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Random walks on rings and modules

Arvind Ayyer & Benjamin Steinberg

Abstract We consider two natural models of random walks on a module V over a finite com-
mutative ring R driven simultaneously by addition of random elements in V , and multiplication
by random elements in R. In the coin-toss walk, either one of the two operations is performed
depending on the flip of a coin. In the affine walk, random elements a ∈ R, b ∈ V are sampled
independently, and the current state x is taken to ax + b. For both models, we obtain the
complete spectrum of the transition matrix from the representation theory of the monoid of all
affine maps on V under a suitable hypothesis on the measure on V (the measure on R can be
arbitrary).

1. Introduction
Random walks driven simultaneously by addition and multiplication of the form
Xn+1 = anXn + bn, where an, bn are independent, have been considered in the past.
Such chains seem to have been first studied by Chung, Diaconis and Graham [22] on
the field Z/pZ, where p is a prime. The motivation for their study came from the
quest for efficient generation of quasirandom numbers, and those authors studied the
mixing times of these chains for special choices of the distributions of an and bn. For
different choices of these distributions, Hildebrand [29, 30, 31] has also calculated the
mixing times. Asci and Hildebrand–McCollum generalized some of these results to
the vector space (Z/pZ)d [2, 4, 3, 32] with the restriction that an is a deterministic
matrix. In a slightly different direction, questions of convergence of affine random
walks with real vectors are considered in [5].

Another class of random walks driven by both these operations has the flavor

(1) Xn+1 =
{
Xn + bn with probability α,
anXn with probability 1− α,

where again an and bn are chosen independently from some distribution. Bate and
Connor [13] have determined the mixing times of such chains on Z/mZ with m odd
and the probability 1 − α decreasing to zero as m increases. Ayyer and Singla [11]
have considered such chains on a finite commutative ring R where the distribution for
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bn is uniform on R and that of an is arbitrary. They have determined the stationary
distribution, the spectrum of the transition matrix and the mixing time for finite
chain rings.

We consider here the more abstract setting of random walks on finite left R-modules
V over finite commutative rings R. Our methods will work both for the chains of the
form Xn+1 = anXn + bn, which we call the affine random walk, as well as those of
the chain described in (1), which we call a coin-toss walk. In both cases, an and bn
are independent elements of R and V respectively. A word about notation: we shall
use the phrase ‘random walk’ to talk about such chains even though these chains are
not reversible. Technically, random walks refer to reversible Markov chains, but this
terminology has been established by various authors working on random walks on
monoids (cf. [10, 16, 18, 19, 20, 24, 37, 38, 42, 43, 44]) and in the context of random
affine mappings [13, 22] and so we shall continue to use it. In this work, we focus on
the spectral properties of these walks. We plan to take up the study of probabilistic
properties of our walks, such as the stationary distribution and the mixing time, in
future. In particular, part of the motivation for our work is a systematic study of
irreversible Markov chains. The intuition is that irreversible chains have faster mixing
than reversible ones [21, 25, 33, 34].

In this paper the term ‘ring’ means unital ring. Let R be a finite commutative ring
and V a finite left R-module. For both walks, we need probability distributions P on
V and Q on R. As we shall see below, Q can be arbitrary, but P will have to satisfy
a condition. The state space for both random walks will be the module V .

Coin-toss walk. At each step of the walk, we flip a coin which comes up heads
with probability α and tails with probability 1 − α. If the result is heads, we move
from x ∈ V to x + b with probability P (b) and if the result is tails, we move from x
to ax with probability Q(a).

Affine walk. At each step of the walk, we independently choose a ∈ R with proba-
bility Q(a) and b ∈ V with probability P (b) and move to ax+ b. In other words, one
step consists of first multiplying by an element of R chosen randomly according to Q
and then adding an element of V chosen according to P .

Both of these Markov chains can be viewed as random walks for the affine monoid
Aff(V ) of V where Aff(V ) is the monoid of all mappings on V of the form x 7→ ax+ b
with a ∈ R and b ∈ V with composition as the binary operation. So the product
of ax + b and cx + d is acx + ad + b. Note that Aff(V ) is the semidirect product of
the multiplicative monoid M(R) of R with the additive group V , that is, Aff(V ) =
V oM(R), where M(R) acts on V via scalar multiplication. We can view P as a
probability on Aff(V ) supported on the translations x 7→ x+ b and Q as a probability
on Aff(V ) supported on the dilations x 7→ ax. The first model is then the random
walk of Aff(V ) on V driven by the probability αP + (1− α)Q and the second model
is the random walk of Aff(V ) on V driven by the probability PQ (where the product
is convolution of measures).

To state our results, we need some definitions and notation. Recall that the set of
invertible elements in a ring R forms a group, known as the group of units. Denote
by U(R) the group of units of R. We make the convention that R = {0} is a unital
ring and that U(R) = {0} is the trivial group. Note that the only module over the
zero ring is the zero module. Two elements r1, r2 ∈ R are associates if r1 = ur2 with
u ∈ U(R). It therefore seems natural to generalize this terminology to the module
V and so we say that v1, v2 ∈ V are associates if v1 = uv2 for some u ∈ U(R). We
shall in both models impose the additional assumption that associates are equally
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probable under P , that is, P is constant on associates. For example, this trivially
holds for the uniform distribution. One can think of V/U(R) as ‘projective space’ and
then we are asking that P be a pullback of a measure on projective space. We can
also view V/U(R) as the space of cyclic submodules of V , since, for a finite module V ,
v1, v2 ∈ V are associates if and only if Rv1 = Rv2, that is, if and only if v1, v2 generate
the same cyclic submodule. Although this fact can be deduced from [12, Lemma 6.4],
we provide a proof of this for the reader’s convenience that does not require as much
background.

Proposition 1.1. Let V be a finite module over a finite ring R. Then, for v, w ∈ V ,
one has Rv = Rw if and only if U(R)v = U(R)w where U(R) is the group of units
of R.

We give a proof of Proposition 1.1 that relies only on the Krull–Schmidt theorem,
following the second author’s MathOverflow answer [41].

Proof of Proposition 1.1. Clearly, if U(R)v = U(R)w, then Rv = Rw. Turning to the
converse, let r, s ∈ R with rv = w and sw = v. Since R is finite, there exists n > 0 such
that f = (rs)n and e = (sr)n are idempotent (n = |R|! will do). Note that ev = v and
fw = w. Let r′ = fre and s′ = esf . Notice that r′v = w. Moreover, s′r′ = esfre =
es(rs)nre = esr(sr)ne = (sr)3n+1 = (sr)n+1 and so Rs′r′ = Re. Therefore, as s′ ∈
Rf , right multiplication by r′ gives a surjective R-module homomorphism Rf → Re.
Similarly right multiplication by s′ gives a surjective R-module homomorphism Re→
Rf . By finiteness of R we conclude that both these homomorphisms are isomorphisms.
It follows from the Krull–Schmidt theorem [14, Theorem 1.4.6] and the isomorphisms
Re ∼= Rf and Re ⊕ R(1 − e) ∼= R ∼= Rf ⊕ R(1 − f) that R(1 − f) ∼= R(1 − e). Such
an isomorphism R(1− f)→ R(1− e) is given via right multiplication by an element
x ∈ (1− f)R(1− e).

Consider u = r′ + x. Then u is a unit since right multiplication by u gives an
isomorphism from R = Rf⊕R(1−f) to R = Re⊕R(1−e) (as it is the direct sum of the
two isomorphisms Rf → Re and R(1−f)→ R(1− e)) and in a finite ring an element
with a one-sided inverse is invertible. Also uv = (r′+x)v = (r′+x)ev = r′ev = r′v = w
because x ∈ (1 − f)R(1 − e) implies xe = 0. Thus w ∈ U(R)v. This completes the
proof. �

Notice that Proposition 1.1 implies that the natural map U(R) → U(R/I) is
surjective for any ideal I as the generators of the cyclic module R/I are the units
of R/I.

