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Linear versus spin: representation theory
of the symmetric groups

Sho Matsumoto & Piotr Śniady

Abstract We relate the linear asymptotic representation theory of the symmetric groups to
its spin counterpart. In particular, we give explicit formulas which express the normalized ir-
reducible spin characters evaluated on a strict partition ξ with analogous normalized linear
characters evaluated on the double partition D(ξ). We also relate some natural filtration on
the usual (linear) Kerov–Olshanski algebra of polynomial functions on the set of Young dia-
grams with its spin counterpart. Finally, we give a spin counterpart to Stanley formula for the
characters of the symmetric groups in terms of counting maps.

1. Introduction
Spin representation theory of the symmetric groups is a younger sibling of the usual
linear representation theory. In the past, development of the spin sibling took a path
parallel to that of the linear sibling (often with a decades long delay): the spin versions
of the notions and relationships were modelled after their linear analogues but there
were somewhat distinct and they had to be developed from scratch. The paths of the
developments of the siblings did not really cross: there were not many results which
would directly link these two realms.

In the current paper we consider a setup in which there is a direct link between the
spin and the linear representation theory of the symmetric groups. In fact we claim
that the spin representation theory (or at least some of its aspects) can be derived
from its linear counterpart.

Before we state our results we shall recall some basic concepts of the spin represen-
tation theory of the symmetric groups. For more details and bibliographic references
refer to [38, 18, 15].

1.1. Spin representation theory of the symmetric groups.

1.1.1. Linear representations. Recall that a linear representation of a finite group G
is a group homomorphism ψ : G → GL(V ) to the group of linear transformations
GL(V ) of some finite-dimensional complex vector space V .
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1.1.2. Projective representations. A projective representation of a finite group G is a
group homomorphism ψ : G→ PGL(V ) to the group of projective linear transforma-
tions PGL(V ) = GL(V )/C× of the projective space P (V ) for some finite-dimensional
complex vector space V . Equivalently, a projective representation can be viewed as a
map φ : G→ GL(V ) to the general linear group with the property that

φ(x)φ(y) = cx,y φ(xy)

holds true for all x, y ∈ G for some non-zero scalar cx,y ∈ C×.
Each irreducible linear representation ψ : G → GL(V ) gives rise to its projective

version ψ : G→ PGL(V ). The irreducible projective representations which cannot be
obtained in this way are called irreducible spin representations and are in the focus of
the current paper.

1.1.3. Spin symmetric group and spin characters. The spin group S̃n [29] is a double
cover of the symmetric group:

(1) 1 −→ Z2 = {1, z} −→ S̃n −→ Sn −→ 1.

More specifically, it is the group generated by t1, . . . , tn−1, z subject to the relations:

z2 = 1,
zti = tiz, t2i = z for i ∈ [n− 1],

(titi+1)3 = z for i ∈ [n− 2],
titj = ztjti for |i− j| > 2;

we use the convention that [k] = {1, . . . , k}. Under the mapping S̃n → Sn the
generators t1, . . . , tn−1 are mapped to the Coxeter tranpositions (1, 2), (2, 3), . . . , (n−
1, n) ∈ Sn.

The main advantage of the spin group comes from the fact that any projective
representation ψ : Sn → PGL(V ) of the symmetric group can be lifted to a linear
representation ψ̃ : S̃n → GL(V ) of the spin group so that the following diagram
commutes:

S̃n GL(V )

Sn PGL(V ).

ψ̃

ψ

In this way the projective representation theory of Sn is equivalent to the linear
representation theory of S̃n which allows to speak about the characters.

The irreducible spin representations of Sn turn out to correspond to irreducible
linear representations of the spin group algebra CS−n := CS̃n/〈z + 1〉 which is the
quotient of the group algebra CS̃n by the ideal generated by (z + 1).

1.1.4. Partitions. An integer partition of n > 0 (often referred to as Young diagram
with n boxes) is a finite sequence λ = (λ1, . . . , λ`) of positive integers (called parts)
which is weakly decreasing λ1 > · · · > λ` and such that n = |λ| = λ1 + · · ·+ λ`. The
set of integer partitions of a given integer n > 0 will be denoted by Pn, and the set of
all integer partitions by P =

⊔
n>0 Pn. We sometimes write λ ` n instead of λ ∈ Pn.

An integer partition is odd if all of its parts are odd integers; we denote by OP the
set of odd partitions and by OPn the set of odd partitions of a given integer n > 0.

An integer partition ξ = (ξ1, . . . , ξ`) is strict if it has no repeated entries; in other
words the corresponding sequence ξ1 > · · · > ξ` is strictly decreasing. We denote
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by SP the set of strict partitions and by SPn the set of strict partitions of a given
integer n > 0.

We visualize partitions as Young diagrams drawn in the French convention and
strict partitions as shifted Young diagrams, cf. Figure 1.

x

y

Figure 1. Strict partition ξ = (6, 5, 2) shown as a shifted Young
diagram and its double D(ξ) = (7, 7, 5, 3, 2, 2).

1.1.5. Spin characters. Schur [29] proved that, roughly speaking(1), the conjugacy
classes of S̃n which are non-trivial from the viewpoint of the spin character theory
are indexed by the elements of the set OPn, i.e. by the odd partitions of n.

Schur also proved that, roughly speaking(1), the irreducible spin representations of
S̃n are indexed by the elements of the set SPn, i.e. by strict partitions of n

For an odd partition π ∈ OPn (which corresponds to a conjugacy class of S̃n) and
a strict partition ξ ∈ SPn (which corresponds to its irreducible spin representation)
we denote by φξ (π) the corresponding spin character (for some fine details related to
this definition we refer to Section 2).

1.2. Normalized characters. The usual way of viewing the linear characters
χλ (π) of the symmetric group Sn is to fix the irreducible representation λ and to
consider the character as a function of the conjugacy class π. The dual approach,
initiated by Kerov and Olshanski [17], suggests to do the opposite: fix the conjugacy
class π and to view the character as a function of the irreducible representation λ.
In order for this approach to be successful one has to choose the most convenient
normalization constants which we review in the following.

Following Kerov and Olshanski [17], for a fixed integer partition π the correspond-
ing normalized linear character on the conjugacy class π is the function on the set of
all Young diagrams given by

(2) Chπ(λ) :=

n↓k
χλ(π∪1n−k)
χλ(1n) if n > k,

0 otherwise,

where n = |λ| and k = |π| and n↓k = n(n−1) · · · (n−k+1) denotes the falling power.
Above, for partitions λ, σ ` n we denote by χλ (σ) the irreducible linear character of
the symmetric group which corresponds to the Young diagram λ, evaluated on any
permutation with the cycle decomposition given by σ. For more context we refer to
the monographs [25, Section 7.3] and [14, Eq. (2.21)].

(1)For a precise statement see Section 2.
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Following Ivanov [15, 16], for a fixed odd partition π ∈ OP the corresponding
normalized spin character is the function on the set of all strict partitions given by

(3) Chspin
π (ξ) :=

n↓k 2
k−`(π)

2
φξ(π∪1n−k)
φξ(1n) if n > k,

0 otherwise,

where n = |ξ|, k = |π|, and `(π) denotes the number of parts of π.
In the following we shall discuss briefly some heuristics behind these definitions.
Both types of normalized characters (2) and (3) involve evaluation of the irreducible

(linear or spin) character on the partition π∪ 1n−k, i.e. on the partition π augmented
by the appropriate number of parts, all equal to 1.

In the case of the linear characters this operation is motivated by considering the
infinite sequence of inclusions of the symmetric groups

S1 ⊆ S2 ⊆ S3 ⊆ · · ·

which corresponds to viewing the symmetric groupSn as the set of these permutations
of the set N = {1, 2, . . . } which are equal to the identity outside of [n]. Thanks to
these inclusions, for k 6 n any character of Sn is also a function on its subgroup
Sk. Since the inclusion Sk ⊆ Sn is provided by augmenting any given permutation
by additional n − k fixpoints, on the level of the cycle lengths this corresponds to
replacing any given partition π ` k by π ∪ 1n−k ` n, just as it happens in (2).

In the case of the spin groups the analogous sequence of inclusions

S̃1 ⊆ S̃2 ⊆ S̃3 ⊆ · · ·

is naturally provided by considering first the infinite group generated by the elements
z, t1, t2, . . . which fulfil the relations from Section 1.1.3 and then viewing S̃n as its
subgroup generated by z, t1, . . . , tn−1. It turns out that also in this spin context the
inclusion S̃k ⊆ S̃n is provided by replacing any given strict partition π ∈ SPk by
(π ∪ 1n−k) ∈ SPn, see Section 2.2 for more details.

It is more challenging to motivate quickly the specific choice of the normalization
constants in (2) and (3). In the case of the linear characters the combinatorial factor
n↓k may be interpreted heuristically as the number of ways the smaller symmetric
group Sk can be embedded in the larger symmetric group Sn or, more precisely, the
number of ways any k-element set can be embedded in an n-element set. In the case
of the spin characters a heuristic explanation is even more challenging; probably it can
be motivated by the work of Ivanov [15]. The ultimate criterion for verifying that the
normalization constants in the definitions of the normalized characters were selected
in the right way is postponed to Sections 1.6.1 and 1.6.2. Roughly speaking, thanks
to the right choice of the normalization both Chπ(λ1, λ2, . . . ) and Chspin

π (ξ1, ξ2, . . . )
can be identified with certain polynomials in the variables λ1, λ2, . . . (respectively,
ξ1, ξ2, . . . ).

Our goal in this paper is to find relationships between the family (Chπ) of linear
characters and its spin counterpart (Chspin

π ). This quite general goal can take various
more specific incarnations which we will discuss in the following.

