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Promotion on oscillating and alternating
tableaux and rotation of matchings and

permutations

Stephan Pfannerer, Martin Rubey & Bruce Westbury

ABSTRACT Using Henriques’ and Kamnitzer’s cactus groups, Schiitzenberger’s promotion and
evacuation operators on standard Young tableaux can be generalised in a very natural way to
operators acting on highest weight words in tensor products of crystals.

For the crystals corresponding to the vector representations of the symplectic groups, we
show that Sundaram’s map to perfect matchings intertwines promotion and rotation of the
associated chord diagrams, and evacuation and reversal. We also exhibit a map with similar
features for the crystals corresponding to the adjoint representations of the general linear groups.

We prove these results by applying van Leeuwen’s generalisation of Fomin’s local rules for
jeu de taquin, connected to the action of the cactus groups by Lenart, and variants of Fomin’s
growth diagrams for the Robinson—Schensted correspondence.

1. INTRODUCTION

This project began with the discovery that Sundaram’s map from perfect matchings,
regarded as chord diagrams as in Figure 1, to oscillating tableaux intertwines rotation
and promotion, see Theorem 3.3. Oscillating tableaux are in bijection with highest
weight words in a tensor power of the crystal of the vector representation of the sym-
plectic group Sp(2n), and promotion is a natural generalisation of Schiitzenberger’s
promotion map on standard Young tableaux.

We then found a map analogous to Sundaram’s from permutations, again regarded
as chord diagrams, to Stembridge’s alternating tableaux. Alternating tableaux of
length r are in bijection with the highest weight words in the r-th tensor power of
the crystal for the adjoint representation of the general linear group GL(n). This new
map intertwines rotation and a suitable variant of promotion provided that n > r, see
Theorem 3.7. Finally, it turned out that Theorem 3.3 can be deduced by a suitable
embedding of the set of oscillating tableaux into the set of alternating tableaux.

Both results are part of a more elaborate program, as we now explain. A key
observation is that Schiitzenberger’s promotion and its above mentioned variants can
be understood in terms of an action of the cactus groups. These infinite groups, also
known as quasi-braid groups, were introduced by Devadoss [5, Def. 6.1.2] and placed
into our context by Henriques and Kamnitzer [7]. They defined a weight preserving
action of the r-fruit cactus group on highest weight words in r-fold tensor products
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FIGURE 1. A 3-noncrossing perfect matching and a permutation as
chord diagrams.

of crystals. The action of a specific element of the cactus group generalises promotion
to an action on highest weight words in a tensor power of a crystal.

As shown by Lenart [11], the action of the cactus groups can be made explicit using
certain local rules discovered by van Leeuwen [24]. These rules generalise the classical
local rules for jeu de taquin by Fomin [21, App. 1] to crystals corresponding to any
minuscule representation of a Lie group. To accommodate non-minuscule representa-
tions, one can use an embedding into tensor products of minuscule representations,
with a few exceptions.

The link between highest weight words and diagrams involves classical invariant
theory. Recall that the number of highest weight elements of given weight in a crystal
is the multiplicity of the irreducible of the same weight in the direct sum decomposi-
tion of the corresponding representation. In particular, the number of highest weight
elements of weight zero is the dimension of the invariant subspace.

The idea of using diagrams to index a basis of the invariant subspace of a tensor
power of a representation goes back to Rumer, Teller and Weyl [19], and specifically
Brauer [1]. Given a perfect matching of 2r elements, he constructed an invariant of
the 2r-th tensor power of the vector representation of the symplectic group Sp(2n).
Furthermore, he showed that these invariants linearly span the invariant space. Using a
result of Sundaram [23], Rubey and Westbury [17, 18] have shown that the invariants
obtained from perfect matchings without (n + 1)-crossings (see Section 3.1 for the
definition) form a basis of this space.

The symmetric group acts on a tensor power of a representation by permuting
tensor positions. This action commutes with the action of the Lie group. In particular,
the symmetric group also acts on the invariant space of the tensor power.

It is not hard to see that Brauer’s construction translates rotation of the chord
diagram to the action of the long cycle of the symmetric group on the corresponding
invariant. Moreover, it was shown by Westbury [25] that the action of the long cycle
is isomorphic to the action of promotion on highest weight words of weight zero.

In general, given a representation, we would like to find a basis of the invariant
space indexed by diagrams, such that rotation of diagrams corresponds to the action
of the long cycle on the invariant space. We provide a review of such diagrammatic
bases for invariant spaces of tensor powers of other representations in Section 2.

It then remains to establish an explicit bijection between the set of diagrams and the
set of highest weight words of weight zero which intertwines rotation and promotion.
This is the focus of the present article.

The initial motivation to study this problem arises from Reiner, Stanton and
White’s cyclic sieving phenomenon [15]. Essentially, this phenomenon occurs when
the character of a cyclic group action can be expressed as a polynomial in a partic-
ularly simple way. A standard example is the rotation action on noncrossing perfect
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matchings of {1,...,2r}. In this case, the ¢-Catalan ‘number’ ﬁ[r

krmi/r

]q is a cyclic
sieving polynomial: the evaluation at ¢ = e yields the number of noncrossing
perfect matchings invariant under rotation by k points.

Consider the representation of the symmetric group on the invariant space, and
recall that the diagrammatic basis is preserved by the action of the long cycle. Then
the cyclic sieving polynomial for this cyclic action can be extracted from the Frobenius
character of the symmetric group action. Although the Frobenius character of the
invariant spaces of tensor powers of representations is in general hard to compute, it is
known for several representations of interest, in particular for the vector representation
of Sp(2n) and the adjoint representation of GL(n).

This article can therefore be regarded as an explicit demonstration of the fact that
the cyclic sieving phenomena for promotion of highest weight words of weight zero
and rotation of diagrams are the same in the case of the vector representation of
Sp(2n) and in the case of the adjoint representation of GL(n).

In Section 2 we recall some background material on crystals of minuscule represen-
tations, make our goal precise and indicate the conditions necessary to make our meth-
ods work. Furthermore, we provide a summary of our contributions and what is al-
ready known. Precise statements of the new results are given in Section 3. The general
machinery connecting the action of the cactus groups on highest weight words, local
rules, and promotion is developed in Section 4. In Section 5 we introduce the two fun-
damental growth diagram bijections, which apply only to oscillating and alternating
tableaux, respectively. The proofs that these bijections indeed intertwine promotion
and rotation are delivered in the final section, along with some additional material.

2. CRYSTALS AND HIGHEST WEIGHT WORDS

In this section, before stating the main goal of this article precisely, we provide some
background information on minuscule representations, crystals and their tensor prod-
ucts. We also recall explicit combinatorial realisations of the associated highest weight
words, and survey in which cases partial solutions to the questions mentioned in the
introduction are known. Although we will subsequently only consider the adjoint rep-
resentation of GL(n) and the vector representation of Sp(2n), we provide the back-
ground in a more general setting, to place our results into a bigger picture.

A representation of a Lie group is minuscule if its Weyl group W acts transitively
on the weights of the representation: the set of weights forms a single orbit under the
action of W. The non-trivial minuscule representations are:

Type A,,. All exterior powers of the vector representation.

Type B,,. The spin representation.

Type C,. The vector representation.

Type D,,. The vector representation and the two half-spin representations.
Type Eg. The two fundamental representations of dimension 27.

Type E7. The fundamental representation of dimension 56.

There are no nontrivial minuscule representations in types Go, Fy or Eg. Except for
these types, any representation can be embedded into a tensor product of minuscule
representations.

For example, the adjoint representation of GL(n) is not minuscule, but can be
regarded as the tensor product of the vector representation and its dual. Slightly less
trivial, the vector representation of the odd orthogonal group is not minuscule, but
appears as a direct summand in S ® S, where S is the spin representation of the spin
group Spin(2n + 1).
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Given a dominant weight A, we associate to the irreducible representation V() its
crystal graph By. This is a certain connected edge-coloured digraph with dim V())
vertices, each labelled with a weight of the representation. Each edge of the crystal
graph is labelled with one of the simple roots of the root system, such that the weight
of the target of the edge is obtained from the weight of its source by subtracting the
simple root. There is a unique vertex without in-coming edges, the highest weight
vertex, and this vertex has weight A. There is also a unique vertex without out-going
edges, the lowest weight vertex. The sum of the formal exponentials of the weights of
the vertices is the character of the representation. In particular, isomorphism of crystal
graphs corresponds to isomorphism of representations. The direct sum of representa-
tions is then associated with the disjoint union of the corresponding crystal graphs.

For a minuscule representation V(A) of dominant weight A, the vertices of the
associated crystal graph B) can be identified with the weights of V(\). The edges are
given by the Kashiwara lowering operators, as follows. Let {«a; : ¢ € I} be the set of
simple roots and s; € W be the simple reflection corresponding to «;. Then there is
a coloured edge j — p — a; provided that s;(p) = p — .

There is a (relatively) simple way to construct the crystal graph of a tensor product
of representations given their individual crystal graphs. The vertices of the tensor
product C; ® -+ ® C,. of crystal graphs, corresponding to an r-fold tensor product
of representations, are the words of length r whose i-th letter is a vertex of C;. The
weight of a vertex in the tensor product is the sum of the weights of its letters. In this
context, we refer to the highest weight vertices of the connected components as highest
weight words. Isolated vertices correspond to copies of the trivial representation and
therefore have weight zero. They are referred to as highest weight words of weight zero.

There is an action of the so-called r-fruit cactus group €, on the set of highest
weight words in r-fold tensor products of crystals C1, ..., C,. The cactus group &, has
generators s, 4, for 1 < p < ¢ < r, satisfying certain relations stated in Definition 4.1
of Section 4. The generator s, 4, acts by mapping highest weight words of ¢4 ®---®C,.
bijectively to highest weight words of

C1@  @Cy 1 ®(Cq®Cyey ®Cp)®Cypy @+ Chy,

see Definition 4.5. We define the promotion prw of w as sy , s » w, and the evacuation
evw of w as s; , w. These generalise Schiitzenberger’s maps of the same name, as we
explain in example 2.1 below. We will see in Lemma 4.2 that the cactus group €, is
already generated by the elements s; 4 for ¢ < r. Therefore it is essentially enough to
understand evacuation. An analogous statement is true for promotion.

THE MAIN PROBLEM. Define a set of chord diagrams and a bijection between these
and the highest weight words of weight zero which intertwines rotation of diagrams
with promotion of words. Additionally, determine the action of evacuation on the set
of chord diagrams.

In the following we briefly survey the cases in which (partial) solutions to this
problem are known.

Recall that dominant weights of SL(n), Sp(2n) and SO(2n + 1) are vectors of
length n with weakly decreasing non-negative integer entries. Therefore, dominant
weights can be identified with integer partitions into at most n parts in these cases. A
dominant weight of Spin(2n + 1) is a vector of length n with weakly decreasing non-
negative half-integer entries, such that either all entries are integers or none of them.
Finally, a dominant weight of GL(n) is a vector of length n with weakly decreasing
integer entries, a so-called staircase.
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Throughout, we denote the i-th unit vector by e;. To improve readability, we will
use vector notation for weights - often dropping commas and parentheses, and specify
letters of highest weight words as linear combinations of unit vectors e;.