Denote by Â the group of characters of an abelian group A, i.e. Â = Hom(A,U(C)).
We shall denote by 1A the trivial character of A mapping all of A to 1. More generally,
1G will denote the trivial representation of any (not necessarily abelian) group G.

We write V̂ for the character group of the additive group (V,+) and Û(R) for
the group of characters of the multiplicative group U(R). Since the correspondence
A 7→ Â is contravariantly functorial and R is commutative, the action of R on V

by multiplication induces an action of R on V̂ by endomorphisms. More precisely, if
χ ∈ V̂ and r ∈ R, then rχ : V → U(C) is given by (rχ)(v) = χ(rv) for v ∈ V . In
fact, this action turns V̂ into a (finite) R-module since (r + r′)χ(v) = χ((r + r′)v) =
χ(rv + r′v) = χ(rv)χ(r′v) = rχ(v) · r′χ(v). Note that the abelian group structure
of the module V̂ is being written multiplicatively because the operation is pointwise
multiplication. We call V̂ the dual module of V . Of course, |V̂ | = V and ̂̂V is naturally
isomorphic to V . See [45] for more on the Pontryagin dual of a finite module.
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Finally, recall that the transition matrix of a Markov chain on a finite state space
Ω = {ω1, . . . , ωn} (in some ordering) is the n×n matrix whose (i, j)-entry is given by
the one-step probability of making a transition from ωi to ωj . Since the rows of the
transition matrix sum to 1, it is said to be row-stochastic. The next proposition gives
sufficient conditions for the walks we are considering to be irreducible and aperiodic.
They are by no means necessary.

Proposition 1.2. Let P be a probability distribution on V and Q a probability distri-
bution on R.

(1) In the coin-toss walk with heads probability 0 < α < 1, if the support of P
generates the additive group of V , the walk is irreducible. If, in addition, the
monoid generated by the support of Q contains 0, then the coin-toss walk is
aperiodic.

(2) If the support of P generates the additive group of V and the support of Q
contains 1, then the affine walk is irreducible. If, moreover, the submonoid
generated by the support of Q contains 0, then the walk is aperiodic.

Proof. For the first item, one can get from v1 to v2 with non-zero probability be-
cause the translation x 7→ x+ v2 − v1 is in the support of some convolution power of
λ = αP+(1−α)Q by our assumption on P . If, in addition, 0 is in the submonoid gener-
ated by the support ofQ, then some convolution power of λ contains a constant map in
its support and hence, by irreducibility, there is a convolution power of λ that contains
all the constant maps in its support, cf. [10, Proposition 2.5]. The corresponding power
of the transition matrix will be strictly positive. The argument for the second item is
nearly identical, the assumption that 1 is in the support of Q being required to guar-
antee we can get any translation in the support of some convolution power of PQ. �

Since all the entries in the transition matrix are non-negative and at most 1, all
eigenvalues will have absolute value bounded above by 1.

We can now state the main result of this article.

Theorem 1.3. Let R be a finite commutative ring, V a finite R-module, P a probability
on V that is constant on associates and Q a probability on R. Then the eigenvalues
for the transition matrices of both the coin-toss walk and the affine walk on V are
indexed by pairs (W,ρ) where:

(1) W = Rχ is a cyclic R-submodule of V̂ ;
(2) and ρ ∈ ̂U(R/ ann(W )).

The corresponding eigenvalue for the coin-toss walk is αP̂ (χ) + (1 − α)Q̂(ρ) and for
the affine walk is P̂ (χ)Q̂(ρ) where

P̂ (χ) =
∑
b∈V

P (b)χ(b)

Q̂(ρ) =
∑

a∈U(R)+ann(W )

Q(a)ρ(a+ ann(W )).

In both cases, the eigenvalue occurs with multiplicity one.

Note that in the above theorem statement, the value P (χ) depends only on the
cyclic submodule generated by χ and not on χ itself. It is an immediate corollary
that, for generic choices of the parameters, the transition matrix is diagonalizable.

The proof of Theorem 1.3 is based on a careful analysis of the representation the-
ory of the affine monoid Aff(V ). The use of monoid representation theory (outside
of groups) to analyze Markov chains began with the work of Bidigare, Hanlon and
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Rockmore [15], followed by work of Brown and Diaconis [18, 19, 20] and then oth-
ers [6, 7, 8, 9, 10, 16, 17, 23, 38, 42, 43, 44]. An introduction to these methods can
be found in [44, Chapter 14]. All the papers cited above exploit the feature that the
monoids in question only have one-dimensional irreducible representations over the
field of complex numbers (or, equivalently, are faithfully representable by upper tri-
angular matrices over the complex numbers [1, 44]). One novel element in this work
is that the monoid in question, the affine monoid, has irreducible representations of
higher dimensions. This is the first article, to the best of our knowledge, to use the
representation theory of a monoid that is neither a group, nor faithfully representable
by upper triangular matrices, to analyze Markov chains.

We give an example to demonstrate Theorem 1.3.

Example 1.4. Let R be the field Z/2Z and V the vector space R2. Order the elements
of V as ((0, 0), (0, 1), (1, 0), (1, 1)). The probability distribution on R is Q = (q0, q1)
and that on V is P = (pi,j)06i,j61. Being constant on associates forces no condition
on P for this simple example. So the transition matrix of the affine walk is

p0,0 p0,1 p1,0 p1,1
q0p0,0 + q1p0,1 q1p0,0 + q0p0,1 q0p1,0 + q1p1,1 q1p1,0 + q0p1,1
q0p0,0 + q1p1,0 q0p0,1 + q1p1,1 q1p0,0 + q0p1,0 q1p0,1 + q0p1,1
q0p0,0 + q1p1,1 q0p0,1 + q1p1,0 q1p0,1 + q0p1,0 q1p0,0 + q0p1,1

 ,

and its eigenvalues are given by

(1− α)q1 (p0,0 + p0,1 − p1,0 − p1,1) , q1 (p0,0 − p0,1 + p1,0 − p1,1) ,
q1 (p0,0 − p0,1 − p1,0 + p1,1) and 1.

The transition matrix of the coin-toss walk is
(1− α) + αp0,0 αp0,1 αp1,0 αp1,1

(1− α)q0 + αp0,1 (1− α)q1 + αp0,0 αp1,1 αp1,0
(1− α)q0 + αp1,0 αp1,1 (1− α)q1 + αp0,0 αp0,1
(1− α)q0 + αp1,1 αp1,0 αp0,1 (1− α)q1 + αp0,0

 ,

and its eigenvalues are 1,

α (p0,0 + p0,1 − p1,0 − p1,1) + (1− α)q1,

α (p0,0 − p0,1 + p1,0 − p1,1) + (1− α)q1,

and α (p0,0 − p0,1 − p1,0 + p1,1) + (1− α)q1.

Theorem 1.3 has a nice reformulation for Frobenius rings when V is the ring R
itself. This includes rings of the form Z/nZ. Recall that an Artinian ring R (with
Jacobson radical J(R)) is Frobenius if R/J(R) is isomorphic to the socle of R as a
left module and as a right module. (Recall that the socle of a module is its largest
semisimple submodule.) It is shown in [45] that a finite ring R is Frobenius if and
only if R ∼= R̂ as a left R-module. A character χ ∈ R̂ such that r 7→ rχ is an R-
module isomorphism is called a generating character [45]. For example, R = Z/nZ is
Frobenius and a generating character is given by χ(m) = e2πim/n for m ∈ Z/nZ.

Theorem 1.5. Let R be a finite commutative Frobenius ring, P a probability on R

that is constant on associates and Q a probability on R. Let χ ∈ R̂ be a generating
character. Then the eigenvalues for the transition matrices of both the coin-toss walk
and the affine walk on R are indexed by pairs (W,ρ) where:

(1) W = Rb is a principal ideal;
(2) and ρ ∈ ̂U(R/ ann(b)).
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The corresponding eigenvalue for the coin-toss walk is

α ·
∑
r∈R

P (r)χ(br) + (1− α) ·
∑

r∈U(R)+ann(b)

Q(r)ρ(r + ann(b))

and for the affine walk is(∑
r∈R

P (r)χ(br)
)
·

 ∑
r∈U(R)+ann(b)

Q(r)ρ(r + ann(b))

 .