1.3. The main result 1. Characters: linear vs spin. Firstly, we might look for
some explicit algebraic formulas which express the linear characters (Chπ) in terms
of the spin characters (Chspin

π ) and vice versa.
The first step in this direction is to relate the set SP of strict partitions to the

set P of partitions which are, respectively, the domain of the linear characters (Chπ)
and the domain of the spin characters (Chspin

π ). More specifically, for a strict partition
ξ ∈ SPn we consider its double D(ξ) ∈ P2n. Graphically, D(ξ) corresponds to a Young
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diagram obtained by arranging the shifted Young diagram ξ and its ‘transpose’ so that
they nicely fit along the ‘diagonal’, cf. Figure 1, see also [21, Example I.1.9(a)].

In Section 3 we will show several formulas which relate linear and spin characters.
The following is a particularly simple special case which nevertheless gives a flavour
of the general case.
Theorem 1.1 (The main result for characters, special case).
For any odd integer k > 1 and any strict partition ξ ∈ SP

Chk
(
D(ξ)

)
= 2 Chspin

k (ξ).
We will prove this result (in wider generality) in Section 3.2. The results of this

type reduce the problem of calculating the spin characters to its linear counterpart
for which often more tools are available [28, 11, 13, 3, 27, 7].

1.4. The main result 2. Spin version of Stanley character formula.

1.4.1. Colorings. Let σ1, σ2 ∈ Sk be permutations and let λ ∈ P be a Young diagram.
Following [11], we say that (f1, f2) is a coloring of (σ1, σ2) which is compatible with
λ if the following two conditions are fulfilled:

• fi : C(σi)→ Z+ is a function on the set of cycles of σi for each i ∈ {1, 2}; we
view the values of f1 as columns of λ and the values of f2 as rows;

• whenever c1 ∈ C(σ1) and c2 ∈ C(σ2) are cycles which are not disjoint (c1 ∩
c2 6= ∅), the box with Cartesian coordinates

(
f1(c1), f2(c2)

)
belongs to λ.

We denote by Nσ1,σ2(λ) the number of such colorings of (σ1, σ2) which are compatible
with λ.

x

y

f1(V ) f1(W )

f2(Π)

f2(Σ)

Figure 2. Graphical representation of the coloring (5) of the per-
mutations (4) which is compatible with the Young diagram λ = (3, 1).

Example 1.2. Let
(4) σ1 = (1, 5, 4, 2)︸ ︷︷ ︸

V

(3)︸︷︷︸
W

, σ2 = (2, 3, 5)︸ ︷︷ ︸
Π

(1, 4)︸ ︷︷ ︸
Σ

.

There are three pairs of cycles (σ1, σ2) ∈ C(σ1)×C(σ2) with the property that σ1 and
σ2 are not disjoint, namely (V,Π), (V,Σ), (W,Π). It is now easy to check graphically
(cf. Figure 2) that (f1, f2) given by
(5) f1(V ) = 1, f1(W ) = 3, f2(Π) = 1, f2(Σ) = 2
is indeed an example of a coloring compatible with λ = (3, 1).

By considering four possible choices for the values of f2 and counting the choices
for the values of f1 one can verify that

Nσ1,σ2(λ) = 32 + 3 + 1 + 1 = 14 for λ = (3, 1).
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1.4.2. Linear Stanley character formula. We will identify a given integer partition
π = (π1, . . . , π`) ` k with an arbitrary permutation π ∈ Sk with the corresponding
cycle structure. For example, we may take

π = (1, 2, . . . , π1)(π1 + 1, π1 + 2, . . . , π1 + π2) · · · ∈ Sk.

The following result turned out in the past to be a convenient tool for studying
asymptotic [11] and enumerative problems [7] of the (linear) representation theory of
the symmetric groups.

Theorem 1.3 ([11]). For any partition π ∈ Pk and any Young diagram λ ∈ P

(6) Chπ(λ) =
∑

σ1,σ2∈Sk
σ1σ2=π

(−1)σ1Nσ1,σ2(λ).

1.4.3. Spin Stanley character formula. For σ1, σ2 ∈ Sk we denote by |σ1 ∨ σ2| the
number of orbits in the set [k] = {1, . . . , k} under the action of the group 〈σ1, σ2〉
generated by σ1, σ2. Equivalently, it is the number of blocks of the set-partition
σ1∨σ2 (which is the minimal set-partition with respect to the refinement order which
is greater than each of the two set-partitions which correspond to the cycles of σ1
and σ2).

One of the main results of the current paper is the following spin analogue of
Theorem 1.3.

Theorem 1.4 (The main result: spin Stanley character formula). For any odd parti-
tion π ∈ OPk and any strict partition ξ ∈ SP

(7) Chspin
π (ξ) =

∑
σ1,σ2∈Sk
σ1σ2=π

1
2|σ1∨σ2|

(−1)σ1 Nσ1,σ2

(
D(ξ)

)
.

The proof is postponed to Section 4.

1.4.4. Application: combinatorics of spin Kerov polynomials and Stanley polynomials.
In the context of the usual (linear) asymptotic representation theory of the symmetric
groups it is convenient to parametrize the set of Young diagrams by free cumulants [1].
Each linear character Chπ can then be expressed uniquely as a polynomial (called
Kerov character polynomial) in these free cumulants. Kerov polynomials turned out
to have a very rich structure from the viewpoint of enumerative and algebraic combi-
natorics [2, 13, 3, 27, 7, 31]. Combinatorics of Kerov polynomials is intimately related
to multirectangular coordinates of Young diagrams and the corresponding Stanley
character polynomials, see Section 6.

Recently De Stavola [5] and the first-named author [22] initiated investigation
of spin counterparts of these notions. In a future work we will present applications
of Theorem 1.4 to combinatorics of spin Kerov polynomials and spin Stanley character
polynomials.

1.4.5. Application: bounds on spin characters. The following character bound is a spin
version of an analogous result for the linear characters of the symmetric group [11]. It
is a direct application of Theorem 1.4 and its proof follows the same line as its linear
counterpart [11].

Corollary 1.5. There exists a universal constant a > 0 with the property that for
any integer n > 1, any strict partition ξ = (ξ1, ξ2 . . . ) ∈ SPn, and any odd partition
π ∈ OPn ∣∣∣∣∣ φξ (π)

φξ (1n)

∣∣∣∣∣ <
[
amax

(
ξ1
n
,
n− `(π)

n

)]n−`(π)

.
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Several asymptotic results about (random) Young diagrams and tableaux which
use the inequality from [11] can be generalized in a rather straightforward way to
(random) shifted Young diagrams and shifted tableaux thanks to Corollary 1.5. A
good example is provided by the results of Dousse and Féray about the asymptotics
of the number of skew standard Young tableaux of prescribed shape [9] which can be
generalized in this way to asymptotics of the number of shifted skew standard Young
tableaux.

1.4.6. Open problem: towards irreducible representations of spin groups. The proof of
the linear Stanley formula (6) presented in [11] was found in the following way. We
attempted to reverse-engineer the right-hand side of (6) and to find

• some natural vector space V with the basis indexed by combinatorial objects;
the space V should be a representation of the symmetric group Sn with
n := |λ|, and

• a projection Π: V → V such that Π commutes with the action of Sn and such
that it image ΠV is an irreducible representation of Sn which corresponds to
the specified Young diagram λ,

in such a way that the corresponding character of ΠV would coincide with the right-
hand side of (6).

Our attempt was successful: one could consider a vector space V with the basis
indexed by fillings of the boxes of λ with the numbers from [n] with the action of Sn

given by pointwise relabelling of the values in the boxes. The projection Π turned out
to be the Young symmetrizer with the action given by shuffling of the boxes in the
rows and columns of λ. The resulting representation ΠV clearly coincides with the
Specht module, which concluded the proof in [11].

The structure of the right-hand side of (7) (as well as the right-hand side of (8))
might be an indication that an analogous reverse-engineering process could be applied
to the spin case. The result would be a very explicit construction of the irreducible spin
representations which would be an alternative to the somewhat complicated approach
of Nazarov [26].

1.5. Stanley formulas and enumeration of maps. Some readers may have aes-
thetic objections against Equation (7) related to the somewhat ugly factor 1

2|σ1∨σ2|

on the right-hand side. Our remedy to this issue is Theorem 1.7 which avoids such
factors. This result is just a reformulation of Theorem 1.4 in the language of non-
oriented maps which are orientable. We start by introducing the notations which are
necessary to state this result.

1.5.1. Maps. We recall that a map [19] is defined as a graph G drawn on a surface Σ
without boundary in such a way that each connected component of ΣrG (called face)
is homeomorphic to an open disc. In the literature one often adds the requirement
that the surface Σ is connected; we will not impose such a restriction.

Each map which we will consider is a bicolored map which means that the set of its
vertices V = V◦ t V• is canonically decomposed into two classes (usually called white
and black vertices), with edges connecting only vertices of the opposite colors. Let
F1, . . . , F` be the faces of the map; for the above reason of bicoloration, each face Fi
is a polygon which consists of an even number (say, 2πi) of edges, with neighbouring
vertices painted in the alternating colours. The integer partition π = (π1, . . . , π`) is
called the face-type of the map, see Figure 4.

With this in mind, one can alternatively view a bicolored map as a collection P of
polygons with labelled edges and with the vertices painted in the alternating colours
(see Figure 3), together with the information which pairs of the edges should be glued
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together. Note that at first moment it might appear that there are two ways to glue
any given pair of edges (these two ways differ by a twist a la Möbius), nevertheless
the bicoloration of the vertices makes the choice unique.