To any highest weight word w = wy ... w, in a tensor product of crystals C; ®
-+ ® C, we bijectively associate a sequence of dominant weights going under names
like semistandard, oscillating, alternating, vacillating tableau. We call the final weight
= (p1,...,pun) of such a sequence, which will also be the weight of the word w, the
shape of the tableau. If 1 is zero, we say that the tableau is of empty shape. We denote
the zero weight by @.

Suppose now that in each crystal C;, 1 < i < r, all vertices have distinct weight.
For example, this is the case when all the C; correspond to minuscule representations.
Then the tableau is given by the sequence @ = p% u',...,u" = p, where pd =

¢, wt(w;) is the sum of the weights of the first ¢ letters. In this case, one can recover
the letters of the highest weight word via the successive differences wt(w;) = p—p=1.

In the examples below, the only exception to this rule is the case of alternating
tableaux for the adjoint representation of GL(n), which we will explain separately.

EXAMPLE 2.1 (Standard and semistandard tableaux). Let V' be the vector represen-
tation of SL(n), and let each C;, for 1 < i < r, be a copy of the corresponding crystal.
Then the highest weight words can be identified with standard Young tableaux of
size r with at most n columns: the position of the unique entry equal to 1 in wj; is
the column of the tableau in which the number 7 appears. Since the weight lattice of
SL(n) is the image of Z™ in the quotient of R™ by the span of (1,...,1), a highest
weight word has weight zero if and only if all n columns of the corresponding tableau
have the same length.

More generally, for any sequence of positive integers o = a,...a,, let C; be the
crystal corresponding to the ;-th exterior power of the vector representation of SL(n).
Then w is a highest weight word if and only if w; has exactly a; entries equal to 1, all
others 0, and p? is dominant for all ¢ < r. Therefore, a highest weight word can be
identified with a semistandard Young tableau of type a having at most n columns.")

One can show that in this case the generator s; , of the cactus group is precisely
Schiitzenberger’s evacuation of semistandard Young tableaux with largest entry at
most 7, and sy sz, is Schiitzenberger’s promotion. Using evacuation as a building
block, the action of the cactus groups on semistandard Young tableaux was studied
by Chmutov, Glick and Pylyavskyy [3]. As an aside, we remark that the generators
Si i+2 encode Assaf’s dual equivalence graph.

A diagrammatic basis for the invariant space was recently constructed by Cautis,
Kamnitzer and Morrison [2], generalising Kuperberg’s webs for SL(2) and SL(3),
see [10]. However, only Kuperberg’s web bases are preserved by rotation. For these,
Petersen, Pylyavskyy and Rhoades [14] and Patrias [13] demonstrated that the growth
algorithm of Khovanov and Kuperberg in [9] intertwines promotion with rotation.

EXAMPLE 2.2 (Oscillating tableaux). Let V' be the vector representation of Sp(2n)
and let C; be the corresponding crystal, for 1 < ¢ < r. Then w is a highest weight
word if and only if w; is in {£e; : 1 < j < n}, and p9 is dominant for ¢ < r. The
corresponding tableau is called an n-symplectic oscillating tableau.

For example, the 1-symplectic oscillating tableaux of length three are

(®7 1’273)7 (Q’ 1’2)1)7 and (®717®7 1)'

MwWe are using slightly a nonstandard convention here. More traditionally, one would use dual
semistandard tableaux instead, with entries in columns weakly increasing, entries in rows strictly
increasing, and at most n rows. The positions containing a 1 in w; then designate the rows of the
tableau containing the number 1.
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The corresponding highest weight words are
ererey, erer-e;, and ej-ejeq.
As a further example, the oscillating tableau
0= (o,1,11,21,2,21,11, 21,211, 21)

has length 9 and shape 21. It is 3-symplectic (since no partition has four parts) but
it is not 2-symplectic (since there is a partition with three parts). The corresponding
highest weight word is w = ey ez €1 -e2 e2-€1 €1 €3 -€3.

A suitable set of chord diagrams is the set of (n+ 1)-noncrossing perfect matchings
of {1,...,r}, see Section 3.1 for definitions. A surjection from the set of perfect match-
ings to a basis of the invariant subspace of ®”V was given by Brauer [1]. Sundaram [23]
provided a bijection between the set of (n + 1)-noncrossing perfect matchings and n-
symplectic oscillating tableaux of empty shape. Theorem 3.3 below shows that this
bijection intertwines rotation with promotion, and reversal with evacuation.

A variation of this example is obtained by replacing V' with the k-th symmetric
power of the vector representation. A suitable set of chord diagrams indexing a basis
of the space of invariant tensors was defined by Rubey and Westbury [18, 17]. Briefly,
partition the set {1,...,kr} into r blocks of k consecutive elements. Then a chord
diagram is an (n+1)-noncrossing perfect matching of this set, such that no pair is con-
tained in a block and, if two pairs cross, the four elements are in four distinct blocks.

EXAMPLE 2.3 (Alternating tableaux). Let gl,, be the adjoint representation of GL(n).
This representation is not minuscule, but we can identify it with V ® V* where V
is the vector representation of GL(n) and V* is its dual. Let C;, for 1 < i < r, be
the crystal corresponding to V' ® V*. Thus, the letters of a highest weight word w
are pairs (ex,-e¢) of weight e — ey, with 1 < k,¢ < n. The corresponding GL(n)-
alternating tableau is the sequence of dominant weights @=p°, u', ..., u?" =pu, where
20 =370 wt(w;), and p?4t! = p?9 4 ey, when wgy1 = (ex,-er).

A word w is of highest weight if and only if pP is dominant for p < 2r. Given a
GL(n)-alternating tableau, one can recover the letter w; of the corresponding highest
weight word as w; = (ex,-€¢) with ey = p?*~t — 4?*=2 and -e, = p?* — 21
For example, the GL(2)-alternating tableaux of length two are

(00, 10,00,10,00), (00,10,00,10,11), (00,10,11,10,00),
(00,10,11,10,11), (00,10,11,21,11), (00,10,11,21,22),

writing 1 in place of —1, etc., for better readability. The corresponding highest weight
words are

(617'61) (617'61)7 (elv'el) (617'62)7 (617'62) (627'61)a

(613'62) (62,-€2>, (617_62) <617_61)7 (617_62) (613'62)-
For n large enough, a suitable set of chord diagrams is the set of permutations of
{1,...,r}, see Section 3.2 for definitions. We provide a bijection between this set and

GL(n)-alternating tableaux of empty shape, see Theorem 3.7 below. This bijection
intertwines rotation with promotion, and reverse-complement with evacuation.

EXAMPLE 2.4 (Fans of Dyck paths). Let S be the spin representation of the spin group
Spin(2n+1) and let A; = % Z?zl e; be its dominant weight. Then w is a highest weight
word if and only if w; = (:I:%, cee :I:%) and p? is dominant for all ¢ < 7.

Therefore, a highest weight word w of weight zero can be identified with a fan of
n Dyck paths of length r: the first entry of w; is % if and only if the top most Dyck path
has an up-step at position 4. In general, the j-th entry of wj is % if and only if the j-th
Dyck path has an up-step at position i. One can show that ev acts on these as reversal.
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In general, no suitable set of chord diagrams is known. For n = 2 there is an
exceptional isomorphism between S and the vector representation of Sp(4). Thus,
the results for oscillating tableaux apply in this case.

EXAMPLE 2.5 (Vacillating tableaux). Let V' be the vector representation of SO(2n+1)
and let \; = e; be its dominant weight. Then w is a highest weight word if and only if
w; is in {£e; : 1 <j < n}uU{0}, p? is dominant for ¢ < r and w; # 0 if p*~! contains
an entry equal to 0. The corresponding tableaux are called vacillating tableaux and
can be identified with n-fans of Riordan paths, see [8].

In general, no suitable set of chord diagrams is known. For n = 1 there is an
exceptional isomorphism between V' and the adjoint representation of SL(2). Thus we
obtain a bijection between noncrossing set partitions without singletons and highest
weight words of weight zero with the desired properties from the results in Section 3.2
below. For n = 2, a bijection between a basis of the invariant subspace of ®”V and
certain chord diagrams follows from Kuperberg’s webs [10].

3. RESULTS

In this section we present combinatorial realisations of promotion and evacuation on
highest weight words for the vector representation of the symplectic group and the
adjoint representation of the general linear group. As it turns out, the former will
essentially follow from the latter. The proofs are delegated to Section 6.

3.1. THE VECTOR REPRESENTATION OF THE SYMPLECTIC GROUPS. Let us first recall
Sundaram’s definition of n-symplectic oscillating tableaux from example 2.2. As ex-
plained there, these are in bijection with the highest weight words in a tensor power of
the crystal corresponding to the vector representation of the symplectic group Sp(2n).

DEFINITION 3.1 (Sundaram [23]). An n-symplectic oscillating tableau O of length r
and (final) shape p is a sequence of partitions

O=(o=pp',. ... u"=p)

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell,
and each partition p' has at most n non-zero parts.

Recall that a partial standard Young tableau is a filling of the Ferrers diagram
with distinct non-negative integers such that entries in rows and columns are strictly
increasing.

A now classic bijection due to Sundaram [23] maps an oscillating tableau O of
length r and shape pu to a pair (/\/l (0), MT(O)), consisting of a perfect matching of
a subset of {1,...,r} and a partial standard Young tableau of shape i, whose entries
form the complementary subset. We present Roby’s [16] description of this bijection
in Section 5.

The reversal rev m of a perfect matching m of a subset of {1,...,r} is obtained by
replacing each pair (4,7) with (r +1 — 7,7 + 1 —4). Our first main result relates this
operation to evacuation as follows.

THEOREM 3.2. Let O be an n-symplectic oscillating tableau. Then M(ev Q) is the
reversal of M(O) and My (ev O) is the Schitzenberger evacuation of Mp(O).

If the oscillating tableau O is of empty shape the tableau My (O) is empty and
M(O) is a perfect matching of {1,...,r}. We use chord diagrams to visualise perfect
matchings of {1,...,r}, drawing their pairs as (straight) diagonals connecting the
vertices of a counterclockwise labelled regular r-gon, see Figure 1.
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A perfect matching is (n+1)-noncrossing if it contains at most n pairs that mutually
cross in its chord diagram. It follows from Sundaram’s bijection that these are precisely
the perfect matchings corresponding to n-symplectic oscillating tableaux of empty
shape.

Using the visualisation as a chord diagram, the reversal of a perfect matching
is obtained by reflecting the diagonals of the diagram on a well-chosen axis. The
rotation rot m of a matching m is obtained by replacing each pair (4, j) with the pair
(i (mod r)+1,j (mod r)+1). Visually, this corresponds to a rotation of the diagonals
of the diagram.

THEOREM 3.3. The bijection M between n-symplectic oscillating tableauz of empty
shape and (n + 1)-noncrossing perfect matchings intertwines promotion and rotation,
and evacuation and reversal:

rot M(O) = M(pr O) and rev M(O) = M(ev O).

REMARK 3.4. Consider the natural embedding ¢ of the set of n-symplectic oscillating
tableaux into the set of (n + 1)-symplectic oscillating tableaux. Since rotation and
reversal preserve the maximal cardinality of a crossing set of diagonals in the chord
diagram, we obtain the remarkable fact that pr¢(O) = ¢(pr O) and ev¢(O) = t(ev O).

3.2. THE ADJOINT REPRESENTATION OF THE GENERAL LINEAR GROUPS. We recall
from example 2.3 Stembridge’s definition of GL(n)-alternating tableaux, which are in
bijection with the highest weight words in a tensor power of the crystal corresponding
to the adjoint representation of GL(n).

