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Classification of Coxeter groups with finitely
many elements of a-value 2

R. M. Green & Tianyuan Xu

Abstract We consider Lusztig’s a-function on Coxeter groups (in the equal parameter case)
and classify all Coxeter groups with finitely many elements of a-value 2 in terms of Coxeter
diagrams.

1. Introduction
This paper concerns Lusztig’s a-function on Coxeter groups. The a-function was first
defined for finite Weyl groups via their Hecke algebras by Lusztig in [20]; subsequently,
the definition was extended to affine Weyl groups in [21] and to arbitrary Coxeter
groups in [22]. The a-function is intimately related to the study of Kazhdan–Lusztig
cells in Coxeter groups, the construction of Lusztig’s asymptotic Hecke algebras, and
the representation theory of Hecke algebras; see, for example, [20], [21], [22], [12]
and [11].

For any Coxeter group W and w ∈ W , a(w) is a non-negative integer obtained
from the structure constants of the Kazhdan–Lusztig basis of the Hecke algebra of
W . While a-values are often difficult to compute directly, it is known that a(w) = 0
if and only if w is the identity element and that a(w) = 1 if and only if w is a non-
identity element with a unique reduced word (see Proposition 2.2). If we define W
to be a(n)-finite for n ∈ Z>0 if W contains finitely many elements of a-value n and
a(n)-infinite otherwise, then it is also known that W is a(1)-finite if and only if each
connected component of the Coxeter diagram of W is a tree and contains at most one
edge of weight higher than 3 (see Proposition 2.3). The goal of this paper is to obtain
a similar classification of a(2)-finite Coxeter groups in terms of Coxeter diagrams.

Our interest in a(2)-finite Coxeter groups comes from considerations about the
asymptotic Hecke algebra J ofW . This is an associative algebra which may be viewed
as a “limit” of the Hecke algebra of W , and each two-sided Kazhdan–Lusztig cell
E ⊆ W gives rise to a subalgebra JE of J (see [22], Section 18). While J has been
interpreted geometrically for Weyl and affine Weyl groups by Bezrukavnikov et al. in
[1], [2] and [3], it is not well understood for other Coxeter groups, and one approach
to understand J in these cases is to start with the subalgebras JE in the case E is
finite, whence JE is a multi-fusion ring in the sense of [9]. As the a-function is known
to be constant on each cell, the presence of a(2)-finite groups in our classification
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that are not Weyl groups or affine Weyl groups potentially offers interesting examples
of multi-fusion rings of the form JE where E is a cell of a-value 2. (For a study of
algebras of the form JE where E is a cell of a-value 1, see [28].)

We now state our main results. For any (undirected) graph G, we define a cycle
in G to be a sequence C = (v1, v2, . . . , vn, v1) involving n distinct vertices such that
n > 3 and {v1, v2}, . . ., {vn−1, vn} and {vn, v1} are all edges in G, and we say G is
acyclic if it contains no cycle. Our first main theorem is the following.

Theorem 1.1. Let W be an irreducible Coxeter group with Coxeter diagram G.
(1) If G contains a cycle, then W is a(2)-finite if and only if G is a complete

graph.
(2) If G is acyclic, then W is a(2)-finite if and only if G is one of the graphs

in Figure 1, where n denotes the number of vertices in a graph whenever it
appears as a subscript in the label of the graph and there are q and r vertices
strictly to the left and the right of the trivalent vertex in Eq,r.

An (n > 1)

Bn (n > 2)4

C̃n (n > 5)4 4

Eq,r (q, r > 1)

Fn (n > 4)4

Hn (n > 3)5

I2(m) (5 6 m 6∞)m

Figure 1. Irreducible a(2)-finite Coxeter groups with acyclic diagrams.

Remark 1.2.When q = 1, Eq,r coincides with the Coxeter diagram for the Weyl
group Dr+3. When q = 2 and r = 2, 3, 4, Eq,r coincides with the Coxeter diagram of
the Weyl group E6, E7 and E8, respectively. More generally, for any larger value of r,
E2,r coincides with Er+4 in the notation of [24], which is considered an extension of
the type E Coxeter diagrams. In Section 4.2, we will recall a result from [24] which
uses the notations Dn and En.

Our second main theorem reduces the classification of reducible a(2)-finite Coxeter
groups to that of irreducible Coxeter groups in the following sense:

Theorem 1.3. Let W be a reducible Coxeter group with Coxeter diagram G. Let
G1, G2, . . . , Gn be the connected components of G, and let W1,W2, . . . ,Wn be their
corresponding Coxeter groups, respectively. Then the following are equivalent.

(1) W is a(2)-finite.
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(2) The number n is finite, i.e. G has finitely many connected components, and
Wi is both a(1)-finite and a(2)-finite for each 1 6 i 6 n.

(3) The number n is finite, and for each 1 6 i 6 n, Gi is a graph of the form
An(n > 1), Bn(n > 2), Eq,r(q, r > 1), Fn(n > 4), Hn(n > 3) or I2(m)(5 6
m 6∞), i.e. Gi is a graph from Figure 1 other than C̃n(n > 5).

Of the claims in the theorems, Part (2) of Theorem 1.1, i.e. the classification of a(2)-
finite Coxeter groups with acyclic Coxeter diagrams, turns out to require the most
amount of work. We describe our strategy for its proof below. A key fact we shall
use is that each element of a-value 2 in a Coxeter group must be fully commutative
in the sense of Stembridge (see Section 3.2). This implies, in particular, that we may
associate to any element w with a(w) = 2 a poset called its heap, a notion well-
defined for any fully commutative element. Heaps of fully commutative elements will
be a fundamental tool for this paper.

In showing that W is a(2)-finite if G is a graph in Figure 1, the full commutativity
of elements of a-value 2 will reduce our work to the cases G = I2(∞), G = C̃n or
G = Eq,r where min(q, r) > 3. Indeed, thanks to a result of Stembridge’s in [24],
W contains finitely many fully commutative elements if G is any other graph from
Figure 1, so W must be a(2)-finite in these cases. It will be easy to show that W is
a(2)-finite when G = I2(∞), and the case G = C̃n will also be easy thanks to a result
of Ernst from [8] on the generalized Temperley–Lieb algebra of type C̃n, therefore
the only case requiring more work is G = Eq,r where min(q, r) > 3. We will prove W
is a(2)-finite in this case via a series of lemmas in Section 4.2, using arguments that
involve heaps.

To show that G must be a graph in Figure 1 if W is a(2)-finite, we first prove that
W would be a(2)-infinite whenever G contains certain subgraphs, then show that to
avoid these subgraphs G has to be in Figure 1. For each of these subgraphs, we will
construct an infinite family of fully commutative elements that we call “witnesses”
and verify that they have a-value 2. We will use three methods for these verifications:

(1) First, we recall a powerful result of Shi from [23] that says each fully commu-
tative element w in a Weyl or affine Weyl group satisfies a(w) = n(w), where
n is a statistic defined using heaps. We prove the same result for star reducible
groups (in the sense of [14], see Proposition 3.15), and use these results to
show our witnesses have a-value 2 by showing they have n-value 2.

(2) In our second method, we recall that the a-function is constant on each two-
sided Kazhdan–Lusztig cells of W and that each cell is closed under the so-
called generalized star operations (see Section 3.1), then show our witnesses
have a-value 2 by relating them to elements of a-value 2 by these operations.

(3) In our third and most technical method, we again show our witnesses have
a-value 2 by showing they are in the same cell as some other element of a-
value 2, but the proof will require more careful arguments involving certain
leading coefficients, or “µ-coefficients”, from Kazhdan–Lusztig polynomials.

The rest of the paper is organized as follows. In Section 2, we briefly recall the
background on Coxeter groups and Hecke algebras leading to the definition of the
a-function, as well as the definition and some properties of Kazhdan–Lusztig cells.
In Section 3, we introduce our main technical tools for computing and verifying
a-values, namely, generalized star operations and heaps of fully commutative ele-
ments. Sections 4 and 5 prove the sufficiency and necessity of the diagram criterion
of Theorem 1.1, respectively. The first three subsections of Section 5 contain a list
of lemmas on the subgraphs that G must avoid for W to be a(2)-finite. The lemmas
are grouped according to the method of verifying the witnesses’ a-values, with 5.3
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being the most technical part of the paper. We prove Theorem 1.3 in Section 6.
Finally, in Section 7 we briefly discuss several open problems naturally arising from
this paper, as well as their connections to other works in the literature. The problems
include generalizing the aforementioned result of Shi to arbitrary Coxeter groups,
enumerating elements of a-value 2 in a(2)-finite Coxeter groups, and the classification
of a(3)-finite Coxeter groups.

2. Preliminaries
The a-function arises from the Kazhdan–Lusztig theory of Coxeter groups. We review
the relevant basic notions and facts in this section. Besides defining a, we will recall
the definitions of Kazhdan–Lusztig cells and the “µ-coefficients” of Kazhdan–Lusztig
polynomials. Both these notions will be key to the proofs of our main theorems.

2.1. Coxeter groups. Throughout the article,W shall denote a Coxeter group with
a finite generating set S and Coxeter matrixM = [m(s, t)]s,t∈S . Thus, m(s, s) = 1 for
all s ∈ S, m(s, t) = m(t, s) ∈ Z>2 ∪ {∞} for all distinct s, t ∈ S, and W is generated
by S subject to the relations (st)m(s,t) = 1 for all s, t for which m(s, t) is finite.

The defining data of each Coxeter group can be encoded via its Coxeter diagram.
This is the weighted, undirected graph with vertex set S and edge set {{s, t} : s, t ∈
S,m(s, t) > 3} such that each edge {s, t} has weight m(s, t). Each edge is labelled by
its weight except when the weight is 3. A Coxeter group is called irreducible if its Cox-
eter diagram is connected; otherwise the group is reducible. Note that any reducible
Coxeter group W with Coxeter diagram G is isomorphic to the direct product of the
Coxeter groups encoded by the connected components of G.

Let S∗ be the free monoid generated by S. For any w ∈ W , we define the length
of w, written l(w), to be the minimum length of all words in S∗ that express w. We
call any such minimum-length word a reduced word of w. For any distinct s, t ∈ S, we
call the relation

sts · · · = tst · · ·
where both sides have m(s, t) factors a braid relation. Since s2 = (ss)m(s,s) = 1 for all
s ∈ S, the braid relation is equivalent to the relation (st)m(s,t) = 1 from the definition
of W . When m(s, t) = 2, we call the relation st = ts a commutation relation, for s
and t commute.