In both cases, the eigenvalue occurs with multiplicity one.

Example 1.6. Let R be the ring Z/4Z, which we order as (0, 1, 2, 3), and let V = R.
Since 1 and 3 are associates, we set p3 = p1. The transition graphs of the coin-toss
walk and the affine walk are shown in Figure 1. The eigenvalues of their respective
transition matrices are

α (p0 − p2) + (1− α) (q1 − q3) , α (p0 − p2) + (1− α) (q1 + q3) ,
α (p0 − 2p1 + p2) + (1− α) (q1 + q3) and 1,

and
(p0 − p2) (q1 − q3) , (p0 − p2) (q1 + q3) , (p0 − 2p1 + p2) (q1 + q3) and 1.

ap 2 +H1- aLq 3

01

23 +p+p 11 qq33

01

23αp1 p1

αp1 p1p1q + p q + p q + p q0 2 1 2 2 0 3

p2q + p q + p q + p q0 1 1 0 2 1 3

+p+p 11 qq33p2q + p q + p q + p q0 1 1 0 2 1 3

+p+p 11 qq33p0q + p q + p q + p q0 1 1 2 2 1 3

+p+p 11 qq33p0q + p q + p q + p q0 1 1 2 2 1 3

+p+p 11 qq33p0q + p q + p q + p q0 2 1 0 2 2 3p1q + p q + p q + p q0 2 1 2 2 0 3αp1 p1

αp1 p1

αp q1 + (1 )– α 2

αp q1 + (1 )– α 2

αp q1 + (1 )– α 2 αp q2 + (1 ) (– α 0 2+ q )αp q2 + (1 )– α 3

αp q2 + (1 )– α 3

αp q1 + (1 )– α 2

αp2 p2

Figure 1. The transition graphs of the coin-toss and affine walk on Z/4Z.

The plan of the rest of the paper is as follows. In Section 2, we review first the
representation theory of groups followed by that of monoids, emphasizing the parts
that are relevant to this study. In Section 3, we study the structure of the affine
monoid and use the results in the previous section to understand the representation
theory of this monoid. Finally, we prove Theorem 1.3 and examine various special
cases of this general result in Section 4.

2. Preliminaries on group and monoid representation theory
The book [44] serves as a basic reference for those aspects of the representation theory
of monoids that we shall need. If M is a finite monoid, then CM denotes the monoid
algebra of M . It consists of all formal linear combinations of elements of M with the
obvious addition operation and with product∑

m∈M
cmm ·

∑
m∈M

dmm =
∑

m,n∈M
cmdnmn.
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Finite dimensional CM -modules (which are the only kind we consider) correspond to
finite dimensional matrix representations of M over C. A probability P on M can be
identified with the element

∑
m∈M P (m)m ∈ CM and the product of two probabilities

in CM corresponds to their convolution.
If V is a CM -module, the character of V is the mapping χV : M → C given by

sending m ∈ M to the trace of the operator on V given by v 7→ mv. It is not in
general true that a module is determined by its character but semisimple modules
are, cf. [36]. The character of a simple module is called an irreducible character. The
irreducible characters of a monoid form a linearly independent set of mappings [44,
Theorem 7.7].

A composition series for a CM -module V is a series of submodules

(2) V = V0 ) V1 ) · · · ) Vn = 0

such that the composition factor Vi/Vi+1 is simple for i = 0, . . . , n − 1. The Jordan-
Hölder theorem [14, Theorem 1.1.4] guarantees that the length of any two composition
series for V is the same and, moreover, that if S is a simple CM -module, then the
number [V : S] of composition factors isomorphic to S is the same for any two
composition series. The isomorphism class of a module V shall be written [V ].

2.1. Group representation theory. The reader is referred to [39] for the basics of
group representation theory. If G is a finite group, then CG is called the group algebra
of G. It is a semisimple algebra and hence every finite dimensional CG-module V is
a direct sum of simple CG-modules, which are in fact its composition factors (with
multiplicity). If V is a CG-module and S is a simple CG-module, then

(3) dim HomCG(S, V ) = dim HomCG(V, S) = [V : S].

The irreducible characters of a finite group G form an orthonormal set for the inner
product on CG given by

〈f, g〉 = 1
|G|

∑
x∈G

f(x)g(x).

This is called the first orthogonality relations. If θ is the character of a CG-module V
and χ is the character of a simple CG-module S, then 〈θ, χ〉 = [V : S].

An important consequence of Schur’s lemma is that if a belongs to the center of
CG and V is a simple CG-module, then a acts on V via multiplication by a scalar.

If H 6 G is a subgroup and V is a CH-module, then IndGH V = CG ⊗CH V is a
CG-module called an induced module. Note that

dim IndGH V = [G : H] · dimV.

Also, IndGH 1H is isomorphic to the permutation module C[G/H]. If W is a CG-
module, then ResGHW is the CH-module obtained by restricting scalars.

Theorem 2.1 (Frobenius reciprocity). Let H 6 G be a subgroup and let V be a CH-
module and W a CG-module. Then the isomorphism

HomCG(IndGH V,W ) ∼= HomCH(V,ResGHW )

holds.

The Mackey decomposition theorem describes how an induced representation from
one subgroup restricts to another. Let K 6 G be a subgroup and let V be a CK-
module. If g ∈ G, then V g is the C[gKg−1]-module with underlying vector space V
and action given by xv = g−1xgv for x ∈ gKg−1. With this notation, the Mackey
decomposition theorem says the following.
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Theorem 2.2 (Mackey decomposition). Let G be a group and let H,K be subgroups
of G. Let T be a complete set of representatives of the double cosets H\G/K. If V is
a CK-module, then the decomposition

ResGH IndGK V ∼=
⊕
t∈T

IndHH∩tKt−1 RestKt
−1

H∩tKt−1 V t

holds.

If ϕ : G → K is a group homomorphism and V is a CK-module, then it is also a
CG-module, called the inflation of V along ϕ, via gv = ϕ(g)v for g ∈ G and v ∈ V .

Proposition 2.3. Let ϕ : G → K be a surjective homomorphism, H 6 K and V a
CH-module. Putting H ′ = ϕ−1(H), the inflation of IndKH V along ϕ is isomorphic to
IndGH′ V (where V is a CH ′-module via inflation).

Proof. It is easily verified that there is a surjective homomorphism of CG-modules
ψ : CG ⊗CH′ V → CK ⊗CH V given by g ⊗ v 7→ ϕ(g) ⊗ v on basic tensors. Since
dim IndGH′ V = [G : H ′] · dimV = [K : H] · dimV = dim IndKH V , we conclude that ψ
is an isomorphism. �

2.2. Monoid representation theory. Just as for rings, the set of invertible el-
ements (known as units) in a monoid forms a group. The group of units (invertible
elements) of a monoidM will be denoted U(M) throughout. An idempotent of a mon-
oid M is an element e ∈M such that e2 = e. Denote by E(M) the set of idempotents
of M . If M is a monoid and e ∈ E(M) is an idempotent, then eMe is a monoid with
identity e. The group of units U(eMe) of eMe is called the maximal subgroup of M
at e.

We recall the definition of Green’s relations [28] on a monoidM . We writem J n if
MmM = MnM , m R n if mM = nM and m L n if Mm = Mn. We write m 6J n if
MmM ⊆MnM . A J -class is called regular if it contains an idempotent. The regular
J -classes of M form a poset via the ordering J 6 J ′ if MJM ⊆ MJ ′M . If e and
f are J -equivalent idempotents, then eMe ∼= fMf and hence U(eMe) ∼= U(fMf).
See [44, Corollary 1.2].