DEFINITION 3.5 (Stembridge [22]). A staircase is a dominant weight of GL(n), that
is, a vector in Z"™ with weakly decreasing entries. A GL(n)-alternating tableau A of
length r and shape p is a sequence of staircases

A= (®2M07M17 s 7N2T::U’)
such that

for even i, 't is obtained from p' by adding 1 to an entry, and
for odd i, ut! is obtained from u' by subtracting 1 from an entry.

In Section 5, we introduce a bijection similar in spirit to Sundaram’s. It maps an
alternating tableau A of length r and shape p to a triple (P(A), Pp(A), Po(A)),
consisting of a bijection P(A) : R — S between two subsets of {1,...,r}, and two
partial standard Young tableaux Pp(A) and Pgo(A). The shapes of these tableaux
are obtained by separating the positive and negative entries of . The entries of the
first tableau then form the complementary subset of R, the entries of the second form
the complementary subset of S.

For a bijection 7 : R — S between two subsets of {1, ..., 7}, the reverse-complement
recrmaps r+1—itor+1—m(7).

THEOREM 3.6. Let A be a GL(n)-alternating tableau of length v < |“5L]|. Then
P(ev A) is the reverse-complement of P(A), and Pp(ev A) and Pg(ev A) are obtained
by applying Schitzenberger’s evacuation to Pp(A) and Pgo(A) respectively:

(Pp(evA), PgevA)) = (evPp(A),evPg(A)).

Similarly to Sundaram’s map between oscillating tableaux and matchings, if the
alternating tableau A is of empty shape the tableaux Pp(A) and Pg(A) are empty
and P(A) is a permutation. We use chord diagrams to visualise a permutation 7,
drawing an arc from vertex i to vertex 7 () in a counterclockwise labelled regular
r-gon, see Figure 1.
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Using this visualisation, the reverse-complement of a permutation is obtained
by reflecting the diagonals of the diagram on a well-chosen axis. The rotation
rot m of a permutation 7 is obtained by replacing each arc (z,ﬂ'(z)) with the arc
(i (mod r)+1,7(i) (mod r)+ 1). Visually, this corresponds to a rotation of the
diagonals of the diagram.

THEOREM 3.7. For n > r — 1 and also for n < 2 the bijection P between GL(n)-
alternating tableauz of empty shape of length r and permutations intertwines promo-
tion and rotation:

rot P(A) = P(pr.A).
For even n > r and for odd n > r — 1, it intertwines evacuation and reverse-
complement:

rcP(A) = P(ev.A).
Forn < 2 and arbitrary r, it intertwines evacuation and inverse-reverse-complement:

reP(A)~ = Plev A).

REMARK 3.8. Note that the case n < 2 is special. As we will show in Section 6.4, our
bijection identifies GL(2)-alternating tableaux of empty shape in a natural way with
noncrossing partitions, which form an invariant set under rotation. In fact, this set
coincides with the web basis for GL(2). Moreover, in this case the evacuation of an
alternating tableau is simply its reversal. In terms of noncrossing set partitions, the
inverse-reverse-complement of the corresponding permutation is the mirror image of
the set partition.

REMARK 3.9. 1t is tempting to regard a GL(n)-alternating tableau as a sequence of
pairs of partitions by separating the positive and negative entries. Indeed, this is what
we will do in Sections 5 and 6 to define our bijection and prove Theorems 3.6 and 3.7.

One might then think that promotion can be defined directly in terms of these
sequences without reference to n. However, this is not the case. For n > 2, promotion
does not preserve the maximal number of non-zero entries in a vector of an alternating
tableau.

In fact, it is not clear whether there is an embedding ¢ of the set of GL(n)-
alternating tableaux in the set of GL(n 4 1)-alternating tableaux such that pr¢(A) =
t(pr.A). In spite of this, we prove a certain stability phenomenon for promotion of
alternating tableaux in Theorem 6.1.

4. THE CACTUS GROUPS, LOCAL RULES, PROMOTION AND EVACUATION

In this section, following Henriques and Kamnitzer [7], we define promotion and evac-
uation of highest weight words as an action of certain elements of the r-fruit cactus
group on r-fold tensor products of crystals. Then, following van Leeuwen [24] and
Lenart [11] we encode the action of the cactus group by certain local rules, general-
ising Fomin’s.
4.1. THE CACTUS GROUP AND ITS ACTION. Let us first define the cactus groups.
DEFINITION 4.1. The r-fruit cactus group, €., has generators sp 4 for 1 <p < gq<r
and defining relations
2 _

® 5= 1 ,

® Spg Skl =5k Spq fq<korl<p

® Spg Skl = Sptq-lpta—k Spg P <k <I<yq
For convenience we additionally define sy, = 1.
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It may be useful to think of the generators as being indexed by intervals in
{1,...,7}. Then the second relation can be rephrased by saying that two genera-
tors commute if they are indexed by disjoint intervals. The third relation is applicable
when one interval is contained in the other, in which case the inner interval is reflected
within the outer interval.

The following lemma shows that it is sufficient to define the action of the composites
S1,4 52, for 2 < ¢ < r. The first relation was observed by White [26, Lem. 2.3], the
second is in analogy to Schiitzenberger’s original definition of evacuation of standard
Young tableaux in [20, Sec. 5.

LEMMA 4.2. We have
Sp,g = S1,¢51,g—p+151,¢ aNd  S1q=812822 S1,3523 .. S1,¢S2,¢-

Proof. The first equality is obtained from the third defining relation by replacing
D,q,k,¢ with 1,q,p and ¢ respectively. The second equality follows from s; ¢s2, =
S1,0-151,¢, which is also an instance of the third defining relation. O

Henriques and Kamnitzer [7] defined an action of the cactus group on r-fold tensor
products of crystals in terms of the commutor, which in turn is defined using Lusztig’s
involution. Let us first briefly recall the latter, as introduced in [12].

DEFINITION 4.3. Let B be a crystal graph associated with an irreducible representation.
Lusztig’s involution n maps the unique highest weight vertex of B to its unique lowest
weight vertex, and the Kashiwara lowering operator f; to the Kashiwara raising opera-
tor e;+, where i — i* is the Dynkin diagram automorphism specified by a;» = —wo(a;),
and wq is the longest element of the Weyl group. This definition is extended to arbi-
trary crystals by applying the involution to each connected component separately.

Lusztig’s involution is not a morphism of crystals, which would have to map highest
weight vertices to highest weight vertices. For the Cartan type A, crystal By of semis-
tandard Young tableaux of shape A, Lusztig’s involution is precisely Schiitzenberger’s
evacuation of semistandard Young tableaux with largest entry at most n + 1.

DEFINITION 4.4. For two crystals A and B, the commutor is the crystal morphism
oap: A®B —+B®A
ab = n(n(b)n(a)).
We can now define the action of the cactus group.

DEFINITION 4.5. The action of €, on words in C1 ® - -+ ® C,. is defined inductively by
letting sp p11 act as 1 ® 0c,.c,, @1 and spq as (1®0c,,cpp 000, ®1) 0Spi1,4 for
q > p+ 1, where 1 denotes the identity map on a crystal.

The action can be expressed more explicitly directly in terms of Lusztig’s involu-
tion.

PROPOSITION 4.6. Let w = wy ... w, be a word in C1 ® --- ® C,., then
Sp,q W1 -+ - Wy = W1 .. .wp,ln(n(wq)n(wq,l) e n(wp))w(Hl Wy
Proof. This follows by induction on ¢ — p and the fact that » is an involution. O

DEFINITION 4.7. The promotion prw of w is 81,82, w, and the evacuation evw of w
is 81, w. For a tableau T corresponding to a highest weight word w, we use prT and
evT to denote the tableaux corresponding to prw and evw.

It will be convenient to express promotion as a commutor, as follows.
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PROPOSITION 4.8. 51 482 4(w) = 00,000, (W).

Proof. This is immediate from the definition of the action of s; , and from the fact
that s3 , = 1. O

4.2. PROMOTION AND EVACUATION VIA LOCAL RULES. We now follow Lenart’s ap-
proach [11] and realise the action of the cactus group using van Leeuwen’s local
rules [24, Rule 4.1.1], which generalise Fomin’s [21, A 1.2.7].

From now on we restrict ourselves to minuscule representations. However, let us
remark that van Leeuwen also provides a local rule that applies to quasi-minuscule
representations, which makes our approach viable for arbitrary representations.

For minuscule representations, van Leeuwen’s rules involve obtaining the unique
dominant representative of a weight.

DEFINITION 4.9. Let A be a weight of a representation of a Lie group with Weyl group
W. Then domy (\) is the unique dominant representative of the W-orbit WA.

EXAMPLE 4.10. The Weyl group of SL(n) is the symmetric group &,,. Thus, domg,,
returns its argument sorted into decreasing order.

EXAMPLE 4.11. The Weyl group of Sp(2n) is the hyperoctahedral group $,, of signed
permutations of {£1,...,+n}. Thus, the dominant representative domg_(A) of a
weight ) is obtained by sorting the absolute values of its entries into decreasing order.

We can now define the local rule.

DEFINITION 4.12. Let A be a crystal and B and C be crystals of minuscule represen-
tations. Then the local rule

T8t A®BR®C > A®C®B

s an isomorphism of crystals defined for highest weight words abc as follows: let K
be the weight of a, let A be the weight of ab and let v be the weight of abc. Then

Tg)c(abc) =ach,
where
e=p—k and b=v—p with p=domy(k+v—N\).
We represent this by the following diagram:

(1) AT

Since any isomorphism between crystals is determined by specifying a bijection be-
tween the corresponding highest weight words, this definition can be extended to an
isomorphism between A® B ® C and A® C ® B by applying the lowering operators.

REMARK 4.13. When B = (' is the crystal associated with the vector representation
of SL(n), the local rule (1) is Fomin’s for Schiitzenberger’s jeu de taquin [21, A 1.2.7].
More explicitly, if A is the only partition of its size that contains x and is contained in
v, then p = A. Otherwise there is a unique such partition different from A, and this is pu.

REMARK 4.14. As in the classical case the local rule is symmetric in the sense that
p = domy (k + v — A) if and only if A = domw (k + v — p), see [24, Lem. 4.1.2].
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ExAMPLE 4.15. Let C' be the crystal associated with the vector representation of
SL(3), and let A and B be the crystal associated with its exterior square. Let a =
e1+es, let b =e;+e3 and let ¢ = es. Then abcis a highest weight word in AQ B& C.
We have k = (1,1,0), A= (2,1,1) and v = (2,2, 1).

Thus, since domg,, sorts its argument into decreasing order,

p=domg, (k+ v —\) =domg, (1,2,0) = (2,1,0), and b=ey+es, ¢é=ei.