We can now recall the useful Matsumoto–Tits Theorem.

Proposition 2.1 ([26]; [22, Theorem 1.9]). Let w ∈ W . Then any pair of reduced
words of w can be obtained from each other by a finite sequence of braid relations.

For more basic notions and facts about Coxeter groups such as the Bruhat order
and its subword property, see [6].

2.2. The a-function. Let W be an arbitrary Coxeter group. We recall Lusztig’s
definition of the function a : W → Z>0 below.

Let A = Z[v, v−1]. Following [22], we define the Hecke algebra ofW to be the unital
A-algebra H generated by the set {Ts : s ∈ S} subject to the relations

(1) (Ts − v)(Ts + v−1) = 0
for all s ∈ S and

TsTtTs · · · = TtTsTt · · ·
for all s, t ∈ S, where both sides have m(s, t) factors.

It is well-known that H has a standard basis {Tw : w ∈W} where Tw = Ts1 · · ·Tsq

for any reduced word s1 · · · sq (s1, . . . , sq ∈ S) of w, as well as a Kazhdan–Lusztig
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basis {Cw : w ∈W} with remarkable properties (see [7]). Now let hx,y,z(x, y, z ∈W )
be the elements of A such that

CxCy =
∑
z∈W

hx,y,zCz

for all x, y. By Lemma 13.5 of [22], for each z ∈ W , there exists a unique integer
a(z) > 0 that satisfies the conditions

(1) hx,y,z ∈ va(z)Z[v−1] for all x, y ∈W ,
(2) hx,y,z 6∈ va(z)−1Z[v−1] for some x, y ∈W .

This defines the function a : W → Z>0.
Elements of a-value 0 or 1 are well understood in the following sense.

Proposition 2.2 ([22, Proposition 13.7], [28, Corollary 4.10]). Let W be an arbitrary
Coxeter group, and let 1W be the identity of W . For all w ∈W , we have

(1) a(w) = 0 if and only if w = 1W .
(2) a(w) = 1 if and only if w 6= 1W and w has a unique reduced word.

Here, the set of non-identity elements with a unique reduced word is known to be a
two-sided Kazhdan–Lusztig cell (which we will define in the next subsection), and is
sometimes called the subregular cell (see [19] and [28]).

The following result classifies a(1)-finite Coxeter groups, i.e. Coxeter groups with
finite subregular cells, in terms of Coxeter diagrams. We will use it in the proof of
Theorem 1.3 in Section 6.

Proposition 2.3 ([19, Proposition 3.8]). Let W be an irreducible Coxeter group with
Coxeter diagram G. Then W is a(1)-finite if and only if G is a tree and there is at
most one edge of weight higher than 3 in G.

Besides the identity element and the elements in the subregular cell, it is also easy
to compute the a-values of products of commuting generators in a Coxeter group,
thanks to the following two results of Lusztig.

Proposition 2.4 ([22, Section 14]). Let W be a Coxeter group with generating set S.
Let I ⊆ S and let WI be the subgroup of W generated by I. If w ∈ WI , then a(w)
computed in terms of WI is equal to a(w) computed in terms of W .

Remark 2.5. The above statement appears as part of Conjecture 14.2 in [22]. How-
ever, it is known to hold in the setting of this paper, which is called the equal parameter
or the split case (see [22], Section 15). The same remark applies to Proposition 2.8.

Proposition 2.6 ([22, Proposition 13.8]). Let W be a finite Coxeter group, and let
w0 be the longest element of W . Then a(w0) = l(w0).

Corollary 2.7. Let W be a Coxeter group with generating set S. Let I =
{s1, s2, . . . , sk} be a subset of S such that m(si, sj) = 2 for all 1 6 i < j 6 k,
and let w0 = s1s2 · · · sk. Then a(w0) = k.

Proof. The elements of I commute with each other since m(si, sj) = 2 for all distinct
i, j, therefore the subgroupWI ofW generated by I is isomorphic to the direct product
of k copies of the cyclic group of order 2. In particular, WI is finite. Furthermore, w0
is clearly the longest element of WI , therefore a(w0) = l(w0) = k by Propositions 2.4
and 2.6. �
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2.3. Kazhdan–Lusztig cells. We define the Kazhdan–Lusztig cells of a Coxeter
group W in this subsection. Let H be the Hecke algebra of W , and let {Cw : w ∈W}
be the Kazhdan–Lusztig basis of H. For each x ∈ W , let Dx : H → A be the linear
map such that

Dx(Cy) = δx,y

for all y ∈W , where δ is the Kronecker delta symbol. Furthermore, for x, y ∈W ,
(1) define x ≺L y if Dx(CsCy) 6= 0 for some s ∈ S;
(2) define x 6L y if there is a sequence x = z1, z2, . . . , zn = y in W such that

zi ≺L zi+1 for all 1 6 i 6 n− 1;
(3) define x ∼L y if x 6L y and y 6L x.
By the construction, ∼L defines an equivalence relation onW . We call the equivalence
classes the left Kazhdan–Lusztig cells, or simply the left cells, of W , and we define the
right (Kazhdan–Lusztig) cells and two-sided (Kazhdan–Lusztig) cells of W similarly.
Here, to define the two-sided cells, start by declaring x ≺LR y if either Dx(CsCy) 6= 0
for some s ∈ S or Dx(CyCs) 6= 0 for some s (i.e. if either x ≺L y or x ≺R y). Note
that each two-sided cell of W must be a union of left cells as well as a union of right
cells.

The Kazhdan–Lusztig cells of W have the following key connection with the a-
function on W .

Proposition 2.8 ([22, Section 14]). Let x, y ∈ W . If x 6LR y, then a(x) > a(y). In
particular, if x ∼LR y, then a(x) = a(y).

By the proposition, one way to establish that an element x ∈ W has a certain
a-value is to find another element y of that a-value and prove that x and y are in the
same cell. We will repeatedly use this strategy in Sections 5.2 and 5.3.

As we may see from their construction, the key to understanding Kazhdan–Lusztig
cells lies in understanding the products of the form CsCy. These products are con-
trolled by the Kazhdan–Lusztig polynomials, which are defined to be the elements
px,y ∈ A (x, y ∈W ) such that

Cy =
∑

x∈W

px,yTx

for all y ∈W , where the elements {Tw : w ∈W} form the standard basis of T . More
precisely, for each x, y ∈ W , let µx,y be the coefficient of the term v−1 in px,y, then
we have the following formulae.

Proposition 2.9 ([22, Theorem 6.6]). Let y ∈ W , s ∈ S, and let 6 be the Bruhat
order on W . Then in the Hecke algebra H of W ,

CsCy =

(v + v−1)Cy if sy < y,

Csy +
∑

x:sx<x<y
µx,yCx if sy > y,

CyCs =

(v + v−1)Cy if ys < y,

Cys +
∑

x:xs<x<y
µx−1,y−1Cx if ys > y.

Remark 2.10. It is known that µx,y = µx−1,y−1 for any x, y ∈W (see Section 5.6 and
Corollary 6.5 of [22]), therefore the last formula in the proposition also holds with
µx,y in place of µx−1,y−1 .

Remark 2.11. The paper [18] uses a normalization of the Hecke algebra that is dif-
ferent from ours, namely, it uses the relation (Ts + 1)(Ts − q) = 0 in place of our
Equation (1). Consequently, the Kazhdan–Lusztig polynomials Px,y obtained in [18],
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which are polynomials in q, do not exactly agree with our Kazhdan–Lusztig polyno-
mial px,y. However, it is straightforward to check that we may convert Px,y to px,y

by first substituting q by v2 in Px,y and then multiplying the result by vl(x)−l(y). In
particular, our definition of the numbers µx,y agrees with that in [18].
The µ-coefficients are often called the “leading coefficients of Kazhdan–Lusztig poly-
nomials” in the literature. Note that the elements Cs(s ∈ S) generate H by Propo-
sition 2.9, so in a sense the µ-coefficients control the multiplication of the Kazhdan–
Lusztig basis elements in the Hecke algebra. As such, they also lead to an alternative
characterization of the relations ≺L and ≺R: for each y ∈ W , define the left descent
set and right descent set of y to be the sets

L(y) = {s ∈ S : sy < y}, R(y) = {s ∈ S : ys < y},
respectively. Then the following proposition holds.
Proposition 2.12. Let x, y ∈W . Then

(1) x ≺L y if and only if one of the following conditions holds: (a) x = y 6= 1W ;
(b) x = sy for some s /∈ L(y); (c) x < y, L(x) 6⊆ L(y), and µx,y 6= 0.

(2) x ≺R y if and only if one of the following conditions holds: (a) x = y 6= 1W ;
(b) x = ys for some s /∈ R(y); (c) x < y, R(x) 6⊆ R(y), and µx,y 6= 0.

Proof. By Proposition 2.9, we have Dx(CsCy) 6= 0 for some s ∈ S if and only if one
of the following occurs:

(a) x = y 6= 1W , so that L(y) 6= ∅ and Dx(CsCy) 6= 0 for each s ∈ L(y);
(b) Cx appears in CsCy for some s 6∈ L(y), with x = sy;
(c) Cx appears in CsCy for some s 6∈ L(y), and x satisfies x < y, sx < x and

µx,y 6= 0. Note that in this case we have L(x) 6⊆ L(y) as s ∈ L(x) r L(y).
Conversely, if x < y, L(x) 6⊆ L(y), and µx,y 6= 0, then Dx(DsDy) 6= 0 for each
s ∈ L(x) r L(y) by Proposition 2.9.

Statement (1) now follows. The proof of (2) is similar. �

In Propositions 3.6 and 3.7, we will describe ways to compute certain µ-coefficients
combinatorially without referring to the Hecke algebra. This will allow us to avoid
difficult computations of Kazhdan–Lusztig polynomials and understand Kazhdan–
Lusztig cells by using only the combinatorics of Coxeter groups.

To end this section, we record several facts for future use.
Corollary 2.13. Let x, y ∈W , and let s ∈ S.

(1) We have sy 6L y if sy > y, and ys 6R y if ys > y;
(2) If there exist elements u, v ∈W such that y = uxv and l(y) = l(u)+l(x)+l(v)

where l is the length function on W (see Section 2.1 for the definition of l),
then we have y 6LR x and a(y) > a(x).

