let N = 2n+ 1 be an odd positive integer, and let c = (1 2 . . . N) ∈
AN . The zeta polynomial of the interval [e, c]3 of (AN ,63) is given by

Z(q) = q

q(2n+ 1)− n

(
q(2n+ 1)− n

n

)
.

We note that the zeta polynomial of [e, c]2 in (SN , `2), where c = (1 2 . . . N) for
any N has a well-known formula [27, Theorem 5] comparable to ours.

We further show that the Hurwitz action is no longer transitive on Red3(x) for all
x ∈ AN . Our second main result computes the number of orbits depending on the
number of even-length cycles of x.

Theorem 1.2. Let x ∈ AN for N > 3, and write 2k for its number of cycles of even
length. The Hurwitz action on Red3(x) has (2k)k = (k + 1)(k + 2) · · · (2k) orbits.

We see in particular that the Hurwitz action is transitive on Red3(x) if and only
if x has only cycles of odd length.

This article is organized as follows. In Section 2 we recall the necessary definitions
and concepts. In Section 3 we recall the definition of the alternating group and prove
some basic properties of the poset (AN ,63). Subsequently, in Section 4 we recall
the definition of noncrossing partitions, and exhibit a subset of AN whose combi-
natorial properties can be described with certain noncrossing partitions. We prove
Theorem 1.1 in Section 5, and establish further combinatorial results of certain inter-
vals of (AN ,63). In Section 6 we prove Theorem 1.2, and we finish this article with
Section 7, where we outline potential extensions of the work presented here.

2. Preliminaries
2.1. Poset Terminology. Let P = (P,6) be a partially ordered set, or poset for
short. If x < y in P and there exist no z ∈ P such that x < z < y, then y covers x
and we write xl y. The Hasse diagram of P is the directed graph with vertex set P
formed by such cover relations. For x, y ∈ P with x 6 y, the set {p ∈ P | x 6 p 6 y}
is an interval. Let I(P) denote the set of all intervals of P.

An (m-)multichain is a sequence (x1, x2, . . . , xm) of m elements of P such that
x1 6 x2 6 · · · 6 xm. If all elements in this sequence are distinct, we simply speak of
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an (m-)chain. A chain C (considered as a set) is maximal if there is no x ∈ P r C
such that C ∪ {x} is a chain. LetM(P) denote the set of maximal chains of P.

The poset P is graded if its maximal chains all have the same cardinality. In that
case we can assign a rank function to P, where the rank of an element x is the
maximum cardinality minus one of some chain from a minimal element (below x)
to x. Let RP(k) denote the set of elements of P having rank k. The rank of P is the
rank of a maximal element of P.

Now let P be a bounded poset, i.e. P has a least element 0̂ and greatest ele-
ment 1̂. Moreover, let P be graded with rank function rk. Given an m-multichain
C = (x1, x2, . . . , xm) of P, the rank jump vector of C is r(C) = (r1, r2, . . . , rm+1),
where ri = rk(xi)− rk(xi−1) for i ∈ [m+ 1], and x0 = 0̂, xm+1 = 1̂.

The Möbius function of a poset P is the function µ : P ×P → Z recursively defined
by

µ(x, y) =


1, if x = y,

−
∑
x6z<y µ(x, z), if x < y,

0, otherwise.

If P is bounded, then we call the value µ(0̂, 1̂) the Möbius number of P, and it is
denoted by µ(P).

If P is finite, let ZP(m) denote the number of (m − 1)-multichains of P. This is
in fact a polynomial function of m called the zeta polynomial of P, which encodes a
lot of information about P. In particular, when P is bounded and graded of rank n,
then µ(P) = ZP(−1), ZP(m) has degree n, and its leading coefficient is

∣∣M(P)
∣∣/n!;

see [38, Proposition 3.12.1].

2.2. Groups With Generating Sets Closed Under Conjugation. Let G be
a group with identity e, and let T ⊆ G be a generating set. Any element g ∈ G can
be written as a word over the alphabet T . A shortest such word is T -reduced, and
the length of a T -reduced word for g will be denoted by `T (g). This gives rise to a
graded partial order on G defined by

x 6T y if and only if `T (x) + `T (x−1y) = `T (y);(1)

the T -prefix order . This definition has first appeared explicitly in [12] in the case
where G is the symmetric group and T is the set of all transpositions. It is also
implicitly contained in [10] and has its origins perhaps in [16]. In other words, for
x, y ∈ G we have x 6T y if and only if x lies on a geodesic from the identity to y
in the (right) Cayley graph of G with respect to T . We write [x, y]T for the interval
between x and y in (G,6T ).

The poset (G,6T ) has rank function `T , and the following result states that when
T is well behaved, this poset is in fact locally self dual.

Proposition 2.1 ([24, Proposition 2.5]). Let G be a group, and suppose T ⊆ G is a
generating set closed under G-conjugation. Let y, z ∈ G with y 6T z. The permutation
of G defined by x 7→ yx−1z restricts to a poset antiisomorphism [y, z]T → [y, z]T .

An important example of the maps from Proposition 2.1 is obtained in the special
case y = e; the resulting map Kz(x) = x−1z from [e, z]T to itself will be called the
Kreweras complement.

Corollary 2.2. Under the same hypotheses as in Proposition 2.1, the map Kz◦Ky−1z

restricts to an isomorphism [y, z]T ∼= [e, y−1z]T .

The next proposition is usually stated in the case H = G.
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Proposition 2.3. Let G be a group, and H 6 G be a subgroup generated by some set
T ⊆ H. If T is closed under G-conjugation, then `T is invariant under G-conjugation,
and if x, x′ ∈ H are G-conjugate, then the intervals [e, x]T and [e, x′]T are isomorphic.

Proof. Let x ∈ H have `T (x) = k. We can therefore write x = t1t2 · · · tk with ti ∈ T
for i ∈ [k]. Now, let x′ = w−1xw for some w ∈ G. We obtain

x′ = (w−1t1w)(w−1t2w) · · · (w−1tkw),
and by assumption w−1tiw ∈ T for i ∈ [k]. The assumption that `T (x) = k now
implies `T (x′) = k, which proves the first claim. The second claim follows then by
definition of 6T . �

2.3. The Hurwitz Action. Let Bk denote the braid group on k strands, which
admits the presentation

Bk =
〈
σ1, σ2, . . . , σk−1 | σiσj = σjσi, for 1 6 i, j < k, and |i− j| > 1 and

σiσi+1σi = σi+1σiσi+1 for 1 6 i < k − 1
〉
.

(2)

When T is closed under G-conjugation, then Bk acts on the set of words over T of
length k as follows. Let x = t1t2 · · · tk be such a word. The Hurwitz operators σi and
σ−1
i act on x by

σi · x = t1t2 · · · ti−1ti+1(t−1
i+1titi+1)ti+2 · · · tk,(3)

σ−1
i · x = t1t2 · · · ti−1(titi+1t

−1
i )titi+2 · · · tk.(4)

Remark 2.4. Note that if ti and ti+1 commute then σi and σ−1
i both perform this

commutation in x.

It is straightforward to verify that the Hurwitz operators satisfy the defining rela-
tions for Bk, so they indeed extend to a group action of Bk, the Hurwitz action. Let
us say that two words are Hurwitz equivalent if they are in the same orbit for this
action. It is obvious from Equations (3) and (4) that two equivalent words represent
the same element of G. This implies that given x ∈ G of length k, the Hurwitz action
can be in particular studied on RedT (x), the set of all T -reduced decompositions of x.

The Hurwitz action is closely related to the study and enumeration of ramified
coverings of the 2-sphere and probably appeared first in [25]. Such a ramified covering
is essentially determined by a set of branching points, which give rise to a sequence
of permutations, or a constellation, associated with this covering. Theorem 1.2.28 in
[28] states that two ramified coverings of the 2-sphere are “flexibly” equivalent if and
only if their associated constellations belong to the same Hurwitz orbit.

The enumeration of Hurwitz orbits in subgroups of the symmetric group therefore
yields information on the number of “flexibly” equivalent ramified coverings. The
number of Hurwitz orbits also plays a role for the enumeration of all ramified coverings
(up to isomorphism). If one such covering is given, then it is relatively easy to compute
all coverings in its Hurwitz orbit. If we want to compute all coverings, we thus need
at least one representative from each Hurwitz orbit, which may be a non-trivial task
at times.

We explicitly describe and enumerate the Hurwitz orbits on Red3(x) for any ele-
ment x of the alternating group in Section 6.

3. The Alternating Group and 3-Cycles
Let us now define the objects of our study. Recall that the symmetric group SN

is the group of all permutations of [N ] = {1, 2, . . . , N}. The support of x ∈ SN is
supp(x) =

{
i ∈ [N ] | x(i) 6= i

}
. A cycle is a permutation which moves the elements of
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its support cyclically. We say that a cycle is odd (respectively even) if its support has
odd (respectively even) cardinality. Any permutation x has a unique decomposition
as a product of cycles with disjoint supports, up to the order of the factors. The set
of cycles of x consists of the cycles of the previous decomposition together with the
fixed points of x; where these fixed points are considered as odd cycles.

SN is naturally generated by the set of all transpositions, and the minimal number
of transpositions needed to factor a permutation x ∈ SN is given by the reflection
length
(5) `2(x) = N − cyc(x),
where cyc(x) denotes the number of cycles of x.

This well-known result is based on the following observation. Let (i j) be a trans-
position. If w ∈ Sn has two distinct cycles containing i and j, we may write w =
w′(si)(sj) where si and sj are sequences ending with i and j respectively. Then
w · (i j) = w′(si sj), and so the number of cycles decreases by one. In this case
we say that we join the two cycles; more generally, given m disjoint cycles of w,
joining them in a new cycle consists in picking a starting element in each of them,
concatenate the m sequences thus obtained in any order, and consider the resulting
sequence as a cycle. The inverse operation is called splitting a cycle.

