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Derivatives of Schubert polynomials and
proof of a determinant conjecture of Stanley

Zachary Hamaker, Oliver Pechenik, David E Speyer & Anna
Weigandt

Abstract We study the action of a differential operator on Schubert polynomials. Using this
action, we first give a short new proof of an identity of I. Macdonald (1991). We then prove
a determinant conjecture of R. Stanley (2017). This conjecture implies the (strong) Sperner
property for the weak order on the symmetric group, a property recently established by C. Gaetz
and Y. Gao (2019).

1. Introduction
This paper is motivated by a conjecture of R. Stanley [10, Conjecture 2.2]. Let Sn be
the symmetric group(1) with its standard generating set S = {s1, s2, . . . , sn−1}, and let
Sn(`) denote the subset of those permutations of (Coxeter) length `. For 1 6 ` 6

(
n
2
)
,

let M` be the matrix with rows indexed by Sn(`− 1) and columns indexed by Sn(`),
where the entry in position (u, v) is

M`[u, v] =
{
k, if v = usk and
0, if u−1v /∈ S.

For ` 6
(

n
2
)
− `, the product M̃ (`) = M`+1M`+2 · · ·M(n

2)−` is a square matrix with
rows indexed by Sn(`) and columns indexed by Sn

((
n
2
)
− `
)
. Stanley conjectures an

explicit formula for det M̃ (`), which implies that M̃ (`) is invertible. A motivation for
this conjecture is that M`(u)+1M`(u)+2 · · ·M`(v)[u, v] is nonzero if and only if u 6 v
in weak order. Hence, by standard linear-algebraic arguments (cf. [9, 10]), showing
that det M̃ (`) is nonzero implies that the weak order on the symmetric group has the
(strong) Sperner property.

Recently, C. Gaetz and Y. Gao [5] proved the invertibility of Stanley’s matrix
by constructing an action of the Lie algebra sl2. We give a new proof of invert-
ibility by proving Stanley’s determinant conjecture. Our proof also involves an sl2-
representation, but relies on a new identity for derivatives of Schubert polynomials.
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(1)Interpreting Sn as the group of bijections from {1, 2, . . . , n} to itself, we define multiplication
by wv := v ◦ w.
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The generator si acts on Polyn = C[x1, . . . , xn] by

si · f(x1, . . . , xi, xi+1, . . . , xn) = f(x1, . . . , xi+1, xi, . . . , xn).

We define the Newton divided difference operators on Polyn by

Ni(f) = f − si · f
xi − xi+1

.

(We avoid the more standard notation ∂i because of potential confusion with partial
derivatives.) For w ∈ Sn, the Schubert polynomials Sw are defined by the recurrence

Sskw = NkSw for `(skw) < `(w)

with Sw0 = xn−1
1 xn−2

2 · · ·xn−1. For background on Schubert polynomials, we refer
the reader to [6, 7].

We consider the differential operator∇ =
∑n

i=1
∂

∂xi
. Our key result is the following:

Proposition 1.1. For w ∈ Sn, we have

∇(Sw) =
∑

`(wsk)<`(w)

kSwsk
.

Thus, Stanley’s M -matrices are the matrices of the operator ∇ in the basis of
Schubert polynomials.

We first apply Proposition 1.1 to give a short new proof of a theorem of
Macdonald [6, (6.11)]. We then use Proposition 1.1 to prove Stanley’s conjecture.

Theorem 1.2 (Conjectured by Stanley [10, Conjecture 2.2]). For ` 6
(

n
2
)
− `,

det M̃ (`) = ±
∏̀
k=0

(
(`− k + 1)(`− k + 2) · · ·

((
n

2

)
− `− k

))|Sn(k)|−|Sn(k−1)|
.

We write ± because we have not specified an order on the rows and columns of
each Mi. In more recent work, C. Gaetz and Y. Gao [4] build on the results here to
obtain, among other consequences, an explicit description of the Smith normal form
of M̃ (`).

2. Proof of Proposition 1.1 and a Macdonald identity
We start with a straightforward lemma.

Lemma 2.1. The differential operator ∇ commutes with Ni for all i. That is, for any
f ∈ Polyn, we have

∇(Ni(f)) = Ni(∇(f)).

Proof. If j /∈ {i, i+ 1}, then

∂

∂xj
Ni(f) = 1

xi − xi+1

(
∂

∂xj
(f)− ∂

∂xj
(si · f)

)
.

If j = i, then
∂

∂xi
Ni(f) = 1

xi − xi+1

(
∂

∂xi
(f)− ∂

∂xi
(si · f)

)
− f − si · f

(xi − xi+1)2 .