Let us first recall some basic facts about the representation theory of monoids. If
e ∈ E(M) and V is a CM -module, then eV is a CU(eMe)-module. We say that e is an
apex for the simple CM -module S if eS 6= 0 and mS = 0 for all m ∈ eMerU(eMe).
This is equivalent tomS = 0 for allm such that e /∈MmM . The fundamental theorem
of Clifford–Munn–Ponizovskii theory says the following. See [27] or [44, Theorem 5.5]
for details.

Theorem 2.4. Let M be a finite monoid and e1, . . . , es form a complete set of idem-
potent representatives of the regular J -classes of M . Then the isomorphism classes of
simple CM -modules are parameterized by pairs (ei, [V ]) with V a simple CU(eiMei)-
module. The corresponding simple module V ] is characterized up to isomorphism by
the properties that ei is an apex for V ] and eiV ] ∼= V as a CU(eiMei)-module.

McAlister [35] gave a general method to compute the composition factors of a
module from its character by inverting the character table of the monoid. In practice,
it can be quite unwieldy to implement this method. A simpler method was given by the
second author in [43] in the case of a monoid whose idempotents form a submonoid.
The reader is referred to [40] for the Möbius function of a poset.

Theorem 2.5. Let M be a finite monoid whose idempotents form a submonoid. Fix
an idempotent eJ from each regular J -class J . Let χ be an irreducible character of
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U(eJMeJ) corresponding to the simple module S and let V be a finite dimensional
CM -module with character θ. Then

[V : S]] = 1
|U(eJMeJ)|

∑
g∈U(eJMeJ )

χ(g)
∑
J′6J

θ(eJ′geJ′)µ(J ′, J)

where J ′ runs over regular J -classes and µ is the Möbius function of the poset of
regular J -classes of M .

2.3. Monoid random walks. LetM be a finite monoid acting on the left of a finite
set Ω and let P be a probability onM . Then the random walk ofM on Ω driven by P
is the Markov chain with state space Ω and with transitions x 7→ mx with probability
P (m).

The vector space CΩ is then a left CM -module by extending the action of M on
the basis Ω linearly. If we identify P with the element∑

m∈M
P (m)m ∈ CM,

then the transition matrix of the random walk is the transpose of the matrix of
the operator P acting on the vector space CΩ with respect to the basis Ω. See [44,
Chapter 14] or [10, 18, 19] for details. Note that the tranpose arises here because we
are using row stochastic matrices for the transition matrix but left actions for the
random walk.

3. The affine monoid
As before, fix a finite commutative ring R and a finite R-module V . We continue to
use Aff(V ) to denote the affine monoid of V . Observe that

U(Aff(V )) = {ax+ b | a ∈ U(R), b ∈ V }

and, in fact, U(Aff(V )) = V o U(R) is a semidirect product of abelian groups.

3.1. The algebraic structure of the affine monoid. If e ∈ E(R), then 1−e ∈
E(R) and the internal direct sum

R = Re⊕R(1− e)

is a direct product decomposition as rings (note that Rf is a unital ring with identity
f for any f ∈ E(R)). All direct sum decompositions R = R1 ⊕ R2 into a direct
product of unital rings arise in this way (take e to be the identity of R1). There is
a corresponding direct sum decomposition V = eV ⊕ (1 − e)V and note that eV is
annihilated by R(1− e) and (1− e)V is annihilated by Re. Also, eV is an Re-module.
Denote by

ϕe : R = Re⊕R(1− e)→ Re

the projection. It is a surjective homomorphism of unital rings given by ϕe(r) = re.
Notice that re = 0 if and only if r(1− e) = r and so Re ∼= R/R(1− e). We also have a
surjective homomorphism of R-modules πe : V → eV given by πe(v) = ev, which has
kernel (1− e)V .

Proposition 3.1. Let e ∈ E(R) and let ϕe : R→ Re be the projection ϕe(r) = re.
(1) For a ∈ R, ϕe(a) ∈ U(Re) if and only if Ra ⊇ Re.
(2) The restriction ϕe : U(R)→ U(Re) is surjective.
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Proof. To prove the first item, let Ra ⊇ Re and write e = ya. Then e = yeae =
yeϕe(a) and so ϕe(a) ∈ U(Re). Conversely, if ae ∈ U(Re), then e = uae with u ∈
U(Re) and hence e = uea ∈ Ra. Thus Ra ⊇ Re.

For the second item, let u ∈ U(Re) with inverse v ∈ U(Re), and so uv = e. Let
u′ = u+ (1− e) and v′ = v+ (1− e). Then since ue = u, ve = v and e(1− e) = 0, we
see that u′v′ = uv + u(1− e) + v(1− e) + (1− e) = uv + (1− e) = e+ 1− e = 1 and
so u′ ∈ U(R). Moreover, ϕe(u′) = u′e = u. This completes the proof. �

We now begin to study the affine monoid. Let π : Aff(V )→M(R) be the surjective
homomorphism π(ax+ b) = a. A monoid is called a left regular band if it satisfies the
identity xyx = xy. Left regular bands have played an important role in applications
of monoids to Markov chain theory. See [15, 18, 19, 20, 24].

Proposition 3.2. Let R be a commutative ring.
(1) E(Aff(V )) = {ex+ b | e ∈ E(R), eb = 0}.
(2) E(Aff(V )) is a submonoid of Aff(V ) and a left regular band.
(3) If ex+ b, fx+ c ∈ E(Aff(V )), then ex+ b 6J fx+ c if and only if Re ⊆ Rf .

In particular, ex+ b J fx+ c if and only if e = f .
(4) If e ∈ E(R), then E(Re) = {f ∈ E(R) | Rf ⊆ Re}.

Proof. If f(x) = ax+ b, then f2(x) = a2x+ ab+ b and so f(x) = f2(x) if and only if
a2 = a and ab = 0. This proves the first item.

For the second item, suppose that e, f ∈ E(R) and eb = 0 = fc. Let g(x) = ex+ b
and h(x) = fx + c. Then gh(x) = efx + ec + b, ef ∈ E(R) and ef(ec + b) =
efc+ feb = 0. Thus gh(x) is an idempotent by the first item and so the idempotents
form a submonoid of Aff(R). Moreover, ghg(x) = efex+ efb+ ec+ b = efx+ ec+ b
as eb = 0. Therefore, ghg(x) = gh(x) and so E(Aff(V )) is a left regular band.

Let us prove the third item. Let g(x) = ex + b, h(x) = fx + c ∈ E(Aff(V )). If
g(x) 6J h(x), then e = π(g(x)) 6J π(h(x)) = f . But M(R) is a commutative
monoid and so Re ⊆ Rf . Conversely, if Re ⊆ Rf , then ef = e and so gh(x) =
efx + ec + b = ex + efc + b = ex + b = g(x) because fc = 0. Thus g(x) 6J h(x).
The final statement of the third item follows because ex + b J fx + c if and only if
Re = Rf . But if Re = Rf , then e = ef = fe = f .

The last item follows because an idempotent f belongs to Re if and only if fe = f
if and only if Rf ⊆ Re. �

Proposition 3.2 implies that the poset of regular J -classes of Aff(V ) is isomorphic
to the poset of idempotent generated principal ideals of R. The latter is, in fact, a
lattice since Re ∩ Rf = Ref and Re + Rf = R(e + f − ef) and one readily checks
e + f − ef is an idempotent. In fact, the lattice of idempotent-generated principal
ideals of R is a boolean algebra where the complement of Re is R(1 − e) and the
atoms are the ideals generated by the primitive idempotents.

Corollary 3.3. The poset of regular J -classes of Aff(V ) is isomorphic to the lattice
of idempotent generated principal ideals of the ring R via the mapping taking the
J -class of ex+ b to Re.

The elements of the form g(x) = ex with e ∈ E(R) form a commutative submonoid
of E(Aff(V )) and a transversal of the set of regular J -classes. Moreover, Re ⊆ Rf if
and only if e = ef = fe.