Proof. This is a simple corollary of Propositions 2.9 and 2.8. Note that (2) follows
from repeated application of (1) and Proposition 2.8, hence it suffices to prove (1).
Suppose sy > y. Then Dsy(CsCy) = 1 by Proposition 2.9, therefore sy ≺ y and
sy 6L y by definition. Similarly, we have ys 6R y if ys > y. �

Proposition 2.14 ([22, Proposition 5.4]). Let x, y ∈ W . If x 6 y, then px,y =
v−l(y)+l(x) mod v−l(y)+l(x)+1Z[v].
Corollary 2.15. Let x, y ∈ W . If x 6 y and l(x) = l(y) − 1, then px,y = v−1 and
hence µx,y = 1.
Proof. This is immediate from the well-known fact that px,y ∈ Z[v−1] (see [22, Sec-
tion 5.3]) and Proposition 2.14. �
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Proposition 2.16 ([27, Fact 5]). Let x, y ∈W be such that l(x) < l(y)− 1. If L(y) 6⊆
L(x) or R(y) 6⊆ R(x), then µ(x, y) = 0.

3. Tools for computation of a
We introduce our main tools for verification and computation of a-values in this
section. The first tool is the so-called generalized star operations, which we will often
use to show two elements are in a same Kazhdan–Lusztig cell and hence of the same
a-value. The second tool involves heaps of fully commutative elements and will allow
us to directly compute a-values in certain cases.

3.1. Generalized star operations. We review the notion of a generalized star
operation in this subsection. We highlight a direct connection between the operation
and Kazhdan–Lusztig cells, then describe a more subtle recurrence relation involving
the operation and the µ-coefficients from Proposition 2.9.

Let W be an arbitrary Coxeter group, and let s, t ∈ S be a pair of generators of W
with 3 6 m(s, t) <∞. Set I = {s, t}, let WI = 〈s, t〉, the subgroup of W generated by
s and t, and set IW = {w ∈W : L(w)∩I = ∅}. It is known that every w ∈W admits
a unique factorization w = wI · Iw, called a coset decomposition, where Iw ∈ IW and
wI ∈ WI ; moreover, we have l(w) = l(wI) + l(Iw) in this case. (For proofs of these
facts and an algorithm to compute the factors wI and Iw, see [6, Proposition 2.4.4].)
Consider the following situations:

(1) wI = 1;
(2) wI is the longest element sts · · · of length m(s, t) in WI ;
(3) w is one of the (m− 1) elements s · Iw, ts · Iw, sts · Iw, tsts · Iw, . . .;
(4) w is one of the (m− 1) elements t · Iw, st · Iw, tst · Iw, stst · Iw, . . ..

We call the sequences appearing in (3) and (4) left {s, t}-strings or left I-strings, or
simply left strings if the pair {s, t} is clear from context. For any element w in a left
{s, t}-string other than the longest, we define ∗w to be the element to the right of
w. Otherwise, we leave ∗w undefined. We call the map w 7→ ∗w the upper left star
operation with respect to I.

Similarly, we define the lower left star operation to be the operation w 7→ ∗w where
w is an element in a left string other than the shortest and ∗w is the element to the
left of w in the same string. In addition, we say w is left star reducible to ∗w with
respect to I whenever the latter is defined. More generally, dropping the reference to
a particular pair of generators, we say y is left star reducible to x for x, y ∈W if there
is a sequence x = z1, z2, . . . , zn = y in W such that for each 1 6 i 6 n − 1, there is
some pair Ii = {si, ti} ⊆ S with 3 6 m(si, ti) <∞ such that zi+1 is left star reducible
to zi with respect to Ii.

The concepts and notations above have obvious right-handed counterparts, where
the coset decompositions to be considered are of the form w = wI ·wI where wI ∈WI

and the factor wI is from the set W I := {w ∈ W : R(w) ∩ I = ∅}. We refer to the
two types of left star operations and their right-handed counterparts collectively as
generalized star operations. Finally, for x, y ∈W , we say that y is star reducible to x
if there is a sequence x = z1, z2, . . . , zn = y inW such that zi+1 is either left reducible
or right reducible to zi for each 1 6 i 6 n− 1.

Remark 3.1. For each pair I = {s, t} ⊆ S with m(s, t) = 3 and each member of a left
{s, t}-string, only one of the lower and upper left star operations is defined for each
member of a left {s, t}-string. The one that does is simply called the left star operation
in the paper [18] where the operation was first introduced by Kazhdan and Lusztig.
Similarly, it makes sense to simply speak of a right star operation with respect to I.
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Example 3.2. Let W be a Coxeter group with generating set S = {a, b, c}. Suppose
m(a, b) = 3, m(b, c) = 4, m(a, c) = 2, let I = {a, b}, J = {b, c}, and let x = abcab.
Then with respect to I, the coset decompositions of x are given by

x = xI · Ix = aba · cb, x = xI · xI = abc · ab.

It follows that x is not in a left I-string but is in a right I-string. Moreover, as pointed
out in Remark 3.1, only one right star operation with respect to I is defined on x
since m(a, b) = 3: only the lower star operation is defined, and we have x∗ = abca.
With respect to J , the coset decompositions of x are given by

x = xJ · Jx = b · abcb, x = xJ · xJ = ba · bcb.

It follows that x is both in a left J-string and in a right J-string. Moreover, we have
∗x = cbabcb and x∗ = babc, but ∗x and x∗ are not defined.

Generalized star operations are intimately related to Kazhdan–Lusztig cells:

Proposition 3.3. Let W be an arbitrary Coxeter group, and let I = {s, t} be a pair
of generators of W for which 3 6 m(s, t) < ∞. Then the following hold, where all
star operations are performed with respect to I.

(1) Let y be an element of a left {s, t}-string such that ∗y makes sense, then
y ∼L ∗y.

(2) Let y be an element of a right {s, t}-string such that y∗ makes sense, then
y ∼R y∗.

Remark 3.4. The above facts are well-known to experts, but we have not found a
reference stating it explicitly in this way, so we include a brief proof below.

Proof. We first prove (1). Without loss of generality, suppose I∩L(y) = {s}. Then the
definition of left strings guarantees that I∩L(∗y) = {t}. Since ∗y < y, t ∈ L(∗y)rL(y)
and µ∗y,y = 1 by Corollary 2.15, we have ∗y 6L y by Proposition 2.12. On the other
hand, y 6L ∗y by Corollary 2.13, therefore y ∼L ∗y. The proof of (2) is similar. �

Corollary 3.5. Let x, y ∈W . If y is star reducible to x, then a(x) = a(y).

Proof. Suppose y is star reducible to x. Then x ∼LR y by repeated application of
Proposition 3.3, therefore a(x) = a(y) by Proposition 2.8. �

Generalized star operations are also connected with µ-coefficients:

Proposition 3.6 ([18, Theorem 4.2]). Let W be an arbitrary Coxeter group, and let
I = {s, t} be a pair of generators of W for which m(s, t) = 3. Then the following hold,
where all star operations are performed with respect to I.

(1) Let x, y ∈ W be elements of left {s, t}-strings such that xy−1 /∈ WI . Then
µ(x, y) = µ(∗x, ∗y), where ∗α stands for the result of applying the left star
operation on α for each string α (see Remark 3.1);

(2) Let x, y ∈ W be elements of right {s, t}-strings such that x−1y /∈ WI . Then
µ(x, y) = µ(x∗, y∗), where α∗ stands for the result of applying the right star
operation on α for each string α (see Remark 3.1).

Proposition 3.7 ([20, Section 10.4]; [15, Proposition 5.9]). Let W be an arbitrary
Coxeter group, and let I = {s, t} be a pair of generators of W for which 3 6 m(s, t) <
∞. Then the following hold, where all star operations are performed with respect to I.

(1) Let x, y ∈ W be elements of left {s, t}-strings such that L(x) ∩ I 6= L(y) ∩ I.
Then

µ(∗x, y) + µ(∗x, y) = µ(x, ∗y) + µ(x, ∗y);
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(2) Let x, y ∈W be elements of right {s, t}-strings such that R(x)∩I 6= R(y)∩I.
Then

µ(x∗, y) + µ(x∗, y) = µ(x, y∗) + µ(x, y∗).
Here, we define µ(α, β) = 0 if either α or β is an undefined symbol.

In Section 5.2, we will frequently use the two propositions above to compute certain
µ-coefficients µx,y recursively, then use Proposition 2.12 to conclude that x ∼L y
or x ∼R y. This provides a very useful connection, albeit a less direct one than
Proposition 3.3, between generalized star operations and cells.

3.2. Full commutativity and heaps. Let W be an arbitrary Coxeter group. In
this subsection, we show that any element with a-value 2 must be fully commutative
in the sense of [24]. We then recall a combinatorial characterization of the a-values
of fully commutative elements in a Weyl or affine Weyl group in terms of heaps.
This characterization will allow us to compute certain a-values without recourse to
Kazhdan–Lusztig theory in Section 5.1.

An element w ∈ W is said to be fully commutative if any pair of reduced words
of w can be obtained from each other by means of only commutation relations. It is
well-known that w is fully commutative if and only if no reduced word of w contains a
contiguous subword of sts · · · of length m(s, t) where s, t ∈ S and m(s, t) > 3 (see [24,
Proposition 2.1]).

Remark 3.8. Let w be a fully commutative element with a reduced word w = stw′

where l(w) = l(w′)+2 and m(s, t) > 3. Consider the coset decomposition w = wI · Iw
with respect to the pair I = {s, t}. Since w is fully commutative, wI cannot be the
word sts · · · of length m(s, t), therefore w is an element of a left {s, t}-string, with
∗w = tw′ with respect to I. That is, whenever a reduced word of a fully commutative
element starts with a pair of letters s, t ∈ S with m(s, t) > 3, the lower left star
operation with respect to {s, t} simply removes the leftmost letter of w. Similarly,
whenever a reduced word of a fully commutative element ends with a pair of letters
s, t ∈ S with m(s, t) > 3, the lower right star operation with respect to {s, t} simply
removes the rightmost letter of w.