1.5.2. Non-oriented maps. The above discussion motivates the following definition.
Summation over non-oriented maps with a specified face-type π [8, Section 3.4] should
be understood as follows: we start by fixing an appropriate collection P of polygons
with labelled edges, bicolored vertices, and with face-type π. Then we consider all
perfect matchings on the set of all edges, and for each such a perfect matching we
glue the corresponding pairs of the edges. We sum over the resulting map.

1

2
3

4

5

6

7
8

9

10

AB

C D

Figure 3. Example of a collection of polygons with face-type (5, 2).
Arrows (pointing at white vertices between the edges 1 and 10, as
well as between A and D) indicate the roots; harpoons (at the edges
1 and A) indicate the directions of rotation in each polygon, see Sec-
tion 5.1.

4

9

5 D

6

C

7B

8

A

10

2

2

10

1

3

Figure 4. Example of a non-oriented map with face-type (5, 2)
drawn on the projective plane. The left side of the square should
be glued with a twist to the right side, as well as bottom to top (also
with a twist), as indicated by arrows. This map has been obtained
by gluing the edges of the polygons from Figure 3.
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1.5.3. Colorings revisited. The notion of number of colorings Nσ1,σ2(λ) was intro-
duced in Section 1.4.1 in the context of a pair of permutations. We review how to
generalize it to maps and, more generally, bicolored graphs.

Let G be a bicolored graph with the vertex set V = V◦ t V• and let λ ∈ P be a
Young diagram. We say that (f1, f2) is a coloring of G which is compatible with λ if
the following two conditions are fulfilled:

• f1 : V◦ → Z+ is a function on the set of white vertices while f2 : V• → Z+ is
a function on the set of black vertices;

• whenever vertices v1 ∈ V◦ and v2 ∈ V• are connected by an edge, the box
with Cartesian coordinates

(
f1(v1), f2(v2)

)
belongs to λ.

We denote by NG(λ) the number of such colorings of G which are compatible with λ.

Remark 1.6. In Section 5.3 we shall explain how to associate a map G to a pair (σ1, σ2)
of permutations; the above definition of NG(λ) is compatible with this correspondence
in the sense that

Nσ1,σ2(λ) = NG(λ),

where the left-hand side should be understood in the sense of Section 5.3.

1.5.4. Spin Stanley formula and non-oriented, orientable maps. The following is a
reformulation of Theorem 1.4.

Theorem 1.7. For any odd partition π ∈ OPk and any strict partition ξ ∈ SP

(8) 2`(π) Chspin
π (ξ) =

∑
M

(−1)|π|−|V◦(M)| NM
(
D(ξ)

)
where the sum runs over non-oriented, orientable bicolored maps with the face-type π,
as in Section 1.5.2.

The proof is postponed to Section 5.

1.5.5. Stanley formulas and maps. Table 1 summarizes some known and some hy-
pothetical Stanley formulas. It seems that there is a correspondence between some
natural functions on the set of (shifted) Young diagrams and natural classes of bi-
colored maps. Is there some general pattern? Are there some natural classes of maps
which are missing in this table?

1.6. The main result 3. Kerov–Olshanski algebra: linear vs spin.

1.6.1. Kerov–Olshanski algebra. The usual (linear) Kerov–Olshanski algebra A [17,
14] (also known under the less compact name algebra of polynomial functions on the
set of Young diagrams; in the monograph [25, Section 7] it is referred to as Ivavov–
Kerov algebra) is an important tool in the (linear) asymptotic representation theory
of the symmetric groups. One of its advantages comes from the fact that it can be
characterized in several equivalent ways (for example as the algebra Λ∗ of shifted
symmetric functions); it also has several convenient linear and algebraic bases which
are related to various viewpoints and aspects of the asymptotic representation theory.

For the purposes of the current paper, Kerov–Olshanski algebra

A := span{Chπ : π ∈ P}

may be defined as the linear span of the normalized linear characters of the symmetric
groups.
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type of characters type of maps references

Linear characters
of the symmetric groups

Oriented maps [31, Sections 6.4–6.5],
[32, Section 8]

Spin characters
of the symmetric groups

Non-oriented maps
which are orientable

Current paper,
Theorem 1.7

Zonal characters
Non-oriented maps [12, Section 5]

Symplectic zonal
characters

Top-degree
of Jack characters

Oriented,
connected maps
with arbitrary
face structure

[33, Sections 1.4.2–1.4.3]

Non-oriented maps
with prescribed
face structure

[4, Section 4]

Jack characters in the
generic case

conjecturally:
non-oriented maps
(counted with some
unknown weight)

partial results: [8]

Table 1. Classes of functions on the set of (shifted) Young diagrams
for which some version of Stanley character formula is known (or
conjectured in the case of Jack characters) and the corresponding
class of maps over which the summation is performed.

1.6.2. Spin Kerov–Olshanski algebra. We define the spin Kerov–Olshanski algebra
(maybe Ivanov algebra would be an even better name)
(9) Γ := span{Chspin

π : π ∈ SP}
as the linear span of spin characters [15, Section 6]. Ivanov proved that the elements of
Γ can be identified with supersymmetric polynomials, thus Γ is a unital, commutative
algebra.

1.6.3. Double of a function. Kerov–Olshanski algebra: linear vs spin. If F : P → Q is
a function on the set of partitions, we define its double as the function D∗F : SP → Q
on the set of strict partitions

(D∗F ) (ξ) := F
(
D(ξ)

)
for ξ ∈ SP

given by doubling of the argument.
The following simple result reduces some questions about the spin Kerov–Olshanski

algebra Γ to its linear counterpart A.

Theorem 1.8. The map
(10) D∗ : A/ kerD∗ → Γ
is an isomorphism of algebras.

The proof is postponed to Section 8.
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1.6.4. Filtrations: linear vs spin. In applications it is often convenient to equip Kerov–
Olshanski algebra with this or another filtration which is tailored for the specific
asymptotic regime one is interested in; several such filtrations were considered in the
literature. In order to stay focused we will concentrate on a specific choice of such a
filtration F0 ⊆ F1 ⊆ · · · ⊆ A given by
(11) Fk := span{Chπ : π ∈ P, |π|+ `(π) 6 k},
where `(π) = ` denotes the number of parts of π = (π1, . . . , π`). This specific
choice is motivated by investigation of asymptotics of (random) Young diagrams and
tableaux in the scaling in which they grow to infinity in such a way that they remain
balanced [1, 30].

We define its spin counterpart as the family of vector spaces G0 ⊆ G1 ⊆ · · · ⊆ Γ
defined by
(12) Gk := span{Chspin

π : π ∈ OP, |π|+ `(π) 6 k}.
Note that |π| + `(π) is always an even integer for any π ∈ OP; it follows therefore
that G2k+1 = G2k holds for any integer k > 0. Informally speaking, this means that
only the ‘even’ part of the family G0 ⊆ G1 ⊆ · · · ⊆ Γ contains interesting information.

The following result provides a direct link between the families (Fi) and (Gi) via
the isomorphism (10). Also its proof (postponed to Section 8) makes use of this
isomorphism.

Theorem 1.9. The family (Gk) is a filtration on the algebra Γ.
Furthermore, Gk = D∗(Fk) for any integer k > 0.

1.6.5. Application. Gaussian fluctuations of partitions: linear vs spin. Our motivation
for studying the filtration (Gi) comes from investigation of random strict partitions
related to projective asymptotic representation theory of the symmetric groups. The-
orem 1.9 plays a prominent role in our forthcoming paper [24] which is devoted to
this topic.

A convenient tool for proving Gaussianity of fluctuations of random partitions is
approximate factorization property for characters [30, 6] which is formulated in the
language of certain cumulants. In the case of the linear characters of the symmetric
groups this property was known to be true [30].

In the aforementioned forthcoming paper [24] we will show how to reformulate
the results of the current paper in a more abstract way which allows to relate the
cumulants for linear characters to their spin counterparts. In this way we will show
how the approximate factorization property of linear characters of the symmetric
groups implies directly its spin counterpart.

1.7. Structure of the paper. Section 2 summarizes some fine issues related to
the definition of the spin characters.

In Section 3 we prove our starting tool, Theorem 3.1, which expresses the linear
characters (Chπ) in terms of the spin characters (Chspin

π ). As a consequence, we also
prove Theorem 3.3 which gives roughly the opposite: the spin characters (Chspin

π ) in
terms of the linear characters (Chπ).

Section 4 is devoted to the proof of Theorem 1.4, i.e. spin Stanley character for-
mula. Section 5 is devoted to the proof of Theorem 1.7, i.e. spin Stanley formula in
terms of non-oriented, orientable maps.

In Section 6 we recall the shifted version of multirectangular coordinates and in Sec-
tion 7 we apply these coordinates for asymptotics of spin characters. In Section 8 we
apply these results in order to prove Theorems 1.8 and 1.9 which provide the link be-
tween (the filtration on) the linear Kerov–Olshanski algebra and its spin counterpart.
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This article is the full version of a 12-page extended abstract [23] which will be
published in the proceedings of the conference Formal Power Series and Algebraic
Combinatorics 2019.

2. Spin characters, spin representations
In order to keep the Introduction lightweight we decided to postpone the discussion
of some subtle technical issues related to the definition of spin characters and spin
representations until the current section. Our presentation is based on [37, 38, 18, 15].

2.1. Conjugacy classes of S̃n. We denote by SP+
n (respectively, SP−n ) the set of

strict partitions ξ ∈ SPn with the property that n− `(ξ) is even (respectively, odd).
For a partition π ` n we denote by Cπ ⊂ S̃n the set of elements of the spin

group which are mapped — under the canonical homomorphism S̃n → Sn — to
permutations with the cycle-type given by π.