EXAMPLE 4.16. Let B and C' be the crystal associated with the vector representation

of Sp(4) and let A = ®2B. Let a = ej ey, let b = ey and let ¢ = —ey. Then abe is a

highest weight word in A ® B ® C. We have k = (2,0), A = (2,1) and v = (2,0).
Thus, since domg, takes absolute values and then sorts into decreasing order,

p=domg, (k4 v —\) =domg, (2,-1) = (2,1), and b=0b, é¢=c

THEOREM 4.17 ([11, Thm. 4.4]). Let A and B be crystals embedded into tensor prod-
ucts Ay @ -+ @ A and By ® --- ® By of crystals of minuscule representations. Let
W = wi,...,Wgte be a highest weight word in A ® B with corresponding tableau
@ = put,. ., u" = pu. Then oa,B(w) can be computed as follows. Create a k x ¢
grid of squares as in (1), labelling the edges along the left border with w1, ..., w, and

the edges along the top border with wiy1, ..., Wgye:
Mkw’i} Wiere ey
wl ] [ECE
i — ,

,ul , N
0 - 5 4>A
w1 Wy

For each square whose left and top edges are already labelled use the local rule to
compute the labels on the square’s bottom and right edges. The labels Wy ... Wx1e of
the edges along the bottom and the right border of the grid then form o p(w).

ExXAMPLE 4.18. Let Cy = Cs = Cy be the crystal associated with the exterior square
of SL(3) and let C3 the crystal corresponding to its vector representation. Then w =
e1+eq e1+es es e;+eg is the highest weight word corresponding to the semistandard
tableau

112
314

‘%N»—t

The promotion prw = o¢,.c,ecsec, (W) can now be computed using Theorem 4.17.
We put the zero weight in the bottom-left corner. Then, beginning with p! = w1, we
write down the sequence of cumulative weights p', ..., p#, with p? = >°7_, w; in the
top row. Finally, we successively apply the local rule (1) and fill in the weights in the
bottom row.

e1+e e e1+e
110 %011 — 25921 390
aval | ] ]
000 110 210 311
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From now on we omit edges and their labels, because the labels are determined by
the weights.

By Theorem 4.17 the promotion of w is given by the sequence of weights in the
bottom row, together with the weight in the top-right corner. The corresponding
tableau is

1[1]3
2144
13

As mentioned in the introduction, this definition of promotion coincides with the
classical definition of promotion in terms of Bender—-Knuth moves on tableaux when
the crystals correspond to exterior powers of the vector representation of SL(n).

As an aside we obtain a formulation of the commutor, and therefore also of pro-
motion of highest weight words in crystals of minuscule representations, analogous to
the definition in terms of slides in tableaux, as follows.

COROLLARY 4.19. Let A and B be crystals embedded into tensor products of crystals
of minuscule representations. Let a € A and b € B such that ab is a highest weight
word in A® B, and let ba = o4,8(ab) with be B and a € A.
Then
b is the highest weight vertex in the same component of B as b, and
a is a vertex of A such that the weight ofE& equals the weight of ab.

In particular, if A is a crystal of a minuscule representation, & is determined
uniquely by its weight.

Proof. Let By be the component of B containing b. Because of the naturality of the
commutor in B (see property (C1) in [11]), 04, g(ab) equals 04 g, (ab).

Since a b is a highest weight word and the commutor is an isomorphism of crystals,
oa.B,(ab) = ba is also a highest weight word. It follows that b is of highest weight,
and therefore equals the highest weight vertex of B). O

4.3. PROMOTION AND EVACUATION OF GL(7)-ALTERNATING TABLEAUX. Let us now
make promotion and evacuation of GL(n)-alternating tableaux explicit. Recall from
example 2.3 that we regard the adjoint representation as the tensor product V& V*|
where V' is the vector representation of GL(n) and V* is its dual. Both of these are
minuscule, so we can apply Theorem 4.17.

Therefore, the rectangular grid to compute prw = o¢, cy0--oc, (w) has three rows,
the bottom row begins with the zero weight, the middle row with p', which is always
e1, and the top row contains the remaining cumulative weights p?, ..., u?".

However, because we will apply promotion repeatedly, it will be convenient to
slightly enlarge this grid, and prepend the two weights p® and p! to the first row.
After having successively applied the local rule (1) and thus computed the remaining
weights in the middle and the bottom row, we append the final element of the second
row and the weight of the original word to the third line. We call the resulting diagram
the promotion diagram of an alternating tableau:

p=o pl=1 p? ... w3
(3) Lot L2t
ﬂ0:uo ...... ﬂ27“72 ﬂ2r71:ﬂ2r_1 ﬂ2r:#2T

To illustrate, let us compute the promotion of the GL(3) highest weight word
w = (e1,-e3) (e1,-€3) (e2,-€2) (e2,-€1) (e3,-e1). The first row is the alternating tableau
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corresponding to w. For better readability we write 1 in place of —1.

(4)

000 100 101 201 211 201 211 2

1101 100 000
100 200 201 211 201 211 111 110 100
000 100 101 111 101 111 101 100 101 100 000

Thus, the promotion of w is prw = (ey,-e3) (e2,-€2) (e2,-e2) (es3,-€3) (e3,-€1).

The six vectors in the rectangle in diagram (4) demonstrate that the naive embed-

ding of GL(n)-alternating tableaux into the set of GL(n+1)-alternating tableaux is not
compatible with promotion, as already mentioned in Section 3.2: padding the vectors
of the original word with zeros, and applying the local rule, we obtain the rectangle

2001 2011
2101 2111

1101 1111,

with bottom-right vector 1111, rather than 1001 as one might expect.

A =000 100 101 201 202 201 211 311

100 200 201 200 201 301
000 100 101 100 101 201
100 110 111 211

000 100 101 201

100 200

000 100

211 201
20£:%11
101 111
111 211
101 201
100 200
000 100
100 200

000 100

202
212
112

212

202

201

101

201
101
100

000

302
312
212

312

302

301

201

301
201
200

100

303
313
213
313
303
302
202
302
202
201
101
100

000

FIGURE 2. The evacuation of an alternating tableau.
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To obtain the evacuation of an alternating tableau we use the second identity of
Lemma 4.2. We start by computing the promotion of the initial alternating tableau
as above, except that we do not append anything to the third row. We then repeat
this process a total of r times, creating a (roughly) triangular array of weights, which
we call the evacuation diagram of an alternating tableau. The sequence of cumulative
weights of the evacuation can then be read off the vertical row on the right hand side,
from bottom to top. An example can be found in Figure 2. The symbols (3), (&) and
(X) occurring in the figure should be ignored for the moment.

Finally, we would like to point out that for alternating tableaux of empty shape
there is a second way to compute the promotion, exploiting the fact that the next-
to-last weight is forced to be 10...0. Let w = wy ... w, be the highest weight word
corresponding to the alternating tableau. We consider w as an element of A® A*® B},
where A is the crystal corresponding to V', A* is the crystal corresponding to V*
and, similar to what was done in the proof of Corollary 4.19, B, is the component
of ® (A ® A*) containing ws ... w,. Then we first compute & = 0a,4*@B, (W),
followed by computing @ = 0 4+ p, @4 (W):

000 100 101 201 211 201 211 201 101 100 000
(5) 000 001 101 111 101 111 101 001 000 001 000
000 100 101 111 101 111 101 100 101 100 000

Because the initial segment of @ is an element of By and is of highest weight, it must
coincide with the initial segment of the promotion of w.

This variant of the local rules for promotion was recently rediscovered, in slightly
different form, by Patrias [13]. Note, however, that for an alternating tableau of non-
empty shape, this procedure yields a tableau which, in general, is different from the
result of promotion.

5. GROWTH DIAGRAM BIJECTIONS

In this section we recall Sundaram’s bijection (using Roby’s description [16] based on
Fomin’s growth diagrams [6]) between oscillating tableaux and matchings. We also
present a new bijection, in the same spirit, between alternating tableaux and partial
permutations. In both cases, the action of the cactus group on highest weight words
becomes particularly transparent when using Fomin’s growth diagrams and local rules
for the Robinson—Schensted correspondence.

K 1 P |p—7
N———— v A— A
forward rules: p’ =sort(k’ +1v/ — \) w=A+e;
backward rules: X = sort(x’ + v/ — ') A=p—e;

F1GURE 3. Cells of a growth diagram and corresponding local rules.

For our purposes, a growth diagram is a finite collection of cells, arranged in the
form of a Ferrers diagram using the French convention, as for example in Figures 4
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and 5. Let us first describe the classical setup, which we use to describe Sundaram’s
correspondence.

In this case, each cell is either empty or contains a cross. Moreover, we require
that in every row and every column of the growth diagram there is at most one cell
which contains a cross. Every corner of a cell is labelled with a partition such that
the local rules in Figure 3 are satisfied, where X denotes the partition conjugate to A
and e; is the first unit vector. Moreover, we require that two adjacent partitions (as
for example A and « in Figure 3) either coincide or the one at the head of the arrow
is obtained from the other by adding a unit vector.

Furthermore, we require that the partitions labelling the corners of a cell satisfy
the forward and backward rules of Figure 3. In fact, the two forward rules determine p
given the other three partitions and the content of the cell. The two backward rules
determine the content of the cell and the partition A in the bottom-left given the
other three partition.

Thus, the information in a growth diagram is redundant. In particular, given the
partitions labelling the corners along the bottom-left border and the contents of the
cells, one can recover the remaining partitions. Conversely, given the partitions la-
belling the corners along the top-right border of a diagram, one can recover the
remaining partitions and the contents of the cells.

The presentation of the local rules in Figure 3 is slightly non-standard. It has
the benefit that the local rule for empty cells is very similar to the special case of
Definition 4.12 corresponding to Cartan type A,,, with two important differences. The
first difference is that all partitions are transposed, the second, that the orientation
of the vertical arrows is reversed.

5.1. ROBY’S DESCRIPTION OF SUNDARAM’S CORRESPONDENCE. In this section we
recall the bijection between oscillating tableaux of length r and shape p and pairs
consisting of a partial matching of {1,...,7} and a partial standard Young tableau
of shape 1 whose entries are the unmatched elements.

DEFINITION 5.1. Let O = (uo, j41,- - -, tbrr) be an oscillating tableau. The associated
(triangular) growth diagram G(O) consists of r left-justified rows, with i — 1 cells in
row ¢ for i € {1,...,r}, where row 1 is the top row. Label the cells according to the

following specification:

R1 Label the north east corners of the cells on the main diagonal from the top-left
to the bottom-right with the partitions in O.

R2 Label the corners of the first subdiagonal with the smaller of the two partitions
labelling the two adjacent corners on the diagonal.

R3 Use the backward rules to determine which cells contain a cross.

Let M(O) be the matching containing a pair {i,j} for every cross in column i and
row j of the G(O). Furthermore, let My (O) be the partial standard Young tableau
corresponding to the sequence of partitions along the bottom border of G(O).