Problems related to fully commutative elements, such as the classification of Cox-
eter groups with finitely many fully commutative elements, the enumeration of fully
commutative elements for those groups, and connections fully commutative elements
have to Kazhdan–Lusztig cells and so-called generalized Temperley–Lieb algebras, have
been studied extensively; see, for example, [4], [10], [16], [23], [24] and [25]. Fully com-
mutative elements also provide a suitable framework for studying elements of a-value
2 because of the following fact.

Proposition 3.9. Let w ∈W . If a(w) = 2, then w is fully commutative.

Proof. We prove the contrapositive of the statement, i.e. that if w is not fully com-
mutative, then a(w) 6= 2.

Suppose w is not fully commutative. Then w can be written in the form w = uxv
where l(w) = l(u)+l(x)+l(v) and x is of the form x = sts · · · with s, t ∈ S,m(s, t) > 3
and l(x) = m(s, t). By Propositions 2.4 and 2.6, we have a(x) = m(s, t) in this case,
therefore a(w) > a(x) = m(s, t) > 3 by Corollary 2.13. This completes the proof. �

Next, we define the heap of an arbitrary word s1s2 · · · sq in the free monoid S∗:
this is the poset ([q],4) where [q] = {1, 2, . . . , q} and 4 is the partial order on [q] =
{1, 2, . . . , q} obtained via the reflexive transitive closure of the relations

i ≺ j if i < j and m(si, sj) 6= 2.
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In particular, i ≺ j if i < j and si = sj . We refer to the generator si as the label
of i for each i ∈ [q]. It is well-known that the heaps of any two words in S∗ related
by a commutation relation from W are isomorphic as posets (see [24], Section 2.2),
therefore for any fully commutative element w ∈W , it makes sense to define the heap
of w to be the heap of any reduced word of w. In this case, we denote the heap of
w by H(w). On the other hand, given any word in S∗, there is also a criterion for
determining if its heap is that of a fully commutative element:
Proposition 3.10 ([24, Proposition 3.3]). The heap P of a word s1s2 · · · sq in S∗ is
the heap of some fully commutative element in W if and only if

(1) There is no covering relation i ≺ j such that si = sj;
(2) There is no convex chain i1 < i2 · · · < im in P such that si1 = si3 = · · · = s

and si2 = si4 = · · · = · · · = t, where s, t ∈ S and m = m(s, t) > 3.
There is an intuitive way to visualize heaps of words in S∗. Consider the lattice

S×N, with S indexing the columns of the lattice and N indexing the levels or heights.
We say two columns s, t are adjacent if the corresponding vertices are adjacent in the
Coxeter graph, i.e. if m(s, t) > 3.

For any word s1s2 · · · sq ∈ S∗, we may embed its heap P as a set of lattice points
in S ×N as follows: read the word from left to right, and drop a point in the column
representing si as we read each letter. Here, we envision each point as being under the
influence of “gravity” in the sense that the point must fall to the lowest possible row
in its column subject to one condition, namely, it must fall higher than every point
that was placed before it in the same column or in an adjacent column. We define the
index of this lowest possible row to be the level of the point.
Remark 3.11.A poset P is said to be ranked if there exists a function ρ : P → Z,
called a rank function for P , such that ρ(b) = ρ(a) + 1 whenever a, b are elements
in P for which a ≺ b is a covering relation in P . It is worth noting that for a fully
commutative element w in W , while we have described how to assign each element
in the heap P of w a well-defined level, the poset P is not necessarily ranked, i.e. the
level function may not be a rank function. For an example where P is not ranked and
for criteria for P to be ranked, see [13].

As we embed P in the lattice S × N, after a point k ∈ P (1 6 k 6 q) falls into
position, it is customary to label the point with sk rather than k. Furthermore, to
indicate the covering relations of the heap, we connect the point with edges to the
highest existing points in its column and its adjacent columns. The resulting graph
therefore recovers the Hasse diagram of the poset P . For example, in Figure 2, the
picture on the right shows the heap of the element abcabd in the Coxeter group
whose Coxeter diagram is drawn on the left. Note that all reduced words of a fully
commutative element result in an identical graph when we embed them in S × N, so
we may identify the element with its embedding. For more on the lattice embeddings
of heaps, see [5].

Note that the criterion from Proposition 3.10 can now be translated as follows.
Proposition 3.12. The heap P of a word in S∗ is the heap of a fully commutative
element in W if and only if in the lattice embedding of P in S × N,

(1) No column contains two points connected by an edge.
(2) For every pair s, t ∈ S such that m(s, t) > 3, whenever there is a chain of

edges connecting a sequence s, t, s, . . . of m(s, t) points, there is another chain
connecting two points in this sequence.

For example, from Figure 2, we easily see that the element abcabd is fully commutative.
In particular, although the heap contains the chains with labels (a, b, a, b) and (b, c, b)
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a b c d
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a
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a c

b d

Figure 2. Lattice embedding of a heap.

with m(a, b) and m(b, c) letters, respectively, each of these chains contains two points
connected by the other chain.

In addition to detecting fully commutative elements, heaps provide a convenient
tool for visualizing generalized star operations on a fully commutative element w.
More precisely, note that for any u ∈ S, w admits a reduced word starting with u if
and only if H(w), as a poset, contains a minimal element with label u. Thus, for each
pair I = {s, t} ⊆ S of generators with m(s, t) > 3, we may perform a lower left star
operation with respect to I on w if and only if the following conditions hold:

(1) the heap H(w) contains a minimal element i labeled by an element in I,
(2) the element i is connected to an element j in H(w) labeled by the other

element in I,
(3) upon removal of i from H(w), the element j becomes a minimal element in

the resulting poset.
When these conditions are met, performing the lower left star operation with respect
to I on w corresponds to removing the vertex i and all edges incident to i in H(w).
Similarly, we can easily detect when we can perform lower right star opeartions on w
via H(w), by examining the maximal elements of suitable heaps. We shall refer back
to these visualizations frequently in Section 5.2. Upper star operations can also be
described in terms of heaps, but we will not need them, so we omit the descriptions.

The final feature of heaps that we are interested in concerns the computation of
a-values. Thanks to a powerful result of Shi in [23], heaps can sometimes be used to
compute a-values of fully commutative elements in the following fashion.

Proposition 3.13 ([23, Theorem 3.1]). Let W be a Weyl group or an affine Weyl
group. Let w be a fully commutative element of W , let AC be the collection of all
antichains in the heap H(w), and let n(w) = max(|A| : A ∈ AC), where |A| denotes
the cardinality of A for each antichain A ∈ AC. Then a(w) = n(w).

Remark 3.14. In [23], the author does not explicitly use heaps to describe the a-
values of fully commutative elements. Rather, he associates a directed graph G(w) to
each fully commutative element w, defines a number n(w) using G(w), then shows
a(w) = n(w). However, as the author points out at the end of Section 2.2, G(w) can
be reformulated in terms of heaps, and it is not difficult to see that his definition of
n(w) is identical with ours.

The equality a(w) = n(w) from Proposition 3.13 also holds in another situation:
define a star reducible Coxeter group to be a Coxeter group where each fully commu-
tative element is star reducible to a product of mutually commuting generators, then
the following holds.
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Proposition 3.15. Let W be a star reducible Coxeter group, and let w ∈ W be a
fully commutative element. Then a(w) = n(w), where n(w) is defined as in Proposi-
tion 3.13.
Proof. Suppose w can be reduced to a product w′ = s1 · · · sk of k mutually commuting
generators of W via a series of lower star operations. Then a(w) = a(w′) = k by
Corollary 3.5 and Corollary 2.7, and n(w′) = k since no two elements in the heap of
w′ are comparable. Thus, to show a(w) = n(w), it suffices to show that n(w′) = n(w).
We do so below by showing that lower star operations preserve n-values of fully
commutative elements.

Let x ∈ W be fully commutative, and suppose y = x∗ with respect to some lower
right star operation. Since any antichain in the heap H(y) is also one in H(x), n(x) >
n(y) by the definition of n. Meanwhile, by assumption, x admits a reduced word
x = s1s2 · · · sq such that y = s1s2 · · · sq−1. Note that H(x) must contain an element
p such that q is the unique element in H(x) larger than p, for otherwise the right star
operation removing sq from x would not be possible. Now, if an antichain A in H(x)
contains q, then p is not in A since A is an antichain. Furthermore, let a ∈ Ar {q},
then p 66 a since q is the unique element larger than p in H(x), and a 66 p since
otherwise a 6 q by transitivity, contradicting the fact that A is an antichain. Thus,
for any antichain A ofH(x) that has length n(x) and contains q, the set (Ar{q})∪{p}
forms an antichain of the same length. This new antichain is also an antichain in H(y),
therefore we have n(y) > n(x). We have thus proved n(y) = n(x), i.e. that lower right
star operations preserve n-values of fully commutative elements. A similar argument
shows that the same is true for lower left star operations, so we are done. �

For more on star reducible Coxeter groups, including the classification of all star
reducible Coxeter groups, see [14].

By Propositions 3.9, 3.13 and 3.15, to show {w ∈ W : a(w) = 2} is infinite for a
Weyl group, affine Weyl group or a star reducible Coxeter group, it suffices to produce
infinitely many distinct fully commutative elements, examine their heaps, then use
the antichain characterization to verify that the elements have a-value 2. We will
repeatedly use this strategy in Section 5.1.

4. Proof of Theorem 1.1: Sufficiency of the diagram criteria
Let W be an irreducible Coxeter group with Coxeter diagram G. We prove the “if”
directions of the two parts of Theorem 1.1 in this section, i.e. we show that W is
a(2)-finite if G is as described in the theorem.

4.1. Case 1. G contains a cycle. We first prove the “if” direction of Theo-
rem 1.1 (1). Since W is certainly irreducible and G certainly contains a cycle when G
is a complete graph with 3 or more vertices, it suffices to prove the following.
Proposition 4.1. If G is a complete graph, then W is a(2)-finite.
Proof. We claim that W actually contains no element of a-value 2 if G is complete.
To see this, suppose a(w) = 2 for some w ∈ W . Then w is fully commutative by
Proposition 3.9. But as G is complete, no two elements of the generating set of W
commute, therefore an element inW is fully commutative if and only if it has a unique
reduced word. Proposition 2.2 then implies that a(w) 6 1, a contradiction. �

4.2. Case 2. G is acyclic. We now prove the “if” part of Theorem 1.1 (2), which
is restated below.
Proposition 4.2. Let W be an irreducible Coxeter group with Coxeter diagram G. If
G is one of the graphs shown in Figure 1, then W is a(2)-finite.
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It turns out that when G is any graph from Figure 1 other than Eq,r where
min(q, r) > 3, we may use two key results not yet stated in the paper to prove that
W is a(2)-finite. The first of these results is the following classification of Stembridge.

