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On graded presentations of Hecke algebras
and their generalizations

Ben Webster

Abstract In this paper, we define a number of closely related isomorphisms. On one side of
these isomorphisms sit a number of of algebras generalizing the Hecke and affine Hecke algebras,
which we call the “Hecke family”; on the other, we find generalizations of KLR algebras in finite
and affine type A, the “KLR family.”

We show that these algebras have compatible isomorphisms generalizing those between
Hecke and KLR algebras given by Brundan and Kleshchev. This allows us to organize a long
list of algebras and categories into a single system, including (affine/cyclotomic) Hecke algebras,
(affine/cyclotomic) q-Schur algebras, (weighted) KLR algebras, category O for glN and for the
Cherednik algebras for the groups Z/eZ o Sn, and give graded presentations of all of these
objects.

1. Introduction
Fix a field k and an element q 6= 1, 0 ∈ k. Let e be the multiplicative order of q. In this
paper, we discuss isomorphisms between two different families of algebras constructed
from this data.

One of these families is ultimately descended from Erich Hecke, though it is a
rather distant descent. It’s not clear he would recognize these particular progeny. The
other family is of a more recent vintage. While the first hint of its existence was
the nilHecke algebra acting on the cohomology of the complete flag variety, it was
not written in full generality until the past decade in work of Khovanov, Lauda and
Rouquier [11, 12, 18].

In the spirit of other families in representation theory, one can think of Hecke family
as being trigonometric and the KLR family as rational. However, a common phenom-
enon in mathematics is the existence of an isomorphism between trigonometric and
rational versions of an object after suitable completion; the “ur-isomorphism” of this
type is between the associated graded of the K-theory of a manifold and its coho-
mology. Such an isomorphism has been given for completions of non-degenerate and
degenerate affine Hecke algebras by Lusztig in [13]. Another similar isomorphism is
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given in [6] for Yangians and quantum affine algebras. In this paper, we will define iso-
morphisms with a similar flavor between the algebras in the Hecke and KLR families.
These isomorphisms are between certain special completions; before discussing the
specific examples, we cover some generalities on this type of completion in Section 2.

In both cases, these families have somewhat complicated family trees. Every one
depends on a choice of a rank, which we will denote n throughout. In the diagram-
matics, this will always correspond to a number of strands. On the Hecke side, we
will always have a dependence on a parameter q, which we will sometimes want to
deform to qeh with a h a formal parameter. On the KLR side, we will not see an
explicit family of algebras as we vary q, but the underlying Dynkin diagram used in
the definition of these algebras will depend on h.

Like blood types, there are two complementary ways that they can become compli-
cated. The simplest case, our analogue of blood type O, is the affine Hecke algebra (on
the Hecke side) and the KLR algebra of the Dynkin diagrams Âe/A∞ (on the KLR
side). The two complications we can add are like the type A and type B antigens
on our red blood cells. Since “type A/B” already have established connotations in
mathematics, we will instead call these types W and F:

• algebras with the type W complication are “weighted”(1) : these include affine
q-Schur algebras [8] (on the Hecke side) and weighted KLR algebras [22].

• algebras with the type F complication are “framed”: these include cyclotomic
Hecke algebras [2] and the Âe/A∞ tensor product categorifications from [23].
These are analogs of the passage from Lusztig to Nakajima quiver varieties.

• finally, both of these complications can be present simultaneously, giving type
WF. The natural object which appears in the Hecke family is the category
O of a Cherednik algebra Z/eZ o Sn [7], though in a guise in which has not
been seen previously. On the KLR side, the result is a steadied quotient of a
weighted KLR algebra for the Crawley-Boevey quiver of a dominant weight
of type Âe/A∞ (see Definition 6.8 and [22, § 3.1]).

Our main theorem is that in each type, there are completions of these Hecke- and
KLR-type algebras that are isomorphic.

Since a great number of different algebras of representation theoretic interest ap-
pear in this picture, it can be quite difficult to keep them all straight. For the conve-
nience of the reader, we give a table in Figure 1, placing all the algebras and categories
which appear in this picture in their appropriate type. Note that many of the items
listed below (such as Ariki–Koike algebras, or cyclotomic q-Schur and quiver Schur
algebras) are not the most general family members of that type, but rather special
cases. We’ll ultimately focus on the category of representations of a given algebra, so
we have not distinguished between Morita equivalent algebras.

On the KLR side, the diagrammatic formulation we give matches the original
definition of these algebras (with the exception of quiver Schur algebras, which are
shown to be Morita equivalent to certain reduced steadied quotients in [22, Th. 3.9]).
For the Hecke side, typically our description is a bit different from the definitions
readers will be used to, and we have listed the result in this paper or another which
gives the relation.

Remark 1.1. All of the algebras on the Hecke side of this list have degenerate ana-
logues, and we could have written this paper, like [3] with parallel sets of formulas in
the degenerate and non-degenerate cases. We avoided doing this because of length,

(1)The referee has suggested that “wraith” in reference to the ghost strands which appear might
be more appropriate. You might very well think that; the author couldn’t possibly comment.
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Type KLR side Hecke side
O KLR algebra R [11, 18] affine Hecke algebra H̃ of type A (Thm. 3.4)
W weighted KLR algebra [22],

quiver Schur algebra [19]
affine q-Schur algebra S(n,m) (Thm. 4.9)

F cyclotomic KLR alge-
bras [11], algebras Tλ(h, z)
categorifying tensor prod-
ucts for type A/Â [23]

cyclotomic Hecke (Ariki–Koike) algebras
(Prop. 5.7), category O for glN (e =∞) ([23,
9.11])

WF reduced steadied quotients
Tϑ categorifying Uglov
Fock spaces [24], cyclotomic
quiver Schur algebras [19]

category O for a Cherednik algebra with
Z/eZ oSn ([24, Thm. A]), cyclotomic q-Schur
algebras (Prop. 6.6)

Figure 1. The algebras of interest.

because the correspondence between degenerate and non-degenerate formulas is easy
to work out (just replace multiplication by q±1 by addition of ±1), and our ultimate
goal is to apply our results to the Cherednik category O in [24], which only uses the
non-degenerate case.

Remark 1.2. Very closely related (and in many cases, Morita equivalent) algebras
were introduced by Maksimau and Stroppel [16]; they use the terms “Hecke family”
and “KLR family” exactly as above. The main difference between the approaches in
these papers is that this paper emphasizes not Schur algebras as those working in the
field understand them, but certain Morita equivalent algebras we find more convenient
to work with, whereas [16] work more directly with the Schur algebra.

Type O. We’ll first consider the simplest case of this isomorphism. In essence, this is
just a rewriting of the approach in [18, § 3.2], but for applications in [24], we require
a small generalization of those results, and it will serve to illustrate our techniques
for the sections on other types. The two algebras we consider are:

• the affine Hecke algebra H̃(q) of Sn with parameter qeh, considered as a k[[h]]-
algebra. Note that this deformation only makes sense if k has characteristic 0.

• the KLR algebra R(h) of rank n for ŝle attached to the polynomials
Qi+1,i(u, v) = u− v + h, also considered over k[[h]].

These algebras are defined in [3, (4.1–5)] and [3, (1.6–15)] respectively; here we con-
sider them with the addition of an h-adic deformation. This deformation is very
important since it allows us to compare affine Hecke algebras with q at a root of
unity with those for generic q. For KLR algebras, this corresponds to comparing
KLR algebras for Âe and A∞ (as in [22, Ex. 2.25]). By the usual idempotent lifting
arguments (see, for example, [25, Lem. 2.2]), the Grothendieck group of projective
modules for R(h) is the same as that for the usual KLR algebra R with h set to 0;
thus, R(h)-modules categorify the algebra U+(sl∞) or U+(ŝle) by [12, Thm. 8].

Theorem 1.3. There is a k[[h]]-algebra isomorphism ̂̃H(q) ∼= R̂(h).

The characteristic 0 assumption may look peculiar to experts in the field; the Hecke
algebra over a field of characteristic p has similar deformations coming from deforming
the parameter q (though eh does not make sense here), but it’s not clear how to match
other deformations of the Hecke algebra with the simplest deformations of the KLR

Algebraic Combinatorics, Vol. 3 #1 (2020) 3
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algebra. A different deformation of the KLR algebra defined by Hu and Mathas [9] is
compatible with more general deformations of the Hecke algebra, in particular with
the deformation of Fp[Sn] to Zp[Sn]. Since our primary applications will be to Hecke
algebras and related structures of characteristic 0, this hypothesis is no problem for us.
In general, we’ll prove our results in parallel with the undeformed Hecke algebra (and
related structures) in arbitrary characteristic, and with the exponentially deformed
Hecke algebra in characteristic 0.

One isomorphism between type O completions was implicitly constructed by Brun-
dan and Kleshchev in [3] and for a related localization by Rouquier in [18, § 3.2.5]
for h = 0. Unfortunately, it is not clear how to extend these isomorphisms to the de-
formed case, so instead we construct an isomorphism which is different even after the
specialization h = 0. This isomorphism still has a similar flavor to those previously
defined; in brief, we use a general power series of the form 1 + y + · · · (in particular
ey) where Brundan and Kleshchev or Rouquier use 1 + y.

We will also generalize this theorem in a small but useful way: in fact there is
a natural class of completions of the Hecke algebra that correspond with the KLR
algebra for a larger Lie algebra GU . Here we consider an arbitrary finite subset U ⊂
k r {0}, given a graph structure connecting u and u′ if qu = u′, and let GU be the
associated Kac–Moody algebra.

This definition is the same as the “type A graphs” in [18, § 3.2.5], but we do not
impose a connectedness assumption. The most important case is when U is the eth
roots of unity, so U is an e-cycle, but having a more general statement will be useful in
an analysis of the category O for a cyclotomic rational Cherednik algebra given in [24].
A more direct proof of this equivalence using the Dunkl–Opdam subalgebra is now
given in [21]. The generalization of Theorem 1.3 to this case (Proposition 3.10) gives
an alternate approach (and graded version) of the theorem of Dipper and Mathas [5]
that Ariki–Koike algebras for arbitrary parameters are Morita equivalent to a tensor
product of such algebras with q-connected parameters.

The technique we use for this isomorphism and all others considered in this paper
is a variation on that used by Rouquier in [18, § 3.26]. We construct an isomor-
phism between completions of the polynomial representations of H̃(q) and R(h), and
then match the operators given by these algebras. This requires considerably less
calculation than confirming the relations of the algebras themselves. It also has the
considerable advantage of easily generalizing to other types.

In Maksimau and Stroppel’s framework [16], these are the cases which are “no
level, not Schur.”

Type W. The first variation we introduce is “weightedness.” This is a similar change of
framework in both the Hecke and KLR families, though it is not easy to see from the
usual perspective on the Hecke algebra. This algebra can be considered as the span
of strand diagrams with number of strands equal to the rank of the algebra, and a
crossing corresponding to Ti+1 or Ti−q, depending on conventions. In this framework,
we can introduce a generalization of the Hecke algebra which allows “action at a
distance” where certain interactions between strands occur at a fixed distance from
each other rather than when they cross. To see the difference between these, compare
the local relations (1a–1c) with (12a–12f). We have already introduced this concept
in the KLR family as weighted KLR algebras [22], but the idea of incorporating it
into the Hecke algebra seems to be new. Note that wKLR algebras are defined for
any Cartan datum, but as usual, we will only consider those attached to the quiver
structures on sets U (which are always unions of finite and affine type A).

Algebraic Combinatorics, Vol. 3 #1 (2020) 4
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The main result in this case is that we obtain a graded KLR type algebra Morita
equivalent to the affine Schur algebra after completion; after this preprint had ap-
pear on the arXiv, Miemietz and Stroppel [17] showed a direct isomorphism of the
completed affine Schur algebra with a quiver Schur algebra from [19]. When e = ∞,
these algebras are Morita equivalent to the type O algebras, and thus they still cat-
egorify the algebra U+(sl∞). When e <∞, the category of representations is larger,
and corresponds to the passage from U+(ŝle) to U+(ĝle).