THEOREM 5.2 (Sundaram [23, Sec. 8], Roby [16, Prop. 4.3.1]). The map O
(M(O), M7(0)) is a bijection between oscillating tableauz of length r and shape
W, and pairs consisting of a perfect matching of a subset of {1,...,7r} and a partial
standard Young tableau of shape p, whose entries form the complementary subset.
Moreover, the map O — M(O) is a bijection between n-symplectic oscillating
tableauz of length r and empty shape and (n + 1)-noncrossing perfect matchings

of {1,...,r}.
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%)
1
@ 1
2
) 1 11
3
=} 1 11 21
41X
o 2] 1 2 2
5
o o 1 2 2 21
6
I} o 1 ><1 1 11 11
7
I2} o 1 1 1 11 11 21
8
o o 1 1 1 11 11 21 211
9 ;
%] (%] X@ 4] 4] 1 1 2 21 21
1 2 3 4 5 6 7 8 9
%]
1
2] 1
2
2] 1 11
3
2] 1 11 111
4
I2} 1 11| 111 211
5
I} 1 11| 111 211 221
6
2] 1 11 111|211 221 321
7
I} 1 11].7 111 >1<11 211 311 311
g -
@ Xz_; 1 11 11 21 31 31 31
9
gl o 1 11] 11 21 >%1 21 21 21
6

1 2 3 4 5 7 8 9

FIGURE 4. A pair of growth diagrams G(O) and G(s;9O), with
0= (2,1,11,21,2,21,11,21, 211, 21), illustrating Theorem 3.2. The
dotted line indicates the axis of reflection for the matchings M(O)
and M(Sl,g O)

An example for this procedure, which also illustrates Theorem 3.2, can be found
in Figure 4. Let O be the 3-symplectic oscillating tableau

(2,1,11,21,2,21,11,21,211,21),

whose partitions label the corners of the diagonal of the first growth diagram. Applying
the backward rules, we obtain the matching and the partial standard Young tableau

M(O) = {{1,4},{2,9), 3,6} } and Mr(0) = 2|7 |
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Using Lemma 4.2 and the local rule in Definition 4.12 one can compute that ev O is
the 3-symplectic oscillating tableau labelling the corners of the diagonal of the second
growth diagram. Applying the backward rules again, we obtain the matching and the
partial standard Young tableau predicted by Theorem 3.2:

M(ev0) = {{1,8},{4,7},{6,9}} and Mr(evO) = § °!

5.2. A NEW VARIANT FOR STEMBRIDGE’S ALTERNATING TABLEAUX. In this section
we present a variation of Sundaram’s bijection for alternating tableaux and permuta-
tions.

Recall that a staircase is a vector with weakly decreasing integer entries. The
positive part of the staircase is the partition obtained by removing all entries less
than or equal to zero. The negative part of the staircase is the partition obtained by
removing all entries greater than or equal to zero, removing the signs of the remaining
entries and reversing the sequence.

DEFINITION 5.3. Let A = (u%, put, ..., u®") be an alternating tableau. The associated
growth diagram G(A) is an r x r square of cells, obtained as follows:

P1 Label the north east corners of the cells on the main diagonal and the first
superdiagonal from the top-left to the bottom-right with the staircases in A.

P2 Apply the backward rules on the positive parts of the staircases to determine
which cells below the diagonal contain a cross.

P3 Use the backward rules (rotated by 180°) on the negative parts of the staircases
to determine which cells above the diagonal contain a cross.

Let P(A) be the partial permutation mapping i to j for every cross in column i and
row j of G(A), and let (Pp(A), Pg(A)) be the pair of partial standard Young tableauz
corresponding to the sequence of partitions along the bottom and the right border of
G(A), respectively.

THEOREM 5.4. The map A — (P(A), Pp(A),Pq(A)) is a bijection between alternat-
ing tableauz of length r and shape i, and triples consisting of a bijection P(A) : R — S
between two subsets of {1,...,r}, and two partial standard Young tableaur Pp(A) and
Pq(A). The shapes of these tableauz are obtained by separating the positive and nega-
tive entries of . The entries of the first tableau then form the complementary subset
of R, the entries of the second form the complementary subset of S.

Moreover, the map A — P(A) is a bijection between GL(n)-alternating tableaus
of length r and empty shape and permutations of {1,...,r} whose longest increasing
subsequence has length at most n.

An example for this procedure, which also illustrates Theorem 3.6, can be found
in Figure 5. We render fixed points as (x), other crosses below the diagonal as (¥) and
crosses above the diagonal as (). The reason for doing so is given by Corollary 6.19
in Section 6.3, where we show that the growth diagram of an alternating tableau and
its evacuation diagram are very closely related.

Let A be the GL(13)-alternating tableau of length 7

(2,1,11,21,22,21,211, 311, 211, 21, 22, 32, 33, 313, 213),

where we write the negative entries with bars and omit zeros for readability. Its
staircases label the corners of the diagonal of the first growth diagram. Applying the
backward rules we obtain the partial permutation and the partial standard Young
tableaux

PA) = {(3.2),(4,9),(5,1),(6.7)}, Pr(4) = [3]5]6]. and Po(4) = 12!
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The second growth diagram in the figure is obtained by applying the same procedure
to ev. A = sy 7 A, which yields

PlevA) = {(2,1),(3,7), (4,4), (5,6)}, Pp(ev.A) = [2[3[5], and Py(ev.A) = é 7],

as predicted by Theorem 3.6.

In the example above, we could have obtained the same sequence of positive and
negative parts of the staircases from a GL(3)-alternating tableau, removing ten zeros
from each vector. As it turns out, evacuation of this alternating tableau yields the same
result as above, although for r = 7 Theorem 3.6 applies only when n is at least 13.
The computation of the evacuated alternating tableau is carried out in Figure 2.

The GL(2)-alternating tableau A = (@,10,11,10,11) of length 2 illustrates the
necessity of the hypothesis restricting the length of the alternating tableau in The-
orem 3.6. On the one hand, this tableau is fixed by ev = s; 3. On the other hand,
P(A) ={(2,1)}, whose reverse-complement is {(1,2)}.

Similarly, to justify the necessity of the hypothesis in Theorem 3.7, consider the
GL(3)-alternating tableau in the first row of diagram (4), which corresponds to the
permutation depicted in Figure 1. Its promotion, as computed in the last row of
diagram (4), corresponds to the permutation 23514, which differs from the rotated
permutation.

6. PROOFS

Our strategy is as follows. We first consider only GL(n)-alternating tableaux of empty
shape and length r with n > r, and show that the bijection P presented in Section 5.2
intertwines rotation and promotion. To do so, we demonstrate that the middle row
of the promotion diagram (3) of an alternating tableau A can be interpreted as cor-
responding to a single-step rotation of the rows of the growth diagram G(.A). Then,
using a very similar argument, we find that the promotion of A corresponds to a
single-step rotation of the columns of the growth diagram just obtained.

To prove the statements concerning evacuation, we show that the permutation
P(A) can actually be read off directly from the evacuation diagram. In particular,
this makes the effect of evacuation on P(.A) completely transparent. The effect of the
evacuation of an arbitrary alternating tableau A on the triple (P(A), Pp(A), Pg(A))
is deduced from the special case of alternating tableaux of empty shape by extending
A to an alternating tableau of empty shape.

In order to determine the exact range of validity of Theorem 3.7 we use a stability
phenomenon proved in Section 6.1. The case n = 2 is treated completely separately
in Section 6.4.

Finally, in Section 6.5, we deduce the statements for oscillating tableaux and the
vector representation of the symplectic groups, Theorem 3.2 and 3.3, from the state-
ments for alternating tableaux.

6.1. STABILITY. In this section we prove a stability phenomenon needed for estab-
lishing the exact bounds in Theorem 3.7. Given the lack of an embedding of GL(n)-
alternating tableaux in the set of GL(n 4 1)-alternating tableaux that is compatible
with promotion, this theorem may be interesting in its own right.

THEOREM 6.1. Let A be a GL(n)-alternating tableau, not necessarily of empty shape,
and suppose that each staircase in Af\a/nd pr A contains at most m nonzero parts.

Then pr. A = pr A, where A and pr A are the GL(m)-alternating tableaux obtained
from A and pr A by removing n — m zeros from each staircase.
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FIGURE 5. A pair of growth diagrams 7A), with A =
(2,1,11,21,22, 21,211,311, 211, 21,22, 32, 33, 313, 213), illustrating
Theorem 3.6.

Before proceeding to the proof, let us remark that this is not a trivial statement:
it may well be that some staircases in the intermediate row pr.4 have more than m
nonzero parts.
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Proof. Tt suffices to consider the case m = n — 1. We show inductively that the
statement is true for every square of staircases in diagram (3)

. + .
\ = 2¢—2 504_/11211 >V—MZl

1T

where a + between two staircases indicates that a unit vector is added to the stair-
case on the left (respectively, in the lower row) to obtain the staircase on the right
(respectively, in the upper row).

By assumption, all staircases in the top and bottom row contain at least one zero
entry. For such a staircase p € Z", let p € Z"~! be the staircase obtained from p by
removing a zero entry. If p does not contain a zero, it must contain an entry 1 (say,
at position i), followed by a negative entry. In this case, p € Z"~! is obtained from p
by removing p; and adding 1 to p;y1.

With this notation, we have to show the following four equalities

(a) € =dome, ,(B+a—N),
(b) ¥ = domeg,, _ (5—|—V—a)
(c) 0 = domsg, _, (& +¢&— f3), and
(d) fi = dome,_,(5+7 — 2.

Let us first reduce to the case where at least one of the staircases involved does

not contain a zero. Consider a square of staircases

B=ate; —— Jd=ate *te
o —— v =domg,, (o £ &)

where all of a, 3, v and 6 contain a zero. We first show that there is an index k & {i, j}
such that ay = B = dr = 0. Suppose on the contrary that oy # 0 for all k & {i,5}.
Then, since 8 contains a zero, we have i # j. Furthermore, we have

a;j=0 ora; =0, and
a;=Flora; =0, and
a;=0 ora; =71, and
a; =Flora; =71

because «, 3, v and § contain a zero, respectively. However, this set of equations
admits no solution. Thus, there must be a further zero in o and therefore also in j,
~ and 8. From this it follows that ¥ = dome,, (& + & — f3).

Returning to the square in (6), we show that ¢ contains a zero entry if 5 or 7 do.
Suppose on the contrary that € does not contain a zero entry. Then € = 3 + ¢;, where
i is the position of the (only) zero in 3. Moreover, we have o = 3, because there is
only one way to obtain a zero entry in a by subtracting a unit vector. Thus,

A=dome, (f+a—¢)=domeg, (8 —e;) =0 — e,

which implies that A\ does not contain a zero entry, contradicting our assumption.
Similarly, if v contains a zero at position i, we have ¢ = v+ ¢;, v = 0 and pu =
dome,, (v — e;), a contradiction.
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There remain three different cases:

3 CONTAINS A ZERO, BUT  DOES NOT.

We have to show Equations (b) and (d). Let « =¢ —e; and v = ¢ —e; — e;. Then
v = domg,, (¢ — e;). Since, by the foregoing, € contains a zero, we have ¢; = 0. Since
« also has a zero we have 7 # j. Since v has a zero, €; = 1. Because 7 has no zero,
u = v. Together with the fact that § has a zero, this implies that § = ¢ — ;. The
equations can now be checked directly.

8 CONTAINS NO ZERO, BUT < DOES.

We have to show Equations (a) and (c). Let A = 8 —e; and a = 8 —e; + e;. Then
¢ = domg,, (f+e€;). Since  has no zero, but, by the foregoing, ¢ does, we have ; = 1.
Since A has a zero, §; = 1, and thus i # j. Because 8 has no zero, Kk = A. Again, the
equations can now be checked directly.

NONE OF 3, € AND v CONTAIN A ZERO.

In this case, k = A\, d = cvand p = v. Let A = 8 —¢e;, « = 8 —e; +¢;. Then
¢ =domg, (f+e€;). Thus §; # 1, B; =1, Bix1 < 1 and, because o # 3, we have i # j.
Because e and [ are staircases, § + e; has in fact decreasing entries and € = 8 + e;.
Thus, « =€ —e;, v = —e; — e, and v = domg,, (¢ — e). Again, because € and v are
staircases, € — e; has decreasing entries and 7 = € — eg. Thus, the equations can now
be checked directly. O

6.2. GROWTH DIAGRAMS FOR STAIRCASE TABLEAUX. In this section we set up the
notation used in the remaining sections. In particular, we slightly modify and gener-
alise the definition of G(A) from Section 5.2.