Proposition 3.4. Let e ∈ E(R) and let g(x) = ex be the corresponding idempotent
of Aff(V ). Then g(x) Aff(V )g(x) = Aff(eV ), where eV is viewed as an Re-module in
the natural way, and hence the maximal subgroup of Aff(V ) at g(x) is U(Aff(eV )).
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Proof. If h(x) = ax+ b, then ghg(x) = eaex+ eb = eax+ eb. It follows that ax+ b ∈
g(x) Aff(V )g(x) if and only if ea = ae = a and eb = b, that is, g(x) Aff(V )g(x) =
Aff(eV ), establishing the proposition. �

It will be useful that the projections ϕe : R→ Re and πe : V → eV , for e ∈ E(R),
combine to yield a homomorphism Aff(V )→ Aff(eV ).

Proposition 3.5. Let e ∈ E(R). Then there is a surjective homomorphism
Φe(Aff(V )) → Aff(eV ) given by Φe(ax + b) = ϕe(a)x + πe(b) = aex + eb. Moreover,
the restriction Φe : U(Aff(V ))→ U(Aff(eV )) is surjective.

Proof. Let g(x) = ax + b and h(x) = cx + d. Then gh(x) = acx + ad + b and so
Φe(gh(x)) = acex+ead+eb. On the other hand, Φe(g(x))Φe(h(x)) is the composition
of aex+eb and cex+ed, which is aecex+aeed+eb = acex+ead+eb. Also Φe(1x) = ex,
which is the identity of Aff(eV ). Therefore, Φe is a homomorphism. It is surjective
because if a ∈ Re and b ∈ eV , then ae = a and eb = b, whence Φe(ax+ b) = ax+ b.
The final statement follows immediately from Proposition 3.1. �

Note that if e ∈ E(R), then eV̂ is an R-submodule of V̂ , and hence invariant under
its group of units, U(R). Also note that eV̂ is an Re-module. So the unit group U(Re)
acts on eV̂ by automorphisms. The stabilizer in U(Re) of χ ∈ eV̂ under this action
shall be denoted StU(Re)(χ). Notice that StU(Re)(χ) = e + ann(χ)e, where ann(χ)
is the ideal of elements of R that annihilate χ; indeed, rχ = χ = eχ if and only if
r − e ∈ ann(χ)e, if and only if r ∈ e + ann(χ)e for r ∈ Re. Our next proposition
describes eV̂ .

Proposition 3.6. Let R be a finite commutative ring, V a finite R-module and e ∈
E(R). Then the following are equivalent for χ ∈ V̂ .

(1) χ ∈ eV̂ ;
(2) χ = γ ◦ πe with γ ∈ êV ;
(3) (1− e)V ⊆ kerχ.

Proof. If χ ∈ eV̂ and v ∈ (1− e)V , then

χ(v) = (eχ)(v) = χ(ev) = χ(e(1− e)v) = χ(0) = 1

and so (1− e)V ⊆ kerχ. If (1− e)V ⊆ kerχ, then χ factors through πe as (1− e)V =
kerπe. If χ = γ ◦ πe with γ ∈ êV , then (eχ)(v) = χ(ev) = γ(πe(ev)) = γ(eev) =
γ(ev) = γ(πe(v)) = χ(v) and so eχ = χ. Therefore, χ ∈ eV̂ . �

It follows that we can identify eV̂ with êV and that the action of U(Re) on eV̂ by
automorphisms can be identified with the action of U(Re) on êV by automorphisms.
In particular, the orbits of U(Re) on eV̂ and U(R) on eV̂ are the same because
ϕe : U(R)→ U(Re) given by r 7→ re is onto by Proposition 3.1.

3.2. The representation theory of the affine monoid. Using Theorem 2.4
we can completely describe the simple CAff(V )-modules for a finite module V over a
finite commutative ring R. We take for a complete set of idempotent representatives
of the regular J -classes of Aff(V ) the mappings ge(x) = ex with e ∈ E(R) (this is
justified by Proposition 3.2). By Proposition 3.4 we can identify the maximal subgroup
at ge(x) with U(Aff(eV )). Let Sing(Aff(eV )) = Aff(eV )rU(Aff(eV )) be the ideal of
singular affine mappings. Then CU(Aff(eV )) ∼= CAff(eV )/CSing(Aff(eV )) and hence
any simple CU(Aff(eV ))-module W can be viewed as a simple CAff(eV )-module via
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inflation. The surjective homomorphism Φe : Aff(V )→ Aff(eV ) from Proposition 3.5
extends to a surjective homomorphism of C-algebras

Φe : CAff(V )→ CAff(eV )
and hence W becomes a simple CAff(V )-module via inflation along Φe. Concretely,
if w ∈W and ax+ b ∈ Aff(V ), then the action of ax+ b on w is given by

(4) (ax+ b)w =
{

(aex+ eb)w, if Ra ⊇ Re
0, else

in light of Proposition 3.1. Clearly, ge(x) is an apex for this CAff(V )-module structure
onW and ge(x)W = W as a CU(Aff(eV ))-module. Therefore, all the simple CAff(V )-
modules are obtained in this fashion by Theorem 2.4; that is, W ] = W as a vector
space with the module structure given by (4).

It thus remains to describe the representation theory of CU(Aff(M)) for a finite
module M over a finite commutative ring S. The case of interest for us will be rings
of the form S = Re and modules of the form M = eV with e ∈ E(R). This is a very
special case of the representation theory of semidirect products of the form A o G
with A an abelian group and G an arbitrary group that can be found in standard
texts on group representation theory (cf. [39]). Here we use the semidirect product
decomposition U(Aff(M)) = M o U(S).

The group U(S) acts on M̂ via (sχ)(v) = χ(sv) for s ∈ U(S) and v ∈M . If χ ∈ M̂ ,
let StU(S)(χ) be the stabilizer of χ in U(S). If ρ ∈ ̂StU(S)(χ), then we can define a
degree one character χ⊗ ρ : M oStU(S)(χ)→ U(C) by (χ⊗ ρ)(ax+ b) = χ(b)ρ(a) for
a ∈ StU(S)(χ) and b ∈M .

Theorem 3.7. Let M be a finite S-module with S a finite commutative ring. Let
O1, . . . ,Om be the orbits of U(S) on M̂ and fix χi ∈ Oi. Then a complete set of
representatives of the isomorphism classes of simple CU(Aff(M))-modules is given by
the modules

W(Oi,ρ) = IndU(Aff(M))
MoStU(S)(χi) χi ⊗ ρ

with ρ ∈ ̂StU(S)(χi).

Proof. This is the specialization to U(Aff(M)) = M o U(S) of the general theory
of irreducible representations of semidirect products AoG with A abelian described
in [39, Proposition 25]. �

Let f ∈ E(S). Then U(Aff(fM)) acts transitively on fM by permutations via
the natural action g(v) = av + b for g(x) = ax + b ∈ U(Aff(fM)) and v ∈ fM .
Hence U(Aff(M)) acts transitively on fM by permutations via inflation along the
surjective homomorphism Φf : U(Aff(M)) → U(Aff(fM)) given by Φf (ax + b) =
afx + fb, cf. Proposition 3.5. Notice that ax + b ∈ U(Aff(M)) stabilizes 0 under
this action if and only if fb = 0, which occurs if and only if b ∈ (1 − f)M . Hence
StU(Aff(M))(0) = (1−f)M oU(S). Therefore, the corresponding permutation module
CfM for CU(Aff(M)) is the induced module

IndU(Aff(M))
(1−f)MoU(S) 1(1−f)MoU(S)

where we recall that 1G denotes the trivial representation of a group G. We record
this as the first item of the following proposition.

Proposition 3.8. Let S be a finite commutative ring, M a finite S-module and f ∈
E(S). Let O1, . . . ,Ot be the orbits of U(S) on fM̂ (which is a U(Aff(M))-invariant
subgroup of M̂) and let χi ∈ Oi.
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(1) The module CfM = IndU(Aff(M))
(1−f)MoU(S) 1(1−f)MoU(S).

(2) The decomposition of CfM into simple CU(Aff(M))-modules is given by

CfM =
t⊕
i=1

W(Oi,1StU(S)(χi))

(retaining the notation of Theorem 3.7).