The alternating group AN is the subgroup of SN that consists of all permutations
with even reflection length. It is easily seen that AN is generated by the set

C3,N =
{

(i j k) | 1 6 i, j, k 6 N, |{i, j, k}| = 3
}

of all 3-cycles. Since C3,N is closed under taking inverses, we can define a C3,N -prefix
order on A3 as in (1) via the length function `C3,N

. Let us write `3 for this length
function, and denote the resulting partial order by 63.

Let ocyc(x) denote the number of odd cycles of x ∈ AN ; by definition this number
takes into account the fixed points of x. The next proposition gives an explicit formula
for `3, which nicely parallels that of `2. To the best of our knowledge this result was
first proved in [22]. We give here a proof for completeness, and because it will give us
Proposition 3.2 as a byproduct.
Proposition 3.1. For any x ∈ AN , we have

`3(x) = N − ocyc(x)
2 .

Proof. For x ∈ AN define the quantity `∗3(x) = N−ocyc(x)
2 . Let a = (i j k) ∈ C3,N ,

and let ζi, ζj , and ζk be the cycles of x that contain i, j, and k, respectively. We let
x′ be the product of all other cycles of x.

We first study the possible values for the difference `∗3(xa) − `∗3(x). We need to
distinguish three cases depending on the cardinality of {ζi, ζj , ζk}. In the following we
will denote by st a sequence of integers ending with t.

(i) Suppose first that the cycles ζi, ζj , ζk are pairwise distinct. Write ζi = (si),
ζj = (sj) and ζi = (sk). Then

x · a = x′(si)(sj)(sk) · (i j k) = x′(si sj sk).
It follows that `∗3(xa) − `∗3(x) = 0 if {ζi, ζj , ζk} contains zero or one odd

cycle, and `∗3(xa)− `∗3(x) = 1 if {ζi, ζj , ζk} contains two or three odd cycles.
(ii) Suppose now that {ζi, ζj , ζk} has cardinality 2. Because of the cyclic symmetry

(i j k) = (j k i) = (k i j), we can assume without loss of generality ζi = ζj =:
ζij and ζij 6= ζk. Write ζij = (si sj) and ζk = (sk). Then

x · a = x′(si sj)(sk) · (i j k) = x′(si)(sj sk).
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It follows that if |sj | is even, then `∗3(xa) − `∗3(x) = 0. Let thus |sj | be
odd. Then `∗3(xa) − `∗3(x) = 0 if |si| and |sk| have the same parity, and
`∗3(xa)−`∗3(x) = −1 if |si| is odd and |sk| is even. Moreover, `∗3(xa)−`∗3(x) = 1
if |si| is even and |sk| is odd.

(iii) Assume finally ζi = ζj = ζk =: ζ. There are two possibilities for this cycle
depending on the cyclic order of i, j, k: it can be either written as (si sj sk)
or (si sk sj). In the first case,

x · a = x′(si sj sk) · (i j k) = x′(si sk sj).
Clearly then `∗3(xa)− `∗3(x) = 0. In the second case,

x · a = x′(si sk sj) · (i j k) = x′(si)(sj)(sk).

It follows that `∗3(xa)− `∗3(x) = 0 if the triple
(
|si|, |sj |, |sk|

)
contains at most

one odd integer, and `∗3(xa)− `∗3(x) = −1 otherwise.
We now prove that `∗3(x) = `3(x) for all x ∈ AN . First of all we notice that

`∗3(x) = 0 if and only if x = e, since only the identity permutation possesses N odd
cycles. By the case analysis performed above, we have `∗3(xa) 6 `∗3(x)+1 for any x, a.
Therefore if x is written as a product x = a1a2 · · · ak, then `∗3(x) 6 k by immediate
induction. By choosing k minimal, we have `∗3(x) 6 `3(x) for any x ∈ AN .

Now we claim that for any x 6= e we can find a such that `∗3(xa) = `∗3(x) − 1.
Indeed, either x has an odd cycle (u1 u2 u3 . . .) of length at least 3, and we choose
a = (u3 u2 u1); or x has two even cycles (u1 u2 . . .) and (v1 v2 . . .) and we choose
a = (u2 u1 v1). By immediate induction we obtain the existence of a decomposition
x = a1a2 · · · ak with k = `∗3(x). This shows the reverse inequality `∗3(x) > `3(x), and
we conclude that `3(x) = `∗3(x) for all x ∈ AN . �

If t and t′ are distinct integers that belong to the same cycle of x, define r(t, t′) to
be the smallest r > 0 such that xr(t) = t′. Equivalently, r(t, t′) is one more than the
number of elements appearing between t and t′ in the cycle notation of x.

Proposition 3.2. Let x ∈ AN , a = (i j k) ∈ C3,N and ζt be the cycle of x containing
t for t ∈ {i, j, k}.

• `3(xa) = `3(x) + 1 if and only if one of the following holds:
– ζi, ζj , ζk are pairwise disjoint and at least two of them are odd;
– {ζi, ζj , ζk} has cardinality 2, say ζi = ζj 6= ζk, both cycles are odd, and
r(i, j) is odd.

• `3(xa) = `3(x)− 1 if and only if one of the following holds:
– ζi = ζj = ζk = ζ; i, k, j appear in this cyclic order in ζ, and at least two

elements of the list r(i, k), r(k, j), r(j, i) are odd;
– {ζi, ζj , ζk} has cardinality 2, say ζi = ζj 6= ζk, both cycles are even, and
r(i, j) is odd.

• `3(xa) = `3(x) in all other cases.

The statement follows immediately from the case analysis performed in the proof of
Proposition 3.1. As a corollary we get a description of the cover relations of (AN ,63),
which fall into three categories.

Corollary 3.3. Let y ∈ AN . Then an element x ∈ AN satisfies xl3 y if and only if
it is obtained by one of the following operations on y.

(1) Pick an odd cycle of y and split it into three odd cycles.
(2) Pick an even cycle of y and split it into two odd cycles and one even cycle.
(3) Pick two even cycles of y, split one into two odd cycles, and join one of these

odd cycles with the second even cycle.
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Example 3.4. Let us give examples of all three types of covers. These were written
on purpose in a way that makes it non-trivial to check, and we advise the reader to
do so. These examples correspond (in order) to the three cases of Corollary 3.3:

(2 6 3)(4)(7 12 5 8 11)(1)(9)(10) l3 (5 8 11 4 6 3 2 7 12)(1)(9)(10);
(2 6 3)(4)(7 12 9 5 8 11)(1 10) l3 (5 8 11 4 6 3 2 7 12 9)(1 10);
(7 12 9 6 3 2 1 10 11)(4 5 8) l3 (5 8 4 1 10 11)(6 3 2 7 12 9).

Remark 3.5. An immediate consequence of Corollary 3.3 is that if y only has odd
cycles in its cycle decomposition, then the same is true for all elements x 63 y. Indeed,
we can show by immediate induction that only covers of type (1) can occur.

Proposition 3.6. Let x ∈ AN . Let ζ1, ζ2, . . . , ζk be the odd cycles of x and let ξ be
the product of its even cycles. Then the product map (ζ1, ζ2, . . . , ζk, ξ) 7→ ζ1ζ2 · · · ζkξ
induces an isomorphism of graded posets:

[e, ζ1]3 × [e, ζ2]3 × · · · × [e, ζk]3 × [e, ξ]3 ∼= [e, x]3.

Proof. For i ∈ [k] let Si = supp(ζi), and let S = supp(ξ). Since x is a permutation,
the set {S1, S2, . . . , Sk, S} is a partition of [N ]. Hence, the product map

f : AS1 × AS2 × · · · × ASk
× AS → AN , (x1, x2, . . . , xk, y) 7→ x1x2 · · ·xky

is well defined, injective and order preserving. Here if X is any finite set, SX is the
group of permutations of X, and AX is the corresponding alternating subgroup.

Now let y 63 x. We will prove by induction on `3(x)− `3(y) that y is in the image
of f . If `3(y) = `3(x) then x = y and f(ζ1, . . . , ζk, ξ) = y. If `3(y) < `3(x) then pick
x′ such that y l3 x

′ 63 x; by induction f(x′1, x′2, . . . , x′k, y′) = x′ where x′i 63 ζi for
i ∈ [k] and y′ 63 ξ. By Remark 3.5, all the x′i have only odd cycles. Therefore the
possible even cycles of x′ are in ξ. It follows then from Corollary 3.3 that y l3 x

′

is also in the image of f , so f is surjective. The same analysis shows also that f−1

preserves the ordering. �

Remark 3.7. It should be clear from Corollary 3.3 that we cannot hope for a simple
decomposition for products of even cycles. If we split the even cycles of y ∈ AN into
groups of even sizes (so that we remain in AN ), then the direct product of the resulting
induced intervals is not isomorphic to the original one. A little thought shows that it
can be identified (via the same product map as above) as a proper subposet of [e, y]3.

Consider for instance y = (1 2)(3 4)(5 6)(7 8) ∈ A8, and let x1 = (1 2)(3 4) and
x2 = (5 6)(7 8). The interval [e, y]3 has 296 elements, while the two (isomorphic)
intervals [e, x1]3 and [e, x2]3 each have 10 elements. In particular [e, y]3 6∼= [e, x1]3 ×
[e, x2]3.