Similarly, if j = i+ 1, then
∂

∂xi+1
Ni(f) = 1

xi − xi+1

(
∂

∂xi+1
(f)− ∂

∂xi+1
(si · f)

)
+ f − si · f

(xi − xi+1)2 .
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Therefore,

∇(Ni(f)) = f − si · f
(xi − xi+1)2 −

f − si · f
(xi − xi+1)2 +

n∑
j=1

1
xi − xi+1

(
∂

∂xj
(f)− ∂

∂xj
(si · f)

)

=
∑n

j=1
∂

∂xj
(f)−

∑n
j=1

∂
∂xj

(si · f)
xi − xi+1

= ∇(f)−∇(si · f)
xi − xi+1

.

Since ∇ is Sn-invariant, it commutes with si, so we obtain
∇(f)−∇(si · f)

xi − xi+1
= ∇(f)− si · ∇(f)

xi − xi+1
= Ni(∇(f)).

Thus, ∇(Ni(f)) = Ni(∇(f)), as desired. �

Proof of Proposition 1.1. We first verify Proposition 1.1 in the case that w = w0.
Since Sw0 = xn−1

1 xn−2
2 · · ·xn−1, we have

∇(Sw0) =
n−1∑
j=1

(n− j)xn−1
1 xn−2

2 · · ·xn−j+1
j−1 xn−j−1

j xn−j−1
j+1 · · ·xn−1

=
n−1∑
k=1

kxn−1
1 xn−2

2 · · ·xk+1
n−k−1x

k−1
n−kx

k−1
n−k+1 · · ·xn−1.

But also

Sw0sk
= Ssn−kw0 = Nn−k(Sw0) = xn−1

1 xn−2
2 · · ·xk+1

n−k−1x
k−1
n−kx

k−1
n−k+1 · · ·xn−1.

Comparing these equations gives

∇(Sw0) =
n−1∑
k=1

kSw0sk
.

Consider an arbitrary permutation w. Let r =
(

n
2
)
− `(w) and write w =

si1si2 · · · sir
w0. By Lemma 2.1, we have

(?) ∇(Sw) = ∇Ni1 · · ·Nir (Sw0) = Ni1 · · ·Nir∇(Sw0) = Ni1 · · ·Nir

n−1∑
k=1

kSw0sk
.

Hence,

Ni1Ni2 · · ·Nir
(Sw0sk

) =
{
Ssi1 ···sir w0sk

, if `(wsk) =
(

n
2
)
− r − 1 = `(w)− 1

0, otherwise.

Since Ssi1 ···sir w0sk
= Swsk

, Equation (?) then becomes

∇(Sw) =
∑

`(wsk)=`(w)−1

kSwsk
,

as desired. �

Proposition 1.1 yields a short proof of an identity of Macdonald [6, (6.11)]. Another
proof of this result was given by S. Fomin and R. Stanley in terms of nilCoxeter
algebras [3], while a bijective proof was given by S. Billey, A. Holroyd and B. Young [2].
A reduced word for w ∈ Sn is a tuple a = (a1, . . . , a`(w)) such that w = sa1sa2 · · · sa`(w) .
We write R(w) for the set of reduced words of w.
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Theorem 2.2 (Macdonald [6, (6.11)]). Let w ∈ Sn with `(w) = k. Then

1
k!

∑
a∈R(w)

a1a2 · · · ak = Sw(1, 1, . . . , 1).

Proof. For any monomial µ of degree k, we have ∇k(µ) = k!. Since Sw is homoge-
neous of degree k, we then see ∇k(Sw) = k!Sw(1, 1, . . . , 1). On the other hand, by
Proposition 1.1,

∇k(Sw) =
∑

a∈R(w)

a1a2 · · · ak. �

3. A vector space of polynomials
Let W ⊂ Polyn be the span of the monomials of the form xa1

1 xa2
2 · · ·xan

n with 0 6
aj 6 n− j. (In particular, the exponent of xn is required to be 0, so the variable xn

does not occur in any polynomial in W .) Let W` be the subspace of W spanned by
monomials of degree `. We will need the following lemma.

Lemma 3.1 ([1, Proof of Corollary 3.9]). For w ∈ Sn, the Schubert polynomial Sw lies
in W . If we choose a term order with xn > xn−1 > · · · > x1, then the leading term of
Sw is

n∏
j=1

x
#{k : k>j, w(k)<w(j)}
j . �

The list of numbers #{k : k > j, w(k) < w(j)} is the (Lehmer) code of w; taking
the code is a bijection between Sn and {(a1, . . . , an) ∈ Zn : 0 6 aj 6 n − j} (see,
e.g. [7, Proposition 2.1.2]). Thus, Lemma 3.1 implies that the Schubert polynomials
have distinct leading terms and we deduce:

Corollary 3.2. The Schubert polynomials Sw for w ∈ Sn are a basis for W . The
change of basis matrix between {Sw : `(w) = k} and {xa1

1 xa2
2 · · ·xan

n : 0 6 aj 6
n− j,

∑
aj = k} has determinant ±1. �

Proposition 1.1 shows that ∇ : W` → W`−1, in the Schubert basis, is represented
by the matrix M`. Therefore, to prove Theorem 1.2, we must compute

det
(
W(n

2)−`

∇(n
2)−2`

−−−−−−−→W`

)

in the Schubert basis. By Corollary 3.2, we may compute this determinant instead in
the monomial basis. For the remainder of this note, Schubert polynomials disappear
and our goal is to compute the determinant of ∇j acting with respect to the monomial
basis.