Thus, in Maksimau and Stroppel’s framework [16], these are the cases which are
“no level, Schur” (though again, we should emphasize that our algebra only match
theirs up to Morita equivalence in the Schur cases).

Type F. The second variation we’ll consider is “framing.” This is also a fundamen-
tally graphical operation, accomplished by including red lines, which then interplay
with those representing our original Hecke algebra. This case is closely related to the
extension from Hecke algebras to cyclotomic Hecke algebras and parabolic category
O of type A.

These algebras lead to categorifications of tensor products of simple representa-
tions. In the KLR family, these are precisely the tensor product algebras introduced
in [23, Def. 4.7]; in the Hecke family, these algebras do not seem to have appeared in
precisely this form before, though they appear naturally as endomorphisms of modules
over cyclotomic Hecke algebras.

In particular, we show that our isomorphism and deformation are also compatible
with deformations of cyclotomic quotients. For a fixed multiset {Q1, . . . , Q`} of ele-
ments of U , there are cyclotomic quotients of both H̃(q) and R(q) (the specializations
at h = 0), which Brundan and Kleshchev construct an isomorphism between. We can
deform this cyclotomic quotient with respect to variables z = {zj}.

For H̃(q), consider the deformed cyclotomic quotient attached to the polynomial
C(A) =

∏`
i=1(A−Qie−zi).

Definition 1.4. The deformed cyclotomic quotient H(q,Q•) is the quotient of the
base extension H̃(q)⊗k k[[z]] by the 2-sided ideal generated by C(X1).

This is precisely the Ariki–Koike algebra of [2, Def. 3.1] for G(`, 1, n) with the
parameters ui = Qie

−zi (where we use ui as in the reference of [2]).
For R(h), the corresponding quotient is given by an additive deformation of the

roots. For each u ∈ U , we have a polynomial cu(a) =
∏
Qj=u(a− zj).

Definition 1.5. The deformed cyclotomic quotient RQ•(h, z) is a quotient of the base
extension R(h)⊗k k[[z]] by the ideal generated by cu1(y1)eu for every length n sequence
u ∈ Un.

For the usual indexing of cyclotomic quotients by dominant weights, this is a de-
formation of the cyclotomic KLR algebra Rλ attached in [11] to a dominant weight
λ of GU satisfying

α∨u (λ) = #{i ∈ [1, `] | Qi = u}.

Theorem 1.6. The isomorphism ̂̃H(q) ∼= R̂(h) induces an isomorphism of k[[h, z]]-
algebras H(q,Q•) ∼= Rλ(h, z).

In Maksimau and Stroppel’s framework [16], these are the cases which are “higher
level, not Schur.”

Algebraic Combinatorics, Vol. 3 #1 (2020) 5
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Type WF. Our final goal, the algebras incorporating both these modifications, is
the least likely to be familiar to readers. The category of representations over these
algebras is equivalent to the category O for a rational Cherednik algebra for Z/`Z oSn,
as we show in [24]. In certain cases, these algebras are also Morita equivalent to
cyclotomic q-Schur algebras.

The isomorphism between the two families in this case will prove key in the results
of [24], proving the conjecture of Rouquier identifying decomposition numbers in this
category O with parabolic Kazhdan–Lusztig polynomials. This construction is also
of some independent interest as a categorification of Uglov’s higher level Fock space,
introduced in [20]. In [24], we will show that several natural, but hard-to-motivate
structures on the Fock space arise from these algebras.

In Maksimau and Stroppel’s framework [16], these include the cases which are
“higher level, Schur” (as before, up to Morita equivalence). We should however, note
that the algebras we consider are more general, since they depend on the ratios of
parameters corresponding to the weightedness and the framing; the higher level Schur
case only captures situations where this ratio is small. This more general context is
used in [24, 21] to compare with category O over Cherednik algebras [7].

2. Polynomial-style representations
First, we will discuss some generalities about completions of algebras and their rep-
resentations. There are a few facts about these completions we will want to use many
times, so it is more convenient to have a general framework from which they follow.

Let A be a K-algebra for K a commutative ring. Let B a Noetherian commuta-
tive K-algebra such that SpecB is a smooth curve over SpecK. We’ll primarily be
interested in the case where B = K[X,X−1] or B = K[y], that is the affine line or
punctured affine line. The n-fold tensor power B⊗n = B ⊗K B ⊗K · · · ⊗K B is thus
the functions on the n-fold fiber product of SpecB with its usual induced action of
Sn, and the algebra Z = (B⊗n)Sn has smooth spectrum SpecZ = Symn

Spec k(SpecB).
As usual, B⊗n is projective of rank n! over Z, and free if SpecB is the punctured or
unpunctured affine line.

Definition 2.1. Consider a K-algebra homomorphism ψ : B⊗n → A and an A-module
P . We say that the data (A,B,ψ, P ) is a polynomial-style representation of rank p if

(1) A is finite rank and free over B⊗n.
(2) Z = (B⊗n)Sn is central in A.
(3) P is faithful and free over B⊗n of some rank p.

We call this a a graded polynomial-style representation if in addition A,B are graded
K-algebras (for some grading on K), with B graded local with unique graded maximal
ideal given by B>0, P is a graded module, and ψ a graded homomorphism.

We’ll want to consider representations of such algebras where some fixed ideal
I ⊂ B acts nilpotently under every inclusion ψ(B ⊗ · · · ⊗ B ⊗ I ⊗ B ⊗ · · · ⊗ B). We
can express this as a topological condition.

Consider B as a topological ring with the I-adic topology, and the obvious induced
topologies on B⊗n and Z. Let B̂⊗n and Ẑ be the corresponding completions of these
algebras. The former topology is just the I(n)-adic topology for I(n) the sum of all
ideals of the form B ⊗ · · · ⊗ I ⊗ · · · ⊗B.

Lemma 2.2. The subspace topology on Z agrees with the I ′ = Z ∩ I(n)-adic topology
on this ring. Alternatively, the I(n)-adic topology on B⊗n is the coarsest topological
ring structure such that the inclusion of Z, with the I ′-adic topology, is continuous.

Algebraic Combinatorics, Vol. 3 #1 (2020) 6
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Proof. Obviously (I ′)m ⊂ (I(n))k, so the I ′-adic topology is finer than the subspace
topology. In order to show the opposite, we need only show that for any fixed m, we
have (I(n))k ∩ Z ⊂ (I ′)m for all k � 0. This will follow if (I(n))k ⊂ B⊗n · I ′ for some
k since Z ∩ (B⊗n · (I ′)m) = (I ′)m as a simple calculation with projection to invariants
(i.e. the Reynolds operator) shows. This will will follow if these ideals have the same
radical.

Since B⊗n is integral over Z, every generator of I(n) has a minimal polynomial
over Z, whose coefficients, of course, lie in I ′. Thus, a power of this generator lies in
I ′, which establishes the desired equality of radicals. �

Now we wish to endow A with the coarsest topology compatible with this topology
on B⊗n, or equivalently on Z. This is induced by the bases Jm = A(I(n))mA or J ′m =
A(I ′)mA, which give equivalent topologies by the equality

√
I(n) =

√
B⊗n · I ′ ⊂ B⊗n.

If (A,B,ψ, P ) is graded, and I ⊂ B is the unique graded maximal ideal, then there
is another description of this topology:

Lemma 2.3. If (A,B, ψ, P ) is graded, and I = B>0 ⊂ B is the unique graded maximal
ideal, then the topology on A is equivalent to usual topology induced by the grading,
i.e. the span Gk of the elements of degree > k is a neighborhood of 0, and these form
a basis of such neighborhoods.

Proof. The algebra A is finitely generated as a Z-module and thus there is some
integer M > 0 such that the generators of A as a Z-module have degrees in the
interval [−M,M ]. Since the unique graded maximal ideal of Z is Z>0, this shows that
GkGm ⊂ Gk+m−M . In particular, since (I ′)m ⊂ Gm, we have J ′m ⊂ Gm−2M for all m.

Since Z is Noetherian, Z>0/Z
2
>0 is a finite dimensional graded vector space over

the field Z/Z>0, and we can also assume that all the degrees appearing are 6M (by
increasing M if necessary). Note that this means that all elements of degree > kM
lie in Zk>0.

We know that elements of degree > (k + 1)M elements of A are spanned by
the products of generators with elements of Z of degree > kM . As have observed,
these elements of Z must lie in Zk>0. Thus we have that G(k+1)M ⊂ J ′k. Thus, these
topologies are equivalent. �

Definition 2.4. Let Â be the completion of A with respect to this topology, and P̂ =
Â⊗A P .

Lemma 2.5. The completion P̂ is a faithful representation of Â, and is free over B̂⊗n
of the same rank as P over B⊗n.

Proof. Note that we have an injective map A→ EndZ(P ). The projectivity of P over
Z implies that EndZ(P ) ∼= HomZ(P,Z) ⊗Z P is also projective over Z. Thus, the
induced map

Â→ End
Ẑ

(P̂ ) ∼= Ẑ ⊗Z EndZ(P )

giving the action of Â agrees with the base change by Ẑ of the original action map.
This remains injective by the flatness of A over Z. �

3. Type O
3.1. Hecke algebras. We will follow the conventions of [3] concerning Hecke alge-
bras. Our basic object is H̃(q), the affine Hecke algebra. Let us fix our assumptions
on base fields and parameters:

Algebraic Combinatorics, Vol. 3 #1 (2020) 7
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(∗) Let k be a field of any characteristic. Fix a element q ∈ k r {0, 1}; let e the
multiplicative order of q (which may be ∞). Let d(q) = 1 + d1h + · · · be a
formal power series in k[[z]], which satisfies d(h1 + h2) = d(h1)d(h2), and let
q = qd(q).

Differentiating, we see that this is only possible if d(h) = ed1h; in particular, if k has
positive characteristic, we must have d1 = 0, whereas if K has characteristic 0, this
makes sense for any d1.

The algebra H̃(q) is generated by {X±1
1 , . . . , X±1

n } ∪ {T1, . . . , Tn−1} with the rela-
tions:

X±1
r X±1

s = X±1
s X±1

r T 2
r = (q− 1)Tr + q

TrXrTr = qXr+1 TrTr+1Tr = Tr+1TrTr+1

TrXs = XsTr (r 6= s, s+ 1) TrTs = TsTr (r 6= s± 1).

The subalgebra generated by the Ti’s alone is a copy of the (finite) Hecke algebra
H(q), and the subalgebra generated by the X±1

i is a copy of the Laurent polynomial
ring C = k[[h]][X±1

1 , . . . , X±1
n ].

In this paper, we’ll rely heavily on a diagrammatic visualization of this algebra.

Definition 3.1. Let a rank n type O diagram be a collection of n curves in R× [0, 1]
with each curve mapping diffeomorphically to [0, 1] via the projection to the y-axis.
Each curve is allowed to carry any number of squares or the formal inverse of a
square. We assume that these curves have no triple points or tangencies, no squares
lie on crossings and consider these up to isotopies that preserve these conditions.

An example of such a rank 5 diagram is given below:

As usual, we can compose these by taking ab to be the diagram where we place a
on top of b and attempt to match up the bottom of a and top of b. If the number
of strands is the same, the result is unique up to isotopy, and if it is different, we
formally declare the result to be 0.