Schur [29] proved the following dichotomy for π ` n:
• if one of the following two conditions is fulfilled:

– π ∈ OPn, or
– π ∈ SP−n

then Cπ splits into a pair of conjugacy classes of S̃n which will be denoted
by C±π ;

• otherwise, Cπ is a conjugacy class of S̃n.

2.2. Conjugacy classes and spin characters. Any spin character vanishes on
the conjugacy class Cπ which does not split, cf. [37, p. 95]. For this reason, from the
viewpoint of the spin character theory only the conjugacy classes C±π are interesting.

Spin representations are exactly the ones which map the central element z ∈ S̃n

to − Id ∈ GL(V ). Since C−π = zC+
π , it follows that the value of any spin character on

C−π is the opposite of its value on C+
π . For this reason, from the viewpoint of the spin

character theory the conjugacy classes C−π are redundant and it is enough to consider
the character values only on the conjugacy classes C+

π .
From the viewpoint of the asymptotic representation theory it is natural to consider

some sequence of groups together with some natural inclusions; in our case this is the
sequence

S̃1 ⊂ S̃2 ⊂ S̃3 ⊂ · · ·
of spin groups. Such a setup allows to relate a conjugacy class of a smaller group to
some conjugacy class in the bigger group and, in this way, to evaluate the irreducible
characters of the bigger group on the conjugacy classes of the smaller one.

Regretfully, the conjugacy classes C+
π which correspond to π ∈ SP−n do not behave

nicely under such inclusions. Indeed, on the level of the symmetric groups the inclusion
Sn ⊂ Sn+k corresponds to adding k fixpoints to a given permutation; in other words
the set Cπ ⊂ S̃n corresponds to Cπ,1k ⊂ S̃n+k and the latter does not split because
(π, 1k) /∈ SPn (at least for k > 2) and (π, 1k) /∈ OPn (because n− `(π) is odd which
implies that at least one part of π is even).

For this reason, for the purposes of the asymptotic representation theory it is enough
to consider only the conjugacy classes C+

π for π ∈ OPn.

2.3. Irreducible spin representations. The relationship between strict parti-
tions and the irreducible spin representations of the symmetric groups is not a bijec-
tive one. Nevertheless, as we shall discuss below, this non-bijectivity can be ignored
to large extent.
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More specifically (see [29, p. 235] and [37, Theorem 7.1]), each ξ ∈ SP+
n corresponds

to a single irreducible representation. We denote by its character by φξ.
On the other hand, each ξ ∈ SP−n corresponds to a pair of irreducible spin repre-

sentations; we denote their characters by φξ+ and φξ−. These two characters coincide
on the conjugacy classes C±π over π ∈ OPn. For the purposes of the current paper we
do not need to evaluate the characters on C±π for π ∈ SP−n ; for this reason we do not
have to distinguish between them and we may denote them by the same symbol φξ.

2.4. Spin characters: conclusion. For all partitions ξ ∈ SPn, π ∈ OPn the
value of the projective character

φξ(π) = Trψξ(cπ)

is well defined, where cπ ∈ C+
π is a representative of the of the conjugacy class C+

π ,
cf. [37, Eq. (2.1)].

2.5. Spin characters and symmetric functions. In the context of the theory
of symmetric functions it is more convenient to pass from spin characters φξ to some
other quantities which are denoted by Xλ. We shall review them in the following.

Following [21, Section III.7] we denote by X(t) the transition matrix between
the basis of Newton’s power-sum symmetric functions (pπ) and the basis of Hall–
Littlewood functions:

(13) pπ =
∑
λ

Xλ(π; t)Pλ(t).

For some special choices of the parameter t the quantities X(t) turn out to have inter-
esting interpretations. For example, in the case t = 0 we recover the linear characters
of the symmetric groups χλ(π) = Xλ(π; 0) with λ, π ∈ Pn, cf. [21, III.(7.2)].

From the following on we shall concentrate on another special case t = −1 for which
Hall–Littlewood functions turn out to be related to Schur’s P - and Q-functions [21,
Section III.8]. In this specific setup the defining property (13) of the transition matrix
X = X(−1) takes the form

pπ =
∑

ξ∈SPn

Xξ(π)Pξ

for n = |π|, or equivalently, for n = |ξ|

Qξ =
∑

ν∈OPn

2`(ν)z−1
ν Xξ (ν) pν ,(14)

where Pξ, Qξ are the Schur’s P - and Q-functions, as in [21, Example III.8.11(c)] and

zπ =
∏
j>1

jmj(π)mj(π)!,

where mj(π) denotes the multiplicity of j in the partition π.
Following Ivanov [15, Section 2], given ξ ∈ SPn we define a function on OPn

φ̃ξ =

φ
ξ if ξ ∈ SP+

n ,
φξ++φξ−√

2 =
√

2 φξ if ξ ∈ SP−n .

Then the link between such spin characters φ̃ and the transition matrix X is provided
by the equality

Xξ (π) = 2
`(ξ)−`(π)

2 φ̃ξ (π) ,
cf. [15, Proposition 3.3].
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With these notations (3) can be rewritten as

Chspin
π (ξ) :=

n
↓k Xξ(π∪1n−k)

Xξ(1n) = n↓k 2
k−`(π)

2
φ̃ξ(π∪1n−k)
φ̃ξ(1n)

if n > k,

0 otherwise.

3. Spin characters in terms of linear characters
3.1. The main result 1. We were not able to find this theorem in the literature and
we believe it is new. Note, however, that this result is essentially only a reformulation
of the classical equality (18) which gives a relation between Schur polynomial sD(ξ)
and Schur’s Q-function Qξ.

We feel that this result is rather unexpected because the spin characters are pre-
cisely those that are not obtained by lifting the usual linear characters of the sym-
metric group; for this reason one should not expect any easy links between the linear
and the spin characters.

Theorem 3.1 (The main result 1: linear in terms of spin). For any π ∈ OP and
ξ ∈ SP,

(15) Chπ
(
D(ξ)

)
=

∑
S⊆[`(π)]

Chspin
π(S)(ξ) Chspin

π(Sc)(ξ)

where π(S) = (πi1 , πi2 , . . . , πir ) for S = {i1 < i2 < · · · < ir} and Sc = [`(π)] r S
denotes the complement of S.

The proof is presented below in Section 3.2.
Consider the case π 6= ∅. Each summand on the right-hand side of (15) is equal

to another summand in which the roles of the set S and its complement Sc are inter-
changed. By grouping such pairs of summands (each such a pair corresponds to a set-
partition of [`(π)] to at most two blocks) and by dividing both sides of (15) by 2, the
above result can be reformulated as the following equality between functions on SP:

(16) C̃hπ =
∑
I:
|I|62

∏
b∈I

Chspin
(πi:i∈b),

where the sum runs over set-partitions I of the set [`(π)] into at most two blocks,
and where we denote

C̃hπ(ξ) := 1
2 Chπ

(
D(ξ)

)
for ξ ∈ SP and π ∈ OP.

Example 3.2. Theorem 3.1 implies the following equalities between functions on the
set of strict partitions:

(17)



C̃hk1 = Chspin
k1

,

C̃hk1,k2 = Chspin
k1,k2

+ Chspin
k1

Chspin
k2

,

C̃hk1,k2,k3 = Chspin
k1,k2,k3

+ Chspin
k1,k2

Chspin
k3

+ Chspin
k1,k3

Chspin
k2

+ Chspin
k2,k3

Chspin
k1

,

...

for arbitrary odd integers k1, k2, . . . > 1.
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3.2. Proof of Theorem 3.1.

Proof of Theorem 3.1. We denote by fλ = χλ
(
1|λ|
)
the number of standard tableaux

of shape λ. For a strict partition ξ we denote

gξ = Xξ
(
1|ξ|
)

which also happens to be the number of shifted standard tableaux with the shape
given by the shifted Young diagram ξ, see [21, III-8, Example 12].

Recall the symmetric function algebra Λ = Q[p1, p2, p3, . . . ] and its subalgebra, the
algebra of supersymmetric functions Γ = Q[p1, p3, p5, . . . ], where the pr are Newton’s
power-sums. Define the algebra homomorphism ϕ : Λ→ Γ by

ϕ(pr) =
{

2pr if r is odd,
0 if r is even.

Then [21, III-8, Example 10] implies that for any strict partition ξ we have

(18) ϕ(sD(ξ)) = 2−`(ξ) (Qξ)2,

where Qξ = Qξ(x;−1) denotes Schur’s Q-function [21, Section III.8].
Recall the Frobenius formula for Schur functions [21, I. (7.7)]:

sµ =
∑
π

z−1
π χµ (π) pπ.

Applying the homomorphism ϕ to this identity with µ = D(ξ), we obtain

ϕ(sD(ξ)) =
∑

π∈OP2n

2`(π)z−1
π χD(ξ) (π) pπ.

And, recall the Frobenius formula for Schur Q-functions [21, III.(7.5) and Exam-
ple III.8.11(c)]:

Qξ =
∑

ν∈OPn

2`(ν)z−1
ν Xξ (ν) pν .

Substituting the above two formulas to (18), we have for any ξ ∈ SPn

(19)
∑

π∈OP2n

2`(π)z−1
π χD(ξ) (π) pπ = 2−`(ξ)

 ∑
ν∈OPn

2`(ν)z−1
ν Xξ (ν) pν

2

.

By comparing the coefficients of p(12n) = p(1n)p(1n) in both sides of (19), we find

(20) fD(ξ)

(2n)! = 2−`(ξ)
(
gξ

n!

)2

.