4. Noncrossing Partitions
Let c = (1 2 . . . N) be a long cycle of SN . It follows from [10] that the interval [e, c]2
in (SN ,62) is isomorphic to the lattice of noncrossing set partitions of [N ] defined
in [27]: these are the set partitions Π of [N ] such that given any two distinct blocks
B1, B2 of Π, there are no indices i, j in B1 and k, l in B2 satisfying i < k < j < l. If
each block of Π is ordered increasingly and considered as a cycle by extending this
order cyclically, then by [10, Theorem 1.1] one obtains a permutation x 62 c, and
each such permutation can be uniquely obtained in this way.

By a slight abuse of vocabulary, we shall call a permutation x ∈ SN with x 62 c
a noncrossing partition. Let us write NCN for the set of all noncrossing partitions of
SN ; and let NCN = (NCN ,62).
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Let us now consider the set AoN ⊆ AN of permutations having only odd cycles. It is
clear from Proposition 3.6 and the remark following it that this subset plays a special
role for the order 63. In this section we will investigate the structure of intervals in
the poset (AoN ,63). In Section 6 we will also prove that this subset occurs naturally
in the context of the Hurwitz action.

Theorem 4.1. For N > 3, and x ∈ AoN , the interval [e, x]3 is an induced subposet of
the interval [e, x]2 in (SN ,62).

The aim of this section is to prove Theorem 4.1. We start with a few observations.
The first follows from Equation (5), Corollary 3.3(1), as well as Propositions 3.1
and 3.6.

Proposition 4.2. AoN is a lower ideal of (AN ,6A) and `3(x) = `2(x)
2 for any x ∈ AoN .

Moreover xlA y in AoN if and only x is obtained from y by splitting an odd cycle of
y into three odd cycles of x.

Next we show that (AoN ,63) is a subposet of (SN ,62), in the sense that inclusion
is a poset morphism.

Proposition 4.3. For any x, y ∈ AoN we have that x 63 y implies x 62 y.

Proof. Let x, y ∈ AoN with x 63 y. Since C3,N is closed under AN -conjugation Propo-
sition 2.1 implies x−1y 63 y. By definition we have

`3(y) = `3(x) + `3(x−1y).
All elements belong to AoN , so we can multiply this equation by two and use Propo-
sition 4.2 to obtain

`2(y) = `2(x) + `2(x−1y),
which means precisely that x 62 y. �

Remark 4.4. The reverse implication does not hold in general. We have for instance
(2 4 5) 62 (1 2 3 4 5) but (2 4 5) 663 (1 2 3 4 5). Theorem 4.1 says that it holds
precisely when x and y are both smaller than a given element of AoN .

Since any two elements in AoN that have the same cycle type are SN -conjugate,
Proposition 2.3 states that they induce isomorphic intervals in (AoN , `3). Moreover, if
y ∈ AoN has cycle type λy = (2k1 +1, 2k2 +1, . . . , 2kr +1), then Proposition 3.6 states
that

[e, y]3 ∼=
r∏
i=1

[
e, (1 2 . . . 2ki+1)

]
3.

If we want to understand the intervals in (AoN ,63) it is therefore sufficient to consider
those intervals induced by a single cycle, and we might as well pick our favorite one.
Clearly, the cycle c = (1 2 . . . N) belongs to AoN if and only if N is odd. We now
define a particular subset of NCN in terms of the following property for an increasing
cycle (u1 < u2 < · · · < uq):

OD: q is odd, and uj+1 − uj is odd for all j ∈ [q − 1].
We say that x ∈ NCN satisfies Property (OD) if all its cycles do.

Definition 4.5. For N > 3, we define ONCN to be the set of all x ∈ NCN which
satisfy Property (OD).

Figure 1 shows the poset ONC7 = (ONC7,63). The next result states that when
N is odd, the set ONCN in fact induces an interval in (AN ,63).

Proposition 4.6. A permutation x ∈ A2n+1 satisfies x 63 (1 2 . . . 2n + 1) if and
only if x ∈ ONC2n+1.
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(1)

(1 6 7) (2 3 6) (4 5 6) (1 4 7) (2 3 4) (2 5 6) (1 2 7) (3 4 7) (5 6 7) (1 2 5) (3 4 5) (3 6 7) (1 2 3) (1 4 5)

(1 6 7)(3 4 5) (1 2 3 6 7) (1 2 3)(4 5 6) (1 4 5 6 7) (1 6 7)(2 3 4) (2 3 4 5 6) (1 2 7)(4 5 6) (1 2 3 4 7) (2 3 4)(5 6 7) (1 2 5 6 7) (1 2 7)(3 4 5) (3 4 5 6 7) (1 2 3)(5 6 7) (1 2 3 4 5)

(1 2 3 4 5 6 7)

Figure 1. The poset ONC7 = (ONC7,63).

Proof. Let c = (1 2 . . . 2n+1). Suppose x 63 c. All cycles of x are odd by Propo-
sition 4.2. From Proposition 4.3, we have x 62 c so that x ∈ NC2n+1, which implies
that all cycles of x are increasing and noncrossing; see [12, Theorem 2.14] or [10].

We prove that x satisfies (OD) by induction on f(x) = n− `3(x). If f(x) = 0, then
x = c which clearly satisfies (OD). If f(x) > 0, then there exists y ∈ ONC2n+1 with
x l3 y 63 c, so f(y) = f(x) − 1 and we can assume by induction that the cycles of
y satisfy (OD). By Proposition 4.2, x is obtained from y by splitting an odd cycle
(u1 < u2 < · · · < u2q+1) into three odd cycles, and we need to verify that each such
cycle satisfies (OD). This is clear if u1 and u2q+1 are in different cycles of x. If they
are in the same cycle, say in

ζ = (u1 < u2 < · · · < uk < ul < ul+1 < · · · < u2q+1)

for some l > k + 1, then we need to show that ul − uk is odd, which is equivalent to
l − k being odd. This is indeed the case since the two other cycles are odd and thus
the set {uk+1, uk+2, . . . , ul−1} has even cardinality.

Conversely, assume that x ∈ NC2n+1 and its cycles satisfy (OD). If x = c we are
done. We now assume x 6= c. We will construct y ∈ AN such that xl3 y 62 c and all
cycles of y satisfy (OD). Then x 63 c by induction on f(x) as above.

Consider the cycle ζ1 = (u1 < u2 < · · · < u2q+1) of x with u1 = 1, and set
u2q+2 = 2n+ 2. Since x 6= c, there exists t ∈ [2q + 1] such that ut+1 − ut > 1. Let ζ2
be the cycle containing ut + 1, say (v1 < v2 < · · · < v2r+1) with v1 = ut + 1, which
because of the noncrossing condition satisfies v2r+1 < ut+1. Now we obtain

ut+1 ≡ ut + 1 = v1 ≡ v2r+1 (mod 2),

and we can thus consider a third cycle ζ3 = (w1 < w2 < · · · < w2s+1) with w1 =
v2r+1 + 1, where w2s+1 < ut+ 1 still by the noncrossing condition, and ut+ 1−w2s+1
is odd. Now set i = ut, j = v2r+1, k = w2s+1. Then ζ1ζ2ζ3 · (i j k) is equal to

(u1 < · · · < ut < v1 < · · · < v2r+1 < w1 < · · · < w2s+1 < ut + 1 < · · · < u2q+1)

which satisfies (OD). Let y = x · (i j k); by construction y ∈ NC2n+1, xl3 y and all
its cycles satisfy (OD). �

In Remark 5.10 we shall give an alternative proof of this result based on a bijection
due to Goulden and Jackson [19].

Algebraic Combinatorics, Vol. 2 #6 (2019) 1293



Henri Mühle & Philippe Nadeau

Lemma 4.7. Let x ∈ NCN . Then x ∈ ONCN if and only if the following property
holds:

P: for any j ∈ [N ], we have j < x(j) if and only if x(j)− j is odd.
Proof. Let j ∈ [N ]. If x(j) = j, then there is nothing to show. If x(j) 6= j, then x
must have a cycle in which j and x(j) are consecutive. Since x ∈ NCN , we can write
each cycle such that its entries are strictly increasing. Then, x(j) < j implies that the
cycle in question has x(j) as its least element, and j as its greatest.

If x satisfies (OD), then neighboring entries in a cycle have odd difference, and
the extremal entries have even difference, and (P) follows. Conversely, if x satisfies
(P), then it follows that neighboring entries in a cycle have odd difference, and this
combined with the fact that extremal entries in a cycle have even difference implies
that all cycles are odd. Hence x satisfies (OD). �

Let y ∈ NCN , and recall from Proposition 2.1 that the Kreweras complement
Ky : [e, y]2 → [e, y]2 is defined by x 7→ x−1y.
Proposition 4.8. Suppose x, y ∈ ONCN and x 62 y. Then Ky(x) ∈ ONCN .
Proof. Assume first y = ck = (1 2 . . . 2k+1) for a certain k, and write x′ = Kck

(x).
Then x′(i) = x−1(i + 1) for i < 2k + 1 and x′(2k + 1) = x−1(1). By Lemma 4.7, we
assume that x satisfies (P) and we must show that so does x′.

Suppose i < x′(i). In particular we have i 6= 2k + 1 so that we have x′(i) =
x−1(i + 1) =: j. If i 6 j − 2, then we have x(j) = i + 1 < j, and (P) implies that
j−x(j) is even which is equivalent to i−x′(i) being odd as desired. If i = j− 1, then
x′(i) = i+ 1, and we get x′(i)− i = 1, which is odd as desired.