Proof. The first item was proved in the discussion immediately preceding the state-
ment of the proposition. To prove the second item, we apply Frobenius reciprocity and
the Mackey decomposition. Let χ ∈ M̂ , ρ ∈ ̂StU(S)(χ) and let O be the orbit χ under
U(S). To decongest notation, we shall identify M with the subgroup of translations
and U(S) with the subgroup of dilations and use the notation of internal semidirect
products. Then by Frobenius reciprocity we have

(5)
[
IndU(Aff(M))

(1−f)M ·U(S) 1(1−f)M ·U(S) : W(O,ρ)

]
=
[
ResU(Aff(M))

(1−f)M ·U(S)W(O,ρ) : 1(1−f)M ·U(S)

]
.

To compute the right hand side of (5), we apply the Mackey decomposition to

W(O,ρ) = IndU(Aff(M))
M ·StU(S)(χ) χ⊗ ρ.

Let h(x) ∈ U(Aff(M)). Then, since M is a normal subgroup of U(Aff(M)), we have

(1− f)M · U(S)h(x)M · StU(S)(χ)
= (1− f)M · U(S) ·Mh(x) StU(S)(χ) = U(Aff(M)),

and so there is only one double coset. Therefore, using the Mackey decomposition and
that

((1− f)M · U(S)) ∩ (M · StU(S)(χ)) = (1− f)M · StU(S)(χ)
yields

(6) ResU(Aff(M))
(1−f)M ·U(S) IndU(Aff(M))

M ·StU(S)(χ) χ⊗ ρ

= Ind(1−f)M ·U(S)
(1−f)M ·StU(S)(χ) ResM ·StU(S)(χ)

(1−f)M ·StU(S)(χ) χ⊗ ρ.

Another application of Frobenius reciprocity to (6) shows that the right hand side
of (5) is equal to[

Res(1−f)M ·U(S)
(1−f)M ·StU(S)(χ) 1(1−f)M ·U(S) : ResM ·StU(S)(χ)

(1−f)M ·StU(S)(χ) χ⊗ ρ
]
,

which is 1 if (1−f)M ⊆ kerχ and ρ = 1StU(S)(χ) and 0, otherwise. By Proposition 3.6,
(1− f)M ⊆ kerχ if and only if χ ∈ fM̂ . This completes the proof. �

Remark 3.9. We remark that if e ∈ E(S) and f ∈ E(Se), then the CAff(M)-module
structure on CfM is the inflation along Φe : Aff(M) → Aff(eM) of the CAff(eM)-
module CfeM = CfM . To relate the decomposition in (5) over Aff(M) with the
corresponding decomposition over Aff(eM), we should identify fM̂ with fêM (both
of which are isomorphic to f̂M) and use Proposition 2.3.

It will also be convenient to decompose a module of the form W(O,1StU(S)(χ)) with
χ ∈ O over U(S).
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Proposition 3.10. Let O be an orbit of U(S) on M̂ and χ ∈ O. Then

ResU(Aff(M))
U(S) W(O,1StU(S)(χ)) =

⊕
ρ∈Û(S),

StU(S)(χ)⊆ker ρ

ρ.

Proof. We again identifyM with the subgroup of translations and U(S) with the sub-
group of dilations and use internal semidirect product notation. If h(x) ∈ U(Aff(M)),
then the double coset

U(S)h(x)M · StU(S)(χ) = U(S) ·Mh(x) · StU(S)(χ) = U(Aff(M))

by normality of M and so there is only one double coset. The Mackey decomposition
and the equality U(S) ∩M · StU(S)(χ) = StU(S)(χ) then yield

(7) ResU(Aff(M))
U(S) IndU(Aff(M))

M ·StU(S)(χ) χ⊗ 1StU(S) = IndU(S)
StU(S)(χ) 1StU(S)(χ).

Applying Frobenius reciprocity to (7) shows that the multiplicity of ρ ∈ Û(S) as a
summand in the right hand side of (7) is 1 if ρ|StU(S)(χ) = 1StU(S)(χ) and 0, otherwise.
This completes the proof. �

Let us return now to our original finite commutative ring R and a finite R-module
V . We wish to find the composition factors of CV as a CAff(V )-module. The module
structure on CV is just the linear extension of the natural action where h(x) = ax+ b
acts on v ∈ V by h(v) = av + b. The character θ of this module is given by

θ(ax+ b) = |{v ∈ V | av + b = v}| .

Let µ denote the Möbius function of the lattice Λ(R) of idempotent generated principal
ideals of R and ζ its zeta function. Note that if e, f ∈ E(R), then Re = Rf if and
only if e = f and Rf ⊆ Re if and only if f = ef = fe. We shall need the following
observation. If χ ∈ V̂ and if eχ = χ = fχ, then efχ = χ. Hence, there exists
eχ ∈ E(R) such that eχχ = χ and, for all f ∈ E(R), fχ = f if and only if Reχ ⊆ Rf .
Also note that if χ and χ′ are in the same U(R) orbit, then eχ = eχ′ because fχ = χ

if and only if fχ′ = χ′. Thus we put eO = eχ for any χ in the orbit O of U(R) on V̂ .

Theorem 3.11. Let R be a finite commutative ring, V a finite R-module and e ∈
E(R). Let O1, . . . ,Os be the orbits of U(Re) on eV̂ , which we may identify with
êV . Let χi ∈ Oi. Then the composition factors of CV with apex e are exactly those
W ]

(Oi,1StU(Re)(χi)) with

Oi ⊆ eV̂ r
⋃

Rf(Re,
f∈E(R)

fV̂ ,

that is, with eOi = e and they each appear with multiplicity one.

Proof. Let γ be the character of W(Oi,ρ). We again put gf (x) = fx for f ∈ E(R).
Note that if h(x) = ax + b, then gfhgf (x) = gfh(x) = afx + fb. Since E(Aff(V ))
is a submonoid by Proposition 3.2, Theorem 2.5 yields that [CV : W ]

(Oi,ρ)], with

ρ ∈ ̂StU(Re)(χi), is given by

(8) 1
|Aff(eV )|

∑
h(x)∈U(Aff(eV ))

γ(h(x))
∑

Rf⊆Re

θ(gfh(x)gf )µ(Rf,Re).

But note that θ(gfh(x)gf ) = θ(gfh(x)) = θ(Φf (h(x))), for Rf ⊆ Re, where

Φf : U(Aff(eV ))→ U(Aff(fV ))
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is the surjective homomorphism Φf (ax + b) = afx + fb, cf. Proposition 3.5. Set
S = Re and put M = eV , which is an S-module. Note that afv+fb = v implies that
v ∈ fV = fM and so θ◦Φf is the character of the CS-module CfM of Proposition 3.8.
Thus, applying the first orthogonality relations, (8) becomes

(9)
∑

Rf⊆Re

µ(Rf,Re) 1
|Aff(eV )|

∑
h(x)∈U(Aff(eV ))

γ(h(x))θ(Φf (h(x))

=
∑

Rf⊆Re

[CfM : W(Oi,ρ)]µ(Rf,Re).

But Proposition 3.8 shows that this multiplicity is zero unless Oi ⊆ fM̂ = fV̂ (under
the identification of both with f̂V , cf. Remark 3.9) and ρ = 1StU(Re)(χi), in which case
it is one. Therefore, the right hand side of (9) equals zero unless ρ = 1StU(Re)(χi), in
which case it is
(10)

∑
ReOi⊆Rf⊆Re

ζ(ReOi , Rf)µ(Rf,Re).

But the quantity in (10) is zero unless eOi = e, in which case it is one. This completes
the proof of the theorem. �

4. Eigenvalues
Fix a finite commutative ring R and a finite R-module V . Our goal is to prove Theo-
rem 1.3. We shall, in fact, prove a more general result about the eigenvalues of certain
elements of CAff(V ) acting on CV . Let us begin with a description of how an oper-
ator supported on translations and constant on associates acts under an irreducible
representation.