Proposition 4.3 ([24, Theorem 5.1]).An irreducible Coxeter group has finitely many
fully commutative elements if and only if its Coxeter diagram is of the form An(n > 1),
Bn(n > 2), Dn(n > 4), En(n > 6), Fn(n > 4), Hn(n > 3) or I2(m)(5 6 m 6∞).

Recall that the graphs of type Dn and En here are special cases of the graphs Eq,r

from Figure 1 (see Remark 1.2).
The second external result was established by D. Ernst in [8].

Proposition 4.4 ([8, Corollary 5.16]). Let W be the affine Coxeter group of type C̃n

for some n > 5, i.e. suppose its Coxeter diagram is of the form C̃n from Figure 1.
Then W is a(2)-finite.

We now deal with the case where G is of the form Eq,r where min(q, r) > 3. We
will prove that W is a(2)-finite in this case in Proposition 4.9, after we prove a series
of lemmas. We will then combine the external results and Proposition 4.9 to finish
the proof of Proposition 4.2.

Throughout the following four lemmas, let w be a fully commutative element inW .
For any s ∈ S that labels at least two elements in H(w), define an open s-interval in
H(w) to be an interval (i, j) = {k ∈ H(w) : i < k < j} where i and j are consecutive
elements labelled by s; similarly, define a closed s-interval to be an interval of the form
[i, j] = {k ∈ H(w) : i 6 k 6 j} where i and j are consecutive elements labelled by s.

Lemma 4.5. Suppose G is of type A, and let s ∈ S. Every open s-interval in H(w)
contains exactly two elements whose labels are adjacent to s in G, and the labels of
these elements are distinct. In particular, if s is an endpoint of G, then w contains
at most one occurrence of s.

Proof. This is well-known; see, for example, [13, Remark 3.3.7]. �

Lemma 4.6. Suppose G is the Coxeter diagram shown in Figure 3, and suppose
a(w) 6 2. Then any open d-interval in H(w) contains exactly two elements with
labels from the set {c, e, h}, and their labels are distinct.

a b c d e f g

h

Figure 3.

Proof. Let I be an open d-interval. Deleting d from G produces a union of three
subgraphs of type A in which c, e and h appear as endpoints, therefore Lemma 4.5
implies that each of c, e and h can appear at most once (as the label of an element)
in I. Since w is fully commutative, at least two of them must appear in I. Finally,
since G is the Coxeter diagram Ẽ7, an affine Weyl group of type E, c, e, h cannot all
appear in I because otherwise the corresponding elements would form an antichain
of length 3 and we would have a(w) = n(w) > 3 by Proposition 3.13. It follows that
I contains exactly two elements with distinct labels from {c, e, h}. �
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Lemma 4.7. Let G and w be as in Lemma 4.6. Then any open h-interval in H(w)
must contain precisely two occurrences of d.

Proof. Let I be an open h-interval. Since w is fully commutative and d is the only
vertex adjacent to h in G, I must contain at least two occurrences of d, so it suffices
to show that I cannot contain three or more occurrences of d.

For a contradiction, suppose I contains three elements d1, d2, d3 with label d. By
definition, all elements in I are labelled by vertices from the subgraph of type A
induced by a, b, . . . , g, therefore the interval (d1, d2) contains exactly one element
with label c and exactly one element with label e by Lemma 4.5; call them c1 and e1,
respectively. Similarly, (d2, d3) contains unique elements c2 and e2 with labels c and
e, respectively. Thus, the interval (d1, d3) contains the sequence

d1, c1, e1, d2, c2, e2, d3

in weakly increasing order.
Now consider the interval J = (c1, c2). Since it contains exactly one occurrence

of d and w is fully commutative, J contains at least one occurrence of b. Moreover,
since deletion of c from G leaves b as an endpoint on a subgraph of type A, the
appearance of b in J must be unique by Lemma 4.5. Similarly, by considering the
interval J ′ = (e1, e2), we may conclude that J ′ contains a unique occurrence of f . But
then the elements with labels b, d, f in (d1, d3) form an antichain of length 3 in H(w),
therefore a(w) = n(w) > 3 since G is of type Ẽ. This contradicts our assumption that
a(w) 6 2, therefore I contains precisely two occurrences of d. �

Lemma 4.8. Let G and w be as in Lemma 4.6. Then w cannot contain three or more
occurrences of h.

Proof. Suppose for a contradiction that H(w) contains three consecutive elements
h1, h2 and h3 with label h. By Lemma 4.7, there are precisely two elements d1, d2
with label d in (h1, h2) and two elements d3, d4 with label d in (h2, h3). Moreover, by
Lemma 4.6, (d1, d2) and (d3, d4) each contains exactly one occurrence each of c and
e, and (d2, d3) contains one occurrence of c or e. Without loss of generality, suppose
(d2, d3) contains an element labelled by c. Then the interval [h1, h3] contains the
sequence

h1, d1, c1, e1, d2, c2, h2, d3, c3, e2, d4, h3

in weakly increasing order. In this sequence, each ci is labelled by c, each ei is labelled
by e, and all elements in [h1, h3] with labels c, d, e or h have been listed.

Arguing as in the proof of Lemma 4.7, we see that (c1, c2) must contain a unique
element, say b1, with label b, and (c2, c3) must contain a unique element, say b2, with
label b. Moreover, any two occurrences of b must be separated by an occurrence of
c, therefore b1 and b2 are consecutive elements with label b. But then there must
be an element, say a1, with label a in (b1, b2). The elements a1, c2, h2 now form an
antichain of length 3 in H(w), therefore a(w) > 3, contradicting the assumption that
a(w) 6 2. �

Proposition 4.9. Let G be of the form Eq,r from Figure 1, and suppose min(q, r) > 3.
Then W is a(2)-finite.

Proof. Denote the top vertex on the shortest branch of G by s, and let W ′ be the
Coxeter group generated by S r {s}. Any element w ∈ W with a(w) = 2 can be
written in the form w = w1sw2s · · · swn for some n > 0 and w1, . . . , wn ∈ W ′. By
Lemma 4.8, we must have n 6 3 if a(w) = 2. Since W ′ is of type A and thus finite,
this implies that W is a(2)-finite. �
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We can now prove Proposition 4.2, i.e. the “if” direction of Theorem 1.1 (2).

Proof of Proposition 4.2. Recall that any element of a-value 2 is necessarily fully
commutative by Proposition 3.9. Thus, Proposition 4.3 implies that W is a(2)-finite
if G is of type A,B,E1,r, E2,r, F,H or I2(m) where 5 6 m < ∞ from Figure 1. If
G = I2(∞), W is a(2)-finite by Proposition 4.1. If G is of type C̃, W is a(2)-finite by
Proposition 4.4. Finally, Proposition 4.9 says that W is a(2)-finite if G is of the form
Eq,r where q, r > 3. This completes the proof. �

5. Proof of Theorem 1.1: Necessity of the diagram criteria
Let W be an irreducible Coxeter group with Coxeter diagram G. We now prove the
“only if” direction of Theorem 1.1. To do so, we first prove a series of lemmas that
each says that W is a(2)-infinite if G contains a certain subgraph. We then argue in
the last subsection that in order for G not to contain these subgraphs, it has to be a
graph from Figure 1.

We shall call the elements of a-value 2 in our lemmas witnesses. Based on the
method we use to prove that the witnesses have a-value 2, we will group our lemmas
into three subsections.

By Proposition 2.4, to show that W is a(2)-infinite when G contains a certain sub-
graph G′, it suffices to find infinitely many witnesses of a-value 2 in the Coxeter group
with G′ as its Coxeter diagram. We will use this fact without comment throughout
the rest of the paper.

5.1. Lemmas with heap arguments. For our first set of lemmas, the proofs that
the witnesses have a-value 2 will rely only on Propositions 3.13 and 3.15 from Sec-
tion 3.2. In particular, no star operations will be involved in the arguments.

Lemma 5.1. Suppose G contains a subgraph of the form shown in Figure 4, where
n > 1 and all edges other than {vn−1, vn} have weight 3. Then W is a(2)-infinite.

a

b
v0 v1 vn−1 vn

4

Figure 4.

Proof. Let
wk = (abv0v1 · · · vn−1vnvn−1 · · · v1v0)k.

for k ∈ Z>1. The heap of wk is shown in Figure 5, where the dashed rectangles
correspond to the parenthesized expression in wk and are repeated k times.

For each k > 1, it is clear from the figure that wk is reduced and fully commutative
by Proposition 3.12. Furthermore, observe that any two elements from consecutive
levels of H(wk) are comparable, hence any antichain of maximal length in H(wk)
must contain exactly the two elements labelled by a and b on a same level, therefore
n(wk) = 2. Since the subgraph in question is the Coxeter diagram of an affine Weyl
group of type B, it follows from Proposition 3.13 that a(wk) = 2 for all k > 1,
therefore W is a(2)-infinite. �
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ba

v0

v1

v−1

vn

vn−1

v1

v0

a b

v0

v1

v−1

vn

vn−1

v1

v0

a b

v0

...

Figure 5.

Lemma 5.2. Suppose G contains a subgraph of the form shown in Figure 6. Then W
is a(2)-infinite.

a b c

4 4

Figure 6.

Proof. Let wk = (acb)k for k ∈ Z>1. The heap of wk is shown in Figure 7.

a c

b

a c

b

...

Figure 7.
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As in the previous lemma, it is clear that wk is reduced and fully commutative by
Proposition 3.12 and that n(wk) = 2 for each k. Since the subgraph in question is the
Coxeter diagram of C̃3, an affine Weyl group of type C, Proposition 3.13 implies that
a(wk) = 2 for all k > 1, therefore W is a(2)-infinite. �

Lemma 5.3. Suppose G contains a subgraph of the form shown in Figure 8. Then W
is a(2)-infinite.

a b c d

4 4

Figure 8.