DEFINITION 6.2. For a pair of partitions p = (i, pi—), the partition p, is the positive
part and the partition p_ is the negative part. Given an integer n not smaller than
the sum of the lengths of the two partitions, [fiy, pi—|n s the staircase

(u+,07u+,17"'707"'707"'7_,[1’—,17_,u—,0)'

A staircase tableau is a sequence of staircases A = (u°, ut, ..., u") such that p' and
Wt differ by a unit vector for 0 < i < r. If u° = @ the tableau is straight, otherwise
it is skew. Unless explicitly stated, we consider only straight staircase tableauz.

The extent® E(u) of a staircase pn = [py, p_]n is the number of nonzero entries
in . Put differently, the extent is the sum of the lengths of the partitions py and p_.
The extent of a staircase tableau is the maximal extent of its staircases.

Given a staircase tableau we can create a growth diagram similar to the procedure
used in Section 5.2. However, it will be convenient to label all corners of the cells with
staircases, instead of labelling the corners which are not on the main diagonal or first
superdiagonal with a partition instead of a staircase.

DEFINITION 6.3. The growth diagram G(A) corresponding to a (straight) staircase
tableau A is obtained in analogy to Definition 5.3: label the top-left corner with the
staircase p°. If pitt is obtained from p® by adding (respectively subtracting) a unit
vector, utt labels the corner to the right of (respectively below) the corner labelled
pt. All the remaining corners of G(A) are then labelled with staircases as follows. The
positive parts on the corners to the left and below the path defined by the staircase

&0 might be more logical to use ‘height’ for the extent of a staircase, and ‘length’ for the number
n. However, Stembridge defines the height of a staircase as the number n. We therefore avoid the
words ‘length’ and ‘height’ in the context of staircases altogether.
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tableau are obtained by applying the backward rule, whereas the forward rule deter-
mines the positive parts on the remaining corners. The negative parts are computed
stmilarly.

Alternatively, we can also create a growth diagram given a partial filling and two
partial standard Young tableaux.

DEFINITION 6.4. A partial filling ¢ is a rectangular array of cells, where every row
and every column contains at most one cell with a cross.

Let ¢ be a partial filling having crosses in all rows except R (counted from the
top), and in all columns except C (counted from the left). Let P and Q be partial
standard Young tableaux having entries R and C respectively. Then the growth dia-
gram G(¢, P, Q) is obtained as follows. The sequence of partitions corresponding to Q
(respectively P) determines the positive (respectively negative) parts of the staircases
on the bottom (respectively right) border. The remaining positive and negative parts
are computed using the forward rule.

If ¢ contains precisely one cross in every row and every column, we abbreviate

g(¢7®7®) to g((b)

Finally, any growth diagram in the sense above can be decomposed into two clas-
sical growth diagrams, where all corners are labelled by partitions.

DEFINITION 6.5. G (respectively G_ ) denotes the (classical) growth diagrams obtained
by ignoring the negative (respectively positive) parts of the staircases labelling the
corners of a growth diagram G.

REMARK 6.6. The classical growth diagram associated to a (partial) filling ¢ is pre-

cisely G+(4,Q).

REMARK 6.7. Two horizontally adjacent shapes in G, (¢, Q) differ if and only if there
is no cross above in this column. Two horizontally adjacent shapes in G_(¢, Q) differ
if and only if there is a cross above in this column.

REMARK 6.8. Transposing a filling ¢ is equivalent to interchanging G, (¢) and G_(¢).
Finally, we introduce the operations on fillings we want to relate to promotion.

DEFINITION 6.9. Let ¢ be a filling of a square grid. The column rotation crot ¢ (re-
spectively, row rotation rrot ¢) of the filling ¢ is obtained from ¢ by removing the first
column (respectively, row) and appending it at the right (respectively, bottom).

The rotation rot ¢ of a filling ¢ is crotrrot ¢.

6.3. PROMOTION AND EVACUATION OF ALTERNATING TABLEAUX. In this section we
prove Theorems 3.6 and 3.7, with the exception of the case n = 2.

Let us first recall a classical fact concerning the effect of removing the first column
of a filling on the growth diagram in terms of Schiitzenberger’s jeu de taquin.

PROPOSITION 6.10 ([21, A 1.2.10)). Consider the classical growth diagrams G and G
for the partial fillings ¢ and q;, where d) is obtained from ¢ by deleting its first column.
Let QQ and Q be the partial standard Young tableaux corresponding to the sequence of
partitions on the top borders of the growth diagrams G and G. Then Q = jdtQ, the
tableau obtained by applying Schiitzenberger’s jeu de taquin to Q.

The following central result connects the local rule for the symmetric group with
column rotation, the operation of moving the first letter of a permutation to the end.

THEOREM 6.11. Let ¢ be a filling of an r X r square grid having exactly one cross
in every row and in every column. Let A\ and v be two adjacent staircases in G(P),
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not on the left border of G(¢), and A being to the left of v or above v. Finally, let k
and p be the two corresponding staircases in G(crot ¢), that is, the column index of
K in G(crot ¢) is one less than the column index of X in G(¢). Then, provided that
n > max(E(k), E(N), E(u), E(v)), we have p = domeg, (k + v — A).

Because the filling and the staircases of a growth diagram determine each other
uniquely, we immediately obtain the following corollary.

COROLLARY 6.12. Let ¢ be a filling of an v X r square grid having exactly one cross in
every row and in every column. Suppose that the staircases in A= (1 = pl,... p*" =
&) label a sequence of adjacent corners from the corner just to the right of the top-left
corner to the bottom-right corner of G(¢). Furthermore, suppose that the staircases
A= (o =7[0.. ., 4 =) satisfy i = dome, (A"~ + pitt — pt) for i < 2r — 1.
Then, provided that n > max(E(A), E(A)), the filling of G(A) is crot .

We remark that Proposition 6.10, restricted to permutations, is a special case
of Theorem 6.11. More precisely, it is obtained by considering the staircase tableau
(1 = pb,...,u?" = @) consisting of the partitions labelling the corners along the
top and the right border of a classical growth diagram, with the empty shape in the
top-left corner removed.

It is not hard to extend the theorem to partial fillings; the statement is completely
analogous. Its proof proceeds by extending the partial filling to a permutation. How-
ever, it turns out to be more convenient to deduce the statements for staircase tab-
leaux of non-empty shape from the corresponding statements for staircase tableaux
of empty shape directly.

Proof of Theorem 6.11. LOCAL RULES FOR THE POSITIVE AND THE NEGATIVE
PARTS.

Let us first determine certain local rules satisfied separately by the positive and
negative parts of the staircases k, A, ¢ and v. A summary of the various cases is
displayed in Figure 6, where the rules we verify are displayed below the corresponding
diagrams. In the following, addition and subtraction of integer partitions is defined
by interpreting them as vectors in Z".

First case, X\ left of v.

Let Q = (@ = po,fi1,-- -, fhs—1 = Ay, bs = v4) be the partial standard Young
tableau corresponding to the sequence of partitions in G, (¢) on the same row as A
and v, beginning at the left border. Let Q = (@ = fig, fi1, - - . » fis—2 = kit frs—1 = }iy)
be the corresponding partial standard Young tableau in Gy (crot ¢).

Suppose there is a cross in ¢ in the first column in a row below v, as in Fig-
ure 6(a). Then, by Proposition 6.10, Q = jdtQ. This implies that the partitions
Ls—1, [hs, fbs—2, fts—1 satisfy the local (growth diagram) rule fis_1 = sort(fis—o + s —
ts—1), that is, py = sort(ky +v4 —A;). Moreover k_ = A_ and v_ = u_ because the
growth for the negative parts of the staircases is from the top-right to the bottom-left.

If there is a cross in the first column in a row above v, as in Figure 6(b), we reason
in a very similar way. In this case k1 = A} and v; = p. For the negative parts of the
staircases we consider the partial standard Young tableaux @ and Q corresponding
to the sequences of partitions beginning at the right border of G_(¢) and G_(crot ¢)
respectively. We then have Q) = jdtQ and conclude A\_ = sort(k_ +v_ — p_) as
before, using the symmetry of the local rule, see Remark 4.14.

Second case, A above v.
Depending on the position of the cross in the first column there are three slightly
different cases, as illustrated in Figure 6(c), (d) and (e).
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A aZ K= >‘+ — :‘<6+ +|:|
(a) ¢: crot ¢ : E(krtve—Ay) <E(vy)
X X ko +v_—2_)=Ev.)
e =sort(ky + vy —Ay), Ao =kK_, V- =pu_
po =v_+0
(b) ¢: X crot ¢ : X E(h_Fv_—p_) < E(k-)
\- v P E(khy+rp—py) = E(ky)
Ao =sort(ke +v_ —p_), Ap =Ky, Vi =t
)‘\ | >\+=/€++|:|
(c) ¢ v crot ¢ : 7 E(krtve—Ay) <E(vy)
X X1 E(hoFv_—2_)=E(v.)
g =sort(ky +v4 —Ay), A_=kK_, Vv_=pu_
pwo =v_+0
(d) ¢ X A crot ¢ : K X E(ho+v_—p_) < E(ko)
y ﬁ‘t E(httry—py) = E(ky)
Ao =sort(k- +vo —p-), Ay =Ky, V=g
(e) ¢ A crot ¢ : K
X ! /‘L X

/ / / / /
A+—61:y+:;§+:u+) A =v_.=K_=u_—e

FIGURE 6. The cases considered in the proof of Theorem 6.11.

Recall that the partitions on the right border of a (classical) growth diagram cor-
responding to the right to left reversal of a filling 1) are obtained by transposing the
partitions on the right border of the (classical) growth diagram corresponding to 1.
Consider now the filling ¢ below and to the left of A\, and let w be the filling to the
left and below . Note that the reversal of v is obtained from the reversal of 1/) by
appending the first column of ¢ to the right. We thus obtain that the transposes of the
positive parts of the staircases k, p, A and v satisfy the local (growth diagram) rule.

The relation between the negative parts of the staircases x, i, A and v is obtained
in a very similar way by considering the fillings above and to the right of v and pu.
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BOUNDING THE EXTENT AND DEDUCING THE LOCAL RULE.

We now show p = domg,, (k+v— M), provided n > max(€(k), E(N), E(u), E(v)). To
do so, we extend the notion of extent to arbitrary vectors with all entries non-negative
or all entries non-positive: for a vector a € Z%, the extent £(a) is » minus the
number of trailing zeros. Similarly, for a vector a— € ZZ, the extent £(a-) is n
minus the number of leading zeros.

The case illustrated in Figure 6(e) follows by direct inspection. We thus only con-
sider the remaining four cases. Because p4 and p— are obtained by sorting k4 +v4—A4
and k_ 4+ v_ — A_ respectively, the latter must have all entries non-negative. Simi-
larly, also k4 + v — py and k— + v_ — p_ have all entries non-negative, because A
and A\_ are obtained by sorting these vectors, by the symmetry of the local rule, see
Remark 4.14.