Proposition 4.1. Let P ∈ CV be constant on associates. View P as an element of
CAff(V ) supported on translations. Let W ]

(O,ρ) be a simple CAff(V )-module with apex
e, whence O = U(Re)χ is an orbit of U(Re) on êV (which we identify with eV̂ and
hence we identify O with U(R)χ) and ρ is a character of StU(Re)(χ). Then P acts on
W ]

(O,ρ) via scalar multiplication by

P̂ (χ) =
∑
b∈V

P (b)χ(b).

Proof. Note that P ∈ CU(Aff(V )). Moreover, notice that two translations g(x) =
x + b and h(x) = x + c are conjugate in U(Aff(V )) if and only if b, c are associates.
Indeed, conjugating a translation by a translation does nothing. On the other hand,
conjugating g(x) = x + b by h(x) = ux with u ∈ U(R) yields hgh−1(x) = x + ub.
Thus P belongs to the center of CU(Aff(V )). Therefore, P acts via a scalar on any
simple CU(Aff(V ))-module by Schur’s lemma.

Let Φe : U(Aff(V ))→ U(Aff(eV )) be the canonical homomorphism. We saw at the
beginning of Subsection 3.2 that the restriction ofW ]

(O,ρ) to U(Aff(V )) is the inflation
ofW(O,ρ) along Φe. As Φe is surjective by Proposition 3.5, this is a simple CU(Aff(V ))-
module. In fact, it is the simple module W(O,ρϕe), where ϕe : U(R) → U(Re) is the
projection and we view O as an orbit of U(Re) on êV , by Proposition 2.3. It remains
to understand the restriction of W(O,ρϕe) to V (viewed as the group of translations
in U(Aff(V ))).

As U(R) is a set of coset representatives for the normal subgroup V of U(Aff(V )),
conjugation of a translation h(x) = x + b by a dilation g(x) = ux corresponds to
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multiplying b by u and (χ⊗ ρϕe)|V = χ, the Mackey decomposition yields that as a
CV -module W(O,ρϕe) is the direct sum of the characters in the orbit O of χ. Each of
these characters give the same Fourier transformation of P because P is constant on
associates. Thus P acts onW(O,ρϕe) via scalar multiplication by P̂ (χ). This completes
the proof. �

We remark that it is almost never the case that P belongs to the center of CAff(V ).
Indeed, if z(x) ∈ Aff(V ) is the zero mapping, then zP = z. But if P is not a point
mass at 0, then Pz =

∑
b∈V P (b)(0x+ b) 6= z. Thus we are using in an essential way

the observation, implicit in the above proof, that each irreducible representation of
Aff(V ) remains irreducible when restricted to the group of units U(Aff(V )) in order
to apply Schur’s lemma and deduce that P acts as a scalar matrix under irreducible
representations of Aff(V ).

Let p(x, y) ∈ C[x, y] be a polynomial and let P,Q ∈ CAff(V ) with P supported
on translations and Q supported on dilations, i.e. P is supported on V and Q is
supported onM(R) under the semidirect product decomposition Aff(V ) = V oM(R).
We further assume that P is constant on associates. Then we compute the eigenvalues
of A = p(P,Q) on the module CV . More precisely, we prove the following theorem.

Theorem 4.2. Let p(x, y) ∈ C[x, y] be a polynomial and let P,Q ∈ CAff(V ) with P
supported on translations and Q supported on dilations. We further assume that P
is constant on associates. Put A = p(P,Q). Then the eigenvalues for A on CV are
indexed by triples (e,O, ρ) where:

(1) e ∈ E(R);
(2) O = U(R)χ is an orbit of U(R) on

eV̂ r
⋃

Rf(Re,
f∈E(R)

fV̂ ,

that is, eO = e;
(3) and ρ ∈ Û(Re) such that StU(Re)(χ) ⊆ ker ρ.

The corresponding eigenvalue is p(P̂ (χ), Q̂(ρ)), where

P̂ (χ) =
∑
b∈V

P (b)χ(b)

Q̂(ρ) =
∑

Ra⊇Re

Q(a)ρ(ae),

and it occurs with multiplicity one.

Proof. Let CV = U0 ) U1 ) · · · ) Un = 0 be a composition series for CV as a
CAff(V )-module. If we choose a basis B = B0 ∪ · · · ∪Bn−1 for CV such that Bi ⊆ Ui
projects to a basis for Ui/Ui+1 for 0 6 i 6 n − 1, then the corresponding matrix
representation of Aff(V ) has a block upper triangular form with diagonal blocks ρi
corresponding to the matrix representation afforded by Ui/Ui+1 with respect to the
basis that is the projection of Bi into Ui/Ui+1. It follows that the set of eigenvalues
of A on CV with multiplicities is the union with multiplicities of the eigenvalues of
ρi(A) for 1 6 i 6 n − 1, i.e. for the action of A on the composition factors of CV .
The composition factors of CV are described in Theorem 3.11. So it suffices to show
that if χ ∈ V̂ and e = eχ, then the eigenvalues of A on W ]

(O,1StU(Re)(χ)), where O

is the orbit of χ under U(R), are of the form p(P̂ (χ), Q̂(ρ)) where ρ ∈ Û(Re) with
StU(Re)(χ) ⊆ ker ρ.
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By Proposition 4.1, P acts on W ]
(O,1StU(Re)(χ)) as scalar multiplication by P̂ (χ).

It therefore suffices to show that Q is diagonalizable with eigenvalues Q̂(ρ) where
ρ ∈ Û(Re) with StU(Re)(χ) ⊆ ker ρ. But Q is supported on dilations and the dilation
h(x) = ax acts on W ]

(O,1StU(Re)(χ)) as the element x 7→ aex of U(Re) if Ra ⊇ Re and
as 0, else. Proposition 3.10 shows that W(O,1StU(Re)(χ)) restricts to U(Re) as a direct

sum of precisely the linear characters ρ where ρ ∈ Û(Re) with StU(Re)(χ) ⊆ ker ρ and
hence on the corresponding summand Q acts as Q̂(ρ). This completes the proof. �

The special case where P,Q are probabilities and p(x, y) = αx+ (1−α)y with 0 6
α 6 1 for the coin-toss walk and p(x, y) = xy for the affine walk (cf. Subsection 2.3)
yields the following formulation of Theorem 1.3.

Theorem 4.3. Let R be a finite commutative ring, V a finite R-module, P a probability
on V that is constant on associates and Q a probability on R. Then the eigenvalues
for the transition matrices of both the coin-toss walk and the affine walk on V are
indexed by triples (e,O, ρ) where:

(1) e ∈ E(R);
(2) O = U(R)χ is an orbit of U(R) on

eV̂ r
⋃

Rf(Re,
f∈E(R)

fV̂ ;

(3) and ρ ∈ Û(Re) such that StU(Re)(χ) ⊆ ker ρ.
The corresponding eigenvalue for the coin-toss walk is αP̂ (χ) + (1 − α)Q̂(ρ) and for
the affine walk is P̂ (χ)Q̂(ρ) (where χ ∈ O) where

P̂ (χ) =
∑
b∈V

P (b)χ(b)

Q̂(ρ) =
∑

Ra⊇Re

Q(a)ρ(ae).

This eigenvalue occurs with multiplicity one.

To see that Theorem 1.3 is a reformulation of Theorem 4.3, we need some further
preliminaries. Let W be a finite R-module. If v ∈W , then

ann(v) = {a ∈ R | av = 0}
is the annihilator of v; it is an ideal of R. Note that the annihilators of v and the
cyclic submodule Rv are the same and Rv ∼= R/ ann(v) as an R-module. In particular,
Rv ∼= Rw if and only if ann(v) = ann(w).

Proposition 4.4. Let v ∈ V and e ∈ E(R). Then ev = v if and only if 1 − e ∈
E(ann(v)).

Proof. This is obvious. �

Recall that E(R) is a Boolean algebra with respect to the ordering e 6 f if ef = e.
The operations are given by e ∧ f = ef , e ∨ f = e + f − ef and ¬e = 1 − e. The
mapping e 7→ Re is an isomorphism of Boolean algebras.