The rank n type O affine Hecke algebra is the quotient of the span of these diagrams
over k[[h]] by the local relations:
(1a)

− = − = − q

(1b) = (1 + q)

Algebraic Combinatorics, Vol. 3 #1 (2020) 8
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(1c) − = q − q

Remark 3.2. We want to make sure that the reader notices the distinction here
between “relations” and “local relations.” Here “relations” has the usual algebraic
meaning: generators of the kernel of the homomorphism to an algebra of the free
associative algebra on the generators. However, “local relations” means something a
bit more subtle: whenever we have two diagrams which are identical outside a small
region, and match the two sides of the equation, then they are set equal. Of course,
the effect this has depends on what is allowed in the rest of the diagram.

So a relation like 1a can be applied in type O diagrams (as in this section) or in
type W diagrams, which we’ll introduce later. While the pictures on the page are the
same, the induced relations are different, since we have different rules for how the rest
of the diagram is constructed. Thus in later sections, we will refer back to these local
relations, but apply them in a different diagrammatic framework.

Remark 3.3. In the degenerate case, we can write a similar set of local relations,
replacing (1a–1c) with the local relations:
(1d)

− = − = − −

(1e) = 2

(1f) − = −

It may not be immediately clear what the additional value of this graphical pre-
sentations is. However, this perspective will lead us to generalizations of the affine
Hecke algebra which we call types W, F and WF.

Theorem 3.4. The algebra H̃(q) is isomorphic to the rank n type O Hecke algebra
via the map sending Tr + 1 to the crossing of the rth and r + 1st strands, and Xr to
the square on the rth strand, as shown below:

(2) · · ·· · ·

Xj

· · ·· · ·

Tj + 1

Algebraic Combinatorics, Vol. 3 #1 (2020) 9
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Proof. We’ll use the relations given in [3, § 4] without additional citation. The equa-
tions (1a–1c) become the relations:

Xr(Tr + 1)− (Tr + 1)Xr+1 = TrXr+1 + (1− q)Xr+1 +Xr − TrXr+1 −Xr+1

= Xr − qXr+1

Xr+1(Tr + 1)− (Tr + 1)Xr = TrXr + (q− 1)Xr+1 +Xr+1 − TrXr −Xr

= qXr+1 −Xr

(Tr + 1)2 = T 2
r + 2Tr + 1

= (q− 1)Tr + q + 2Tr + 1
= (1 + q)(Tr + 1)

(Tr + 1)(Tr+1 + 1)(Tr + 1)− (Tr+1 + 1)(Tr + 1)(Tr+1 + 1) = T 2
r + Tr − T 2

r+1 − Tr+1

= q(Tr − Tr+1).
Similarly, one can easily derive the relations of the affine Hecke from the diagrammatic
ones given above. This shows that we have an isomorphism. �

Note that if we instead sent the element Ti − q to the crossing, we would obtain
local relations which are quite similar to (1a–1c), but have a few subtle differences:
(3a)

− = − = − q

(3b) = −(1 + q)

(3c) − = q − q

Our first task is to describe the completions that are of interest to us.
Consider a finite subset U ⊂ kr{0}; as before, we endow this with a graph structure

by adding an edge from u to u′ if u′ = qu. Note that for U chosen generically there
will simply be no edges, and that under this graph structure U will always be a union
of segments and cycles with e nodes (if e <∞).

We will apply the results of Section 2 in this context with

(4) K = k[[h]] A = H̃(q) B = k[[h]][X±] I = Bh+B
∏
u∈U

(X − u).

One natural construction of modules over H̃(q) is given by induction from H(q), as
discussed in [15, § 4.3]; as discussed there, the result is free as a C-module if the original
module is free over k[[h]], with ranks matching. In particular, applying this to the two
1-dimensional representations of H(q), where this algebra acts by the characters χ±
where

χ+(Ti) = q χ−(Ti) = −1
gives natural (signed) polynomial representation

P± = H̃(q)⊗H(q) k[[h]];
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where H(q) acts on k[[h]] via the homomorphism χ±.

Lemma 3.5. The data of (4) defines a polynomial-style representation on P = P±.

Proof.
(1) This freeness is clear from the basis in [14, 4.3]; in fact, as B⊗n = C-module,

we have H̃(q) ∼= C ⊗k[[h]] H(q).
(2) The center of the affine Hecke algebra H̃(q) is precisely the symmetric Laurent

polynomials Z = CSn by [14, 4.5].
(3) The module P± is faithful by [15, (4.3.10)], and its freeness over C has already

been discussed. �

Thus, as in Section 2, we have an induced topology on H̃(q) with completion ̂̃H(q).
We could also define ̂̃H(q) as the completion of H̃(q) in the directed system of all
quotients where the spectrum of each Xi lies in U .

We can identify Spec(C) with (A1r{0})n×Â1 where the last factor has coordinate
h and is completed at 0. Let U = Un × {0} ⊂ Spec(C). This is the vanishing set of
I(n) as defined in Section 2. Thus, the closure of C in ̂̃H(q) is the completion of C at
this subscheme. In particular, the identity in C, and thus in ̂̃H(q) decomposes as a
sum of idempotents 1 =

∑
u∈Un eu. These have the property that on any topological̂̃H(q)-module M , we have that

euM = {g ∈M | lim
N→∞

(Xj − uj)Ng = 0},

and for any module, we have M = ⊕euM .
In particular, we have that ̂̃H(q) =

⊕
u∈Un eu

̂̃H(q) =
⊕

u,u′∈Un eu
̂̃H(q)eu′ .

3.1.1. Formulas for the polynomial representation. Now, let us study the action of
H̃(q) on its polynomial representation P±. Denote the action of Sn on Un by u 7→ us
for s ∈ Sn; as usual, we let si = (i, i + 1). For any Laurent polynomial F , we let
F sr (X1, . . . , Xn) = F (X1, . . . , Xr+1, Xr, . . . , Xn).

For notational clarity, we denote 1 = 1⊗1 ∈ P−, so this representation is generated
by this vector, subject to the relation Ti1 = −1. As in [15, (4.3.3)], one can calculate
the action of Ti on F 1 for any Laurent polynomial F ; this is easiest to see if we expand
F = F0 +(Xi−Xi+1)F1 where F0 and F1 are si-invariant Laurent polynomials. Thus,
we have that

TiF 1 = TiF01+ Ti(Xi −Xi+1)F11

= −F01+ (Xi −Xi+1)F11+ 2(1− q)Xi+1F11

= −F si1+ (1− q)Xi+1
F si − F
Xi+1 −Xi

1.

Thus, we have that

(Ti + 1)F 1 =
(
F − F si + (1− q)Xi+1

F si − F
Xi+1 −Xi

)
1+ Xi − qXi+1

Xi+1 −Xi
(F si − F )1.

The Hecke algebra acts faithfully on this representation by [15, (4.3.10)], so we can
identify the affine Hecke algebra with a subalgebra of operators on P±.

Similarly, the representation P+ is generated by an element 1+ satisfying Ti1+ =
q1+. The action of H̃(q) in this case is given by the formula

TiF 1
+ = qF si1+ + (1− q)Xi+1

F si − F
Xi+1 −Xi

1+

Algebraic Combinatorics, Vol. 3 #1 (2020) 11



Ben Webster

so we have that

(Ti − q)1+ = Xi+1 − qXi

Xi+1 −Xi
(F si − F ).

Consider the ̂̃H(q)-module P̂± := ̂̃H(q)⊗H̃(q) P
±. It follows from Lemma 2.5 that:

Lemma 3.6. The module P̂± is a rank 1 free module over the completion of C at
the set U , and this representation remains faithful. The space euP̂± is isomorphic to
k[[(X1 − u1), . . . , (Xn − un), h]] via the action map on eu1.

3.2. KLR algebras. We wish to define a similar completion of the KLR algebra
R(h) for the graph U . We use the conventions of Brundan and Kleshchev, but we
record the relations we need here for the sake of completeness and to match our slightly
more general context. The rank(2) n KLR algebra R(h) attached to the Dynkin dia-
gram U is generated over k[h] by elements {e(u)}u∈Un ∪{y1, . . . , yn}∪{ψ1, . . . , ψn−1}
subject to the relations:

e(u)e(v) = δu,ve(u);
∑

u∈Iα
e(u) = 1;

yre(u) = e(u)yr; ψre(u) = e(usr )ψr;
yrys = ysyr;
ψrys = ysψr if s 6= r, r + 1;
ψrψs = ψsψr if s 6= r ± 1;

ψryr+1e(u) =
{

(yrψr + 1)e(u) if ur = ur+1,

yrψre(u) if ur 6= ur+1;

yr+1ψre(u) =
{

(ψryr + 1)e(u) if ur = ur+1,

ψryre(u) if ur 6= ur+1;

ψ2
re(u) =



0 if ur = ur+1,

e(u) if ur 6= q±1ur+1, ur+1,

(yr+1 − yr + d1h)e(u) if ur = q−1ur+1, q 6= −1,
(yr − yr+1 + d1h)e(u) if ur = qur+1, q 6= −1,
(yr − yr+1 + d1h)(yr+1 − yr + d1h)e(u) if ur = −ur+1, q = −1;

ψrψr+1ψre(u)

=


(ψr+1ψrψr+1 + 1)e(u) if ur = ur+2 = q−1ur+1, q 6= −1,
(ψr+1ψrψr+1 − 1)e(u) if ur = ur+2 = qur+1, q 6= −1,(
ψr+1ψrψr+1 − 2yr+1 + yr + yr+2

)
e(u) if ur = ur+2 = −ur+1, q = −1,

ψr+1ψrψr+1e(u) otherwise.

Just as in the Hecke case, there is a graphical presentation for the KLR algebra.
Since this is covered in [11] and numerous other sources, we’ll just record an example

(2)Note here that the “rank” n has no relationship to the size of the set U (typically called the
rank of the corresponding Kac–Moody algebra); for any fixed U , we get a different algebra for each
positive integer n.
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of an appropriate KLR diagram here for comparison purposes:

u2 u4 u5u1 u3

and write out the local relations here for convenience:

(5a)

u v

=

u v

unless u = v

(5b)

u v

=

u v

unless u = v

(5c)

u u

−

u u

=

u u

−

u u

=

u u

(5d)

u v

=



0 u= v

vu

u /∈{v, qv, q−1v}

vu

−

vu

+ d1h

vu

u= q−1v, q 6=−1

vu

−

vu

+ d1h

vu

u= qv, q 6=−1

−

(
vu

2

)
+ 2
(

vu

)
−

(
vu

2

)
+ d2

1h
2

(
vu

)
u=−v, q=−1
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(5e)

wu v

−

wu v

=



wu v

u = w = qv, q 6= −1

−

wu v

u = w = q−1v, q 6= −1

−

wu v

−

wu v

u = w = −v, q = −1.

We will again apply the results of Section 2, now with
(6) K = k[h] A = R(h) B = k[h, y] I = Bh+By.

We let C = B⊗n = k[y1, . . . , yn, h] =⊂ R(h). The algebra R(h) also has a natural
polynomial representation P , defined by Rouquier in [18, § 3.2] and Khovanov and
Lauda in [11, § 2.3]. This representation P is generated by a single element 1, with
the relations

ψkeu1 =


0 uk = uk+1

(yk+1 − yk + d1h)eusk1 uk = quk+1

eusk1 uk 6= uk+1, quk+1.

This can be written as a sum of the images of eu, and we always have that euP is a
rank 1 free module over C.

Just as in the Hecke algebra, the action of ψk on arbitrary polynomials can be
written in terms of Demazure operators. For a polynomial f ∈ k[[h]][y1, . . . , yn], we
can describe the action as

(7) ψkfeu1 =


fsk − f
yk+1 − yk

eu1 uk = uk+1

(yk+1 − yk + d1h)fskeusk1 uk = quk+1

fskeusk1 uk 6= uk+1, quk+1.

Lemma 3.7. The data of (6) defines a graded polynomial-style representation on P .