Suppose i > x′(i). If i < 2k + 1, then we have x′(i) = x−1(i + 1) =: j. We have
x(j) = i+ 1 > j, and (P) implies that x(j)− j is odd which is equivalent to i− x′(i)
being even as desired. If i = 2k+ 1, then we have x′(i) = x−1(1), and 2k+ 1−x−1(1)
is even if and only if x−1(1) is odd. This is clearly satisfied if x−1(1) = 1. Otherwise, if
x−1(1) > 1, then (P) applied to x and x−1(1) yields that x−1(1)−1 is even as desired.

We have thus shown the claim for y = ck. If y is a cycle ζ = (a1 a2 . . . a2k+1)
satisfying (OD), then by Proposition 2.3 the posets [e, y]3 and (1 2 . . . 2k + 1) are
isomorphic via conjugation by w ∈ S2n+1 satisfying w(i) = ai. Since ai − aj has the
same parity as i− j, the property (OD) is preserved by this conjugation, and we can
conclude the claim for y = ζ since Kck

= wKζw
−1.

In the general case, one has a poset isomorphism [e, y]3 ∼= [e, ζ1]3 × [e, ζ2]3 · · · ×
[e, ζk]3 where the ζi are the odd cycles of y, thanks to Proposition 3.6, and each ζi
satisfies (OD) because y does. This isomorphism sends Ky to the product of the Kζi

,
and obviously x 63 y satisfies (OD) if and only if each xi in its image (x1, x2, . . . , xk)
satisfies (OD), which concludes the proof. �

Theorem 4.9. For N > 3 the poset ONCN is an induced subposet of NCN .
Proof. We know that ONCN is a subposet of NCN by Proposition 4.3. Now let x, y ∈
ONCN with x 62 y. By Proposition 4.8, Ky(x) = x−1y is in ONCN ⊂ AoN , so we can
use the relation between `2 and `3 in Proposition 4.2 to deduce that x 63 y, which
concludes the proof. �

Now we can conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. Recall that any y ∈ AoN is SN -conjugate to some x ∈ ONCN .
Therefore, we can find w ∈ SN with y = w−1xw. Proposition 2.3 states that the
posets [e, x]3 and [e, y]3 are isomorphic, and so are [e, x]2 and [e, y]2. Now Theorem 4.9
states that [e, x]3 is an induced subposet of [e, x]2, and this property is certainly
preserved under the above isomorphism. �
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5. Enumerative Results
In this section we collect a few enumerative properties of the poset (AN ,63).

5.1. The Rank Generating Function of (AN , `3). Let FN (q) =
∑
x∈AN

qocyc(x)

be the polynomial enumerating AN with respect to ocyc. Then Proposition 3.1 states
that qN/2FN (q−1/2) is the polynomial enumerating AN with respect to `3.

Proposition 5.1. The generating function F (t, q) =
∑
N>0

FN (q) t
N

N ! is given by

F (t, q) = 1
2

(
1 + t

1− t

)q/2(
(1− t2)−1/2 + (1− t2)1/2

)
(6)

= 1
2

(
(1 + t)

q−1
2 (1− t)−

q+1
2 + (1 + t)

q+1
2 (1− t)−

q−1
2

)
.(7)

Proof. We need to count collections of cycles with an even number of even cycles,
with q marking the number of odd cycles. Recall that the series enumerating cycles
is − log(1 − t), so that, by taking its odd and even part, the series for odd cycles
is 1/2 log

(
(1 + t)/(1 − t)

)
while the series for even cycles is −1/2 log(1 − t2). By

the exponential formula [37, Chapter 5], using q to mark odd cycles and
(
exp(x) +

exp(−x)
)
/2 to ensure an even number of even cycles, we get

F (t, q) = exp
(
q

2 log
(

1 + t

1− t

))
· 1

2

(
exp

(
− log(1− t2)

2

)
+ exp

(
− log(1− t2)

2

))
which gives the desired expression (6), and (7) follows immediately. �

Notice that the case q = 1 gives F (t, 1) =
(
1 + t+ 1/(1− t)

)
/2 which corresponds

to the fact that |A0| = |A1| = 1 and |AN | = N !/2 for N > 2. We obtain FN (q) by
expanding (7) in powers of t and picking the coefficient of tN/N !. There does not seem
to be a nice formula for FN (q) in general, however it is easy to use any mathematics
software to obtain the polynomials for the first few values of n, see Table 1.

n Fn(q)
∑
x∈AN

q`3(x)

0 1 1
1 q 1
2 q2 q

3 q3 + 2q 1 + 2q
4 q4 + 8q2 + 3 1 + 8q + 3q2

5 q5 + 20q3 + 39q 1 + 20q + 39q2

6 q6 + 40q4 + 229q2 + 90 1 + 40q + 229q2 + 90q3

7 q7 + 70q5 + 889q3 + 1560q 1 + 70q + 889q2 + 1560q3

Table 1. The rank generating function of (AN ,63) for N 6 7.

5.2. The Poset ONCN . Recall from Proposition 3.6 that any interval in (AN ,63)
can be decomposed as a direct product of intervals induced by odd cycles times
one interval induced by an element consisting of an even number of even cycles.
In this section we study the intervals ONCN defined in Definition 4.5. In view of
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Propositions 3.6 and 4.2 this knowledge is enough to understand all intervals in the
poset (AoN ,63).

Given a generated group (G, T ), let y ∈ G and m > 1. Then the multichains
y1 6T y2 6T · · · 6T ym 6T y are in bijection with the factorizations x1x2 · · ·xm+1 =
y satisfying `T (x1)+`T (x2)+· · ·+`T (xm+1) = `T (y) with xi ∈ G. One simply defines
xi = y−1

i−1yi for i ∈ [m + 1] with y0 = e and ym+1 = y. The inverse bijection is given
by setting yi = x1x2 · · ·xi.

In particular, m-multichains of ONC2n+1 correspond bijectively to factorizations
x1x2 · · ·xm+1 = (1 2 . . . 2n+1) in AN such that `3(x1)+`3(x2)+ · · ·+`3(xm+1) = n.
By Proposition 4.8, all xi in this factorization belong to ONC2n+1. Thus the xi have
only odd cycles and therefore `2(xi) = 2`3(xi) by Proposition 4.2. We have the
following lemma.

Lemma 5.2. The set of m-multichains of ONC2n+1 is in bijection with the set of
factorizations x1x2 · · ·xm+1 = (1 2 . . . 2n + 1) such that `2(x1) + `2(x2) + · · · +
`2(xm+1) = 2n, and all factors xi belong to Ao2n+1.

These multichains can thus be found inside NC2n+1, which enables us to draw from
results on the noncrossing partition lattice.

We start with a formula for the number of multichains of ONC2n+1 with fixed rank
jump vector, and then derive the zeta polynomial of ONC2n+1, as well as some other
enumerative properties, from this.

Theorem 5.3. For n, q > 1, the number of (q− 1)-multichains C = (x1, x2, . . . , xq−1)
of ONC2n+1 with rank jump vector r(C) = (r1, r2, . . . , rq) is

(2n+ 1)q−1
q∏
i=1

1
2n+ 1− ri

(
2n+ 1− ri

ri

)
.

Proof. By Lemma 5.2 and the discussion preceding it, such a multichain is equivalent
to a minimal factorization y1y2 · · · yq = (1 2 . . . 2n+1) where yi ∈ Ao2n+1 for i ∈ [q].
Now [18, Theorem 3.2] (see also [26, Theorem 5]) gives a formula if the cycle type of
each yi is fixed: in our case, if yi has p(i)

j cycles of length 2j + 1 for j > 1, then the
number of these factorizations is given by

(2n+ 1)q−1
q∏
i=1

1
2n− 2ri + 1

(2n− 2ri + 1
p

(i)
1 , p

(i)
2 , . . .

)
,

in which ri =
∑
j jp

(i)
j . To obtain all factorizations, we sum over all sequences

(p(i)
1 , p

(i)
2 , . . .) by using [26, Lemma 4], and we obtain

(2n+ 1)q−1
q∏
i=1

1
2n− 2ri + 1

(
2n− ri
ri

)
for the number of such factorizations. This formula is equivalent to the formula in the
statement. �

The cases q = 2, r(C) = (k, n − k) on the one hand, and q = n + 2, r(C) =
(0, 1, 1, . . . , 1, 0) on the other give the following enumerations.

Corollary 5.4. For n > 1 and k ∈ {0, 1, . . . , n}, we have the following formulas:∣∣∣RONC2n+1(k)
∣∣∣ = 2n+ 1

(2n+ 1− k)(n+ 1 + k)

(
2n+ 1− k

k

)(
n+ 1 + k

n− k

)
;∣∣∣M(ONC2n+1

)∣∣∣ = (2n+ 1)n−1.
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The second result is in fact a special case of [9, Theorem 1] and corresponds to
sequence [36, A052750]. Table 2 lists the rank numbers of ONC2n+1 for n 6 5.

n Rank numbers of ONC2n+1

1 (1, 1)
2 (1, 5, 1)
3 (1, 14, 14, 1)
4 (1, 30, 81, 30, 1)
5 (1, 55, 308, 308, 55, 1)

Table 2. The sequences of rank numbers of ONC2n+1 for n 6 5.

Before we continue to prove Theorem 1.1, we record the following auxiliary result,
which is a multi-parameter version of the Rothe–Hagen identity.

Lemma 5.5. Let r be a positive integer, and fix integers a1, a2, . . . , ar, b, n. Let a =
a1 + a2 + · · ·+ ar. We have

∑
n1+n2+···+nr=n

r∏
i=1

ai
ai + bni

(
ai + bni
ni

)
= a

a+ bn

(
a+ bn

n

)
.