For an alternative proof of this identity see [20, Proposition 3.1].
First we assume that π is an odd partition which does not have parts equal to 1,

i.e., m1(π) = 0. By comparing the coefficients of pπ∪(12n−|π|) in both sides of (19) we
find

χD(ξ)
(
π ∪ (1n−|π|)

)
zπ∪(1n−|π|)

= 2−`(ξ)
∑
µ1,µ2

µ1∪µ2=π

Xξ
(
µ1 ∪ (1n−|µ1|)

)
zµ1∪(1n−|µ1|)

Xξ
(
µ2 ∪ (1n−|µ2|)

)
zµ1∪(1n−|µ2|)

.
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By the assumptionm1(π) = 0, we have zπ∪(12n−|π|) = zπ ·(2n−|π|)! and zµi∪(1n−|µi|) =
zµi · (n− |µi|)!. Thus, we obtain

χD(ξ)
(
π ∪ (1n−|π|)

)
zπ · (2n− |π|)!

= 2−`(ξ)
∑
µ1,µ2

µ1∪µ2=π

Xξ
(
µ1 ∪ (1n−|µ1|)

)
zµ1 · (n− |µ1|)!

Xξ
(
µ2 ∪ (1n−|µ2|)

)
zµ2 · (n− |µ2|)! .

Taking the quotient of this and (20), we have

1
zπ

(2n)!
(2n− |π|)!

χD(ξ)
(
π ∪ (12n−|π|)

)
fD(ξ)

=
∑
µ1,µ2

µ1∪µ2=π

1
zµ1zµ2

n!
(n− |µ1|)!

Xξ
(
µ1 ∪ (1n−|µ1|)

)
gξ

n!
(n− |µ2|)!

Xξ
(
µ2 ∪ (1n−|µ2|)

)
gξ

,

which is equivalent to

Chπ
(
D(ξ)

)
=

∑
µ1,µ2

µ1∪µ2=π

zπ
zµ1zµ2

Chspin
µ1 (ξ) Chspin

µ2 (ξ).

It is easy to see that this is equivalent to the desired formula. Thus, we completed
the proof of the theorem under the assumption m1(π) = 0.

Next we consider a general odd partition π and we write it as π = π̃ ∪ (1r), where
m1(π̃) = 0 and r = m1(π). Then
(21)∑
S⊆[`(π)]

Chspin
π(S)(ξ) Chspin

π(Sc)(ξ) =
∑

T⊆[`(π̃)]

r∑
s=0

(
r

s

)
Chspin

π̃(T )∪(1s)(ξ) Chspin
π̃(T c)∪(1r−s)(ξ),

where T c = [`(π̃)] r T . By virtue of the identity

(22) Chspin
ν∪(1s)(ξ) = (n− |ν|)↓s Chspin

ν (ξ),

we have

(21) =
∑

T⊆[`(π̃)]

Chspin
π̃(T )(ξ) Chspin

π̃(T c)(ξ)

×
r∑
s=0

r!
s!(r − s)!

(n− |π̃(T )|)!
(n− |π̃(T )| − s)!

(n− |π̃(T c)|)!
(n− |π̃(T c)| − (r − s))! .

Here it is easy to see that

r∑
s=0

r!
s!(r − s)!

(n− |π̃(T )|)!
(n− |π̃(T )| − s)!

(n− |π̃(T c)|)!
(n− |π̃(T c)| − (r − s))!

= r!
r∑
s=0

(
n−|π̃(T )|

s

)(
n−|π̃(T c)|

r−s

)
= r!

(
2n−|π̃(T )|−|π̃(T c)|

r

)
= (2n−|π̃|)!

(2n−|π̃|−r)! .
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Thus we have obtained∑
S⊆[`(π)]

Chspin
π(S)(ξ) Chspin

π(Sc)(ξ) = (2n− |π̃|)!
(2n− |π̃| − r)!

∑
S⊆[`(π̃)]

Chspin
π̃(T )(ξ) Chspin

π̃(T c)(ξ)

= (2n− |π̃|)!
(2n− |π̃| − r)! Chπ̃

(
D(ξ)

)
= Chπ

(
D(ξ)

)
which concludes the proof. Here the second equality follows from the previous part of
the present proof and the third equality follows from (22). �

3.3. The main result 2. Spin characters in terms of linear characters.
Formulas (17) can be viewed as an upper-triangular system of equations with un-
knowns (Chspin

π )π∈OP . It can be solved, for example

(23)



Chspin
k1

= C̃hk1 ,

Chspin
k1,k2

= C̃hk1,k2 − C̃hk1 C̃hk2 ,

Chspin
k1,k2,k3

= C̃hk1,k2,k3

− C̃hk1,k2 C̃hk3 − C̃hk1,k3 C̃hk2 − C̃hk2,k3 C̃hk1

+ 3C̃hk1C̃hk2C̃hk3 ,

...

The general pattern is given by the following result.

Theorem 3.3 (The main result 2: spin in terms of linear). For any π ∈ OP such that
π 6= ∅ the following equality between functions on the set SP of strict partitions holds
true:
(24) Chspin

π =
∑
I

(−1)|I|−1 (2|I| − 3)!!
∏
b∈I

C̃h(πi:i∈b),

where the sum runs over all set-partitions of the set [`(π)] and where we use the
convention that (−1)!! = 1.

Proof. By singling out the partition I in (16) which consists of exactly one block we
may express the spin character Chspin

π in terms of the linear character C̃hπ and spin
characters Chspin

π′ which correspond to partitions π′ ∈ OP with `(π′) < `(π):

(25) Chspin
π = C̃hπ −

∑
I:
|I|=2

∏
b∈I

Chspin
(πi:i∈b) .

By applying this procedure recursively to the spin characters on the right-hand side,
we end up with an expression for Chspin

π as a linear combination (with integer coeffi-
cients) of the products of the form

(26)
∏
b∈I

C̃h(πi:i∈b)

over set-partitions I of [`(π)]. The remaining difficulty is to determine the exact value
of the coefficient of (26) in this linear combination.

The above recursive procedure can be encoded by a tree as follows. Each vertex
which is a leaf is labelled by some linear character C̃h(πi:i∈c) for some non-empty
subset c ⊆ [`(π)] or — to keep the notation light — by the set c. Each vertex which
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is not a leaf is labelled by some spin character Chspin
(πi:i∈c) for some non-empty subset

c ⊆ [`(π)] or — to keep the notation light — by the set c.
Each vertex c ⊆ [`(π)] which is not a leaf has exactly two children c1, c2 ⊆ [`(π)]

which are non-empty, disjoint sets such that c = c1tc2. Thus the labels of all non-leafs
are uniquely determined by the labels of the leafs, so we may remove these non-leaf
labels. Since we are interested in the coefficient of (26), we require that the set of leaf
labels is equal to the set of blocks of I from (26).

The resulting non-ordered trees with the property that each non-leaf vertex has
exactly two children are known as total binary partitions; the cardinality of such trees
with the prescribed set I of leaf labels is equal to (2|I| − 3)!!, cf. [34, Example 5.2.6].

Our recursive procedure involves change of the sign; such a change occurs once
for each non-leaf vertex. Thus each total binary tree contributes with multiplicity
(−1)|I|−1 which concludes the proof. �

4. Proof of spin Stanley character formula
Proof of Theorem 1.4. We start with Theorem 3.3 and substitute each normalized
linear character

C̃h(πi:i∈b)(ξ) = 1
2 Ch(πi:i∈b)

(
D(ξ)

)
which contributes to the right-hand side of (24) by the linear Stanley character for-
mula (6).

We shall discuss in detail the case when π = (π1, π2) consists of just two parts.
We will view Sπ1 , Sπ2 and Sπ1+π2 as the groups of permutations of, respectively,
the set {1, . . . , π1}, {π1 + 1, . . . , π1 + π2} and {1, . . . , π1 + π2}. In this way we may
identify Sπ1×Sπ2 as a subgroup of Sπ1+π2 . As usually, we identify (π1) ∈ Sπ1 , (π2) ∈
Sπ2 with arbitrary permutations with prescribed cycle structures; then (π1, π2) :=(
(π1), (π2)

)
∈ Sπ1 × Sπ2 ⊆ Sπ1+π2 is also a permutation with appropriate cycle

structure. With these notations we have

(27) Chspin
(π1,π2)(ξ) = (−1)!!

2 Ch(π1,π2)
(
D(ξ)

)
− 1!!

22 Ch(π1)
(
D(ξ)

)
Ch(π2)

(
D(ξ)

)
= (−1)!!

2
∑

σ1,σ2∈Sπ1+π2
σ1σ2=(π1,π2)

(−1)σ1Nσ1,σ2

(
D(ξ)

)

− 1!!
22

∑
σ

(1)
1 ,σ

(1)
2 ∈Sπ1

σ
(1)
1 σ

(1)
2 =(π1)

(−1)σ
(1)
1 N

σ
(1)
1 ,σ

(1)
2

(
D(ξ)

)

×
∑

σ
(2)
1 ,σ

(2)
2 ∈Sπ2

σ
(2)
1 σ

(2)
2 =(π2)

(−1)σ
(2)
1 N

σ
(2)
1 ,σ

(2)
2

(
D(ξ)

)

= (−1)!!
2

∑
σ1,σ2∈Sπ1+π2
σ1σ2=(π1,π2)

(−1)σ1Nσ1,σ2

(
D(ξ)

)

− 1!!
22

∑
σ1,σ2∈Sπ1×Sπ2
σ1σ2=(π1,π2)

(−1)σ1Nσ1,σ2

(
D(ξ)

)
,

where the last equality follows from identification between the pair (σ(1)
i , σ

(2)
i ) with

the corresponding permutation σi ∈ Sπ1 ×Sπ2 .
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In general,

(28) Chspin
π (ξ) =

∑
σ1,σ2∈S|π|
σ1σ2=π

cσ1,σ2 (−1)σ1 Nσ1,σ2

(
D(ξ)

)
for some combinatorial factor cσ1,σ2 . For example, in the special case π = (π1, π2)
which consists of two parts, (27) implies that

cσ1,σ2 =


(−1)!!