Proof.
(1) The algebra R̂(h) is finitely generated free as a C-module by [11, Cor. 2.10].
(2) By [11, Thm. 2.9], Z = CSn is central.
(3) The representation P is faithful by [11, Cor. 2.6], and free over C of rank

(#U)n.
The graded property is clear from the definitions; k[h, y] is graded local as required
because h and y have positive degree. �

Let R̂(h) be the completion of R(h) respect to the induced topology and

P̂ ∼= R̂(h)⊗R(h) P ∼= Ẑ ⊗Z P
be the completion of this polynomial representation. By Lemma 2.3, this is the same
as completing these graded abelian groups with respect to their grading. We can easily
deduce from Lemma 2.5 that:

Lemma 3.8. The module P̂ over R̂(h) is faithful, and the action of C induces an
isomorphism euP̂ ∼= Ĉ, the completion of this ring with respect to its grading topology.
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3.3. Isomorphisms. Let b(h) ∈ 1 + h + h2k[[h]] be a formal power series; if d1 6= 0,
we assume that b(h) = eh. Thus, we must have that
(8) b(h1)d(h2) = b(h1 + d1h2).
Our approach will match Brundan and Kleshchev’s if we choose b(h) = 1 + h.

Lemma 3.9. There is a unique vector space isomorphism γp : P̂− → P̂ defined by the
formula

(9) γp((u−1
1 X1)ai · · · (u−1

n Xn)aneu) =
n∏
i=1

b(y1)a1 · · · b(yn)aneu.

In particular, under this map, the operator of multiplication by Xi on euP̂− is sent
to multiplication by uib(yi).

Here the subscript p is not a parameter, but distinguishes this map from an iso-
morphism of algebras we’ll define later.

Proof. By Lemma 3.6, the elements (u−1
1 X1)ai · · · (u−1

n Xn)aneu are a basis of P̂−, so
this map is well-defined. We will check that it is an isomorphism on the image of
each idempotent eu. On this image, this map is induced by the ring homomorphism
k[[h, (X1 − u1), . . . , (Xn − un)]] → k[[h, y1, . . . , yn]] sending Xi − ui 7→ ui(b(yi) − 1).
The induced map modulo the square of the maximal ideal sends Xi−ui 7→ uiyi+ · · · ,
and so defines an isomorphism of these completed polynomial rings. By Lemma 3.8,
this shows that the map is an isomorphism. �

Just as in Brundan and Kleshchev, it will be convenient for us to use different
generators for ̂̃H(q). Let

Φr := Tr +
∑

u s.t. ur 6=ur+1

1− q
1−XrX

−1
r+1

eu +
∑

u s.t. ur=ur+1

eu.

We will freely use the relations involving these given in [3, Lem. 4.1], the most im-
portant of which is
(10) Φreu = eusrΦr
Let

ϕr(yr, yr+1) = urb(yr)− qur+1b(yr+1)
ur+1b(yr+1)− urb(yr)

= urb(yr)− qur+1b(yr+1 + d1h)
ur+1b(yr+1)− urb(yr)

where the second equality holds by (8). Also, let β(w, z) = b(w)−b(z)
w−z ; note that this

is an invertible element of k[[w, z]]. Thus, we have that
• ϕr(yr, yr+1) is an invertible element of k[[h, yr, yr+1]] if and only if ur 6=
qur+1, ur+1.

• If ur = qur+1, then we have

ϕr(yr, yr+1) = (yr − yr+1) β(yr, yr+1 + d1h)
q−1 − 1 + q−1b(yr+1)− b(yr)

.

This fraction is an invertible power series, since both the numerator and
denominator have non-zero constant terms.

• if ur = ur+1, then

ϕr(yr, yr+1) = b(yr)− qb(yr)
b(yr+1)− b(yr)

= 1
yr+1 − yr

1− qd(h) + b(yr)− qd(h)b(yr)
β(yr+1, yr)

which is also invertible.
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Thus we can define an invertible power series by

Au
r =


ϕr(yr, yr+1)(yr+1 − yr) ur = ur+1
ϕr(yr, yr+1)

yr+1 − yr + d1h
ur = qur+1

ϕr(yr, yr+1) ur 6= ur+1, qur+1.

Theorem 3.10. The isomorphism γp induces an isomorphism γ : ̂̃H(q) ∼= R̂(h) such
that

γ(Xr) =
∑

u
urb(yr)eu γ(Φr) =

∑
u
Au
rψreu

which intertwines these two representations, if either d(h) = 1 (and b(h) is arbitrary)
or d(h) = b(h) = eh.

Proof. The match γ(Xr) =
∑

u urb(yr)eu is clear from the definition of the map (9).
Thus, we turn to considering γ(Φr). Using (10) and the definition, one can easily
calculate that

Φreu1 =


Xr − qXr+1

Xr+1 −Xr
eusr 1 ur 6= ur+1

0 ur = ur+1

Φr(Xr+1 −Xr)eu1 =
{

(qXr+1 −Xr)eusr 1 ur 6= ur+1

2(qXr+1 −Xr)eusr 1 ur = ur+1.

Using the commutation of Φr with symmetric Laurent polynomials in the X±1
i ’s, we

obtain a general form of action of this operator on an arbitrary Laurent polynomial
F ∈ k[h,X±1

1 , . . . , X±1
n ].

(11) ΦrF (X1, . . . , Xn)eu1 =


Xr − qXr+1

Xr+1 −Xr
F sreusr 1 ur 6= ur+1

Xr − qXr+1

Xr+1 −Xr
(F sr − F )eu1 ur = ur+1.

Now, consider how this operator acts if we intertwine with the isomorphism γp; sub-
stituting into the formulas (11), we obtain that for a power series f ∈ k[[h, y1, . . . , yn]],

γ(Φr)f(y1, . . . , yn)eu1 =
{
ϕr(yr, yr+1)fsreusr1 ur 6= ur+1

ϕr(yr, yr+1)(fsr − f)eu1 ur = ur+1.

Thus from (7), we immediately obtain that Au
rψre(u) = Φre(u). Since Au

r is in-
vertible, this immediately shows that the image of R̂(h) lies in that of ̂̃H(q) and vice
versa. Thus, we obtain an induced isomorphism between these algebras. �

4. Type W
4.1. Type W Hecke algebras. The isomorphism of Theorem 3.10 can be general-
ized a bit further to include not just KLR algebras but also weighted KLR algebras,
a generalization introduced by the author in [22].

Fix a real number g 6= 0.

Definition 4.1. A rank n type W diagram consists of strands R× [0, 1] like in a type
O diagram defined above, with addition that we draw a dashed line g units to the right
of each strand, (which we interpret as −g units left if g < 0). We call this a ghost,
and require that there are no triple points or tangencies involving any combination of
strands or ghosts. We also only consider these diagrams equivalent if they are related
by an isotopy that avoids these tangencies and double points.
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An example of a rank 5 type W diagram with g < 0 is given below:

Definition 4.2. The rank n type W affine Hecke algebra (WAHA) W(q)B(q) for
some collection B of finite subsets Bi ⊂ R is the k[[h]]-span of all rank n type W
Hecke diagrams such that endpoints of the strands on the lines y = 0 and y = 1 form
a subset in B, modulo the local relations:

(12a) − = − =

(12b) = 0 =

(12c) = −q

(12d) = −q

(12e)

= −q

(12f) = +
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Remark 4.3. As in the type O case, this algebra also has a degenerate analogue,
where we replace (12c–12e) with the equations
(12g)

= − −

(12h) = − −

(12i)

= −

By convention, we’ll let eB be the diagram with vertical lines at x = b for b ∈ B,
and use Xi to represent the square on the ith strand from left.

Proposition 4.4. The WAHA W(q)B(q) for a set B has a polynomial representation

PB := ⊕B∈Bk[[h]][Y ±1
1 , . . . , Y ±1

|B| ]

defined by the rule that
• Each crossing of the r and r + 1st strands acts by the Demazure operator

∂r(F ) = F sr − F
Yr+1 − Yr

.

• A crossing between the rth strand and a ghost of sth strand acts by
– the identity if g < 0 and the strand is NE/SW or g > 0 and the strand

is NW/SE,
– the multiplication operator of Yr−qYs if g < 0 and the strand is NW/SE

or g > 0 and the strand is NE/SW
• A square on the rth strand acts by the multiplication operator Yr.

Proof. The equations (12a–12b) are the usual relations satisfied by multiplication
and Demazure operators. The equations (12c–12d) are clear from the definition of the
operators for ghost/strand crossings. Finally, the relations (12e–12f) are calculation
with Demazure operators similar to that which is standard for triple points in various
KLR calculi. For example, assuming g < 0 for (12e), the LHS is

∂s ◦ (Yr − qYs) = (Yr − qYs+1) ◦ ∂s − q

using the usual twisted Leibnitz rule for Demazure operators; this is the RHS, so we
are done. On the other hand, (12f) follows in a similar way from the equation

(Yr − qYs) ◦ ∂r = ∂r ◦ (Yr+1 − qYs) + 1.

This completes the proof. �

Algebraic Combinatorics, Vol. 3 #1 (2020) 18



On graded presentations of Hecke algebras and their generalizations

Proposition 4.5. The rank n type W Hecke algebra W(q)B(q) has a basis over k[[h]]
given by the products eBDwX

a1
1 · · ·Xan

n eB′ for w ∈ Sn and (a1, . . . , an) ∈ Zn; here
Dw is a arbitrarily chosen diagram which induces the permutation w on the endpoints
at y = 0 when they are associated to the endpoint at the top of same strand, and no
pair of strands or ghosts cross twice.

The action of W(q)B(q) on its polynomial representation is faithful.

Proof. This proof follows many similar ones in KLR theory. These elements are lin-
early independent because the elements Dw span the action of k[Sn] after extending
scalars to the fraction field of rational functions, sinceDw = fww+

∑
v<w fvv for some

rational functions fv with fw 6= 0. Thus our proposed basis is linearly independent
over k in this scalar extension, so must have been linearly independent before.

Note that this shows that the action of these elements on the polynomial represen-
tation is linearly independent. Thus, if we show that they span, it will show that the
representation is faithful.

Now we need only show that they span. Using relation (12a), we can assume that
all squares are at the bottom of the diagram.

Furthermore, any two choices of the diagram Dw differ via a series of isotopies and
triple points, so relations (12b,12e,12f) show that these diagrams differ by diagrams
with fewer crossings between strands and ghosts. Thus, we need only show that any
diagram with a bigon can be written as a sum of diagrams with fewer crossings.

Now, assume we have such a bigon. We should assume that it has no smaller
bigons inside it. In this case, we can shrink the bigon, using the relations (12b,12e,12f)
whenever we need to move a strand through the top and bottom of the bigon or a
crossing out through its side. Thus, we can ultimately assume that the bigon is empty,
and apply the relations (12b–12d). �

We now have the results we need to apply the results of Section 2, in the case of

(13) K = k[[h]] A = W(q)B(q) B = k[[h]][X±] I = Bh+B
∏
u∈U

(X−u) P = PB.

The requisite freeness and the faithfulness of the polynomial representation follow
from Proposition 4.5, so this defines a polynomial style representation. Thus, we have
an induced completion ŴB with faithful completed polynomial representation by
Lemma 2.5.

4.1.1. Comparison with Hecke and Schur algebras. Choose

V = {Bs = {s, 2s, 3s, . . . , ns}}

for s some real number with s� |g|. For every type O diagram on n strands, we can
choose an isotopy representative such that the endpoints of the diagram are precisely
Bs at both y = 0 and y = 1. Furthermore, we can choose this representative so that if
we think of it as a type W diagram and add ghosts, no strand is between a crossing of
strands and the corresponding ghost crossing. Obviously we can do this for individual
crossings, and any diagram can be factored into these.

Theorem 4.6. This embedding induces an isomorphism between the WAHA W(q)V (q)
and the honest affine Hecke algebra H̃(q):

• If g < 0, this isomorphism sends a single crossing to Ti + 1. That is, the
diagrams satisfy the local relations (1a–1c).