Proof. The key observation to this proof was already made in Equation (7) of [17]. It
was noted there that for integers s, t we have the identity of power series in z:

(8) xs =
∞∑
j=0

s

s+ tj

(
s+ tj

j

)
zj ,

where x is defined as the power series solution of x = 1 + zxt. Note that x counts
plane t-ary trees with respect to their number of internal vertices; also, (8) is actually
a direct application of the Lagrange Inversion Theorem. In the present setting we
have xa1xa2 · · ·xar = xa. If we apply (8) on both sides, we obtain

∞∑
n=0

a

a+ bn

(
a+ bn

n

)
zn = xa = xa1xa2 · · ·xar

=
r∏
i=1

( ∞∑
n=0

ai
ai + bn

(
ai + bn

n

)
zn

)

=
∞∑
n=0

( ∑
n1+n2+···+nr=n

r∏
i=1

ai
ai + bni

(
ai + bni
ni

))
zn.

The claim then follows by comparing coefficients. �
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Proof of Theorem 1.1. By summing the number of (q − 1)-multichains over all rank
jump vectors given by Theorem 5.3, we get

ZONC2n+1(q) =
∑

r1+r2+···+rq=n
(2n+ 1)q−1

q∏
i=1

1
2n− ri + 1

(
2n− ri + 1

ri

)

= 1
2n+ 1

 ∑
r1+r2+···+rq=n

q∏
i=1

2n+ 1
2n− ri + 1

(
2n− ri + 1

ri

)
∗= 1

2n+ 1

(
q(2n+ 1)

q(2n+ 1)− n

(
q(2n+ 1)− n

n

))
= q

q(2n+ 1)− n

(
q(2n+ 1)− n

n

)
.

as desired. The equality marked with a “*” is Lemma 5.5 with r = q, a1 = a2 = · · · =
aq = 2n+ 1 and b = −1. �

By evaluating the previous polynomial at q = 2, 3, and −1, respectively, we obtain
the following corollary.

Corollary 5.6. For n > 1, we have the following formulas:∣∣∣ONC2n+1

∣∣∣ = 1
n+ 1

(
3n+ 1
n

)
;(9) ∣∣∣I(ONC2n+1

)∣∣∣ = 3
5n+ 3

(
5n+ 3
n

)
;(10)

(−1)nµ
(
ONC2n+1

)
= 1

4n+ 1

(
4n+ 1
n

)
.(11)

The formulas appearing in Corollary 5.6 correspond to sequences [36, A006013],
[36, A118970], and [36, A002293], respectively.

Remark 5.7. Besides studying enumerative aspects of the poset (AN ,63) we may as
well ask for structural or topological properties.

On the topological side, it is well known that the order complex of the poset
(SN ,62) is Cohen–Macaulay and thus a wedge of spheres [3, Theorem 1]. Moreover,
it follows from [11, Example 2.9] that every interval in (SN ,62) is in fact (lexico-
graphically) shellable.

We have verified by computer that every interval in the poset (AN ,63) is shellable
for N 6 7, which leads us to believe that this holds for all N .

5.3. Bijections. In this section we reprove (9) bijectively, and we use this bijection
to determine the size of ONC2n.

Bijective Proof of (9). Let N > 0 be an integer. We first recall the bijection Φ from
NCN to the set of edge-rooted bicolored plane trees with N edges due to Goulden
and Jackson [18, Theorem 2.1].

Consider x ∈ NCN , and let y = x−1(1 2 . . . N). With each cycle of x (respec-
tively y) we associate a white (respectively black) vertex in the tree Φ(x). The vertex
corresponding to a cycle (a1 a2 . . . ap) is adjacent to p edges labeled by a1, a2, . . . , ap
clockwise. This creates a planar bicolored tree, and in order to obtain Φ(x) we root
the tree at the edge labeled by 1, and delete all labels. To obtain the inverse bijection,
we simply need to reconstruct the labels from the tree: this is done by walking around
the tree clockwise, and labeling the edges by 1, 2, . . . , N starting from the marked
edge in the direction from its white to its black vertex. Clearly this bijection sends
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the cycle type of x (respectively y) to the degree distribution of white (respectively
black) vertices in the tree Φ(x).

By Lemma 5.2, applied to the case m = 1, it follows that Φ restricts to a bijection
between ONC2n+1 and marked bicolored plane trees with 2n + 1 edges where all
vertices have odd degree. By deleting the marked edge, we obtain a pair (T1, T2) of
planar rooted trees where each node has an even number of children and the total
number of edges in T1 and T2 is 2n. In view of [15] the set of such pairs of trees is
in bijection with the set of pairs of ternary trees with a total of n internal nodes.
That the cardinality of this set is given by (9) follows for instance from [20, p. 201,
Equation (5.60)]. �

We may use this bijection to prove the following result.

Proposition 5.8. For n > 1, we have∣∣∣ONC2n

∣∣∣ = 1
2n+ 1

(
3n
n

)
.

Proof. Let x ∈ ONC2n. Since every cycle of x has odd length, and x lives in A2n,
we conclude that x has an even number of cycles. Moreover, the permutation y =
x−1(1 2 . . . 2n) has a unique cycle with even length. (This is the cycle containing
2n.) It follows that Φ(x) is a marked bicolored plane tree with 2n edges, where all
vertices have odd degree, except for a single black vertex.

If we make this black vertex the root, we obtain a planar rooted tree with 2n edges,
where each node has an even number of children, and this process is clearly bijective.
As before, the set of such trees is in bijection with the set of ternary trees with n
internal nodes [15]. The set of such trees is counted by (8) with s = 1 and t = 3, and
yields precisely the formula in the statement. �

Example 5.9. Let us illustrate the bijection with an example. Let us consider the
permutation x = (1 14 15)(3 4 7)(8 9 10 11 12) ∈ A17. Its Kreweras complement is
y = (1 2 7 12 13)(4 5 6)(15 16 17). The corresponding labeled planar bicolored tree is
shown in Figure a; and the corresponding pair of ternary trees is shown in Figure b.

Remark 5.10. We want to sketch how Goulden–Jackson’s bijection gives an alterna-
tive way to prove certain key results of Section 4.

We start with Proposition 4.6, so let c = (1 2 . . . 2n+ 1) and x ∈ NC2n+1.
The proposition states that x ∈ ONC2n+1 if and only if x 63 c. By Lemma 5.2,
one has x 63 c if and only if xy = c is a minimal factorization and x, y have only
odd cycles, where y = x−1c = Kc(x). Via Goulden–Jackson’s bijection, this means
that all vertices of the marked bicolored planar tree Φ(x) have odd degree. It is then
easily proved, by induction starting from the leaves of Φ(x), that all cycles of x and
y necessarily satisfy Property (OD), and thus x belongs to ONC2n+1.

To prove the reverse implication, consider x ∈ ONC2n+1. It is enough to prove that
y = x−1c has odd cycles. Equivalently, one must show that the white vertices in Φ(x)
all have odd degree if the cycles of x satisfy Property (OD), which is also done by
induction.

This approach has the additional advantage that it proves Proposition 4.8 for y a
long cycle (1 2 . . . 2k+1), and thus bypasses the use of Lemma 4.7.

5.4. The Case of Two Even Cycles. In Section 4 we have extensively studied
the principal order ideals in (AN ,63) induced by permutations consisting of only
odd cycles. In view of Proposition 3.6 it remains to study those principal order ideals
induced by even permutations consisting of only even cycles.
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a. The labeled planar bicolored tree corresponding to x =
(1 14 15)(3 4 7)(8 9 10 11 12) and y = (1 2 7 12 13)(4 5 6)(15 16 17).

b. The pair of planar rooted trees coming from the tree Figure a by
removing the marked edge.

2. An illustration of the bijection Φ.

We restrict our attention to even permutations which have precisely two even cycles,
say x = xp,q = (a1 a2 . . . a2p)(b1 b2 . . . b2q) for p > q > 1. Then, xp,q ∈ A2(p+q), and
Proposition 3.1 implies `3(xp,q) = p+ q. Let N = 2(p+ q).

We are not able to describe a combinatorial model for the elements y ∈ AN with
y 63 x, though there is reason to believe that noncrossing partitions on an annulus
could be involved. We can however count the number of reduced decompositions of
xp,q.

Proposition 5.11. The number of maximal chains in [e, xp,q]3 is
2(p+ q − 1)!(2p)p(2q)q

(p− 1)!(q − 1)! .

Proof. We have to count the minimal factorizations of xp,q in 3-cycles; these fac-
torizations are easily seen to be transitive. Therefore the number that we seek is
precisely the coefficient c3(2p, 2q) in [19], and can be computed via Theorem 1.4 in
that paper. �

Let us call an element y of [e, xp,q]3 pure if the support of any cycle of y is included
either in {a1, a2, . . . , a2p} or {b1, b2, . . . , b2q}; such elements are called even if they
contain a cycle of even length, and odd otherwise. Finally, y is mixed if it is not pure.

Proposition 5.12. There is a bijection between even pure elements of [e, xp,q]3 and
odd ones. Their common cardinality is given by(

3p− 1
p− 1

)(
3q − 1
q − 1

)
.