2 − 1!!
22 if σ1, σ2 ∈ Sπ1 ×Sπ2 ,

(−1)!!
2 otherwise.

We claim that in the general case the value of the constant cσ1,σ2 is equal to

(29) Cm := cσ1,σ2 = (−1)
∑
p

{
m

p

}(
−1

2

)p
(2p− 3)!!,

where m = |σ1 ∨ σ2| is the number of orbits in the set [|π|] under the action of the
group 〈σ1, σ2〉 generated by σ1, σ2, and

{
m
k

}
denotes Stirling numbers of the second

kind. Indeed, the set-partition I (over which we sum in (24)) can be identified with a
set-partition on the set of the cycles of the permutation π ∈ S|π|. With this in mind
we see that to cσ1,σ2 contribute only these set-partitions I on the right-hand side of
(24) for which I is bigger than the set-partition given by the orbits of 〈σ1, σ2〉. The
collection of such set-partitions can be identified with the collection of set-partitions
of an m-element set (i.e. the set of orbits of 〈σ1, σ2〉). For a fixed value p := |I| of the
number of the blocks there are clearly

{
m
p

}
choices of I; each contributes to cσ1,σ2

with the multiplicity

(−1)p−1 (2p− 3)!! 1
2p ;

this concludes the proof of (29).
The sum in (29) can be probably calculated by a clever trick which we, regretfully,

failed to find. From our perspective the exact form of the right-hand side of (29) is not
important; in the following we will make use only of the observation that cσ1,σ2 = Cm
depends only on the number of the orbits of 〈σ1, σ2〉.

In order to evaluate Cm we shall consider (28) in the special case of π = 1m. In this
case σ2 = σ−1

1 ; we denote by l = |C(σ1)| the number of cycles of σ1. It follows that

Chspin
1m (ξ) = n↓m =

∑
l

[
m

l

]
Cl (−1)m−l (2n)l,

where n = |ξ| and
[
m
l

]
denotes Stirling number of the first kind. Both sides of the

equality are polynomials in the variable n; by comparing the leading coefficients
(which corresponds to setting l = m) we conclude that

Cm = 1
2m .

By substituting this value into (28) we conclude the proof. �

5. Proof of Theorem 1.7
Maps which we consider come in two distinct flavours: non-oriented maps versus
oriented maps. We review their difference in the following.
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5.1. Non-oriented maps, revisited. We keep notations from Sections 1.5.1
and 1.5.2. The polygons from the collection P have labelled edges. These labels can
be erased and we would be still able to recover them if we preserve the following
information:

• we paint the polygons from the collection P with distinct colors;
• on each polygon from P we select some white vertex (“root”);
• on each polygon from P we select one of the two edges adjacent to the root
(“direction of rotation(2)”).

The roots and the directions of rotation were indicated on Figure 3 by arrows and
harpoons respectively.

We recall that the maps which we consider are obtained by gluing the polygons
with labelled edges. As a result, each edge of the map carries two labels; one on each
side of the edge, see Figure 4. We can erase these labels and still be able to recover
them if we preserve the following information:

• we paint each face of the map with the colour of the corresponding polygon
from P (so that we know the correspondence between the faces of the map
and the polygons);

• on each face of the map we decorate the white corner (“root”) which corre-
sponds to the root of the corresponding polygon from P;

• on each face we decorate one of the two edges adjacent to the root which
corresponds to the direction of rotation of the corresponding polygon from P.

The roots and the directions of rotation are indicated on Figure 4 by arrows and
harpoons respectively.

5.2. Oriented maps. We say that a map is oriented if the surface Σ is orientable
and on each connected component some orientation is selected, see Figure 6.

Summation over oriented maps with a specified face-type π should be understood as
follows: we start by fixing an appropriate collection P of polygons with labelled edges,
bicolored vertices, and with face-type π. Additionally, on each polygon we choose
some orientation (“which direction of rotation should be understood as clockwise”),
see Figure 5. Then we consider only these perfect matchings on the set of all edges,
which result with a glueing of the polygons with the property that the originally
selected orientations on the polygons are consistent when one crosses an edge. We
sum over the resulting oriented map.

5.3. Labels on oriented maps. In the context of the oriented maps it is more
convenient to label only some edges of the oriented polygons from P; more specifcially
we label only these edges which — if one traverses the edges in the clockwise cyclic
order — start with a white vertex, see Figure 5. The labelling can be encoded by a
permutation π, the cycles of which correspond to the cyclic order of the labels around
the polygons (in the clockwise direction), see Figure 5.

With this convention, the orientations of the polygons are consistent in the map
obtained by glueing the edges of P if and only if in each pair of glued edges exactly
one carries a label, see Figure 6.

The structure of such an oriented map can be uniquely recovered from the pair of
permutations σ1, σ2, where the cycles of σ1 encode the counterclockwise cyclic order
around the white vertices while the cycles of σ2 encode the counterclockwise cyclic

(2)Even though the name orientation would sound more appropriate here, we decided to reserve
the latter word for the context of oriented maps.
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1

23

4

5

6

7

Figure 5. A collection of oriented polygons of face type (7).
The labeling of the edges corresponds to the permutation π =
(1, 2, 3, 4, 5, 6, 7) ∈ S7. The root is indicated by the thick blue ar-
row. The orientation is indicated by the circular arrow.

4

4

6
6

2
3

5

7
11

Figure 6. Example of an oriented map. The map is drawn on a
torus: the left side of the square should be glued to the right side,
as well as bottom to top, as indicated by the arrows. The thick blue
arrow indicates the root of the face. The orientation is indicated by
the circular arrow. This map was created by glueing the edges of the
oriented collection of polygons from Figure 5.

order around the black vertices. For example, for the map from Figure 6 we have

σ1 = (1, 6)(2)(3)(4, 7, 5),
σ2 = (1, 2, 3, 5)(4, 7, 6).

It is easy to see that the product

π = σ1σ2
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is the aforementioned permutation π which gives the clockwise order of the labels on
the polygons from P. In our example

π = σ1σ2 = (1, 2, 3, 4, 5, 6, 7),

see Figure 5.
With this in mind, it is easy to see that, for a given integer partition π, the sum-

mation over oriented maps with face-type π is equivalent to fixing some permutation
π ∈ S|π| with the cycle decomposition given by the partition π, and considering all
solutions to the equation{

(σ1, σ2) : σ1, σ2 ∈ S|π|, σ1σ2 = π
}
.

5.4. Proof of Theorem 1.7. Our proof will be based on a simple double counting
argument.

Proof of Theorem 1.7. In the light of the discussion from Section 5.3, the right-hand
side of (7) can be interpreted as a sum over oriented maps with face-type π.

The oriented maps which we consider have labelled edges. We can remove these
labels and still be able to recover them if we preserve the following information:

• we paint each face of the map with the colour of the corresponding polygon
from P;

• on each face of the map we decorate the white corner (“root”) which corre-
sponds to the root of the corresponding polygon from P;

• on each connected component of the map we indicate the orientation.
There are 2`(π) ways to choose direction of the rotation on each face a map (in the

spirit of Section 5.1). It follows from (7) that

Chspin
π (ξ) =

∑
M

1
2c(M)

1
2`(π) (−1)|π|−|V◦(M)| NM

(
D(ξ)

)
,

where the sum runs over oriented maps with coloured faces, with each face having a
decorated white corner, and with each face having some selected direction of rotation.
Above, c(M) denotes the number of connected components of M ; with notations of
(7) we clearly have c(M) = |〈σ1, σ2〉|.

Let us remove the information about the orientation. In the light of Section 5.1,
the resulting object is a non-oriented map which happens to be orientable. Clearly, for
each such a non-oriented but orientable map there are 2c(M) choices for the orientation
on each connected component of M . It follows that

Chspin
π (ξ) =

∑
M

1
2`(π) (−1)|π|−|V◦(M)| NM

(
D(ξ)

)
,

where the sum runs over non-oriented but orientable maps with face-type π, as re-
quired. �

6. Multirectangular coordinates, spin Stanley polynomials
Our ultimate goal is to prove Theorems 1.8 and 1.9 which provide the link between
(the filtration on) the linear Kerov–Olshanski algebra A and its spin counterpart Γ;
we will do this in Section 8.

We start in this section by preparing the tools: multirectangular coordinates and
Stanley polynomials.
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p1
q1

p2

q2

Figure 7. Multirectangular coordinates for partitions.

p1
q1

p2
q2

Figure 8. Multirectangular coordinates for strict partitions.

6.1. Multirectangular coordinates. Following Stanley [35], for tuples of inte-
gers P = (p1, . . . , pl), Q = (q1, . . . , ql) such that p1, . . . , pl > 0 and q1 > · · · > ql > 0
we consider the corresponding multirectangular partition P ×Q, cf. Figure 7.

De Stavola [5] adapted this notion to strict partitions: for tuples of integers P =
(p1, . . . ,pl), Q = (q1, . . . ,ql) such that p1, . . . ,pl > 0 and q2 6 q1 − p1, q3 6
q2 − p2, . . . , ql 6 ql−1 − pl−1, 0 6 ql − pl he considered a multirectangular strict
partition P � Q, cf. Figure 8; note that in the original work of De Stavola both
the multirectangular partition as well as the multirectangular strict partition were
denoted by the same symbol ×.

The following result gives a link between the shifted multirectangular coordinates
of a given strict partition ξ ∈ SP and the multirectangular coordinates of its double
D(ξ).
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Lemma 6.1. For each l > 1 there exist polynomials

p1, . . . , pl, q1, . . . , ql ∈ Z[p1, . . . ,pl,q1, . . . ,ql] of degree 1

with the property that
D(P�Q) = P ×Q.