Suppose first that n > max(E(k), E(A), E(v)). Then

domg, (k +v — ) =domg, ([ky, k_]n + V4, V_]n — [A 4, A_]n) = domg, (a4 + ),

where ay = [ky, D]n + V4, D]n — M+, D]n and a- = [F, k_]n + [D,v_]n — [T, A_]n-
It remains to show that

g(Oé+) +£(O[_) = 5 (Ii_;,_ +I/+ — >\+) +(€ (li_ +v_ — )\_)

because then

N

n,

domg,, (o + a_) = [sort(ay ), sort(a_ )],
= [sort(ky + vy — Ap),sort(he +vo — A)|n = [, o] = p
Similarly, suppose that n > max(E(k),E(u), E(v)). In this case, reasoning as above,
we have to show that & (k4 + vy —py) + € (ke +v- —p_) < n.
The first inequality is verified by inspection of Figure 6(a) and (c), whereas the
second concerns Figure 6(b) and (d). Here we write, for example, Ay = k4 + O to

indicate that the partition A is obtained from the partition x4 by adding a single
cell, which implies the inequality for the extent. O

DEFINITION 6.13. Let A = (@ = p®, pt, ..., p? =1, u®" = u) be an alternating tableau.
Then pr A = (@ = (9 b, ..., 0> =1 i®" = p) is the staircase tableau obtained from
A by setting = pt =1, and then applying the local rule (1) successively to ut, put+t,
and [i*~1 to obtain [i* for i < 2r — 1. Additionally, we set [i*" = pu.

In other words, pr.A can be read off from the diagram for promotion as illustrated

in diagram (3) beginning with the empty shape in the lower left corner, then following
the second row, and terminating with the shape p in the upper right corner.

LEMMA 6.14.

(a) Let A be a staircase tableau of empty shape and length r. Then the extent of
A is at most r.

(b) Restricting to alternating tableauz, there is a single alternating tableau Aoy of
empty shape, length r and extent r. The filling ¢o of its growth diagram G(Ap)
is invariant under rotation: rot ¢g = ¢g.

(¢) Restricting further to alternating tableaux of even length, the only tableau A
such that prA has extent r is Ag.

Proof. Statement (a) is trivial. To see statement (b), note that the unique length r
alternating tableau of empty shape with maximal extent is, for r = 2s + 1 odd,

Ao = (2,1,11,..., 1515 15F11° 1515, 11,1, @)
and, for r = 2s even,

Ao = (2,1,11,..., 151 151 1=t s—t 10,1, @).
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In both cases the extent is r and the corresponding permutation is, in one line notation,
s+1,s4+2,...,r,1,...,s. This permutation is invariant under rotation.

Similarly, to see statement (c), a staircase tableau pr.A with extent r must have
filling corresponding to the permutation s,s+1,...,7,1,...,s—1, which is the filling
rrot ¢, and thus A = Ag. O

The first statement of Theorem 3.7, with the exception of the case n = 2 and the
case n = r — 1, is a direct consequence of the following result. The special case of
GL(2)-alternating tableaux and GL(r — 1)-alternating tableaux will be considered in
Section 6.4 below.

THEOREM 6.15. Let A be a GL(n)-alternating tableau of length r and empty shape.
Let ¢ be the filling of the growth diagram G(A). Let ¢ and (]B be the fillings of the
growth diagrams G(pr.A) respectively G(pr.A).

Then, for n > r, rrot ¢ = ¢ and crotqﬁ = qg

Proof. Let
p’I‘A = (@ = /107/11’ s “&27”—1 = 17/'/’/270 = @)
and let
prd=(o=p%a. .. 02 = 1,07 = o).
Furthermore, let
A= (@ =, ...,/ =17 = o)

be the staircase tableau obtained by setting i = @ and then applying the local
rule (1) successively to f?, 4+, and ‘~! to obtain ' for i < 2r — 1. Because of
Lemma 6.14 and the assumption n > r, Corollary 6.12 is applicable and implies that
the filling ¢ of the growth diagram G (JZ) is crot ¢.

All staircases in A except 12”1 coincide with those of pr.A. Because /12T:1 =1,
(> = @ and 272 is either @ or 11, we have a2"~! = 1. However, since ¢ and ¢
correspond to permutations and the first r — 1 columns of these fillings are the same,
we conclude that ¢ equals é

Because of the symmetry of the local rules pointed out in Remark 4.14 and because
[?"~! =1, we can apply the same reasoning replacing pr A and pr.A with the reversal
of pr A and the reversal of A. Clearly, the filling corresponding to the reversal of a
tableau is obtained by flipping the original filling over the diagonal from the bottom-
left to the top-right. In t/he process, column rotation is replaced by row rotation, which

implies that rrot(¢) = ¢. O

COROLLARY 6.16. In the setting of Theorem 6.15, if n is odd it is sufficient to require
n=>r—1.

Proof. Let A be a GL(n)-alternating tableau of length r = 2s, with n > r. Let ¢ be
the filling of G(.A). Then, combining Lemma 6.14 and Theorem 6.15 we obtain

EA) =rel(prd)=r< EprA) =r

By contraposition, £(A) < r & £(prAd) < r & E(pr.A) < r. Thus, the claim
follows using the proof of Theorem 6.15, taking into account that Corollary 6.12 is
now applicable even with n > r — 1. O

Finally, we can conclude one part of Theorem 3.7. Note that the case of odd n is
also covered by the previous corollary.
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COROLLARY 6.17. Let A be a GL(n)-alternating tableau of length v and empty shape.
Then, forn >r—1, rot P(A) = P(pr A).

Proof. This is a consequence of Lemma 6.14 and Theorem 6.1. (]

We now introduce a different way to obtain the filling of G(A). This construction
will also shed some additional light on the relationship between the local rule (1) and
those in Figure 3.

Consider the evacuation diagram for obtaining the evacuation as illustrated in
Figure 2. We construct a filling of the cells surrounded by three or four staircases
using the symbols &), @ and (x) as follows:

[, 0], — [, 7]y 8,7l — [, T]n 1,9], — [9,9],

S or ® or ) ,

[a, 7] —— [B, T]n [a, T — [, 0]n 1, 2],

where (3 (respectively o) is obtained from « (respectively 7) by adding a cell to the
first column of the Ferrers diagram of the partition. All other cells remain empty.

The following lemma is the main building block in establishing the connection
between the filling of G(A) and the decorated evacuation diagram.

LEMMA 6.18. Let A = (@ = p°,...,u?" = @) be an alternating tableau of empty
shape. Let pr A = (@ = % 4%, ..., 02"~ 4® = @) be as in Definition 6.13 and let
prA=(2=7°...,4% = @) be the promotion of A. Suppose that the filling of G(A)
has a cross (that is, a (=), ) or (X)) in column € > 1 of the first row and in row k > 1

of the first column. Then, for even n = r and for odd n > r — 1, we have
(a) ph = @ for2<j<2-2,
(b) p? =2t forj>20—2,
(c) ;ﬁf*Q = ,u%ffl = [ff*?’, and ﬂ?ffz is obtained from these by adding a cell to
the first column. The cell labelled with these four staircases contains a (5.
Similarly,
(@) L =p"" for1<j<2k—2,
(b) fy = =" for j > 2k —2,
(") [Li_k_l = ﬂik_z = ;ﬁ_k_g, and ,Lli_k_ is obtained from these by adding a cell to
the first column. The cell labelled with these four staircases contains a ().

2

Finally, suppose that there is a cross in the top-left cell, that is k =€ = 1. Then

(f) ut = 1,pu®> = @ and ' = 1. The cell labelled with these four staircases
contains a (X).
(Y W=t —eg =772 for all 2 < j < 2r.

Proof. Consider a square of four adjacent staircases in the diagram for computing the
promotion of an alternating tableau below:

2o e wr=o
©
(7) G R 222k g2kl e
@
G=00 (263 k=2 22
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By definition, these satisfy the local rule, as required by Theorem 3.3. By Corol-
lary 6.16, Theorem 6.11 is applicable with the given bounds for n. The equalities for
the staircases in the second and third row are precisely the equalities listed below the
illustrations in Figure 6: cases (a) and (c) there describe the situation to the left of
(), case (e) describes the situation at (1) and cases (b) and (d) describe the situation
to the right of (P.

The equalities for the staircases in the first and second row can be obtained as in
the last paragraph of the proof of Theorem 6.15. O

By successively applying Lemma 6.18 we obtain the following result for the evac-
uation diagram.

COROLLARY 6.19. Let A be a GL(n)-alternating tableau of empty shape and length r
with corresponding growth diagram G(A) and filling ¢. Suppose that n > r if n is even
andn = r —1if n is odd. Consider the evacuation diagram with filling obtained as
above. A (5 appears only in odd columns and odd rows, a (&) appears only in even
columns and even rows and a (X) appears only in even columns and odd rows. Moreover

(i,7) is the position of a cell with a cross in ¢ if and only if one of the following cases
holds.
o i < j and there is a (O in row 2i — 1 and column 2j — 1 in the evacuation
diagram.
e i > j and there is a () in row 2j and column 2i.
o There is a (X) in row 2i — 1 and column 2j. Then we also obtain i = j.

1 2 . 2r-1 2r 1 2 . 2r-1 2r
A= o o o o o _ o o o o evA= o o o o o o o o o
1 -

o o o o o o o o o o o o o o

o o o o o o o o o o o o o o
o © o o o o o o o __o
o o o o o o o o o o
o o o o o o
o o o o o o

2r-1 2r-1
o o

2r 2r
° °
(3]

FIGURE 7. The symmetry of the evacuation diagram.

By the symmetry of the local rules the evacuation diagram for ev A is obtained from
the evacuation diagram for .4 by mirroring it along the diagonal and interchanging
@ and ©). The cell (i,7) is interchanged with the cell (2r +1 — j,2r + 1 — ). This
yields the part of Theorem 3.7 concerning evacuation, see Figure 7 for an illustration.

THEOREM 6.20. Let A = (@ = p®, pt, ..., u>" =1 4u?" = @) be an alternating tableau.
Suppose that n > r if n is even and n > r — 1 if n is odd. Let ¢ be the filling of the
growth diagram G(A). Then the filling of G(ev A) is obtained by rotating ¢ by 180°.

Proof. Let ¢4 = ¢, respectively ¢ey 4, be the fillings of the growth diagrams G(A),
respectively G(ev.A). Let (i, 7) be the position of a cell with a cross in the filling ¢ 4.
Then, according to Corollary 6.19:
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(1) if i < 4, there is a (©) in the evacuation diagram of A in (2i — 1,25 —1). Thus
there is a (1) in the evacuation diagram of ev A in (2r —2j + 2,2r — 2i + 2)
and therefore there is a cross in (r +1 —4,r +1 — j) in ¢ey A.

(2) if j < 4, there is a (3 in the evacuation diagram of A in (2j,2¢). Thus there
is a (O in the evacuation diagram of ev.A in (2r +1 — 2¢,2r + 1 — 2j) and
therefore there is a cross in (r+1— 4,7 + 1 — j) in @ey 4.

(3) if ¢ = j, then there is a (X) in the evacuation diagram of A in (2 —1, 2¢). Thus
there is a (X) in the evacuation diagram of ev. A in (2r + 1 — 2¢,2r + 2 — 21)
and therefore there is a cross in (r +1— 4,7 +1 — j) in Gey A- O

PRrROPOSITION 6.21. Consider the classical growth diagrams G and g for the partial
fillings ¢ and rc ¢, where rc ¢ is obtained by rotating ¢ by 180°. Let QQ and Qv (respec-
tively P and f’) be the partial standard Young tableaux corresponding to the sequence
of partitions on the top borders (respectively right borders) of the growth diagrams G
and G. Then @ =ev(@ and P =evP.