Sketch of the Proof. The Kreweras complement Kxp,q is the desired bijection: it is
clear that it leaves stable the set of pure elements, and one checks easily that it
exchanges the parity.
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An even pure element can be decomposed uniquely as a product of a permutation
with support in {a1, a2, . . . , a2p} and a permutation with support in {b1, b2, . . . , b2q};
we only need to focus on the first permutation. In the same way as Proposition 4.6,
one can show that this permutation is a noncrossing partition of {a1, a2, . . . , a2p}
with exactly one even cycle, and where all cycles (x1 < x2 < · · · < xt) have the
property that xi+1 − xi is odd for all i. Goulden–Jackson’s bijection Φ then encodes
these noncrossing partitions as edge-rooted planar trees with 2p edges with one black
vertex of even degree and all other vertices (white or black) of odd degree. By making
the even-degree vertex the root, we obtain a planar rooted tree with 2p edges where
each node has an even number of children. As before we use standard results on tree
enumeration to show that the number of such trees is

(3p−1
p−1

)
. �

We do not know of a formula for the number mp,q of mixed elements of [e, xp,q]3,
and consequently neither for the total number tp,q of elements of [e, xp,q]3. Let us,
moreover, denote by µp,q the Möbius number of [e, xp,q]3, and let rp,q be the corre-
sponding rank-vector. Table 3 lists a few of those numbers for small values of p+ q.

p q mp,q tp,q µp,q rp,q

1 1 8 10 7 (1, 8, 1)
2 1 48 58 −73 (1, 28, 28, 1)
3 1 294 350 671 (1, 66, 216, 66, 1)
2 2 336 386 863 (1, 72, 240, 72, 1)
4 1 1824 2154 −6041 (1, 128, 948, 948, 128, 1)
3 2 2208 2488 −8495 (1, 142, 1101, 1101, 142, 1)
5 1 11440 13442 54264 (1, 220, 3050, 6900, 3050, 220, 1)
4 2 14304 15954 79855 (1, 244, 3604, 8256, 3604, 244, 1)
3 3 15144 16712 87287 (1, 252, 3771, 8664, 3771, 252, 1)
6 1 72384 84760 −488543 (1, 348, 8046, 33985, 33985, 8046, 348, 1)
5 2 92400 102410 −738948 (1, 384, 9545, 41275, 41275, 9545, 384, 1)
4 3 100992 110232 −845023 (1, 402, 10237, 44476, 44476, 10237, 402, 1)

Table 3. The numerology of the intervals [e, xp,q]3 for small values
of p+ q.

6. Hurwitz Action
This section is devoted to the enumeration of Hurwitz orbits on the set Red3(x) of
reduced factorizations of x ∈ AN into 3-cycles.
Theorem 6.1 (Same statement as Theorem 1.2). Let x ∈ AN for N > 3, and write 2k
for its number of cycles of even length. The Hurwitz action on Red3(x) has (2k)k =
(k + 1)(k + 2) · · · (2k) orbits.

Let us illustrate Theorem 1.2 with a small example. Consider the element x =
(1 2)(3 4) ∈ A4. According to Proposition 5.11, x has precisely eight reduced factor-
izations, and we can check that they fall into the following two Hurwitz orbits:

(1 2 4)(2 4 3), (1 3 4)(1 2 4), (1 3 2)(1 3 4), (2 4 3)(1 3 2);
(2 3 4)(1 4 2), (1 4 2)(1 4 3), (1 4 3)(1 2 3), (1 2 3)(2 3 4).

Algebraic Combinatorics, Vol. 2 #6 (2019) 1301



Henri Mühle & Philippe Nadeau

In the course of the proof of Theorem 1.2, we will in fact precisely describe the
orbits. The case k = 0 emphasizes once again the special role of AoN . Let us state this
separately.

Proposition 6.2. For N > 3 and x ∈ AN , we have x ∈ AoN if and only if B`3(x) acts
transitively on Red3(x).

We start with the direct implication: if x ∈ AoN , then the Hurwitz action is transi-
tive on Red3(x).

Proof of Proposition 6.2 (⇒). We reason by induction on `3(x). The result is trivial
when x is the identity, so we assume that `3(x) > 0 and that the claim holds for all
elements of AoN with length smaller than `3(x).

Suppose first that x has more than one (non-trivial) cycle in its decomposition,
say x = ζ1ζ2 · · · ζk with k > 2, so that `3(ζi) < `3(x) for all i. By construction,
since x ∈ AoN so are its cycles. Let w ∈ Red3(x). By Proposition 3.6, w is a shuffle
of k reduced words wi ∈ Red3(ζi), and moreover the letters involved in distinct
wi commute since the corresponding 3-cycles have disjoint support. Therefore the
Hurwitz action allows us to bring w to the form w1w2 · · ·wk. Now by induction the
Hurwitz action is transitive on Red3(ζi) for all i ∈ [k], and therefore also on Red3(x).

If x is a single cycle, we can assume without loss of generality that x = c =
(1 2 . . . 2n+1) which has length `3(c) = n. Let us write ui = (i, i+1, i+2) for
i ∈ [N − 2], and fix the reduced word wc = u1u3 · · ·u2n−1 ∈ Red3(c).

For any k ∈ {0, 1, . . . , n−1} define wk := σ−1
1 σ−1

2 · · ·σ
−1
k wc. A direct computation

shows that
wk = (1, 2k+2, 2k+3)u1u3 · · ·u2k+1

∧
· · ·u2n−1,

where the hat indicates omission. Now for j ∈ {0, 1, . . . , n− k − 1} define
wk,j := (1, 2k+2, 2k+2j+3) x y z,

where the words x,y, z are given by
x = u2k+2j+2u2k+2j · · ·u2k+2

y = u1u3 · · ·u2k−1

z = u2k+2j+3u2k+2j+5 · · ·u2n−1.

In particular wk,0 = wk. By induction on j it is verified that

σ2
1σ2 · · ·σk+jwk,j = wk,j+1,

which implies that all words wk,j are Hurwitz-equivalent to wc.
Furthermore, it is easily shown that (σ1σ2 · · ·σn−1)n acts on a word of length n

consisting of 3-cycles by conjugating each letter by c. The characterization in Propo-
sition 4.6 implies that any 3-cycle below c is conjugate to a 3-cycle of the form
(1, 2k+2j+2, 2k+2j+3). So we proved that for any 3-cycle a below c, there exists a
word wa such that awa is Hurwitz-equivalent to wc.

Now pick any reduced word for c, and write it as aw where a ∈ A is its first letter,
and let x = a−1c be the element represented by w. Then x is in AoN by Proposition 4.2,
and so by induction the Hurwitz action is transitive on its reduced expressions. In
particular w is Hurwitz-equivalent to wa, and so from the previous paragraph aw is
Hurwitz-equivalent to wc, and the direct implication in Proposition 6.2 is proved. �

Remark 6.3. The recursive structure of the proof is inspired by [7, Proposition 1.6.1].
The result is also a special case of [28, Theorem 5.4.11]. The proof there is of a
geometric nature, using the dictionary between factorizations and ramified coverings
of the Riemann sphere.
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We now deal with the case where x ∈ AN has 2k even cycles for k > 0. For
w ∈ Red3(x) we define an equivalence relation Mw on the set of even cycles of x as
follows: Mw is the finest relation such that ζ ∼ ζ ′ whenever there exists a letter of w
whose support intersects the supports of both ζ and ζ ′.

Let us illustrate the relation Mw with a concrete example. Consider

x = (1 5 4 7)(2 9)(3 12 8 6 10 15)(11)(13 18 14)(16 17) ∈ A18,

and the reduced factorization

w = (1 2 9) · (1 7 9) · (3 6 17) · (1 5 4) · (6 17 16) · (3 12 8) · (6 10 15) · (13 18 14).

The even cycles of x are ζ1 = (1 5 4 7), ζ2 = (2 9), ζ3 = (3 12 8 6 10 15), and
ζ4 = (16 17). The supports of the letters (1 2 9) and (1 7 9) of w both intersect
the supports of ζ1 and ζ2, so we have ζ1 ∼ ζ2. Moreover, the supports of the letters
(3 6 17) and (6 17 16) of w both intersect the supports of ζ3 and ζ4, so we have
ζ3 ∼ ζ4. Therefore the equivalence classes of Mw are given by {ζ1, ζ2} and {ζ3, ζ4}.

Lemma 6.4. Let x ∈ AN and w ∈ Red3(x). All equivalence classes of Mw consist
of two cycles, i.e. Mw is a (perfect) matching. Moreover, Mw is invariant under the
Hurwitz action on Red3(x), i.e. for any i < `3(x), we have Mσ±1

i
w = Mw.

Proof. Consider the maximal chain from the identity to x in (AN ,63) corresponding
to w ∈ Red3(x). By the description of covers in Corollary 3.3, there must be k
occurrences of a cover of type (3), and each creates a pair of even cycles (from a pair
of odd cycles). If xil3 xi+1 is such a cover, then the 3-cycle x−1

i xi+1 implies that the
newly created pair of even cycles in xi+1 is contained in some block of Mw. Since the
other possible covers of type (1) or (2) merge three cycles (at most one of which is
even), they are necessarily labeled by 3-cycles whose support cannot involve elements
from non-paired even cycles. This shows that all classes of Mw have size 2.

By the analysis from the previous paragraph, the support of each 3-cycle occurring
in w is included in the support of ζζ ′ for a well-defined pair {ζ, ζ ′} ∈ Mw, or in
the support of an odd cycle of x. So letters corresponding to distinct pairs of Mw
commute, which entails that the Hurwitz action does not modify Mw. �

Lemma 6.4 effectively reduces the Hurwitz action to the case of two even cycles;
we thus consider xp,q = (a1 a2 . . . a2p)(b1 b2 . . . b2q) ∈ AN as in Section 5.4. The
3-cycles below xp,q can be divided into two families: pure generators which have the
form (ai aj ak) or (bi bj bk) and mixed generators of the form (ai aj bk) or (ai bj bk).
With these notations it is easily seen that in a pure generator we necessarily have
i < j < k and exactly one element of the sequence j− i, k− j, i−k is even. For mixed
generators j − i must be odd in (ai aj bk), and k − j must be odd in (ai bj bk).

Definition 6.5. Given xp,q as above, we define the parity of a mixed generator
(ai aj bk) or (ai bj bk) to be the parity of k − i.