• If g > 0, this isomorphism sends a single crossing to Ti − q. That is, the
diagrams satisfy the local relations (3a–3c).
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The polynomial representation defined above is intertwined by this map with the poly-
nomial representation of H̃(q) if g < 0 and the signed polynomial representation if
g > 0.

This theorem shows that if we view type O diagrams as type W diagrams where
|g| is sufficiently small that we cannot distinguish between a strand and its ghost(3),
then the local relations (1a–1c) will be consequences of (12a–12f).

Proof. We’ll consider the case where g < 0. We have that Ti+1 is sent to the diagram

which sent by the polynomial representation of the type W affine Hecke algebra rep-
resentation to (Yr − qYr+1) ◦ ∂r. That is, we have TiF = −F sr + (1− q)Yr+1∂r. Since
W(q)B(q) acts faithfully on its polynomial representation, this shows that we have
a map of the Hecke algebra to the WAHA; the faithfulness of P− implies that this
map is injective. Since the diagram Dw and the polynomials in the squares are in the
image of this map, the map is surjective.

The case g > 0 follows similarly. �

Thus, the WAHA for any set containing V is a “larger” algebra than the affine
Hecke algebra. The category of representations of affine Hecke algebras are a quotient
category of its representations via the functor M 7→ eV M , though in some cases, this
quotient will be an equivalence.

For any composition k = (k1, . . . , kn) ofm, we have an associated quasi-idempotent
εk =

∑
w∈Sk

Tw symmetrizing for the associated Young subgroup. If k = (1, . . . , 1),
then εk = 1.

Definition 4.7. The affine q-Schur algebra S(q, n,m), as defined in [8, Def. 2.1.4],
is the algebra defined by

S(q, n,m) := EndH̃(q)

( ⊕
|k|=m

εkH̃(q)
)

where the sum is over n-part compositions of m.

Following [8], we let E(n,m) denote the S(q, n,m)-H̃(q) bimodule
⊕
|k|=m εkH̃(q).

By a result of Jimbo [10], the affine Hecke algebra acts naturally on M ⊗ V ⊗n

for any finite dimensional Uq(gln)-module M and V the defining representation us-
ing universal R-matrices and Casimir operators; analogously, the algebra S(q, n,m)
naturally acts on⊕

|k|=m
M ⊗ Symk1 V ⊗ · · · ⊗ Symkn V ∼= E(n,m)⊗H̃(q) M ⊗ V

⊗n.

Furthermore, the algebra S(q, n,m) has a natural polynomial representation given by
PS :=

⊕
|k|=m

PSk ∼= E(n,m)⊗H̃(q) P
−.

There is a more detailed exposition of this representation in [17, § 4].

Lemma 4.8. This representation is faithful.

(3)Perhaps this will be easier if you take off your glasses.
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Proof. The algebra S(q, n,m) have a basis φdk,k′ defined in [8, Def. 2.2.3]. This element
is defined as a linear combination of left multiplications of elements of H̃(q), restricted
to εkH̃(q). Thus, any non-trivial linear combination of these elements has the same
property. By the faithfulness of P−, this implies that no non-trivial linear combination
of φdk,k′ acts trivially. That is, the action is faithful. �

If we replace εk by the anti-symmetrizing quasi-idempotent ε−k =
∑
w∈Sk

(−q)`(w)Tw,
then we obtain the signed q-Schur algebra S−h (n,m), which instead acts on⊕

|k|=m
M ⊗

∧k1 V ⊗ · · · ⊗
∧kn V.

The affine q-Schur algebra has a diagrammatic realization much like the affine Hecke
algebra. For each composition µ = (µ1, . . . , µn) ofm, we let Cµ = {iε+js | 0 6 i < µj}
for some fixed 0 < ε � g � s, and let C be the collection of these sets. That is, we
have groups of dots corresponding to the parts of the composition, with sizes given
by µi.

In the type W affine Hecke algebra W(q)C (q), we have an idempotent e′µ which on
each group in [js, js+µjε] traces out the primitive idempotent in the nilHecke algebra
which acts as ∂w0y

µj−1
1 · · · yµj−1 in the polynomial representation. For example, for

µ = (1, 3, 2), this idempotent is given by:

Let e′ =
∑
µ e
′
µ be the sum of these idempotents over m-part compositions of n.

Theorem 4.9. If g < 0, we have an isomorphism of algebras e′W(q)C (q)e′ ∼=
S(q, n,m) which induces an isomorphism of representations e′PC

∼= PS(q,n,m).
Similarly, if g > 0, we have an isomorphism of algebras e′W(q)C (q)e′ ∼= S−h (n,m).

Setting h = 0, we obtain an isomorphism between the WAHA e′W(q)C (q)e′ (at
h = 0) with the usual affine Schur algebra for any field k and any q /∈ {0, 1}. Since
this isomorphism requires passing through a Morita equivalence, it is quite difficult
to make it explicit. A closely related isomorphism is shown in much greater detail by
Miemietz and Stroppel in [17], relating the affine Schur algebra and the quiver Schur
algebra from [19]; presumably these results can ultimately be matched by tracing
through the Morita equivalence of [22, Th. 3.8], but we will not trace through the
details of doing so.

Proof. First, consider the case g < 0. Consider the idempotent eBs in e′W(q)C (q)e′.
This satisfies eBsW(q)C (q)eBs ∼= H̃(q) by Theorem 4.6.

Thus, e′eCµW(q)C (q)eBs is naturally a right module over H̃(q). We wish to show
that it is isomorphic to εµH̃(q). Consider the diagram eCµD1eBs . Acting on the right
by Ti + 1 with (i, i+ 1) ∈ Sµ1 × · · · ×Sµp gives eCµDeeBs(Ti + 1) = (q+ 1)eCµD1eBs ,
since

= −q
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Applying (12a), the RHS is equal to 1 + q times the identity, plus diagrams with a
crossing at top, which are killed by e′. This shows that e′eCµD1eBs is invariant. Thus,
we have a map of εµH̃(q)→ e′eCµW(q)C (q)eBs sending εµ 7→ e′eCµDeeBs . This map
must be surjective, since every e′eCµDweBs is in its image, and comparing ranks over
the fraction field K = k(X1, . . . , Xn), we see that it must be injective as well. Thus,
the action of e′W(q)C (q)e′ on e′W(q)C (q)eBs defines a map e′W(q)C (q)e′ → Sh.

Assume a 6= 0 is in the kernel of this map e′W(q)C (q)e′; that is, a acts trivially
on e′W(q)C (q)eBs . Note that W(q)C (q) acts faithfully on the rational representation
PKC = PC⊗k[X±1

1 ,...,X±1
n ]K, and the elementD1 induces an isomorphism eCµP

K
C ⊗F →

eBsP
K
C ⊗ F . Thus, we must have that aD1 then acts non-trivially in eBsPC , and so

aD1eBs 6= 0, contradicting our assumption that a is in the kernel. Thus, we can only
have a = 0, and the map to the Schur algebra is injective.

On the other hand, note that the element e′eCµDweCµ′ e for w any shortest double
coset representative is sent to the element φw =

∑
w′∈SµwSµ′

Tw′ plus elements in
k[[h]][X±1

1 , . . . , X±1
n ]φv for v shorter in Bruhat order. Since φwXa1

1 , . . . , Xan
n give a

basis of Sh by [8, 2.2.2], the fact that these are in the image shows that this map is
surjective.

When g > 0, the argument is quite similar, but with Ti − q replacing Ti + 1 and
using the g > 0 version of Theorem 4.6. �

We’ll prove in Corollary 6.7 that the idempotent e′ induces a Morita equivalence
between W(q)C and Sh(n,m). Thus, from the perspective of the Hecke side, intro-
ducing the type W relations is an alternate way of understanding the affine Schur
algebra.

4.2. Weighted KLR algebras. On the other hand, the author has incorporated
similar ideas into the theory of KLR algebras, by introducing weighted KLR alge-
bras [22].

Definition 4.10. Let W (q) be the rank n weighted KLR algebra attached to the graph
U ; that is, W (q) is the quotient of k[h]-span of weighted KLR diagrams with n strands
(as defined in [22, Def. 2.3]) by the local relations (note that these relations are drawn
with g < 0):

(14a)

u v

=

u v

for i 6= j

(14b)

u u

=

u u

+

u u u u

=

u u

+

u u

(14c)

u u

= 0 and

u v

=

vu

for u 6= v

Algebraic Combinatorics, Vol. 3 #1 (2020) 22



On graded presentations of Hecke algebras and their generalizations

(14d)

u v

=



u v

for u 6= qv

u v

−

u v

+h

u v

for u = qv

(14e)

u v

=



u v

for u 6= qv

u v

−

u v

+h

u v

for u = qv

(14f)

wu v

=

wu v

(14g)

vwu

−

vwu

=

 vwu

if v = w = qu

0 unless v = w = qu

(14h)

vu w

−

vu w

=

 vu w

if w = qu = qv

0 unless w= qu= qv.

.
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For the sake of completeness, here is an example of a weighted KLR diagram:

u2 u4 u5u1 u3

We can define a degree function on KL diagrams, a special case of the degree function
in [22]. The degrees are given on elementary diagrams by
(15)

deg
u v

= −2 deg
u

= 2 deg
u v

= deg
u v

=


2 u= qv= q−1v

1 u= q±1v 6= q∓1v

0 u 6= q±1v

and h is given grading 2. Note that the relations (14a–14h) are all homogeneous with
wKLR diagrams given the grading of (15).

Proposition 4.11 ([22, Prop. 2.7]). The wKLR algebra WD(q) for a collection D has
a faithful polynomial representation

PD := ⊕D∈Dk[h, y1, . . . , y|D|]
defined by the rule that

• Each crossing of the r and r + 1st strands acts by the Demazure operator

∂r(f) = fsr − f
yr+1 − yr

.

• A crossing between the rth strand and a ghost of sth strand acts by
– the identity if g < 0 and the strand is NE/SW or g > 0 and the strand

is NW/SE,
– the multiplication operator of ys − yr + h if g < 0 and the strand is

NW/SE or g > 0 and the strand is NE/SW
• A square on the rth strand acts by the multiplication operator Yr.

Thus, we can again apply the results of Section 2, with
(16) K = k[h] A = WD(q) B = k[h, y] I = B(h, y) P = PB.

Lemma 4.12. The polynomial representation PD is graded polynomial-style with the
data of (16).

Proof. The algebra WD(q) is free over B⊗n = k[h, y1, . . . , yn] by [22, Thm. 2.8], the
centrality of Z is clear from the relations and the faithfulness of P follows from Propo-
sition 4.11. The compatibility with grading is also clear from the definition (15). �

Definition 4.13. We let Ŵ (h) be the completion of the weighted KLR algebra W
for U with respect to the grading; since h has degree 2, this completion is naturally
a complete k[[h]]-module. For any collection D , we let WD(q), ŴD(q) be the sum of
images of the idempotents corresponding to loadings on a set of points in D .

Let i be a loading in the sense of [22], that is, a finite subset D = {d1, . . . , dn} with
d1 < · · · < dn of R together with a map i : D → U . In the algebra Ŵ(q)D(q), we have
an idempotent εi projecting to the stable kernel of Xj − i(dj) (that is, the kernel of
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a sufficiently large power). We represent εi as a type W diagram, with the strands
labeled by the elements ui = i(dj).