Proof. The proof is similar to that of Lemma 5.2: the graph in question is still of type
C̃n, and the elements wk = (acbd)k where k ∈ Z>1 now suffice as our witnesses. The
fact that a(wk) = n(wk) = 2 for each k > 1 is evident from the heap of wk, which is
shown in Figure 9. �

a c

b d

a c

b d

...

Figure 9.

Lemma 5.4. Suppose G contains a subgraph of the form shown in Figure 10, where
n ∈ Z>1 and all edges have weight 3. Then W is a(2)-infinite.

a

b
v1 v2 vn−1 vn

c

d

Figure 10.

Proof. Consider the elements
wk = ab(v1v2 · · · vncdvn · · · v2v1ab)k

for k ∈ Z>0. The heap of wk is shown in Figure 11.
From the figure, it is clear that wk is reduced and fully commutative for each

k > 0 by Proposition 3.12. As in Lemma 5.2, it is also clear that n(wk) = 2 for all
k > 0. Since the subgraph in question is the Coxeter diagram of an affine Weyl group
of type D, Proposition 3.13 implies that a(wk) = 2 for all k > 2 , therefore W is
a(2)-infinite. �
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ba

v1

v2

vn−1

vn

c d

vn

vn−1

v2

v1

ba

v1

v2

vn−1

vn

c d

vn

vn−1

v2

v1

ba

v1

...

Figure 11.

a b c d e

f

g

Figure 12.

Lemma 5.5. Suppose G contains a subgraph of the form shown in Figure 12. Then W
is a(2)-infinite.

Proof. Consider the elements
wk = (acbfcgdfecdb)k

for k ∈ Z>1. The heap of wk is shown in Figure 13.
As in the previous lemmas, we may observe from the above figure that wk is reduced

and fully commutative, and that n(wk) = 2, for each k > 1. Since the subgraph in
question is the Coxeter diagram of Ẽ6, an affineWeyl group of type E, Proposition 3.13
implies that a(wk) = 2 for all k > 1, therefore W is a(2)-infinite. �

Our next lemma will rely on the following non-trivial result from [14].
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a c

b f

c g

d f

e c

d b

a c

b f

c g

d f

e c

d b

a c

...

Figure 13.

Proposition 5.6 ([14, Lemma 5.5]). The Coxeter group whose Coxeter diagram is
shown in Figure 14 is star reducible.

a b c d e f

4

Figure 14.

Lemma 5.7. Suppose G contains a subgraph of the form shown in Figure 14. Then W
is a(2)-infinite.

Proof. Consider the elements
wk = (bdacbdcedfce)k

for k ∈ Z>1. The heap of wk is shown in Figure 15.
As in the previous lemmas, it is clear from the figure that wk is reduced and fully

commutative and that n(wk) = 2 for each k > 1. Since the subgraph in question
corresponds to a star reducible Coxeter group by Proposition 5.6, it follows from
Proposition 3.15 that a(wk) = 2 for all k > 1, therefore W is a(2)-infinite. �

5.2. Lemmas with star operation arguments. For our second set of lemmas,
the proofs that our witnesses have a-value 2 will involve the star operations introduced
in Section 3.1. Our main tools will be Corollary 3.5 and Remark 3.8.

The first lemma in this set deals with the case where G contains a cycle. It will be
used to prove the “only if” direction of Theorem 1.1 (1).
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b d

a c

b d

c e

d f

c e

b d

a c

b d

c e

d f

c e

b d

...

Figure 15.

Lemma 5.8. Suppose G contains a cycle C = (v1, v2, . . . , vn, v1) for some n > 3.
(1) If G contains a vertex v that does not not appear in C and is not adjacent to

all vertices in C, then W is a(2)-infinite.
(2) If C contains two vertices that are not adjacent, then W is a(2)-infinite.

Proof. (1) Suppose v is not adjacent to vj for some 1 6 j 6 n. Consider the elements

xk = vvj(vj+1vj+2 · · · vnv1 · · · vj−1vj)k

for k ∈ Z>0. For each k > 1, note that xk is reduced (and is actually a reduced word
of a fully commutative element) by Proposition 3.10. Moreover, by Remark 3.8, we
may reduce xk to xk−1 via n lower right star operations, successively with respect to
the pairs

{vj , vj−1}, {vj−1, vj−2}, . . . , {vn, vn−1}, . . . , {vj+1, vj}.
It follows that a(xk) = a(x0) for all k > 0. Since a(x0) = a(vvj) = 2 by Corollary 2.7,
it further follows that a(xk) = 2 for all k > 0, therefore W is a(2)-infinite.

(2) Suppose vi, vj are not adjacent for some 1 6 i, j 6 n. Let

yk = vivj(vj+1vj+2 · · · vnv1 · · · vj−1vj)k

for k ∈ Z>0. Then by an argument similar to the one in (1), yk is right star reducible
to y0 and a(yk) = a(y0) = 2 for all k > 0, therefore W is a(2)-infinite. �

Lemma 5.9. Suppose G contains a subgraph of the form shown in Figure 16, where
n > 1, m1 > 5,m2 > 4 and all the middle edges have weight 3. Then W is a(2)-
infinite.

Proof. Consider the elements
wk = v0(vn+1vnvn−1 · · · v1v0v1 · · · vn)k
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v0 v1 v2 vn vn+1

m1 m2

Figure 16.

for k ∈ Z>1. The heap of wk is shown in Figure 17. Note that by Proposition 3.12, it
is clear from the figure that wk is reduced for each k > 1.

v0

v1

v2

vn

vn+1

v0

v1

v2

vn

vn+1

vn

v2

v1

v0

v1

v2

vn

vn+1

...

Figure 17.

We may commute v0 past the first occurrences of vn+1, vn, . . . , v2 to write
wk = vn+1vn · · · v3v2 · v0 · v1v0v1v2 · · · vn · (vn+1vn · · · v1v0v1 · · · vn)k−1.

By Remark 3.8, we may then use suitable lower star operations to remove letters
from the left and right of wk to obtain v2v0. (Note that by the discussion following
Proposition 3.12, these operations can be visualized as the successive removal of the
vertices vn+1, vn, . . . , v3 in the bottom right of the heap H(wk) and of the vertices
vn, vn−1, . . . , v1, v0, v1, . . . , v1, . . . along the top “zig-zag” part of H(wk).) This implies
that a(wk) = a(v2v0) = 2 for all k > 1 by Corollaries 3.5 and 2.7, therefore W is
a(2)-infinite. �
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Lemma 5.10. Suppose G contains a subgraph of the form shown in Figure 18, where
n > 1 and all edges between v1 and vn have weight 3. Then W is a(2)-infinite.

a v0 v1 v2 vn vn+1

4 4

Figure 18.

Proof. Consider the elements
wk = av1(v0v1 · · · vnvn+1vn · · · v2v1)k

for k ∈ Z>0. The heap of wk is shown in Figure 19. Observe that wk is reduced by
Proposition 3.12.

a v1

v0

v1

v2

vn

vn+1

vn

v2

v1

v0

v1

v2

vn

vn+1

vn

v2

v1

v0

...

Figure 19.

By Remark 3.8, we may easily obtain wk from wk+1 via suitable lower right star
operations for any k > 0. (As in the proof of the previous lemma, these operations can
be easily visualized in terms of the heap H(wk+1), this time as the successive removal
of the suitable vertices from the top, wedge-shaped part of the heap.) Corollaries 3.5
and 2.7 then imply that a(wk) = a(w0) = a(av1) = 2 for all k > 0, therefore W is
a(2)-infinite. �

5.3. Lemmas with µ-coefficient computations. For our third set of lemmas, the
proofs will all involve showing x ≺R y for some elements x, y by using Proposition 2.12.
The proofs will be more technical than those for the previous lemmas, as we will
frequently need to use Propositions 3.6 and 3.7 to deduce µ-values.

Lemma 5.11. Suppose G contains a subgraph of the form shown in Figure 20, where
m > 6. Then W is a(2)-infinite.
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a b c

m

Figure 20.

Proof. Let wk = (cabab)k for each k ∈ Z>0. The heap of wk is shown in Figure 21.
Observe that for each k > 0, wk, wka and wkca are all reduced by Proposition 3.12.

b

ca

a

b

a c

b

a

b

a c

...

Figure 21.

We shall prove that
(2) wkca 6R wk+2a 6R wk+2 6R wk+1 6R wkca

for all k > 0. This implies that wk ∼R ca and hence a(wk) = a(ca) = 2 for all k > 1
by Proposition 2.8 and Corollary 2.7. It then follows that W is a(2)-infinite.

Now let k > 0 be fixed. To prove (2), first note that wk+2a 6R wk+2 6R wk+1 6R

wkca by Corollary 2.13, therefore it suffices to show that wkca 6R wk+2a. Let x =
wkca and y = wk+2a. We will show that in fact x ≺R y. Since x < y and c ∈
R(x) rR(y), it further suffices to show that µ(x, y) 6= 0 by Proposition 2.12. We do
so below.

Consider the coset decompositions of x and y with respect to I = {a, b}, where
x = · · · cababca = xI · xI with xI = wkc, xI = a,

y = · · · cababcababa = yI · yI with yI = wk+1c, yI = ababa.

For any integer 0 6 i 6 m, let αi be the word ab · · · that alternates in a and b, starts
in a, and has length i, then let xi = xI · αi and yi = yI · αi. Set

[i, j] = µ(xi, yj)
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for all 0 6 i, j 6 m. Then
(1) [3, 1] = 0 by Proposition 2.16, since l(x3) < l(y1)− 1 and c ∈ R(y1) rR(x3);
(2) [2, 2] = [1, 1] by Proposition 3.6, since x1 = x2∗, y1 = y2∗ with respect to the

pair I = {b, c} and x−1
2 y2 = abcab /∈WI ;

(3) [2, 2] = [1, 3] + [1, 1] by Proposition 3.7, hence [1, 3] = 0 by (2);
(4) [1, 3] + [3, 3] = [2, 4] + [2, 2], hence [3, 3] = [2, 4] + [2, 2] by (3);
(5) [4, 2] + [2, 2] = [3, 3] + [3, 1], hence [3, 3] = [4, 2] + [2, 2] by (1);
(6) [2, 4] = [4, 2] by (4) and (5);
(7) [2, 4] = [1, 5] + [1, 3] by Proposition 3.7, hence [1, 5] = [2, 4] by (3);
(8) [4, 2] = µ(wk+1c, wk+1ca) = 1, where the second equation follows from Corol-

lary 2.15 and the first equation holds by Proposition 3.6 because with respect
to I = {b, c}, (wk+1c)∗ = x4, (wk+1ca)∗ = y2 and (wk+1c)−1(wk+1ca) = a /∈
WI ;

(9) µ(x, y) = [1, 5] = [2, 4] = [4, 2] = 1 by (7), (6), and (8).
We have now shown that µ(x, y) 6= 0, and our proof is complete. �

Lemma 5.12. Suppose G contains a subgraph of the form shown in Figure 22. Then
W is a(2)-infinite.

a b c d

5

Figure 22.