We would prefer to have a map from a vector space to itself, so that we could speak
of its determinant without any reference to bases. There is a simple bijection between
the monomial bases of Wk and W(n

2)−k, taking
∏
x

aj

j to
∏
x

n−j−aj

j . For reasons that
will become clear in Section 4, we prefer to twist this map by (−1)k, so we define J
to be the linear endomorphism of W with

J
(∏

x
aj

j

)
= (−1)

∑
aj
∏

x
n−j−aj

j .
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Note that J has determinant ±1 in the monomial basis and that ∇(n
2)−2` ◦ J maps

W` to itself. To finish our proof of Theorem 1.2, it remains to establish

det τ = ±
∏̀
k=0

(
(`− k + 1)(`− k + 2) · · ·

((
n

2

)
− `− k

))|Sn(k)|−|Sn(k−1)|
,

where τ is the linear transformation W`
∇(n

2)−2`◦J−−−−−−−−→W`. We now turn to this task.

4. SL2-representations and a proof of Theorem 1.2
In this section, we discuss some representations of the Lie group SL2 and its Lie algebra
sl2. Our approach to proving Theorem 1.2 via these representations mirrors the general
framework of R. Proctor from [8]; however, we provide a self-contained argument. We
will denote group actions by variants of the letter ρ and the corresponding Lie algebra
actions by variants of σ. We write the standard basis of sl2 as

F =
[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, E =

[
0 1
0 0

]
,

and define the element

J =
[

0 1
−1 0

]
∈ SL2 .

Let Vk be the (k + 1)-dimensional irreducible representation of SL2 and sl2; we
write ρk and σk for the action maps ρk : SL2 → GL(Vk) and σk : sl2 → End(Vk).

One usually describes Vk as the natural action on degree k polynomials in two
variables. For our purposes, it is more convenient to describe Vk as an action on
polynomials of degree 6 k in one variable x. We have

(†)

σk(F )(xj) = jxj−1,
σk(H)(xj) = (2j − k)xj ,
σk(E)(xj) = (k − j)xj+1,
ρk(J)(xj) = (−1)jxk−j .

In particular, for any polynomial f , we have σk(F )(f) = d f
d x .

Identify the vector spaceW from Section 3 with Vn−1⊗Vn−2⊗· · ·⊗V0 by identifying
xa1

1 xa2
2 · · ·xan

n with xa1⊗xa2⊗· · ·⊗xan . We let SL2 and sl2 act on this tensor product
in the standard way, and denote these actions by σW and ρW . We note that W` is
the 2`−

(
n
2
)
weight space, i.e. the 2`−

(
n
2
)
eigenspace of σW (H).

We have

σW (F ) =
n∑

k=1
Id⊗ Id⊗ · · · ⊗ σn−k(F )⊗ · · · ⊗ Id

where σn−k(F ) occurs in the k-th position. Therefore,

σW (F ) · f =
n∑

k=1

∂

∂xk
f = ∇f.

Similarly,
ρW (J) = ρn−1(J)⊗ ρn−2(J)⊗ · · · ⊗ ρ0(J),

so

ρW (J) ·

 n∏
j=1

x
aj

j

 =
n∏

j=1
(−1)ajx

n−j−aj

j = (−1)
∑

aj

n∏
j=1

x
n−j−aj

j = J

 n∏
j=1

x
aj

j

 .
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Thus, our goal of computing det
(
∇(n

2)−2` ◦ J
)
on W` is the same as computing

the determinant of σW (F )(
n
2)−2`ρW (J) as a map from the 2` −

(
n
2
)
weight space of

Vn−1 ⊗ Vn−2 ⊗ · · · ⊗ V0 to itself.
This is a standard computation. By comparing dimensions of weight spaces,

Vn−1 ⊗ Vn−2 ⊗ · · · ⊗ V0 ∼=
⊕

06k6(n
2)−k

V
⊕ |Sn(k)|−|Sn(k−1)|
(n

2)−2k
.

Thus, Theorem 1.2 comes down to showing that σW (F )(
n
2)−2`ρW (J) as a map from

the 2`−
(

n
2
)
weight space of V(n

2)−2k to itself is ±(`−k+ 1)(`−k+ 2) · · · (
(

n
2
)
− `−k).

Consulting the formulas from Equation (†), one sees that

ρ(n
2)−2k(J) x`−k = (−1)`−kx(n

2)−2k−(`−k) = (−1)`−kx(n
2)−`−k

and

σ(n
2)−2k(F )(

n
2)−2`x(n

2)−`−k =
(

d
dx

)(n
2)−2`

x(n
2)−`−k

= (`− k + 1)(`− k + 2) · · ·
((

n

2

)
− `− k

)
x`−k.

Theorem 1.2 follows. �
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