Proof. The desired polynomials are given by

(30)



p1 = p1, q1 = q1 + 1,
p2 = p2, q2 = p1 + q2 + 1,
...

...
pl = pl, ql = p1 + · · ·+ pl−1 + ql + 1,

pl+1 = ql − pl, ql+1 = p1 + · · ·+ pl,
pl+2 = ql−1 − (ql + pl−1), ql+2 = p1 + · · ·+ pl−1,

...
...

p2l = q1 − (q2 + p1), q2l = p1.

�

6.2. Stanley polynomials. Multirectangular coordinates P,Q provide a conve-
nient way of parametrizing partitions; the fact that a partition can be represented
in several ways with such coordinates is not relevant.

In particular, for a function F ∈ A it is convenient to consider a map

(31) (P,Q) 7→ F (P ×Q)

which — as it turns out — can be identified with a unique polynomial in the multirect-
angular coordinates. This polynomial, which is referred to as Stanley polynomial [35],
is a convenient tool for studying some enumerative and asymptotic problems of the
representation theory of the symmetric groups [7].

The explicit form of this Stanley polynomial Chπ(P ×Q) in the special case when
F = Chπ is the normalized character was conjectured by Stanley [36] and proved by
Féray [10], see also [11]; we will refer to this result as Stanley character formula (it is
just a reformuation of Theorem 1.3).

De Stavola [5] initiated investigation of the analogous coordinates for a function
F ∈ Γ and he asked for a closed formula for Chspin

π (P�Q).

6.3. Closed formula for spin Stanley polynomial. Multirectangular coordi-
nates are very convenient in the context of Stanley character formula. More specifi-
cally, it is easy to see that

(32) Nσ1,σ2(P ×Q) =
∑
κ2

∏
c1∈C(σ1)

qκ1(c1)
∏

c2∈C(σ2)

pκ2(c2),

where the sum runs over all functions κ2 : C(σ2)→ [l] and the function κ1 : C(σ1)→
[l] is defined by

κ1(c1) = max
{
κ2(c2) : c2 ∈ C(σ2) and c1 ∩ c2 6= ∅

}
for c1 ∈ C(σ1).

The explicit form of the Stanley polynomial Chspin
π (P�Q) for π ∈ OP can be found

by combining Theorem 1.4 applied to ξ = P � Q and P × Q = D(P � Q) with
Lemma 6.1. In order to prove the uniqueness of this polynomial one can adapt the
corresponding part of the proof of [8, Lemma 2.4].

Algebraic Combinatorics, Vol. 3 #1 (2020) 272



Linear versus spin

7. Asymptotics of spin Stanley polynomials
Recall that our ultimate goal is to prove Theorems 1.8 and 1.9 which provide the
link between (the filtration on) the linear Kerov–Olshanski algebra A and its spin
counterpart Γ.

As an intermediate step we present in this section the link between the filtration on
the (linear or spin) Kerov–Olshanski algebra and the degrees of Stanley polynomials
(Propositions 7.2 and 7.4) which might be of independent interest.

7.1. Filtration vs Stanley polynomials: the linear case.

Lemma 7.1. For arbitrary integer partition π the corresponding linear Stanley poly-
nomial Chπ(P ×Q) is of degree |π|+ `(π).

Its homogeneous top-degree part is given by

(33) (Chπ)top (P ×Q) :=
∑

σ1,σ2∈Sk
σ1σ2=π

|C(σ1)|+|C(σ2)|=|π|+`(π)

(−1)σ1 Nσ1,σ2(P ×Q).

Proof. Our strategy is to investigate the summands on the right-hand side of the
linear Stanley character formula (6) . Note that (32) implies that

(34) Nσ1,σ2

(
P ×Q

)
∈ Z[p1, . . . , pl, q1, . . . , ql]

is a homogeneous polynomial of degree |C(σ1)|+ |C(σ2)|.
For a permutation π ∈ Sk we denote by ‖π‖ := k − |C(π)| the minimal number

of factors necessary to write π as a product of transpositions. Triangle inequality for
π = σ1σ2 implies that

(35) |C(σ1)|+ |C(σ2)| = 2k −
(
‖σ1|+ ‖σ2‖

)
6 2k − ‖π‖ = |π|+ `(π).

It follows therefore that
Chπ(P ×Q)

is indeed a polynomial of degree bounded from above by |π|+ `(π), as required.
In order to find the homogeneous top-degree part of this polynomial it is enough to

restrict the summation in (7) to the pairs σ1, σ2 for which (35) becomes equality. �

Proposition 7.2. Let F ∈ A and k > 0 be an integer.
Then F ∈ Fk if and only if for each integer l > 1

(36) F (P ×Q) ∈ C[p1, . . . , pl, q1, . . . , ql]

is a polynomial of degree at most k.

Proof. The vector space Fk is a linear span of certain normalized characters; for
this reason it is enough to consider F = Chπ ∈ Fk with π as in (11). Application
of Lemma 7.1 concludes the proof of the implication in one direction.

We shall prove the opposite implication. Let m > 0 be the minimal integer with
the property that F ∈ Fm; our goal is to show that m 6 k. Suppose that this is not
the case and m > k. We consider the map

(37) Ψm : Fm 3 G 7→
(

[homogeneous part of degree m] G(P ×Q)
)∣∣∣∣
p1=···=pl=1

which selects the top-degree homogeneous part of Stanley’s polynomial and afterwards
substitutes p1 = · · · = pl = 1. We will show that ker Ψm = Fm−1, provided l > m;
this would conclude the proof because m > k implies that F ∈ ker Ψm = Fm−1 which
contradicts the minimality of m.
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Clearly the quotient space Fm/Fm−1 is a linear span of

(38)
(

Chπ +Fm−1 : |π|+ `(π) = m
)
.

The map Ψm maps the family (38) to

(39)
(
Ψm(Chπ) : |π|+ `(π) = m

)
;

for our purposes of proving ker Ψm = Fm−1 it is enough to show that (39) is a family
of linearly independent vectors. We shall do it in the following.

In order to find the top-degree part of the polynomial

(40) Ψm(Chπ) ∈ Z[q1, . . . , ql]

we combine (33) with (32). This top-degree part corresponds to these summands
in (33) for which |C(σ1)| takes the maximal possible value. This is clearly the sum-
mand for σ1 = id ∈ S|π| and σ2 = π ∈ S|π|. In this way we proved that (40) is a
polynomial of degree |π| and its homogeneous part of this maximal degree is equal to
the power-sum symmetric function

(41) pπ(q1, . . . , ql).

Suppose that

(42)
∑

|π|+`(π)=m

aπ Ψm(Chπ) = 0

for some coefficients aπ ∈ C which are not all equal to zero and denote n := max{|π| :
aπ 6= 0}. We consider the homogeneous part of the polynomial on the left-hand side
of (42) of degree n; by maximality of n, only partitions π with |π| = n contribute, and
each such a partition contributes with the power-sum symmetric function (41). Since
power-sum symmetric polynomials in l variables of degree n 6 m 6 l are linearly
independent, it follows that aπ = 0 for |π| = n which contradicts the definition of n.
This concludes the proof of the equality ker Ψm = Fm−1. �

This result has a spin counterpart (Proposition 7.4), however adapting the above
proof to the spin setup requires some preparations which we present below.

Figure 9. The overlap double Dover(ξ) = (6, 6, 4, 3, 2, 2) of the strict
partition ξ = (6, 5, 2) from Figure 1.

7.2. Overlap double of a strict partition. For a strict partition ξ ∈ SP we
consider its overlap double Dover(ξ) ∈ P which is obtained by combining the shifted
Young diagram ξ and its transpose so that they overlap along the diagonal boxes,
cf. Figure 9.
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Let p1, . . . , pl, q1, . . . , ql ∈ Z[p1, . . . ,pl,q1, . . . ,ql] be the homogeneous part of de-
gree 1 of the polynomials (30); in other words

(43)



p1 = p1, q1 = q1,

p2 = p2, q2 = p1 + q2,

...
...

pl = pl, ql = p1 + · · ·+ pl−1 + ql,
pl+1 = ql − pl, ql+1 = p1 + · · ·+ pl,
pl+2 = ql−1 − (ql + pl−1), ql+2 = p1 + · · ·+ pl−1,

...
...

p2l = q1 − (q2 + p1), q2l = p1.

It is easy to check that with this choice

(44) Dover(P�Q) = P ×Q.

7.3. Top-degree part of spin Stanley polynomials. Lemma 7.1 has the fol-
lowing spin counterpart.

Lemma 7.3. For arbitrary π ∈ OPk the corresponding spin Stanley polynomial
Chspin

π (P�Q) is of degree |π|+ `(π). Its homogeneous top-degree part is given by

(45)
(

Chspin
π

)top
(P�Q)

:=
∑

σ1,σ2∈Sk
σ1σ2=π

|C(σ1)|+|C(σ2)|=|π|+`(π)

1
2|σ1∨σ2|

(−1)σ1 Nσ1,σ2

(
Dover(P�Q)

)
.

Proof. We revisit the proof of Lemma 7.1 but this time we consider the spin Stanley
formula (7). Lemma 6.1 implies therefore that

(46) Nσ1,σ2

(
D(P�Q)

)
∈ Z[p1, . . . ,pl,q1, . . . ,ql]

is an inhomogeneous polynomial of the degree |C(σ1)| + |C(σ2)|, obtained from (34)
by the substitution (30).

The homogeneous part of (46) of this top degree can therefore be obtained from (34)
by the homogeneous substitution (43). Equation (44) implies therefore that this ho-
mogeneous part is equal to

(47) Nσ1,σ2

(
Dover(P�Q)

)
∈ Z[p1, . . . ,pl,q1, . . . ,ql].