Proof. Let X = acbc and Y = bdcb. For each k ∈ Z>0, let wk = XY · · · be the string
that starts in X and contains k alternating occurrences of X and Y . The heap of
wk is shown in Figure 23, where the dashed rectangles alternately correspond to the
expression X and Y and appear a total of k times. Observe that wk is reduced for
each k by Proposition 3.12.

We shall prove that
(3) wkac 6R wk+2c 6R wk+2 6R wk+1 6R wkac

for all even integers k > 0 and that
(4) wkbd 6R wk+2b 6R wk+2 6R wk+1 6R wkbd

for all odd integers k > 1. It then follows that wk ∼R ac and hence a(wk) = a(ac) = 2
for all k > 1, therefore W is a(2)-infinite.

To prove (3), let k > 0 be an even integer. Note that wk+2c 6R wk+2 6R wk+1 6R

wkac follows from Corollary 2.13, therefore it suffices to show that wkac 6R wk+2c.
Let x = wkac and y = wk+2c. We will show in fact x ≺R y. Since x < y and
a ∈ R(x) rR(y), it further suffices to show that µ(x, y) 6= 0 by Proposition 2.12.

To compute µ(x, y), we consider the coset decompositions of x and y with respect
to I = {b, c}, where

x = · · · bdcbac = xI · xI with xI = wka, xI = c,

y = · · · acbcdbcbc = yI · yI with yI = wk+1d,
Iy = bcbc.

For any integers 0 6 i, j 6 4, let pi be the word cb · · · that alternates in b and c, starts
in c, and has length i, and similarly let qj be the alternating word bc · · · of length j.
Let xi = xI · pi and yj = yI · qj , and set

[i, j] = µ(xi, yj)
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a c

b

c

b d

c

b

a c

b

c

b d

...

Figure 23.

for all 0 6 i, j 6 4. We have

[1, 4] = −[3, 4] + [2, 3]
= −[3, 4] + (−[4, 3] + [3, 2] + [3, 4])
= −[4, 3] + [3, 2]
= −[4, 3] + ([4, 1] + [4, 3])
= [4, 1],

where the first, second and fourth equalities follow from applications of Part (1) of
Proposition 3.7 with (x2, y4), (x3, y3) and (x4, y2) in place of the pair (x, y), respec-
tively. Now,

[4, 1] = µ(x4, y1) = µ(wkacbcb, wkacbcdb) = 1,
where the last equality follows from Corollary 2.15, therefore µ(x, y) = [1, 4] =
[4, 1] 6= 0, and we have proved (3).

The proof of (4) is similar to that of (3), thanks to the symmetry a↔ d, b↔ c in
the subgraph in question. We have now completed our proof. �

Lemma 5.13. Suppose G contains a subgraph of the form shown in Figure 24. Then
W is a(2)-infinite.

a

b
c d

5

Figure 24.
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Proof. We present a proof similar to that of Lemma 5.12. Let X = abcdc and Y =
bdcdc. For each k ∈ Z>0, let wk = XY · · · be the alternating string starting with X
and containing k total occurrences of X and Y . The heap of wk is shown in Figure 25,
from which we observe that wk is reduced for each k.

ab

c

d

c

b d

c

d

c

ab

c

d

c

b d

...

Figure 25.

We shall prove that

(5) wkab 6R wk+2a 6R wk+2 6R wk+1 6R wkab

for all even integers k > 0 and that

(6) wkbd 6R wk+2d 6R wk+2 6R wk+1 6R wkbd

for all odd integers k > 1. It then follows that wk ∼R ab and hence a(wk) = a(ab) = 2
for all k > 1, therefore W is a(2)-infinite.

We first prove (5). As in Lemma 5.12, this is easily reduced to showing
wkab 6R wk+2a and then to showing µ(wkab, wk+2a) 6= 0. By Proposition 3.6,
we have µ(wkab, wk+2a) = µ(wkabc, wk+2) by considerations with respect to the
pair {a, c}, therefore it further suffices to show that µ(x, y) 6= 0 for x = wkabc and
y = wk+2. As before, we do so by considering the coset decomposition of x and y
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with respect to I = {c, d}, where

x = · · · abc = xI · xI with xI = wkab, xI = c,

y = · · · bdcdc = yI · yI with yI = wk+1b,
Iy = dcdc.

For any integers 0 6 i, j 6 4, let pi be the word cd · · · that alternates in c and d,
starts in c, and has length i, and similarly let qj be the alternating word dc · · · of
length j. Let xi = xI · pi and yj = yI · qj , and set

[i, j] = µ(xi, yj)

for all 0 6 i, j 6 4. By the same calculations as in Lemma 5.12, we have

µ(x, y) = [1, 4] = [4, 1] = µ(wkabcdcd, wkabcdcbd) = 1,

by Corollary 2.15, which proves (5).
We now prove (6). As usual, it suffices to show that µ(wkbd, wk+2d) 6= 0. By

setting x = wkbd, y = wk+2d, considering their coset decompositions with respect to
I = {c, d}, and defining [i, j] for 0 6 i, j 6 4 in the usual way, we may again conclude
that

µ(x, y) = [1, 4] = [4, 1] = µ(wkbdcdc, wk+1abc) = µ(wk+1, wk+1abc).
Proposition 3.6, applied with respect to the pair {a, c}, then implies that

µ(x, y) = µ(wk+1, wk+1abc) = µ(wk+1a,wk+1ab) = 1 6= 0,

where the last equality follows from Corollary 2.15. Our proof is now complete. �

Lemma 5.14. Suppose G contains a subgraph of the form shown in Figure 26, where
n > 2 and all edges other than {vn−1, vn} have weight 3. Then W is a(2)-infinite.

a

b
v0 v1 vn−1 vn

5

Figure 26.

Proof. We present a proof similar to that of Lemma 5.13. Let

X = abv0v1 · · · vn−1vnvn−1, Y = vn−2vnvn−1vnvn−1 · · · v1v0,

and define wk = XYX · · · for each k ∈ Z>0 as in the previous lemma. The heap of
wk is in Figure 27, from which we observe that wk is reduced for each k.

We shall prove that

(7) wkab 6R wk+2a 6R wk+2 6R wk+1 6R wkab

for all even integers k > 0 and that

(8) wkvn−2vn 6R wk+2vn 6R wk+2 6R wk+1 6R wkvn−2vn

for all odd integers k > 1. It then follows that wk ∼R ab and hence a(wk) = a(ab) = 2
for all k > 1, therefore W is a(2)-infinite.

We first prove (7). As in the previous lemma, we may reduce this to show-
ing µ(wkab, wk+2a) 6= 0. Applying Proposition 3.6 with respect to the pairs
{a, v0}, {v0, v1}, . . . , {vn−2, vn−1} successively, we get µ(wkab, wk+2a) = µ(x, y)
where

x = wkabv0v1 · · · vn−2vn−1, y = wk+1vn−2vnvn−1vnvn−1.
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a b
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vn

vn−1

vn−2 vn
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vn−1

v1

v0

a b

v0

v1

vn−1

vn

vn−1

vn−2 vn

...

Figure 27.

Furthermore, as before, but this time using the coset decomposition of x and y with
respect to I = {vn−1, vn}, we get
µ(x, y) =µ(wkabv0v1 · · · vn−2vn−1vnvn−1vn, wk+1vn−2vn) = µ(wk+1vn, wk+1vn−2vn).
Corollary 2.15 then implies that µ(x, y) = 1 6= 0, which proves (7).

We now prove (8). We may reduce this to showing that µ(wkvn−2vn, wk+2vn) 6= 0.
By setting x = wkvn−2vn, y = wk+2vn, considering their coset decompositions with
respect to I = {vn−1, vn}, and defining [i, j] for 0 6 i, j 6 4 in the usual way, we
again have

µ(x, y) = [1, 4] = [4, 1] = µ(wkvn−2vnvn−1vnvn−1, wk+1abv0v1 · · · vn−2vn−1).
Finally, applying Proposition 3.6 repeatedly with respect to the suitable pairs of
vertices, we have

µ(wkvn−2vnvn−1vnvn−1, wk+1abv0v1 · · · vn−2vn−1) = µ(wk+1a,wk+1ab) = 1
where the last equality follows from Corollary 2.15. This implies that µ(x, y) 6= 0, and
our proof is now complete. �

5.4. Finishing the proof. We may now combine the lemmas to finish the proof
of the “only if” directions of Theorem 1.1 (2). We first deal with the case where G
contains a cycle:

Proposition 5.15. Let W be a Coxeter group with Coxeter diagram G. If G contains
a cycle and W is a(2)-finite, then W is a complete graph.
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Proof. Consider a cycle C = (v1, v2, . . . , vn, v1) of maximal length in G. We claim
that v1, v2, . . . , vn must be all the vertices of G. To see this, suppose otherwise and
let v be any other vertex of G not in C. Then v must be adjacent to all vertices in C
by Part (1) of Lemma 5.8. However, in this case C ′ = (v, v1, v2, . . . , vn, v) would form
a longer cycle in G than C, contradicting our maximality assumption.

To prove G is complete, it now suffices to show that vi and vj are adjacent for all
1 6 i, j 6 n. This follows from Part (2) of Lemma 5.8, which says that otherwise W
would be a(2)-infinite. �

Remark 5.16.Note that the above proposition is slightly stronger than the “only
if” condition of Theorem 1.1 (1) since we do not need to assume W is irreducible in
its statement or proof. This is because Lemma 5.8 implies that the diagram of any
a(2)-finite Coxeter group must be connected if it contains a cycle.

Next, we deal with Part (2) of the theorem. For convenience, we define a path
graph to be a weighted graph such that the underlying unweighted graph looks like a
“straight line”, i.e. a graph of type An from Figure 1.