Theorem 4.14. There is an isomorphism γ : Ŵ(q)D(q)→ ŴD(q) such that γ(Xr) =∑
u urb(yr)eu,

(17a) εu 7→


1

ur+1b(yr+1)− urb(yr)
(ψr − 1)eu ur 6= ur+1

yr+1 − yr
ur+1(b(yr+1)− b(yr))

ψreu ur = ur+1

(17b) εu 7→


urb(yr)− qusb(ys) eu ur 6= qus
urb(yr)− qusb(ys)
ys − yr + d1h

eu ur = qus
7→

Proof. This follows from comparing the polynomial representations. Exactly as argued
in Lemma 3.9, the map is an isomorphism of vector spaces between the polynomial
representations: the polynomial representation PB has one copy of C for each subset
in B. In P̂B, each of these copies is completed at Un, and becomes the direct sum of
the images of eu, which is a copy of the completed polynomial ring. We can think of
the choice of subset and of u as giving a loading, which has a corresponding copy of
Ĉ in PB. The map γp induces an isomorphism between these completed polynomial
rings.

Now, we should consider how identifying completed polynomial representations via
γp affects how the basic diagrams of the WAHA act on the polynomial representation.

We have that
· fεu = fsr − f

yr+1 − yr
εu.

If ur 6= ur+1, then ψr · fεu = fsrεu and ur+1b(yr+1)− urb(yr) is invertible, so the
appropriate case of (17a) holds. If ur = ur+1, then ur(b(yr+1)−b(yr))

yr+1−yr is invertible, so
the formula is clear.

Now, we turn to (17b). We find that ·fεu = (urb(yr)−qusb(ys))fεu. The first
case of the isomorphism (17b) thus follows directly from the polynomial representation
of the wKLR algebra given in Proposition 4.11. The second case of (17b) is clear. �

The reader will note that the image of the idempotent e′ under this isomorphism is
not homogeneous. On abstract grounds, there must exist a homogeneous idempotent
e′′ with isomorphic image. Let us give a description of one such, which is philosophi-
cally quite close to the approach of [19].

Choose an arbitrary order on the elements of U . The idempotent e′µ for a com-
position µ is replaced by the sum of contributions from a list of multi-subsets Zi
of U such that |Zi| = µi. There’s a loading corresponding to these subsets, which
we’ll denote iZ∗ . The underlying subset is Cµ as defined before; the points associ-
ated to the jth part at x = js + ε, . . . , js + µjε are labeled with the elements of Zj
in our fixed order. Finally, e′′Z∗ is the idempotent on this loading that acts on each
group of strands with the same label in U and attached to the same part of µ with
a fixed homogeneous primitive idempotent in the nilHecke algebra, for example, that
acts as yk−1

1 · · · yk−1∂w0 in the polynomial representation. Consider the sum e′′ of the
idempotents e′′Z∗ over all p-tuples of multi-subsets.

The idempotent e′′ has isomorphic image to e′, since We′′ is a sum of projectives
for each composition µ whose (µ1! · · ·µp!)-fold direct sum is WeCµ . Thus, the algebra
e′′We′′ is graded and isomorphic to the Schur algebra. It would be interesting to make
this isomorphism a bit more explicit, but we will leave that to other work.
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5. Type F
5.1. Type F Hecke algebras. Now let us turn to our other complication, analo-
gous to that which appeared in [23]:

Definition 5.1. A rank n type F1 Hecke diagram is a rank n affine Hecke diagram
with a vertical red line inserted at x = 0. The diagram must avoid tangencies and
triple points with this strand as well, and only allow isotopies that preserve these
conditions.

We give an example of such a diagram below:

We decorate this red strand with a multisubset Q• = {Q1, . . . , Q`} ⊂ U and let
Qi = Qie

−zi . To distinguish from other uses of the letter, we let ek(z) be the degree
k elementary symmetric function in an alphabet z.

Definition 5.2. Let the type F1 affine Hecke algebra F̃(q,Q•) be the algebra gener-
ated over k[[h, z]] by type F1 Hecke diagrams with m strands modulo the local rela-
tions (3a–3c) and the local relations:

(18a)
=

(18b) =

(18c) = ` + e1(−Q•) `− 1 + · · · +e`(−Q•)

That is, on the RHS, we have the product pQ = (Xj − Q1) · · · (Xj − Q`), where the
green strand shown is the jth, and

(18d) − =
∑̀
i=1

∑
a+b=i−1

e`−i(−Q•)·
(

ba+ 1 −q b+ 1a

)
.

The RHS can alternately by written as (Xi − qXi+1)pQ(Xi)−pQ(Xi+1)
Xi−Xi+1

.

Remark 5.3. As in the earlier cases, there is a degenerate version of this algebra,
where we use the local relations (1d–1f), leave (18a–18c) unchanged, and replace the
RHS of (18d) with (Xi −Xi+1 + 1)pQ(Xi)−pQ(Xi+1)

Xi−Xi+1
.

We’ll continue to use our convention of lettingXr denote the sum of all straight-line
diagrams with a square on the rth green strand from the left (ignoring red strands).
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Given D a collection of subsets of R, we’ll let F̃D(q,Q•),FD(q,Q•) denote the
subalgebras of F̃(q,Q•),F(q,Q•) spanned by diagrams whose tops and bottoms lie in
the set D .

Let ei be an arbitrarily fixed idempotent in F̃(q,Q•) given by i strands left of the
red strand andm−i right of it; let D◦ be the collection of the corresponding sets. Since
any idempotent is isomorphic to one of these by a straight-line diagram, enlarging D◦

will give a Morita equivalent algebra. Let P̃n be the free S[X±1
1 , . . . , X±1

n ]-module
generated by elements fp for p = 0, . . . ,m.

Proposition 5.4. The algebra F̃D◦(q,Q•) has a polynomial representation that sends
• ei to the identity on the submodule generated by fi.
• Xi to the multiplication operator and

(Ti + 1) · F (X1, . . . , Xn)fp 7→ (Xi − qXi+1) F si − F
Xi+1 −Xi

fp.

• the action of positive to negative crossing to the identity
F (X1, . . . , Xn)fi 7→ F (X1, . . . , Xn)fi+1,

and the opposite crossing to
F (X1, . . . , Xn)fi 7→ pQ(Xi)F (X1, . . . , Xn)fi−1.

Proof. This is a standard computation with Demazure operators. �

Now, we can allow several red lines at various values of x, each of which carries a
multiset of values in U . For the sake of notation, we’ll still denote the multiset given
by all such labels as {Q1, . . . , Q`}, with a strand with the label Qi at x-value ϑi. So,
the situation we had previously considered was ϑi = 0 for all i.
Definition 5.5. A rank n type F Hecke diagram is a rank n affine Hecke diagram
with a vertical red lines inserted at x = ϑi. The diagram must avoid tangencies and
triple points with these strands as well, and only allow isotopies that preserve these
conditions. We give an example of such a diagram below:

Let the rank n type F affine Hecke algebra F̃ϑ(q,Q•) be the algebra generated over
k[[h, z]] by rank n type F Hecke diagrams for ϑ with n strands modulo the local relations
(3a–3c) and (18a–18d).

These algebras have a polynomial representation Pϑ using the same maps attached
to basic diagrams as Proposition 5.4, but now with idempotents, and thus copies
of Laurent polynomials, indexed by weakly increasing functions ν : [1, `] → [0,m]
with ν(i) giving the number of green strands to the left of the ith red strand. This
was carried out in more detail in [16, Prop. 1.10]. As before, any two idempotents
corresponding to ν are isomorphic by straight-line diagrams.

These affine type F algebras have “finite-type” quotients. In other contexts, these
have been called “steadied” or “cyclotomic” quotients.
Definition 5.6. The rank n type F Hecke algebra Fϑ(q,Q•) is the quotient of
F̃ϑ(q,Q•) by the 2-sided ideal generated by eB for every set B possessing an element
b ∈ B with b < ϑi for all i.
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Pictorially, the idempotents eB we kill possess a green strand which is left of all the
red strands. In [23], the corresponding ideal for KLR algebras is called the violating
ideal and we will use the same terminology here. Given D a collection of subsets of R,
we’ll let F̃ϑD(q,Q•),FϑD(q,Q•) denote the subalgebras of F̃ϑ(q,Q•),Fϑ(q,Q•) spanned
by diagrams whose tops and bottoms lie in the set D .

Proposition 5.7. The rank n cyclotomic affine Hecke algebra H(q,Q•) for the pa-
rameters {Q1, . . . ,Q`} is isomorphic to the rank n type F1 Hecke algebra FD◦(q,Q•).

Proof. If we let e be the idempotent given by green lines at x = 1, . . . , n, then we see
by Theorem 4.6, there is a map from the affine Hecke algebra sending Xi and Ti + 1
to diagrams as in (2) which induces a map ι : H̃(q) → F̃D◦(q,Q•). Pulling back the
polynomial representation of F̃D◦(q,Q•) gives the polynomial representation of H̃(q),
which is faithful, so this map is injective.

Applying (18c) at the leftmost strand shows that pQ(X1) lies in the violating
ideal, which is the kernel of the map to F(q,Q•). Thus, ι induces a map H(q,Q•)→
FD◦(q,Q•). This map is clearly surjective, since any F1 Hecke diagram with no vio-
lating strand is a composition of the images.

Thus, we need only show that the preimage of the violating ideal under ι lies in
the cyclotomic ideal. As in the proof of [23, 3.16], the relations (18c,18d) allow us to
reduce to the case where only a single green strand passes into the left half of the
plane. In this case, we gain a factor of pQ(X1), showing that this is in the cyclotomic
ideal. �

5.2. Stendhal algebras. The type F algebras in the KLR family have been in-
troduced in [23]. Let o1 = min(ϑi), and oj = minϑi>oj−1(ϑi); so these are the real
numbers that occur as ϑi in increasing order. Consider the sequence λj =

∑
ϑi=oj ωQi

of dominant weights for gU , and let Su,j = {s ∈ [1, `]|ϑs = oj , u = Qs}.
In [23, Def. 4.7], we defined algebras Tλ, T̃λ attached to this list of weights. These

cannot match ̂̃Fϑ(q,Q•),Fϑ(q,Q•) since they are not naturally modules over k[[h, z]];
however, we will recover them when we set h = z1 = · · · = z` = 0. Instead, we should
consider deformed versions of these algebras T̃λ(h, z), Tλ(h, z) introduced in [22, § 3.2]
based on the canonical deformation of weighted KLR algebras. As usual, we’ll let yr
denote the sum of all straight line Stendhal diagrams with a dot on the rth strand.

Definition 5.8. We let the rank n affine Stendhal algebra T̃λ(h, z) be the quotient of
the algebra freely spanned over k[h, z] by Stendhal diagrams (as defined in [23, § 3.2])
with n black strands, with the local relations (5a–5e) and the local relations

(19a)

u λj

= pu,j

( )
λju

λj u

= pu,j

( )
uλj pu,j(y) =

∏
s∈Su,j

(y − zs)
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(19b)
=

(19c) =

(19d)

λj uv

−

λj uv

= δu,v

α∨u (λj)∑
p=1

∑
a+b=p−1

eα∨
i

(λj)−p
(
{−zs | s ∈ Su,j}

)
·

(
ba

)
.

The rank n Stendhal algebra Tλ(h, z) is the quotient of T̃λ(h, z) by violating diagrams
as defined in [23, Def. 4.3].

Again for the sake of comparison, here is an example of a Stendhal diagram of
rank 5:

u2 u4 u5u1 u3 λ2λ1 λ3

This algebra is graded with Stendhal diagrams given their usual grading, summing
local contributions given by

deg
u v

= −〈αu, αv〉 deg
u

= 2 deg
λ u

= deg
u λ

= α∨u (λ),

and the variables h and zi each have degree 2.
The algebra T̃λ(h, z) has a polynomial representation Pλ, given in [23, Lem. 4.12].

In order to match the Hecke side, we will use the version of this representation that
has

Puv(a, b) =
{
b− a+ h u = qv

1 u 6= qv.