We are now in the position to prove Theorem 3.6, which we reformulate as follows.

THEOREM 6.22. Let A = (@ = p®, put, ..., p?" =1, 4" = u) be an alternating tableau of
lengthr < L"T“J Let ¢ be the filling of the growth diagram G(A). Then the sequence of
partitions on the bottom (respectively right) border of G, (ev.A) (respectively G_(ev A))
is obtained by evacuating the sequence of partitions on the bottom (respectively right)
border of G4 (A) (respectively G_(A)). Moreover, the filling of G(ev A) is obtained by
rotating ¢ by 180°.

Proof. We begin by extending A to an alternating tableau of empty shape A = (& =
il ..., 12"t = @), such that i = u’ for i < r, by appending the reversal of A. Let
6 be the filling of G(A), which we divide into four parts, as illustrated in the left-most
diagram below. Filling A is the filling corresponding to A, filling B is the part below
and to the left of x2", filling C is the part above and to the right of %" and filling D
is the part below and to the right of p2".

By the symmetry of the local rules and the evacuation diagram as illustrated in
Figure 2 we see that ev.A coincides with the first 2r + 1 staircases of pr(" (ev.A),
where pr(") denotes propro--- o pr.

| S ——
7 times

Let @ be the sequence of partitions on the bottom border of G (A). This sequence
is also the sequence of partitions on the top border of the classical growth diagram
with filling B.

The inequality r < L"THJ implies that n > 2r if n is even and n > 2r — 1 if n is
odd. Applying Theorem 6.20 and Theorem 6.15 we obtain the following picture:

A C a q V 0

2
14 " ev pr(r)
— —

B D 0 v q a

Thus the sequence of partitions on the bottom border of G (ev.A) is the same as
the sequence of partitions on the top border of the regular growth diagram with filling
rc B. By Proposition 6.21 we obtain the statement for the sequence of partitions on
the bottom border.
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The result for the right border follows using the same argument, replacing the
filling A with the filling C. g

6.4. GL(2)-ALTERNATING TABLEAUX. To finish the proof of Theorem 3.7, it remains
to consider the case n = 2.

8 X 11 1

FIGURE 8. A noncrossing set partition corresponding to a GL(2)-
alternating tableau.

LEMMA 6.23. The map P restricts to a bijection between GL(n)-alternating tableaux
of empty shape and length r, such that every staircase has at most two nonzero parts,
and noncrossing set partitions on {1,...,r}.

Proof. For simplicity, suppose that A is a GL(2)-alternating tableau. Let 7 be the
permutation corresponding to the filling associated with .A. We show that, when drawn
as a chord diagram as in Figure 8, it is obtained from a noncrossing set partition by
orienting the arcs delimiting the blocks clockwise, when the corners of the polygon
are labelled counterclockwise.

We say that two arcs (¢,7;) and (j,7;) in the chord diagram, with i < k, cross, if
and only if the indices involved satisfy one of the following two inequalities:

1<g<m < or m <y <i<j.
Let us remark that this is precisely Corteel’s [4] notion of crossing in permutations.

It follows by direct inspection that the chord diagram corresponds to a noncrossing
partition in the sense above if and only if no two arcs cross.

Moreover, a crossing of the first kind is the same as a pair of crosses in the rectangle
below and to the left of the cell in row and column j of G(.A), such that one cross
is above and to the left of the other. Similarly, a crossing of the second kind is the
same as a pair of crosses in the rectangle above and to the right of the cell in row and
column 4 of G(A), such that one cross is above and to the left of the other.

By construction, a GL(2)-alternating tableau cannot contain a vector with both
entries strictly positive or both entries strictly negative. Thus, such pairs of crosses
may not occur. O

We can now prove another part of Theorem 3.7.
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THEOREM 6.24. Let n < 2 and let A be a GL(n)-alternating tableau of empty shape.
Then rot P(A) = P(pr A).

Proof. Let r be the length of A and let A be the GL(r)-alternating tableau ob-
tained from A by inserting r — n zeros into each staircase. Then, by Theorem 6.15,

~

P(prA) = rot P(A). By Lemma 6.23, the staircases in the alternating tableau

corresponding to rot P(A) have at most two nonzero parts. Thus, the claim follows
from Theorem 6.1. g

To finish the proof of Theorem 3.7, we show that the evacuation of a GL(2)-
alternating tableaux of empty shape is just its reversal.

THEOREM 6.25. Let A be a GL(2)-alternating tableau of empty shape. Then ev A is
the reversal of A.

Proof. Let A= (@ =pu°,...,p*" =) andlet evA=A= (0 =’ ..., 0% = 2).
Note that 1% is the 2i-th (counting from zero) staircase in pr(" =" A. Thus, its negative
part is the same as the negation of the positive part of u2("=?, because the fillings
in the respective regions of the corresponding growth diagrams coincide. Because
the negative part and the positive part of the even labelled staircases of a GL(2)-
alternating tableau are equal, we conclude that p2("=% = %,

It remains to show that p2(—9-1 = g2+l If 520 £ 20+ the staircase g2't! is
uniquely determined. Otherwise, if 3% = 20+ it is obtained from ji** by adding
the unit vector ey if and only if 7 is a fixed point of 77(/1) Equivalently, this is the
case if and only if r + 1 — 7 is a fixed point of P(A), as can be seen by inspecting the

evacuation diagram. O

6.5. PROMOTION AND EVACUATION OF OSCILLATING TABLEAUX. We now deduce

Theorem 3.2 and Theorem 3.3 from the results in the preceding section, by demon-

strating that oscillating tableaux can be regarded as special alternating tableaux.
For two partitions A, 4 we define

AV = max(\, 1)
AN pi=min(A, p)

where max and min are defined componentwise.
Consider an n-symplectic oscillating tableau O = (w°, w?, ... ,w"). Then

Ao = [w07w0}n, [wo Vwlw? A wl]n, [wl,wl]m el [of_l V' w T A Wy (W' W n

is a GL(n)-alternating tableau. Because w’ and w'*! differ by a unit vector, the
staircase [w’ V wit! w? A witl], is obtained by taking the larger partition as positive
part, and the smaller partition as negative part.

If O is an oscillating tableau, the filling of G(Ap) is symmetric with respect to the
diagonal from the top-left to the bottom-right. In particular, if O has empty shape
the filling is precisely the permutation obtained by interpreting the perfect matching
as a fixed point free involution.

Conversely, suppose that A is an alternating tableau such that the filling of G(.A) is
symmetric with respect to the diagonal from the top-left to the bottom-right, and has
no crosses on this diagonal. Then, taking the positive part of every second staircase
in A we obtain an oscillating tableau O 4. The filling of G(O4) is precisely the part
of G(A) below and to the left of the diagonal.

It is easy to see that the rotation of a fixed point free involution corresponds to the
rotation of the associated perfect matching. Also, the reversal of the complement of a
symmetric filling corresponds to the reversal of the associated perfect matching. Thus,
it remains to show that this correspondence between oscillating tableaux and certain

Algebraic Combinatorics, Vol. 3 #1 (2020) 138



Promotion and rotation

alternating tableaux intertwines promotion of oscillating tableaux and alternating
tableaux: Opy 4 = prO.4.

LEMMA 6.26. The promotion of an oscillating tableau equals the oscillating tableau
corresponding to the promotion of the associated alternating tableau: Opr 4 = prO.4.

Proof. Let O = (@ =w°,...,w" = @) be an oscillating tableau. By Theorem 4.17 its
promotion prO = (@ = &°,..., 0" = @) can be computed using the local rule from
Definition 4.12:

(8) Ot = domg, (W2 + W' —w'Th),

where §),, is the hyperoctahedral group, the Weyl group of the symplectic group
Sp(2n). Recall that in this case the dominant representative of a vector is obtained
by sorting the absolute values of its components into decreasing order.

Let Ao = (@ = p°,...,u*" = @) be the alternating tableau associated with
the oscillating tableau O. Let pr Ao = (@ = 424t ..., 42" %" = @) be as in
Definition 6.13 and let pr.Ap = (@ = 4°,..., 4" = @) be the promotion of Ap.

We have to show that for every square in the promotion diagram of the alternating
tableau

21—2 ,2i—1 21

p22 g Iz
(9) (213 (2i=2 2i-1

n2i—4 n82i—3 ~21—2

G
the positiye parts of the four corners w'~! = ,uii*Q, wt = ,u?f, W2 = [ﬁf% and
Ol = ﬂi“? satisfy Equation (8). Note that the positive parts and the negative parts
of these staircases coincide. To avoid superscripts, we set 2=2 = [\, A],,, u?* = [v, V],
ﬂ21_4 = [Ha K]n and ﬂZZ_Q = [:uﬂ/'dn

Because the filling of G(Ap) is symmetric, the position £ of the cross in the first
row equals the position k£ of the cross in the first column. Thus, we have ¢ = k in
Lemma 6.18. Let us consider the case i # ¢ first. We assume that i < ¢, the case of
i > ¢ is very similar. If ¢ < £, that is, 2i < 2¢ — 2, the positive parts of staircases in
the same column of the first two rows of diagram (9) coincide by Lemma 6.18(a). By
Lemma 6.18(a’), the negative parts of staircases in the same column of the second
two rows coincide.

Moreover, by construction of Ae, the staircase in the middle of the first row either
equals [\, V], or [y, A],,. Let us assume the latter, the former case is dealt with similarly.
For the staircase in the middle we then obtain, applying the local rule to the staircases
on the top-left,

(4?72 = domg,, (N &l + [, Al — N ML) = [V, 6.
Similarly, applying the local rule to the staircases on the bottom-right, we find
~2i—3 ~2i—3

(1, pln = domse, (377, Kln + [V, pln = [V, K]0) = 2377, -
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Therefore, the square of staircases in diagram (9) has the following form:

M A [ A [,V

(10) I\l v Kl [V 4l

[, Kl [, Kl [, 1l

Because the negative parts of the four staircases in the lower left corner are all the
same, the positive parts satisfy u = domg, (k+v—A), and therefore also Equation (8).

It remains to show that Equation (8) also holds for ¢ = ¢. By Lemma 6.18(c), the
positive parts of the staircases =2, p?*~! and £2~3 all coincide, and thus equal .
Moreover, the positive part « of the staircase in the middle is obtained by adding a
cell to the first column of the Ferrers diagram of A.

By Lemma 6.18(c’), the positive parts of the staircases 2=, 42/=3 and
all coincide, and thus equal u. Moreover, the positive part « of the staircase in the
middle is obtained by adding a cell to the first column of the Ferrers diagram of .
Therefore A = p.

Lemma 6.18(b) implies that the negative parts of the staircases u?~1, u2¢, 2=
and (2~1 are all equal to v. Finally, Lemma 6.18(a’) shows that the negative parts
of the staircases (1273, 12672, p2~% and 2/~3 are all equal to k. Thus v = k and
diagram (9) has the form

~20-2
i

2

[Aa )\]n [>\7 V]n [V7 V]n
(11) s [ vl [ v

W, vln [N vn [N Al

Considering the growth diagram G(Ae), we additionally find that A is obtained from
v by adding a cell to the first column. Thus, the vector v + v — A is obtained from v
by subtracting 1 from the entry at position ¢(A), which is 0 in v. Taking the absolute
values of the entries of the vector v + v — A then yields A. O
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