Proposition 5.17. Let W be an irreducible Coxeter group with Coxeter diagram G.
If G is acyclic and W is a(2)-finite, then G is one of the graphs from Figure 1.

Proof. SupposeG is acyclic andW is a(2)-finite. SinceW is irreducible,G is connected
and hence a tree.

Let h be the largest weight of an edge in G. This is well-defined because G contains
finitely many vertices and hence edges. If h > 6, all other edges in G must have weight
3, for otherwise we must be able to find a subgraph of the form shown in Lemma 5.9
so that W would be a(2)-infinite. Lemma 5.11 then further implies that G must be
exactly of rank 2, therefore G is of the form I2(h) from Figure 1.

Next, suppose h = 5. Then again, in light of Lemma 5.9, G must have only one
edge of weight 5, and all other edges of G must have weight 3. Moreover, no vertices
of G can have degree 3 or higher by Lemmas 5.13 and 5.14, therefore G must be a
path graph. By Lemma 5.12, the unique edge of weight 5 cannot have edges both to
its left and to its right in the path graph, therefore G is either I2(5) or Hn for some
n > 3.

Now suppose h = 4. We claim that G must be a path graph. Otherwise, let v be a
vertex of degree at least 3, then either v is incident to at least two edges of weight 4
and W is a(2)-infinite by Lemma 5.2, or, if v is incident to one or no edge of weight
4, then W is a(2)-infinite by Lemma 5.1 as G must contain a subgraph of the form
shown in the lemma. Given that G is a path graph, we also claim that G can contain
at most two edges of weight 4. Otherwise, since G cannot contain a subgraph of the
form shown in Lemma 5.2, there must be at least one edge of weight 3 between each
pair of edges of weight 4. This would force G to contain a subgraph of the form shown
in Lemma 5.10, so W would be a(2)-infinite, a contradiction. Moreover, Lemmas 5.2,
5.3 and 5.10 also imply that in the case where G contains two edges of weight 4, they
must appear on the two ends of the path graph and G must of the form C̃n for some
n > 5. Finally, if G contains exactly one edge of weight 4, then Lemma 5.7 implies
that G must be of the form Bn for some n > 2 or Fn for some n > 4.

Finally, we consider the case h = 3. If G contains no vertex of degree 3 or higher,
then G is a path graph and hence of the form An from Figure 1 for some n > 2. On
the other hand, by Lemma 5.4, G cannot contain any vertex of degree 4, nor can it
contain two vertices of degree at least 3, therefore if G has a vertex of degree at least 3
at all, G must be of the form shown in Figure 28, where removal of the trivalent vertex
results in three path graphs containing p, q, r vertices for some 1 6 p 6 q 6 r. Note
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that p > 2 would imply that G contains a subgraph of the form shown in Lemma 5.5,
therefore p = 1 by the lemma. But then G is of the form Eq,r from Figure 1. This
completes our proof. �

Figure 28.

By proving Propositions 4.1, 4.2, 5.15 and 5.17, we have now completed the proof
of Theorem 1.1.

6. Reducible a(2)-finite Coxeter groups
We now prove Theorem 1.3, which is restated below for convenience.

Theorem. Let W be a reducible Coxeter group with Coxeter diagram G. Let
G1, G2, . . . , Gn be the connected components of G, and let W1,W2, . . . ,Wn be their
corresponding Coxeter groups, respectively. Then the following are equivalent.

(1) W is a(2)-finite.
(2) The number n is finite, i.e. G has finitely many connected components, and

Wi is both a(1)-finite and a(2)-finite for each 1 6 i 6 n.
(3) The number n is finite, and for each 1 6 i 6 n, Gi is a graph of the form

An(n > 1), Bn(n > 2), Eq,r(q, r > 1), Fn(n > 4), Hn(n > 3) or I2(m)(5 6
m 6∞), i.e. Gi is a graph from Figure 1 other than C̃n(n > 5).

Proof. The equivalence of (2) and (3) is immediate from Proposition 2.3 and Theo-
rem 1.1, so we just need to prove the equivalence of (1) and (2).

We first prove that (1) implies (2). Suppose W is a(2)-finite. Then clearly Wi is
a(2)-finite for each i. Also note that if we pick an element ti from the generating set of
Wi for each i, then a(titj) = 2 for all distinct 1 6 i, j 6 n by Corollary 2.7, therefore
n must be finite. Finally, let 1 6 i 6 n, and consider words of the form tw1 where
w1 = s1s2 · · · sq is the reduced word of an element of a-value 1 in Wi and t is a vertex
in Gj for some j 6= i. Clearly, the word tw1 is still reduced. Furthermore, since w1
must have a unique reduced word by Proposition 2.2, no two adjacent letters in w1 can
commute, i.e. m(sk, sk+1) > 3, for all 1 6 k 6 q − 1. This means tw1 can be reduced
to ts1 via suitable lower star operations by Remark 3.8, therefore a(tw1) = a(ts1) = 2
by Corollaries 3.5 and 2.7. It follows that Wi is a(1)-finite, for otherwise we can find
infinitely many distinct elements of the form tw1 in W .

It remains to prove that (2) implies (1). Suppose Wi is both a(1)-finite and a(2)-
finite for each 1 6 i 6 n, and let w ∈ W be an element of a-value 2. Since every
generator of Wi commutes with every generator of Wj for any distinct i, j, w admits
a reduced word w = w1 · w2 · · · · · wn where each wi is a (possibly empty) reduced
word for an element in Wi. Note that at most two of of w1, . . . , wn can be nonempty,
for otherwise if we have reduced words wi = r1r2 · · · , wj = s1s2 · · · , wk = t1t2 · · · for
some i < j < k, then we may commute s1 and t1 past letters to their left to form the
reduced word of the form w = w1 · · ·wi−1(r1s1t1)r2 · · · , therefore a(w) > a(r1s1t1) =
3 by Corollaries 2.13 and 2.7. It follows w must be of the form w = wi · wj for some
1 6 i < j 6 n. By Corollary 2.13, this forces a(wi) 6 2 and a(wj) 6 2 now that
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a(w) = 2. Since Wi is both a(1)-finite and a(2)-finite for all 1 6 i 6 n, this implies
that there are only finitely many possibilities for w, therefore W is a(2)-finite. This
completes the proof. �

7. Concluding remarks
We discuss below some open problems naturally arising from this paper.

7.1. Generalizing Shi’s result. The “a = n” result of Shi from Proposition 3.13,
that is, the result that a(w) = n(w) for every fully commutative element w in a Weyl
or affine Weyl group, is a very powerful tool used in this paper. One can verify that
all witnesses of a-value 2 given in Section 5 have n-value 2, therefore we actually
have a(w) = n(w) for every witness w we used, regardless of whether we showed
a(w) = 2 by using the result a(w) = n(w). In fact, the a = n result is exactly how we
found the witnesses heuristically: we constructed heaps of fully commutative elements
with n-value 2, then tried to verify that the elements have a-value 2 by using various
methods.

We extended Shi’s result to star reducible Coxeter groups in Proposition 3.15, and
we believe it would be very interesting to know whether the result can be further
generalized to arbitrary Coxeter groups. As direct computations of a-values require
understanding products of Kazhdan–Lusztig basis elements in Hecke algebras, which
is usually difficult, the generalization of the a = n result would provide a powerful
shortcut to computing a-values for fully commutative elements. Moreover, in Section
6.6 of the paper [4], Biagioli, Jouhet and Nadeau mention that it would be interesting
to explore statistics on fully commutative elements which can be studied naturally
on heaps; the generalization would suggest that the n-value is a such a statistic with
interesting connections to representation theory.

On a more technical level, a generalization of the a = n result would also be re-
markable in the following sense. If a word w represents a fully commutative element
in a Coxeter group W with Coxeter diagram G, then it also represents a fully com-
mutative element in any Coxeter group W ′ whose Coxeter diagram G′ is obtained
from G by increasing the weights of some edges. The increase in edge weights does
not affect the heap of w, hence these two elements have the same n-value, yet it is
not obvious why the increase should not affect the a-value.

7.2. Enumerating elements of a-value 2. Given our classification of a(2)-finite
Coxeter groups, it is natural to wonder how many elements of a-value 2 there are in
each group W from the classification. This can be related to the following questions.
First, how is the set of the elements of a-value 2 in W partitioned into two-sided
Kazhdan–Lusztig cells? Second, for each two-sided Kazhdan–Lusztig cell E of W
with a-value 2, how can we describe the structure of the associated subalgebra JE of
the asymptotic Hecke algebra J of W? By definition, the algebra JE is a free abelian
group with a basis indexed by the elements of E, therefore such a description would
allow us to recover the cardinality of E as the rank of JE and understanding all
subalgebras of the form JE where E is a cell of a-value 2 would allow us to recover
the total number of elements of a-value 2.

We intend to investigate the above questions elsewhere. We should mention that
the analogous questions for elements of a-value 1 have been solved in the following
sense. Let W be an arbitrary Coxeter group, let C = {w ∈ W : a(w) = 1}, and let
U = {w ∈ W : w has a unique reduced word}. Then we have U = C t {1W } (see
Proposition 2.2), therefore W is a(1)-finite if and only if U is finite, and the problem
of counting C for a(1)-finite Coxeter groups is equivalent to that of counting U for
those Coxeter groups where U is finite. The latter problem is solved by Hart in [17].

Algebraic Combinatorics, Vol. 3 #2 (2020) 362



Classification of a(2)-finite Coxeter groups

As for the partition of C into cells, it is well-known that C always forms a single
two-sided cell. In addition, the structure of the algebra JC for general Coxeter groups
is studied in [28], and the structure of JC for a(1)-finite Coxeter groups can be easily
deduced from the results of [28].

7.3. Classification of a(3)-finite Coxeter groups. Yet another natural way
to extend the results of this paper is to classify a(3)-finite Coxeter groups. Note
that unlike elements of a-value 2, elements of a-value 3 in a Coxeter group are not
necessarily fully commutative (cf. Proposition 3.9); for example, in the Coxeter group
of type A2, the longest element has a-value 3 by Proposition 2.6 but is not fully
commutative. This means that in general an element of a-value 3 does not have an
intrinsically associated heap. As heaps of fully commutative elements are fundamental
to our arguments in this paper, a classification of a(3)-finite Coxeter groups will likely
require a different set of ideas from those used in this paper.
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