As ev = v and fv = v implies efv = v, it follows that there is a minimal idempotent
ev with evv = v. As e 7→ 1 − e is an order reversing involution on E(R), it follows
from Proposition 4.4 that e = ev if and only if 1 − e is the maximal idempotent in
ann(v) (which is a join subsemilattice as 0 ∈ ann(v) and e ∨ f = e + f − ef). In
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particular, ann(v) = ann(w) implies ev = ew. Also note that Rv = Rw implies that
ann(v) = ann(w), whence ev = ew.
Proposition 4.5. Let v ∈W .

(1) The natural mapping πv : U(R) → U(R/ ann(v)) is surjective and πv(r) =
πv(rev) for all r ∈ R.

(2) Let ρ ∈ Û(R). Then (1 + ann(v)) ∩ U(R) ⊆ ker ρ if and only if ρ factors
through πv.

(3) If a ∈ Rev, then a ∈ U(Rev) if and only if a+ ann(v) ∈ U(R/ ann(v)).
Proof. First note that r − rev = r(1 − ev) ∈ ann(v) for all r ∈ R, whence πv(r) =
πv(rev), and so Rev → R/ ann(a) is a surjective homomorphism of unital rings. It is
enough to show that the natural mapping U(Rev)→ U(R/ ann(v)) is surjective since
we can then apply Proposition 3.1.

Suppose that a + ann(v) is a unit with inverse b + ann(v) with a, b ∈ Rev. Then
ab + ann(v) = 1 + ann(v) = ev + ann(v) and so ab = ev + x with x ∈ ann(v). Then
abv = evv + xv = v and hence (ab)nv = v for all n > 0. As M(R) is a finite monoid,
we have that (ab)k ∈ E(Rev) for some k > 0. Minimality of ev then implies (ab)k = ev
and so a ∈ U(Rev). This completes the proof of the first item and also the third.

The second item follows from the first and the observation that kerπv = (1 +
ann(v)) ∩ U(R). �

Proof of Theorem 1.3. By Proposition 1.1 there is a bijection between orbits of U(R)
on V̂ and cyclic submodules if V̂ . Moreover, e is the minimal idempotent stabilizing
χ ∈ V̂ if and only if 1 − e is the maximal idempotent in ann(χ) by Proposition 4.4.
If e is the minimal idempotent stabilizing χ, then StU(Re)(χ) = e + ann(χ)e. By
Proposition 4.5, we have that if ρ ∈ Û(Re), then ker ρ contains StU(Re)(χ) if and only
if ρ factors through Re → R/ ann(χ). Thus the triples (e,O, ρ) from Theorem 4.3
correspond bijectively to the pairs (W,ρ) of Theorem 4.3. Moreover, by Proposition 3.1
and Proposition 4.5, we have that Ra ⊇ Re if and only if ae ∈ U(Re), if and only
if ae + ann(χ) = a + ann(χ) ∈ U(R/ ann(χ)), if and only if a ∈ U(R) + ann(χ). It
follows that the definitions of Q̂(ρ) in Theorem 1.3 and in Theorem 4.3 agree (using
Proposition 4.5). �

We now aim to recover the results of the first author and Singla [11] for the case
when V = R (and hence cyclic submodules are principal ideals) and P is uniform. In
this case, one has that P̂ (χ) = 0 for any non-trivial character χ on the additive group
of R by the orthogonality relations for characters. Hence many of the eigenvalues in
Theorem 1.3 will be the same. We shall first give a description of the eigenvalues that
follows directly from Theorem 1.3. We shall then reformulate the result to make it
apparent that it agrees with the results of [11] for V = R.
Theorem 4.6. Let R be a finite commutative ring and V a finite R-module. Let
Q be a probability on R. Then the eigenvalues for transition matrix of the coin-
toss random walk on V with respect to P the uniform distribution and Q, with
heads probability α, are indexed by pairs ([W ], ρ) where [W ] is the isomorphism class
of a cyclic submodule of W of V̂ and ρ is a character of U(R) factoring through
πW : U(R)→ U(R/ ann(W )). The corresponding eigenvalue is given by

λ([W ],ρ) =
{

1, if W = 0
(1− α)

∑
a∈U(R)+ann(W )Q(a)ρ(uW (a)), else

where uW (a) ∈ U(R) with uW (a) + ann(W ) = a + ann(W ); it has multiplicity the
number of cyclic submodules of V̂ isomorphic to W .

Algebraic Combinatorics, Vol. 3 #2 (2020) 326



Random walks on rings and modules

Proof. This follows from Theorem 1.3, the observation that

P̂ (χ) = 1
|V |

∑
v∈V

χ(v) = 〈1V , χ〉 =
{

1, if χ = 1V
0, else

by the orthogonality relations and from Proposition 4.5. �

Our next goal is to show that we can work with cyclic submodules of V instead of
V̂ . This is necessary to recover the result as formulated in [11]. We do this by showing
that the coin-toss walk with P uniform for V and V̂ have the same eigenvalues.

The following result can also be proved via elementary linear algebra (cf. [26]).

Proposition 4.7. Consider the coin-toss random walk on V where P is taken to be
the uniform distribution on R, Q is any distribution on R and α is the probability
of heads. Let 1 = λ1, λ2, . . . , λk be the eigenvalues for the transition matrix of the
random walk of the multiplicative monoid M(R) on V driven by Q with multiplicities.
Then the eigenvalues for the transition matrix of the coin-toss walk are

1 = λ1, (1− α)λ2, . . . , (1− α)λk
with multiplicities.

Proof. This is immediate from Theorem 4.6 once we observe that the random walk
on V driven by Q is the coin-toss random walk with α = 0. �

By Proposition 4.7, to show that the coin-toss walk with P uniform for V and V̂
have the same eigenvalues, it suffices to show that the random walks of the multi-
plicative monoid M(R) on V and V̂ driven by Q have the same eigenvalues.

Proposition 4.8. Let V be a finite R-module and Q a probability on R. Then the
transition matrix for the random walk of M(R) on V̂ driven by Q is similar to the
transpose of the transition matrix of the random walk of M(R) on V driven by Q and
hence both transition matrices have the same eigenvalues.

Proof. The vector space dual of CV , which is a CM(R)-module, can be identified with
the space of functions f : V → C and the dual basis to the basis V of CV corresponds
to the indicator functions δv of the singleton sets {v} with v ∈ V . The module action
of R on CV is given by (rf)(v) = f(rv). So the matrix of Q acting on CV with respect
to the basis of indicator functions is the transpose of the matrix of Q acting of CV
with respect to the basis Ω and hence is the transition matrix of the random walk of
M(R) on V driven by Q (cf. Subsection 2.3). But the characters of V also form a basis
for CV and the matrix of Q with respect to the basis of characters is the transpose of
the transition matrix of the random walk of M(R) on V̂ driven by Q. This completes
the proof. �

Using Theorem 4.6, Proposition 4.7, Proposition 4.8 and that ̂̂M is canonically
isomorphic to M as an R-module, we then obtain the following theorem.

Theorem 4.9. Let R be a finite commutative ring and V a finite R-module. Let
Q be a probability on R. Then the eigenvalues for transition matrix of the coin-
toss random walk on V with respect to P the uniform distribution and Q, with
heads probability α, are indexed by pairs ([W ], ρ) where [W ] is the isomorphism class
of a cyclic submodule of W of V and ρ is a character of U(R) factoring through
πW : U(R)→ U(R/ ann(W )). The corresponding eigenvalue is

λ([W ],ρ) =
{

1, if W = 0
(1− α)

∑
a∈U(R)+ann(W )Q(a)ρ(uW (a)), else

Algebraic Combinatorics, Vol. 3 #2 (2020) 327



Arvind Ayyer & Benjamin Steinberg

where uW (a) ∈ U(R) with uW (a) + ann(W ) = a + ann(W ); it has multiplicity the
number of cyclic submodules of V isomorphic to W .

The special case in which V = R (and hence cyclic modules are principal ideals)
recovers [11, Theorem 2.3].
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