Inequality (35) implies therefore that

Chspin
π (P�Q)

is indeed a polynomial of degree bounded from above by |π|+ `(π), as required.
In order to find the homogeneous top-degree part of this polynomial it is enough

to: (a) restrict the summation in (7) to pairs σ1, σ2 for which (35) becomes equality
and then (b) to consider the homogeneous part (47) of the surviving summands. This
concludes the proof. �
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7.4. Filtration vs Stanley polynomials: the spin case.

Proposition 7.4. Let F ∈ Γ and k > 0 be an integer.
Then F ∈ Gk if and only if for each integer l > 1

F (P�Q) ∈ C[p1, . . . ,pl,q1, . . . ,ql]

is a polynomial of degree at most k.

Proof. We revisit the proof of Proposition 7.2 and review the necessary changes.
We replace each occurrence of Fk by Gk and each linear character Chπ with π ∈ P

by its spin counterpart Chspin
π with π ∈ OP. Reference to Lemma 7.1 should be

replaced by Lemma 7.3.
Instead of Ψm we consider the map

(48) Ψspin
m : Gm 3 G 7→

(
[homogeneous part of degree m] G(P�Q)

)∣∣∣∣
p1=···=pl=1

which selects the top-degree homogeneous part of spin Stanley’s polynomial and af-
terwards substitutes p1 = · · · = pl = 1.

The only part which requires some changes in the spin context is the proof that if
m = |π| + `(π) then Ψspin

m (Chspin
π ) ∈ Q[q1, . . . ,ql] is a polynomial of degree |π| and

its homogeneous part of this maximal degree is equal to the power-sum symmetric
function pπ(q1, . . . ,ql). We present this proof below.

Let us fix some σ1, σ2 ∈ S|π| which contribute to (45). The colorings which con-
tribute to Nσ1,σ2(λ) with

λ = Dover
(
(1, . . . , 1)�Q

)
= Dover(q1, . . . ,ql)

can be enumerated by the following algorithm. Firstly, we select some set of cycles of
σ1 and some set of cycles of σ2 (we will call the cycles which belong to them special
cycles). Secondly, we assign to these special cycles the values of f1 and f2 from the set
[l] in an arbitrary way. The above two steps do not depend on the variables q1, . . . ,ql,
but they do depend on l, the number of the variables.

In the third step we associate to all non-special cycles the values of f1 and f2 from
the set {l+1, l+2, . . . } in such a way that f = (f1, f2) is a colouring of (σ1, σ2) which
is compatible with λ. Without loss of generality we may assume that whenever two
cycles c1 ∈ C(σ1), c2 ∈ C(σ2) intersect, at least one of them is special; otherwise the
column f1(c1) and the row f2(c2) would intersect outside of the Young diagram λ and
there would be no such colourings which are compatible with λ. For each i ∈ [l] in
i-th row of λ there are qi + i− 1 boxes and l of them are forbidden by non-speciality
requirement; it follows that the number of choices in this third step is equal to
(49) ∏

c1∈C(σ1),
c1 is not special

[
qg1(c1) +g1(c1)−1− l

]
 ∏

c2∈C(σ2),
c2 is not special

[
qg2(c2) +g2(c2)−1− l

] ,

where for c1 ∈ C(σ1), c2 ∈ C(σ2) which are not special we define

g1(c1) = max
{
f2(c2) : c2 ∈ C(σ2), c2 is special

and the cycles c1 and c2 intersect
}
,

g2(c2) = max
{
f1(c1) : c1 ∈ C(σ1), c1 is special

and the cycles c1 and c2 intersect
}
.
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The exact form of (49) is not really important; we will use only the observation that
it is a polynomial in q1, . . . ,ql of degree equal to the number of non-special cycles.
Since we are interested in the top-degree part of the polynomial Ψspin

m (Chspin
π ) ∈

Q[q1, . . . ,ql], hence our goal is to maximize the number of such non-special cycles.
In the following it will be sometimes convenient to identify a given cycle c ∈ C(σ1)t

C(σ2) with its support c ⊆ [|π|] which is a non-empty subset of [|π|] = {1, . . . , |π|}.
We denote by N ⊆ C(σ1) t C(σ2) the set of all non-special cycles. We consider
an arbitrary map s : N → [|π|] which to any non-special cycle associates one of its
elements, i.e. f(c) ∈ c for c ∈ C(σ1) t C(σ2). The map s is injective; otherwise this
would contradict the assumption that any two non-special cycles are disjoint. This
has twofold consequences.

Firstly, the number of non-special cycles is bounded from above by |π| so the degree
of the polynomial Nσ1,σ2(λ) ∈ Z[q1, . . . ,ql] is bounded from above by |π|.

Secondly, if this bound on the number of non-special cycles is saturated, the map s
is a bijection. In this case for each x ∈ [|π|] exactly one of the following two possibilities
holds true: either

• (x) is a non-special cycle of σ1 and x belongs to some special cycle of σ2, or
• (x) is a non-special cycle of σ2 and x belongs to some special cycle of σ1.

The above discussion implies that the product σ1σ2 ∈ S|π| can be calculated in a
very simple way. Indeed, let us consider some special cycle c; let us say that it is a cycle
of σ1. Since σ2 restricted to the support of c is equal to the identity, the restriction of
the product σ1σ2 to the support of c coincides with the cycle c. An analogous result
remains true in the case when c is a special cycle of σ2. In this way we proved that
the product σ1σ2 coincides with the collection of the special cycles.

In this way we proved that if the number of non-special cycles achieves its maximal
value |π|, each cycle of π = σ1σ2 ∈ S|π| is either a special cycle of σ1 or a special
cycle of σ2 and there are no other special cycles.

For example, if π = (π1) ∈ OP is an odd partition which consists of only one part
and

π = (1, 2, . . . , π1) ∈ Sπ1

is the corresponding permutation, the maximal number of non-special cycles is ob-
tained for the following two choices:

σ1 = id = (1)(2) · · · (π1)︸ ︷︷ ︸
non-special cycles

, σ2 = (1, 2, . . . , π1)︸ ︷︷ ︸
special cycle

,

and
σ1 = (1, 2, . . . , π1)︸ ︷︷ ︸

special cycle

, σ2 = id = (1)(2) · · · (π1)︸ ︷︷ ︸
non-special cycles

.

If j denotes the value of the function fi, i ∈ {1, 2}, on the unique special cycle, the
homogeneous top-degree part of the corresponding summand

1
2|σ1∨σ2|

(−1)σ1 Nσ1,σ2(λ)

on the right-hand side of (45) is equal to
1
2
∑
j

qπ1
j

because π1 is an odd integer.
In general, for each cycle of π there are two choices analogous to the ones above.

It follows that in total there are 2`(π) choices for σ1 and σ2 and which of the cycles
are special. For each such a choice the total contribution of (49) is a polynomial of
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degree |π|, with the homogeneous part equal to 1
2`(π) pπ(q1, . . . ,ql), a multiple of the

power-sum symmetric polynomial. This concludes the proof. �

8. Proof of Theorems 1.8 and 1.9
Proof of Theorem 1.8.

Proof that D∗(A) ⊆ Γ. The algebra A has an algebraic basis given by the functions
S2, S3, . . . with

Sk(λ) = (k − 1)
∫∫

(x,y)∈λ
(x− y)k−2 dx dy,

see [7].
The i-th row of a shifted Young diagram ξ corresponds to two rectangles in the

double D(ξ). By calculating the integral over each of the rectangles it follows that

(D∗Sk)(ξ) =
1
k

∑
i

(
−ξki + (ξi + 1)k + 0k − 1k

)
+
(
−(1− ξi)k + (−ξi)k + 1k − 0k

)
.

It is easy to check that the polynomial in the variable ξi which appears in the above
formula is an odd polynomial; it follows therefore that D∗Sk ∈ C[p1, p3, p5, . . . ] is a
symmetric function which is supersymmetric. By a result of Ivanov [15, Section 6] it
follows that D∗Sk ∈ Γ.

Proof that D∗ is surjective. We will prove a stronger result Gk ⊆ D∗(Fk) below, in
the proof of Theorem 1.9. �

Proof of Theorem 1.9.
Proof that the family (Gk) is a filtration on the algebra Γ. Suppose that F1 ∈ Gk1

and F2 ∈ Gk2 . We apply Proposition 7.4; for i ∈ {1, 2} it follows that Fi(P �Q) ∈
C[p1, . . . ,pl,q1, . . . ,ql] is a polynomial of degree at most ki hence the product F1(P�
Q)F2(P � Q) is a polynomial of degree at most k1 + k2. We apply Proposition 7.4
again; it follows that F1F2 ∈ Gk1+k2 . This implies that (Gk) is indeed a filtration.

Proof of the inclusion D∗(Fk) ⊆ Gk. Suppose F ∈ Fk. By Proposition 7.2
and Lemma 6.1 it follows that D∗(F )(P �Q) is a polynomial of degree at most k.
We apply Proposition 7.4; it follows that D∗(F ) ∈ Gk, as required.

Proof of the inclusion Gk ⊆ D∗(Fk). Let us fix an integer k > 0. Let π ∈ OP be
an arbitrary odd partition such that |π|+ `(π) 6 k. We define

xπ := −
∑
I

(
−1

2

)|I|
(2|I| − 3)!!

∏
b∈I

Ch(πi:i∈b) ∈ Fk,

where the sum runs over all set-partitions of the set [`(π)]. Theorem 3.3 implies that
D∗ (xπ) = Chspin

π ; in this way we proved that Chspin
π ∈ D∗(Fk). From the definition

(12) of Gk it follows that Gk ⊆ D∗(Fk), as required. �
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