Remark 6.6. It is important to notice that this notion of parity is not canonical
and depends on a given specification of xp,q. If we modify this specification either by
swapping the two cycles, or by shifting cyclically the elements of one of the cycles, the
notions of odd and even are exchanged. In any case the partition of mixed generators
in two classes remains unchanged.

Lemma 6.7. Let xp,q = (a1 a2 . . . a2p)(b1 b2 . . . b2q) ∈ AN as above, and let
w ∈ Red3(xp,q). Then w contains at least two mixed generators. Moreover, all mixed
generators in w have the same parity.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1303



Henri Mühle & Philippe Nadeau

Proof. Consider the maximal chain from the identity to xp,q in (AN ,63) that cor-
responds to w. By the description of covers in Corollary 3.3, this chain contains a
unique occurrence of a cover of type (3), cover which is necessarily labeled by a mixed
generator. Now one of the two odd cycles joined in this cover contains elements of
both cycles of xp,q, and so not all generators below it can be pure, which accounts
for at least one other mixed generator beside the one coming from the distinguished
cover relation above.

Now let us consider any two such mixed generators. Using the Hurwitz action, we
can assume that these generators occur in the last two positions of w. Up to exchang-
ing the two cycles of xp,q, we can also assume that the mixed generator occurring in
last position in w has the form (ai aj bk); here j− i is necessarily odd as noticed pre-
viously. We shall also assume that j < i, the opposite case proceeds entirely similarly.
Define x′ = xp,q(ai aj bk)−1 = xp,q(aj ai bk), which is equal to

(a1 a2 . . . aj ai+1 ai+2 . . . a2p)(aj+1 aj+2 . . . ai bk+1 bk+2 . . . b2q b1 b2 . . . bk).
We have x′lxp,q by definition, and x′ is a product of two odd cycles; only the second
one of these cycles can be split into three odd cycles when multiplied by a mixed
generator. Denote by (ar as bt) (or (ar bs bt)) the mixed generator occurring second
to last in w. By an elementary but tedious distinction of cases (depending on how the
splitting of the second odd cycle occurs when multiplied by this mixed generator),
one shows that there always holds t − r ≡ k − i (mod 2). This shows that the two
mixed generators have the same parity. �

We may now conclude the missing part of the proof of Proposition 6.2.

Proof of Proposition 6.2 (⇐). Let x ∈ ANrAoN , and let 2k > 2 be its number of even
cycles. To show that the Hurwitz action is not transitive, it is enough by Lemma 6.4
to consider the case k = 1, and pick w ∈ Red3(x). If we act on w by τ = σ±1

i , then
at most one letter is modified. By Lemma 6.7, the resulting letter cannot be a mixed
generator of the parity not already occurring in w. So in a Hurwitz orbit all occurring
mixed generators have the same parity.

In order to conclude that we have at least two Hurwitz orbits, it suffices to ex-
hibit two reduced factorizations of x, one containing even mixed generators, and one
containing odd mixed generators. This is quickly verified by considering the word

x′ = (a2 a3 a4)(a4 a5 a6) · · · (a2p−2 a2p−1 a2p)
(b2 b3 b4)(b4 b5 b6) · · · (b2q−2 b2q−1 b2q),

which consists only of pure generators. Now define
x1 = (a1 a2 b2)(a2 b2 b1)x′,(12)

and
x2 = (a2 a1 b2)(a1 b2 b1)x′.(13)

We verify easily that both x1 and x2 are reduced factorizations of xp,q, and the proof
is complete. �

For the proof of Theorem 1.2, the two factorizations (12) and (13) will play a
crucial role. We have the following lemma.

Lemma 6.8. All pure generators and all mixed odd generators occur as first letters of
words in the Hurwitz orbit of x1.

The proof of this lemma is rather long and technical, so we withhold it for the
moment. Instead, we prove Theorem 1.2.
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Proof of Theorem 1.2. In view of Lemma 6.4 and Lemma 6.7 we see that for any
matching M of the even cycles of x, and any choice of parity for each of the k pairs
of even cycles, one obtains a Hurwitz-invariant set of factorizations. This shows that
the number of Hurwitz orbits of Red3(x) is at least (2k − 1)!!2k = (2k)k. To show
Theorem 1.2, we thus have to show that each of these Hurwitz-invariant sets is in fact
a Hurwitz orbit.

A byproduct of the proof of Lemma 6.4 is that it is enough to do the case k = 1 with
no odd cycle: this will transfer to the general case due to the fact that generators with
disjoint supports commute, and that the Hurwitz action realizes this commutation for
adjacent letters.

We thus have to show that any w ∈ Red3(xp,q) is in the orbit of either x1 or x2
given by (12) and (13), respectively.

If we denote by Redo3(xp,q) the set of reduced factorizations of xp,q that contain
odd mixed generators, then in view of Remark 6.6 it suffices to show that Redo3(xp,q)
is contained in the Hurwitz orbit of x1.

Let w = aw′ be any element of Redo3(xp,q). By Lemma 6.8, we know that there
exists ax′ in the Hurwitz orbit of x1. So we just have to show that x′ is in the Hurwitz
orbit of w′. Both words are certainly reduced factorizations of a−1xp,q. We need to
distinguish two cases: if a is mixed, then a−1xp,q is a product of two odd cycles, and
we know from Proposition 6.2 that the Hurwitz action has just one orbit so we are
done. If a is pure, then a−1xp,q is a product of two odd cycles and two even ones.
One of the even cycles of a−1xp,q is unchanged from xp,q, and the other even cycle
of a−1xp,q is cut from the other cycle of xp,q. This new cycle can be written in way
that makes x′ and w′ elements of Redo3(a−1xp,q) (because x1 and w are elements of
Redo3(xp,q)). By induction, x′ and w′ are then Hurwitz equivalent and the proof is
complete. �

Remark 6.9. One can also study the Hurwitz action from a graph-theoretic point of
view: for x ∈ AN , define a graph on the set Red3(x), where there is an edge between
two reduced factorizations if and only if one can be obtained from the other by the
action of a Hurwitz operator. Such a Hurwitz graph (with vertex set Red2 (x)) was
studied for x a long cycle in SN in [1], and more recently in [21]. (In fact, in [21]
a slightly different graph is considered which happens to coincide with the Hurwitz
graph in the case of SN .) In a more general setting this graph appears in [31].

A natural question is to study radius and diameter of these graphs. While only
lower bounds are known for the diameter, there are concrete results known for the
radius. For instance, if x is a long cycle of Sn+1, then [1, Theorem 9.3] establishes
that the Hurwitz graph on Red2 (x) has radius (n−1)n

2 . If x is a long cycle of S2n+1,
then we have verified by computer for n 6 6 that the Hurwitz graph on Red3 (x) has
radius (n−1)(n+2)

2 , and we conjecture that this holds for all n.
If x = xp,q ∈ A2p+2q is an element with two even cycles of lengths 2p and 2q,

then Theorem 1.2 states that the corresponding Hurwitz graph has two connected
components (which are mutually isomorphic). By Proposition 5.11 each connected
component has precisely (p+q+1)!(2p)p(2q)q

(p−1)!(q−1)! vertices. If we restrict our attention to one
such component, then we have verified by computer that the radii in the case p = 1
and q ∈ {1, 2, 3, 4} are 2, 4, 8, 14.

We conclude this section with the proof of Lemma 6.8.

Proof of Lemma 6.8. Note that one can omit “first” in the statement: if a letter oc-
curs in the ith position of a word w, then it occurs as the first letter of the word
σ1σ2 · · ·σi−1 ·w.
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Let N = p+ q. First of all, a simple computation shows that the braid word

(14) γ =
(
σ−1
N−1σ

−1
N−2 · · ·σ

−1
1
)N

acts on any word in Red3(xp,q) by cyclically sending each letter ai to ai+1 and each
letter bi to bi+1. Another quick computation shows that

y1 := (a1 a2 b2)−1xp,q = (a2 a3 . . . a2p b2 b3 . . . b2q b1) ∈ Ao2N .

In view of Proposition 6.2, this implies that any w ∈ Red3(xp,q) starting with
(a1 a2 b2) lies in the Hurwitz orbit of x1. Let C1 denote the set of all 3-cycles below
y1, which by Proposition 4.6 is

C1 =
{

(ar as at), (br bs bt) | 1 < r < s < t and s− r odd, t− s odd
}

∪
{

(ar as bt) | 1 < r < s, 1 < t and s− r odd, t− s even
}

∪
{

(ar bs bt) | 1 < r, 1 < s < t and s− r even, t− s odd
}

∪
{

(br bs b1) | 1 < r < s and r odd, s even
}

∪
{

(ar as b1) | 1 < r < s and r even, s odd
}

∪
{

(ar bs b1) | 1 < r, 1 < s and r, s even
}
.

All pure generators with no a1 in their support belong to C1. By Hurwitz-transitivity
of Red3(y1) we conclude that any w ∈ Redo3(x) that starts with a pure generator lies
in the Hurwitz orbit of x1.

The odd mixed generators fall into four categories:
(I) (ar bs bt) for 1 6 r 6 2p, 1 6 s < t 6 2q and t− s odd, t− r odd;
(II) (ar bt bs) for 1 6 r 6 2p, 1 6 s < t 6 2q and t− s odd, s− r odd;
(III) (ar as bt) for 1 6 r < s 6 2p, 1 6 t 6 2q and s− r odd, t− r odd;
(IV) (as ar bt) for 1 6 r < s 6 2p, 1 6 t 6 2q and s− r odd, t− s odd.