For every loading, we have an associated function κ, with κ(k) equal to the number
of black strands to the left of ok, and a sequence (u1, . . . , un) given by the eigenvalues
we’ve attached to each black strand. We let eu,κ be the idempotent associated to this
data in T̃λ(h, z) and by extension in ̂̃Tλ(h, z) and Tλ(h, z).

5.3. Isomorphisms. As in types O and W, these algebras have polynomial-style rep-
resentations (graded in the case of T̃λ(h, z), with the data

K = k[[h]] A = F̃ϑ(q,Q•) B = k[[h]][X±] I = Bh+B
∏
u∈U

(X − u) P = Pθ

K = k[h] A = T̃λ(h, z) B = k[h, y] I = Bh+By P = Pλ.
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and the polynomial representations we have defined, with the latter being graded.
This is proven exactly as in the earlier cases:

(1) An explicit basis indexed by permutations, constructed for F̃ϑ(q,Q•) in [16,
Prop. 1.15] and T̃λ(h, z) in [23, Prop. 4.16], shows the required freeness.

(2) The centrality of Z is immediate from the relations.
(3) The faithfulness of the representations is checked in [16, Prop. 1.11] and im-

plicit in the proof of [23, Prop. 4.16], respectively.

We let ̂̃Fϑ(q,Q•) and ̂̃Tλ(h, z) be the completions of these rings with respect to
the induced topology. Since h and z both have positive degree, ̂̃Tλ(h, z) is a complete
module over k[[h, z]].

Theorem 5.9. We have an isomorphism ̂̃
Fϑ(q,Q•) ∼= ̂̃Tλ(h, z) which induces an iso-

morphism Fϑ(q,Q•) ∼= Tλ(h, z), given by

εu,κ 7→ eu,κ Xr 7→
∑
u,κ

urb(yr)eu,κ 7→

εu,κ 7→

∏
ϑs=ok

(urb(yr − zs)− Qs)∏
s∈Sur,j

(yr − zs)
eu,κ eu,κ 7→ Au

r eu,κ

where the leftmost green/black strand shown is the rth from the left, and the red strand
shown is the jth from the left.
Proof. Since all generators and relations involve at most one red line, we can assume
that ` = 1, and use the representation of Proposition 5.4 for the Hecke side. That
diagrams with only green strands have actions that match is just Theorem 3.10.
Thus, we only need to check the crossing of green and red strands is intertwined
with a crossing of red and black strands. Since we have only one red strand, we
have that

∏
ϑs=ok(ureyr − Qs) = pQ•(ureyr ). Thus, comparing the representation of

Proposition 5.4 with the obvious k[h, z]-deformation of the action in [23, Lem. 4.12]
yields the result. �

6. Type WF
6.1. Type WF Hecke algebras. Finally, we consider these two complications
jointly. As mentioned before, these are unlikely to be familiar algebras for the reader,
but these results will ultimately be useful in understanding category O of rational
Cherednik algebras in [24].
Definition 6.1. A rank n type WF Hecke diagram is a type W Hecke diagram with
vertical red lines inserted at x = ϑi. The diagram must avoid tangencies and triple
points between any combination of these strands, green strands and ghosts, and only
allow isotopies that preserve these conditions. An example of a rank 5 type WF dia-
gram with g < 0 is given below:
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Let the rank n type WF affine Hecke algebra W̃Fϑ(q,Q•) be the k[[h, z]]-algebra
generated by type WF Hecke diagrams modulo the local relations (12a–12f, 18a–18c)
and

(20a) − =
∑̀
i=1

∑
a+b=i−1

e`−i(−Q•) ·
(

ba

)
.

(20b) = = =

Remark 6.2. The degenerate version of this algebra is defined by the local relations
(12a–12b, 12f–12i, 18a–18c, 20a–20b)

Note that relation (18d) is not true in this algebra. As before, we should think of
type F diagrams as type WF diagrams with g so small that we cannot see that the
ghost and strand are separate. Using this approach, we can see that relation (18d)
for a strand and a ghost together is a consequence of (14d) and (20a), much as in
Theorem 4.6.

This algebra has a polynomial representation Pϑ, defined using the same formulae
as those of Propositions 4.4 and 5.4. We leave the routine computations that these
are compatible with (20a) and (20b) to the reader.

We call an idempotent unsteady if the strands can be divided into two groups with
a gap > |g| between them and all red strands in the right hand group, and steady
otherwise.

Thus, the idempotents shown in (21a) are steady, and those in (21b) are unsteady.

(21a)

(21b)

Definition 6.3. Let the rank n type WF Hecke algebra WFϑ(q,Q•) ∼= Cϑ be the
quotient of W̃Fϑ(q,Q•) by the ideal generated by all unsteady idempotents.

We can also call this a “pictorial Cherednik algebra,” referring to the fact that
the representation category of this algebra when k = C and we set h = zi = 0
is equivalent to the category O over a Cherednik algebra for the group Z/`Z o Sn
for certain parameters. More precisely, we consider the category O over the rational
Cherednik algebra H for the group Z/`Z o Sn with arbitrary C-valued parameters
k, s1, . . . , s`, using the conventions of [24, § 2.1] and consider the algebra WFϑ(q,Q•)
where fix the number of green strands to be n, and fix the parameters g = Re(k), ϑp =
Re(ksp), q e2π i k, and Qp = e2π i ksp .

Theorem 6.4 ([24, Cor. 3.10]). For the parameters discussed above, we have an equiv-
alence of categories O ∼= WFϑ(q,Q•)-mod.

Obviously, any choice of q,Q• can be realized this way for some k, s•, which are
not unique; for any g and ϑ, we can adjust the choice of parameters k, s• to yield an
block of the Cherednik category O that matches the representations of WFϑ(q,Q•),
using the process of Uglovation discussed in [24, Def. 2.8]. This is also useful to
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consider as a common generalization of all the algebras we have considered. Given a
collection D of subsets of R, we’ll let W̃FϑD(q,Q•),WFϑD(q,Q•) denote the subalgebras
of W̃Fϑ(q,Q•),WFϑ(q,Q•) spanned by diagrams whose tops and bottoms lie in the
set D .

As in earlier cases, the algebra W̃Fϑ(q,Q•) is equipped with a polynomial rep-
resentation Pϑ using the rules of Proposition 4.4 for diagrams only involving green
strands and Proposition 5.4 for basic diagrams involving red and green strands.

6.1.1. Relation to cyclotomic Schur algebras. We can extend Theorem 4.6 to this
setting. As before, let V = {Bs = {s, 2s, 3s, . . . , ns}} for s some real number with
s� |g|, |ϑi|.

Theorem 6.5. There is an isomorphism of WFϑV (q,Q•) to the rank n cyclotomic
affine Hecke algebra H(q,Q•) for the parameters {Q1, . . . ,Q`}.

Proof. First, since s � |ϑi|, all strands start and end to the right of all red strands.
Thus, we have that every diagram can be written, using the relations, in terms of
diagrams that remain to the right of all red strands. Thus, we have a surjective map
from the type W affine Hecke algebra W(q)O onto WFϑV (q,Q•). By Theorem 4.6, we
can identify W(q)O with the usual affine Hecke algebra ̂̃H.

Now consider a diagram where the first strand starts at (s, 0), goes linearly to
(−s, 1/2) then back to (s, 1), while all others remain straight. This diagram is un-
steadied, since the horizontal slice at y = 1/2 is unsteadied by the leftmost strand.
By the relation (18c), this diagram is equal to

∏`
i=1(X1 − Qi) which thus lies in the

kernel of the map of the affine Hecke algebra to WFϑV (q,Q•).
As in the proof of 5.7, we can easily check that the diagram discussed above

generates the kernel so WFϑV (q,Q•) is isomorphic to this cyclotomic quotient. �

There is also a version of this theorem relating the type WF Hecke algebras to
cyclotomic Schur algebras. Assume that the parameters ϑi are ordered with ϑ1 <
· · · < ϑ`. Fix a set Λ of `-multicompositions of n which is an upper order ideal in
dominance order. We’ll be interested in the cyclotomic q-Schur algebra S (Λ) of rank n
attached to the data (q,Q•) defined by Dipper, James and Mathas [4, 6.1]; let S −(Λ)
be the signed version of this algebra defined using signed permutation modules.

Let r be the maximum number of parts of one of the components of ξ ∈ Λ. Choose
constants ε� g and s so that

|g|+mε < s < min
k 6=n

(|ϑk − ϑn|/r);

of course, this is only possible is r|g| < |ϑk−ϑn| for all k 6= n. In this case, we associate
to every multicomposition ξ ∈ Λ a subset Eξ that consists of the points ϑp + iε+ js

for every 1 6 j 6 ξ(p)
i .

In order to simplify the proof below, we’ll use some results from [24], in particular,
a dimension calculation based on the cellular basis constructed in [24, Thm. 2.26].
Since [24] cites some of the results of this paper, the reader might naturally worry
that the author has created a loop of citations and thus utilized circular reasoning.
However, we only use these in the proof of Proposition 6.6, which is not used in [24].

As in Section 4, there is an idempotent diagram e′ξ on this subset where we act on
the strands with x-value in [ϑp+js, ϑp+js+εµ(p)

j ] the idempotent yµj−1
1 · · · yµj−1∂w0 .

Let eΛ =
∑
ξ∈Λ e

′
ξ. Let D be any collection of n-element subsets containing Eξ for all

ξ ∈ Λ.
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Proposition 6.6. We have an isomorphism S (Λ) ∼= eΛWFϑD(q,Q•)eΛ if g < 0, and
S −(Λ) ∼= eΛWFϑD(q,Q•)eΛ if g > 0. If Λ contains all `-multipartitions of n, this
subalgebra is Morita equivalent to WFϑD(q,Q•) via the obvious bimodule.

Proof. For t � 0 sufficiently large, we have that eDt,mWFϑD(q,Q•)eDt,m is
the cyclotomic Hecke algebra H(q,Q•) by Theorem 6.5. Thus, we have that
eDt,mWFϑD(q,Q•)eΛ is a bimodule over H(q,Q•) and the algebra eΛWFϑD(q,Q•)eΛ.

Let qξ be the diagram that linearly interpolates between Dt,m and Eξ, times e′ξ on
the right. We’ll concentrate on the case where κ < 0. The same argument as the proof
of Theorem 4.9 shows that (Ti−q)qξ = 0 if the ith and i+1st strands lie in one of the
segments [ϑp + js, ϑp + js+ εµ

(p)
j ] in Eξ. If κ > 0, we instead see that (Ti + 1)qξ = 0.

Note that qξ generates eDt,mWFϑD(q,Q•)eΛ as a left module.
If ξ(p) = ∅ for p < `, then this shows that sending mξ 7→ qξ induces a map of Pξ

to eDt,mWFϑD(q,Q•)e′ξ, which is surjective since qξ generates.
For an arbitrary ξ, let ξ◦ be the multicomposition where (ξ◦)(p) = ∅ for

p < `, and (ξ◦)(`) is the concatenation of ξ(p) for all p. We have a natural map
eDt,mWFϑD(q,Q•)e′ξ → eDt,mWFϑD(q,Q•)e′ξ◦ given by the straight-line diagram inter-
polating between ξ and ξ◦. Applying relation (18c) many times, we find that this
map sends

qξ 7→
∏

j6|ξ(1)|+···+|ξ(k−1)|

(Lj −Qk)qξ◦ .

The submodule of Pξ◦ generated by this element is a copy of Pξ, thus we have a
surjective map eDt,mWFϑD(q,Q•)e′ξ → Pξ.