Those of type (I) and (III) (except for those containing a1 and b1) belong to C1 and
as before any w ∈ Redo3(x) starting with one of these lies in the Hurwitz orbit of
x1. Suitable application of γ from (14) also produces those odd mixed generators
of type (I) or (III), which contain a1 or b1. It thus remains to consider odd mixed
generators of type (II) and (IV).

Let ζ = (ar bs bt) be an odd mixed generator of type (II), i.e. s− t is odd. Without
loss of generality we may assume that r = 1. (We may obtain the general case by
suitable application of γ from (14).) For arbitrary integers i, j define the braid words

ωi = σ−1
1 σ−2

2 σ3σ4 · · ·σi+1

τi,k = σ2
1σ2 · · ·σk−1σ

−2
k σk+1σk+2 · · ·σi+k−1.

Fix k ∈ {2, 3, . . . , q} and define

βp,k =
{
ωp, if k = 2,
τp,kτp,k−1 · · · τp,3ωp, otherwise.

We can then verify that

βp,k · x1 = (a1 b2k−1 b2)(a1 b2k−3 b2k−2)(a1 b2k−5 b2k−4) · · · (a1 b3 b4)
(a1 a2 b2)(b1 b2k−1 b2k)(a2 a3 a4)(a4 a5 a6) · · · (a2p−2 a2p−1 a2p)
(b2k b2k+1 b2k+2)(b2k+2 b2k+3 b2k+4) · · · (b2q−2 b2q−1 b2q).
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Finally define for k ∈ {2, 3, . . . , q} and j ∈ {0, 1, . . . , k − 2} the braid words

µk = σ2
1σ2σ3 · · ·σk−2σ

2
k−1,

αp,k,j = µjkβp,k.

We obtain

αp,k,j · x1 = (a1 b2k−1 b2j+2)(b2j b2j+1 b2k−1)(b2j−2 b2j−1 b2k−1) · · · (b2 b3 b2k−1)
(a1 b2k−3 b2k−2)(a1 b2k−5 b2k−2) · · · (a1 b3+2j b4+2j)
(a1 a2 b2j+2)(b1 b2k−1 b2k)(a2 a3 a4)(a4 a5 a6) · · · (a2p−2 a2p−1 a2p)
(b2k b2k+1 b2k+2)(b2k+2 b2k+3 b2k+4) · · · (b2q−2 b2q−1 b2q),

where the indices of the middle entries in the triples of the second line are supposed to
form a decreasing sequence. In particular, if j = k−2, then this line is supposed to be
empty. We conclude that any w ∈ Red3(xp,q) starting with an odd mixed generator
of type (II) lies in the Hurwitz orbit of x1.

Let now ζ = (as ar bt) be an odd mixed generator of type (IV), i.e. s − r is odd.
Without loss of generality assume that t = 2. (We may obtain the general case by
suitable application of γ from (14).) For arbitrary integers i, j define the braid words

µi = σ2
i σi+1,

νi = σ−1
3 σ−1

4 · · ·σ
−1
i+1,

ωi = µi+1µi · · ·µ2,

ξj,i = νjνiνi−1 · · · ν2.

If there is a choice of parameter that makes one of the occurring sequences non-
monotone, then we define the corresponding word to be empty. For instance ν1 is
supposed to be empty. For 0 6 j < k < p define yet another braid word

βk,j = σ−1
1 ωjσ

−1
1 σ−1

2 ξk,j .

We obtain

βk,j · x1 = (a2k+1 a2j+2 b2)(a1 a2k+1 a2k+2)(a1 a2j a2j+1) · · · (a1 a2 a3)
(a2j+2 b2 b1)(a2j+2 a2j+3 a2j+4) · · · (a2p−2 a2p−1 a2p)
(b2 b3 b4)(b4 b5 b6) · · · (b2q−2 b2q−1 b2q),

and we conclude that any w ∈ Red3(xp,q) starting with an odd mixed generator of
type (IV) lies in the Hurwitz orbit of x1. This concludes the proof. �

7. Extensions
7.1. m-Divisible Noncrossing Partitions. In the spirit of [2], we can define a
partial order on the set of multichains of ONC2n+1 as follows. Fix m > 1, and con-
sider an m-multichain C = (x1, x2, . . . , xm). The extended delta sequence is δo(C) =
(d0; d1, d2, . . . , dm) of ONC2n+1, where di = x−1

i xi+1 for i ∈ {0, 1, . . . ,m}, as well as
x0 = e and xm+1 = c = (1 2 . . . 2n+1).

We define a partial order on the set ofm-multichains of ONC2n+1 by setting C 6 C ′
if and only if di >3 d

′
i for i ∈ [m], where δo(C ′) = (d′0; d′1, d′2, . . . , d′m). Let us denote

the resulting poset by ONC(m)
2n+1.

Conjecture 7.1. For n,m > 1 the number of maximal chains of ONC(m)
2n+1 is

mn(2n+ 1)(n−1).
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Conjecture 7.2. For n,m > 1, the zeta polynomial of ONC(m)
2n+1 is

ZONC(m)
2n+1

(q) =

m(q − 1) + 1(
2m(q − 1) + 1

)
n+m(q − 1) + 1

((
2m(q − 1) + 1

)
n+m(q − 1) + 1
n

)
.

In general ONC(m)
2n+1 is a graded poset with a greatest element, and several minimal

elements. Let ÔNC
(m)
2n+1 denote the poset that arises from ONC(m)

2n+1 by adding a unique
minimal element, and let ONC(m)

2n+1 denote the poset that arises from ONC(m)
2n+1 by

identifying all minimal elements. We pose the following conjectures on the Möbius
numbers of these modified posets.

Conjecture 7.3. For n,m > 1 the Möbius number of ÔNC
(m)
2n+1 is given by

(−1)n−1 m− 1
m(2n+ 1)− 1

(
m(2n+ 1)− 1

n

)
.

Conjecture 7.4. For n,m > 1 the Möbius number of ONC(m)
2n+1 is given by

(−1)n
(

m

(m+ 1)(2n+ 1)− 1

(
(m+ 1)(2n+ 1)− 1

n

)
− m− 1
m(2n+ 1)− 1

(
m(2n+ 1)− 1

n

))
.

7.2. Generation by k-Cycles. A fairly natural extension is to consider k-cycles
instead of 3-cycles for k > 4. We may then ask which results of this paper can
be generalized from 63 to 6k? The difficulty starts at the very beginning: to our
knowledge, there is no simple way to express the associated length function `k. In the
paper [22], the authors manage to find a complicated formula for `4, which hints at
the increasing complexity of formulas for larger k. Thus it is arguably even harder to
describe cover relations for the orders 6k, and the rest of the general structure of the
poset is probably even trickier.

There is, however, a certain subclass of permutations for which the results gen-
eralize. By writing a k-cycle as a product of k − 1 transpositions, one has easily
(k − 1)`k(x) > `2(x). Equality holds in the case described by the following easy
proposition.

Proposition 7.5. A permutation x satisfies `k(x) = `2(x)
k−1 if and only if all its cycles

have length congruent to 1 modulo k − 1.

Notice that for k = 3 the elements occurring in Proposition 7.5 are precisely the
elements of Ao, and the results from Section 3 concerning Ao can be extended to the
analogous set for k > 4.

Furthermore, the enumerative results of Sections 5.2 and 5.3 can also be general-
ized. The set of all elements x in the subgroup of S(k−1)n+1 generated by all k-cycles,
which satisfy x 6k

(
1 2 . . . (k − 1)n+ 1

)
is then in bijection with the set of pairs of

k-ary trees which have a total of n internal nodes. Therefore, the cardinality of these
sets is given by 2

(k−1)n+2
(
kn+1
n

)
. The zeta polynomial of the resulting poset is given

by q
(q−1)(k−1)n+q

((q−1)(k−1)n+q+n−1
n

)
. These results and others can be found in the

preprint [30] of the authors together with Nathan Williams.
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7.3. Generalization to Coxeter Groups. Let (W,S) be a finite irreducible Cox-
eter system of rank n, and let T = {w−1sw | w ∈ W, s ∈ S} denote the set of all
reflections of W . The alternating group A(W ) is the subset of W of elements w such
that `S(w) (or, equivalently, `T (w)) is even. Now consider
(15) A =

{
w−1stw | w ∈W, s, t ∈ S, 3 6 mst 6∞

}
.

This corresponds to the set of 3-cycles for W = Sn.
In general the set A generates A(W ). In fact the subset A′ ⊆ A of elements st

with mst > 3 already generates A(W ): since by definition A(W ) is generated by all
products st, we just need to show that when mst = 2 then st is a product of elements
of A′. But since W is irreducible, for any such s, t there is a path s = s0 → s1 →
· · · → sk = t in the Coxeter graph, which means that msi−1si

> 3 for all i. Now
st = (s0s1)(s1s2) · · · (sk−1sk) is a product of elements of A′ as wanted.

We can thus define `A to be the word length in A(W ) with respect to A and the
A-prefix order 6A. The structural and enumerative questions that we dealt with in
type A can thus be studied for any finite Coxeter group.

In particular, recall that a Coxeter element c ofW is a product of any permutation
of the Coxeter generators, and therefore has `T (c) = n. Hence c ∈ A(W ) if and only
if W has even rank. For any Coxeter element c ∈W , we define the set
(16) ONCW (c) = {x ∈ A(W ) | x 6A c},
and we denote by ONCW (c) =

(
ONCW (c),6A

)
the corresponding poset. Since any

two Coxeter elements c, c′ ∈ W are conjugate, the posets ONCW (c) and ONCW (c′)
are isomorphic. We are still missing a good combinatorial model for these posets, but
early computations show that for instance in type B, the zeta polynomial of ONCB2n

factors nicely.
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