Dimension considerations show that this map is an isomorphism. The dimension
of eDt,mWFϑD(q,Q•)e′ξ is 1/ξ! times the dimension of eDt,mWFϑ(q,Q•)eEξ , since eEξ
is the sum of ξ! orthogonal idempotents isomorphic to e′ξ. Thus, by [24, Thm. 2.26],
it is equal to 1/ξ! times the number of pairs of tableaux of the same shape, one
standard and of type Eξ. The entries of an Eξ-tableau are of the form ϑp + iε+ js for
(i, j, p) a box of the diagram of ξ. A filling will be a Eξ if and only if the replacement
ϑp + iε+ js 7→ jp is a semi-standard tableau(4) increasing weakly along columns and
strongly along rows if κ > 0 and vice versa if κ < 0. In fact, this gives a ξ! :=

∏
ξ

(p)
k !-

to-1 map from Eξ-tableau to semi-standard tableau of type ξ.
Thus, the dimension of eDt,mWFϑD(q,Q•)e′ξ is the number of pairs of tableaux of

the same shape, one standard and one semi-standard of type ξ. This is the same
as the dimension of the permutation module associated to ξ, so the surjective map
eDt,mWFϑD(q,Q•)e′ξ → Pξ must be an isomorphism.

We have from [24, Lem. 3.3] that the map

(22) eΛWFϑ(q,Q•)eΛ → EndH(q,Q•)(eDt,mWFϑD(q,Q•)eΛ)

is injective. Applying [24, Thm. 2.26] again, the dimension of eΛWFϑD(q,Q•)eΛ is equal
to the number of pairs of semi-standard tableaux of the same shape and (possibly
different) type in Λ. Thus, the dimension coincides with dim S (Λ). This shows that
the injective map (22) must be an isomorphism.

Finally, we wish to show that the bimodules eΛWFϑD(q,Q•) and WFϑD(q,Q•)eΛ
induce a Morita equivalence. For this, it suffices to show that no simple WFϑD(q,Q•)-
module is killed by eΛ. If this were the case, WFϑD(q,Q•) would have strictly more
simple modules than the cyclotomic q-Schur algebra. However, in [24, Thm. 2.26], we

(4)This tableau uses ` alphabets (denoted using subscripts) with the order 11 < 21 < 31 · · · <
12 < 22 < 32 · · · < 13 < · · · .
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show that this algebra is cellular with the number of cells equal to the number of `-
multipartitions of n. By [4, 6.16], this is the number of simples over S (Λ) as well. �

This also allows us to show:

Theorem 6.7. The idempotent e′ induces a Morita equivalence between the affine
Schur algebra Sh(n,m) and the type W affine Hecke algebra W(q)C (q).

Proof. Since the algebraW(q)B(q) is Noetherian, ifW(q)B(q)e′W(q)B(q) 6=W(q)B(q),
then there is at least one simple module L over W(q)B(q)/W(q)B(q)e′W(q)B(q),
which must be killed by e′.

This simple module must be finite dimensional since W(q)B(q) is of finite rank
over the center of this module. Thus, X1 acting on this simple module satisfies some
polynomial equation p(X1) = 0, and L factors through the map to a type WF Hecke
algebra WFϑ where we choose ϑi � ϑi+1 for all i, and ϑ` � 0, with Qi being the
roots of p with multiplicity.

By Proposition 6.6, the identity of WFϑ can be written as a sum of cellular basis
vectors factoring through the idempotent e′ξ at y = 1/2. We have some choice in the
definition of these vectors, and we can assure that all crossings in them occur to the
right of all red line. The relation (18c) allows us to pull all strands to the right. Once all
the strands are to the right of all red lines, this slice at y = 1/2 will be the idempotent
e′ξ◦ , times a polynomial in the dots. Since this idempotent e′ξ◦ lies in e′W(q)B(q)e′, we
must have that e′ acts non-trivially on L, contradicting our assumption. This shows
that W(q)B(q)e′W(q)B(q) = W(q)B(q), proving the Morita equivalence. �

6.2. Weighted KLR algebras. There’s also a KLR algebra in type WF. This is
also a weighted KLR algebra as defined in [22], but now for the Dynkin diagram U
with a Crawley-Boevey vertex added, as discussed in [22, § 3.1].

Definition 6.8. A rank n WF KLR diagram is a wKLR diagram (as defined in Def-
inition 4.10, with labels in U) with vertical red lines inserted at x = ϑi. The diagram
must avoid tangencies and triple points between any combination of these strands,
green strands and ghosts, and only allow isotopies that preserve these conditions.
Here is an example of such a diagram:

u2 u4 u5u1 u3 λ2λ1 λ3

The rank n type WF KLR algebra T̃ϑ(h, z) is the algebra generated by these dia-
grams over k[h, z] modulo the local relations (14a–14h,19a–19d) and

(23) = = = .

This is a reduced weighted KLR algebra for the Crawley-Boevey graph of U for the
highest weight λ.

The steadied quotient of Tϑ(h, z) is the quotient of T̃ϑ(h, z) by the 2-sided ideal
generated by all unsteady idempotents.

Algebraic Combinatorics, Vol. 3 #1 (2020) 34



On graded presentations of Hecke algebras and their generalizations

As with the other algebras we’ve introduced, the algebra T̃ϑ(h, z) has a natural
polynomial representation Pϑ, defined in [22, Prop. 2.7]. It also has a grading, with
the degrees of diagrams given by

deg
u v

= −2δu,v deg
u

= 2 deg
u v

= deg
u v

= δu,q±1v

deg
λ u

= deg
u λ

= α∨u (λ),

6.3. Isomorphisms. As in all previous sections, we can show that both of the alge-
bras we have introduced have polynomial style representations (graded in the case of
T̃ϑ(h, z)) where

K = k[[h]] A = W̃Fϑ(q,Q•) B = k[[h]][X±] I = Bh+B
∏
u∈U

(X − u) P = Pϑ

K = k[h] A = T̃ϑ(h, z) B = k[h, y] I = Bh+By P = Pϑ.

and thus have suitable completions ̂̃WF
ϑ

(q,Q•) and ̂̃Tϑ(h, z).
Now, let u be a loading on a set D ∈ D , that is, a map D → U . Let u1, . . . , un be

the values of u read from left to right. Attached to such data, we have an idempotent

eu in T̃ϑD(h, z) and another εu in ̂̃WF
ϑ

D(q,Q•) given by projection to the stable kernel
of Xr − ur for all r.

Theorem 6.9. We have isomorphisms of k[h, z]-algebras

WFϑD(q,Q•) ∼= TϑD(h, z) ̂̃
WF

ϑ

D(q,Q•) ∼= ̂̃TϑD(h, z)

which send

εu 7→ eu Xr 7→
∑

u
urb(yr)eu 7→

εu 7→

∏
ϑs=ok

(urb(yr − zs)− Qs)∏
s∈Sur,j

(yr − zs)
eu

(23a) εu 7→


1

ur+1b(yr+1)− urb(yr)
(ψr − 1)eu ur 6= ur+1

yr+1 − yr
ur+1(b(yr+1)− b(yr))

ψreu ur = ur+1

(23b)

εu 7→


urb(yr)− qusb(ys) eu ur 6= qus
urb(yr)− qusb(ys)

ys − yr
eu ur = qus, d(h) = 1

urb(yr)− qusb(ys)
ys − yr + h

eu ur = qus, d(h) = eh

7→

where the solid strand shown is the rth (and r+ 1st in the first line), and the ghost is
associated to the sth from the left.
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Proof. That this map sends unsteady idempotents to unsteady idempotents is clear,
so we need only show that we have an isomorphism W̃FϑD(q,Q•) ∼= T̃ϑD(h, z). As in
the proofs of Theorems 3.10, 4.14, and 5.9, we check this by comparing polynomial
representations. The comparison for diagrams involving no red strands is covered by
the isomorphism of Theorem 4.14 and for crossings with red strands is checked in
Theorem 5.9. �

Just as in Section 4, this isomorphism does not immediately grade the cyclotomic
q-Schur algebra, since the idempotent from Theorem 6.6 does not have homogeneous
image. One can, however, define a homogenous idempotent e′′ with isomorphic image.
As before, e′′ will be a sum over `-ordered lists of multi-subsets of U whose size gives
a multi-composition in Λ. Each of these contributes the idempotent where the points
connected to the part µ(s)

i are labeled with the multi-subset, in increasing order, with
a primitive idempotent in the nilHecke algebra acting on the groups with the same
label.

Note that in the level one case, a graded version of the q-Schur algebra was defined
by Ariki [1]. This grading was uniquely determined by its compatibility with the
Brundan–Kleshchev grading on the Hecke algebra, so our algebra must match up
to graded Morita equivalence with that of [1, 3.17] (just as we saw with the closely
related quiver Schur algebra in [19, Thm. 7.9]).

Acknowledgements. Many thanks to Stephen Griffeth for pointing out several small
errors in an earlier version of the paper, to the referees for several thoughtful sugges-
tions and to Peng Shan, Michaela Varagnolo, Éric Vasserot, Liron Speyer, Christopher
Bowman-Scargill, Ruslan Maksimau and Catharina Stroppel for useful discussions.

Glossary
R(h) The Khovanov–Lauda–Rouquier algebra for the

Dynkin diagram U with the h-deformed relations.
3–5, 12, 14

H̃(q) The affine Hecke algebra of Sn with parameter q =
qeh.

3–5, 7–12, 19–
22, 28

S(q, n,m) The affine q-Schur algebra as defined in Definition 4.7. 3, 20–22, 34
Tλ(h, z) The Stendhal algebra defined in Definition 5.8 3, 29, 30
Tϑ(h, z) The steadied quotient of the WF KLR algebra defined

in Definition 6.8.
3, 34, 35

̂̃H(q) The completion of affine Hecke algebra H̃(q) with re-
spect to the topology induced by U .

3, 5, 11, 12, 15,
16, 32

R̂(h) The Khovanov–Lauda–Rouquier algebra completed
with respect to its grading.

3, 5, 14, 16

U A fixed finite subset of kr {0}, which we endow with
a quiver structure by connecting u → qu whenever
u, qu ∈ U .

4, 5, 10–12, 14,
19, 22, 24–29,
34–36

H(q,Q•) The cyclotomic quotient of H̃(q) with Definition 1.4. 5, 28, 32, 33
RQ•(h, z) The cyclotomic quotient of R with Definition 1.5. 5
H(q) The affine Hecke algebra of Sn with parameter q =

qeh.
8, 10, 11

W(q) The weighted affine Hecke algebra defined in Defini-
tion 4.2.

17–22, 24, 25,
32, 34

Algebraic Combinatorics, Vol. 3 #1 (2020) 36



On graded presentations of Hecke algebras and their generalizations

Ŵ(q) The completion of the weighted affine Hecke algebra
defined in Definition 4.2.

19

C The collection of sets Cµ attached to m-part compo-
sition of n.

21, 22, 34

e′ The idempotent e′ in W(q)(q) which corresponds to
all m-part compositions of n.

21, 22, 25, 34

W The weighted KLR algebra defined in Definition 4.10. 22, 24
Ŵ The completed weighted KLR algebra defined in Def-

inition 4.13.
24, 25

F̃ϑ(q,Q•) The type F affine Hecke algebra defined in Defini-
tion 5.5.

27–30

Fϑ(q,Q•) The type F Hecke algebra defined in Definition 5.6. 27, 28, 30̂̃
Fϑ(q,Q•) The completed type F affine Hecke algebra. 28, 30
T̃λ(h, z) The affine Stendhal algebra defined in Definition 5.8. 28–30̂̃Tλ(h, z) The completion of the affine Stendhal algebra. 29, 30
W̃F(q,Q•) The type WF affine Hecke algebra defined in Defini-

tion 6.1.
31, 32, 35, 36

WF(q,Q•) The type WF Hecke algebra defined in Definition 6.3. 31–35
S ±(Λ) The cyclotomic q-Schur algebra S (Λ) of rank n at-

tached to the data (q,Q•) defined by Dipper, James
and Mathas [4, 6.1].

32–34

T̃ϑ(h, z) The WF KLR algebra (reduced weighted KLR alge-
bra) defined in Definition 6.8.

34–36
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