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Parity of transversals of Latin squares

Darcy Best & Ian M. Wanless

Abstract We introduce a notion of parity for transversals, and use it to show that in Latin
squares of order 2 mod 4, the number of transversals is a multiple of 4. We also demonstrate a
number of relationships (mostly congruences modulo 4) involving E1, . . . , En, where Ei is the
number of diagonals of a given Latin square that contain exactly i different symbols.

Let A(i | j) denote the matrix obtained by deleting row i and column j from a parent matrix
A. Define tij to be the number of transversals in L(i | j), for some fixed Latin square L. We
show that tab ≡ tcd mod 2 for all a, b, c, d and L. Also, if L has odd order then the number of
transversals of L equals tab mod 2. We conjecture that tac + tbc + tad + tbd ≡ 0 mod 4 for all
a, b, c, d.

In the course of our investigations we prove several results that could be of interest in other
contexts. For example, we show that the number of perfect matchings in a k-regular bipartite
graph on 2n vertices is divisible by 4 when n is odd and k ≡ 0 mod 4. We also show that

per A(a | c) + per A(b | c) + per A(a | d) + per A(b | d) ≡ 0 mod 4
for all a, b, c, d, when A is an integer matrix of odd order with all row and columns sums equal
to k ≡ 2 mod 4.

1. Introduction
A Latin square is an n×n matrix consisting of n distinct symbols where each symbol
appears exactly once in each row and each column. Our Latin squares will have their
rows and columns indexed by [n] = {1, 2, . . . , n} and will also have their symbols
chosen from [n]. Latin squares can then be thought of as a set of entries {(r, c, s)} ⊂
[n]3 where each distinct pair of entries agree in at most one coordinate. The three
coordinates of an entry are its row index, column index and symbol. A diagonal of
a Latin square is a selection of n entries, with exactly one entry from each row and
each column. The weight of a diagonal is the number of distinct symbols on that
diagonal. A diagonal of weight n is called a transversal. Historically, transversals in
Latin squares were first used as the building blocks of mutually orthogonal Latin
squares (MOLS). They have since garnered a lot of interest on their own (see [26] for
a survey). A partial transversal of length k is a selection of k entries so that no two
entries share the same row, column or symbol. A partial transversal of length k < n
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is not the same thing as a diagonal of weight k. While these objects are related, the
distinction is important when counting them.

Over half a century ago, Ryser [22] put forward the following famous conjecture.

Conjecture 1.1 (Ryser’s Conjecture). Every Latin square of odd order has a
transversal.

This conjecture has been shown to be true for n 6 9 by computation [18]. In
1990, Balasubramanian [6] showed that the number of transversals in a Latin square
of even order is itself even. He claimed that this was a partial proof of a stronger
form of Conjecture 1.1, namely that the number of transversals in a Latin square of
order n should agree with n mod 2. Despite [6] attributing this conjecture to [22] it is
nowhere to be found in the latter work. It is possible that Ryser made the conjecture,
but we have been unable to find evidence of this. It is also worth remarking that many
Latin squares of odd order have an even number of transversals, so the stronger form
of Conjecture 1.1 is false. However, it does raise the intriguing possibility of proving
existence of objects (in this case, transversals) by studying congruences satisfied by the
number of those objects. We achieve this on a very modest scale (cf. Example 3.14),
but mostly use it as motivation to unearth what we consider to be interesting patterns
in numbers of transversals and related quantities.

Akbari and Alipour [2] developed the ideas from Balasubramanian’s result to show
that the number of diagonals with weight n − 1 is even in every Latin square. We
outline and expand on these ideas in § 2. We then show that the number of transversals
in a Latin square of order n ≡ 2 mod 4 is necessarily a multiple of 4. We show this
by exploiting a notion of parity for transversals. Parity of permutations is, of course,
a very well-known concept. To our knowledge it had not previously been usefully
applied to transversals. However, applying it to the permutations that define the rows,
columns and symbols of a single Latin square or set of MOLS has previously revealed
many insights [1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 17, 23, 25]. In particular, each Latin
square has a row-parity πr, which is the Z2 sum of the parities of the permutations
that define the rows, and a column parity πc which is defined similarly for columns
(there is also a symbol parity πs, but it is a function of πr and πc, see [10, 14, 25]).
We will demonstrate several new ways to partition Latin squares of certain orders
into two types (independently of their πr and πc).

In § 3, we consider counts of transversals in (not necessarily square) submatrices
of Latin squares. A Latin array is a matrix of symbols in which no symbol is repeated
within any row, or within any column. A transversal of an m × n Latin array is a
selection of min(m,n) entries in which no pair of entries share their row, column or
symbol. Transversals in Latin arrays are naturally encountered in attempts to find
transversals of Latin squares by induction. They have been the subject of a recent
burst of activity [7, 8, 16, 19] on the question posed in [2] of how many symbols in a
Latin array are enough to make a transversal unavoidable. We take a different tack,
considering congruences satisfied by the number of transversals in Latin arrays formed
by removing one row and/or one column from a Latin square.

Transversals are diagonals with the maximum possible number of symbols. In § 4
we count diagonals according to how many symbols they contain and demonstrate
several relationships between the resulting numbers. In doing so we extend on results
obtained in [2, 6].

One of the key tools in our results is a matrix function known as the permanent.
Let Mn(Z) denote the n × n integer matrices. The permanent of a matrix A = [aij ]
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in Mn(Z) is defined by

(1) perA =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where the sum is over all permutations in the symmetric group Sn on [n]. At several
points, we use Ryser’s formula [21] to compute the permanent of a matrix. It states
that for A = [aij ] ∈Mn(Z),

(2) perA =
∑
S⊆[n]

(−1)n−|S|
n∏
i=1

∑
j∈S

aij .

We also make frequent use of the fact that (1) agrees, modulo 2, with the definition
of the determinant. In a determinant, some diagonals are given a negative sign, but
−1 ≡ 1 mod 2 so perA ≡ detA mod 2. As a simple example of how this observation
can be used, we have:

Lemma 1.2. If A ∈ Mn(Z) is such that all row sums are even, then detA and perA
are both even.

Proof. Since the sum of the entries in each row is even, the columns of A are linearly
dependent over Z2. Thus, detA ≡ 0 mod 2, from which the claim follows. �

Throughout the paper, J is an all-ones matrix of the appropriate order and Λkn is
the set of all (0, 1)-matrices of order n which contain exactly k ones in each row and
each column. We also need notation for the conjugates of a Latin square L. For each
permutation abc in S3 (written in image notation) there is an abc-conjugate of L. It is
the Latin square obtained by applying the permutation abc to the three coordinates in
the entries of L. For example, the 213-conjugate of L is the usual matrix transpose of L.

2. Transversals of Latin squares of even order
In this section, we layout the ideas used first by Balasubramanian [6], then again by
Akbari and Alipour [2] to count the number of transversals in even ordered Latin
squares modulo 2. For consistency with [2], we will define Em = Em(L) to be the
number of diagonals in L that contain exactly m distinct symbols. In particular,
En(L) is the number of transversals in L if L has order n. The key idea is to count
transversals using inclusion-exclusion.

Definition 2.1. Let f(x1, . . . , xn) be an arbitrary polynomial from Rn to R. Then 〈r〉f
denotes the sum of the values of f at the

(
n
r

)
vectors in Rn which have r coordinates

equal to 1 and n− r coordinates equal to 0.

The following result is a slight generalisation of both [6, Lemma 2] and [2, Theo-
rem 2.1].

Lemma 2.2. Let f(x1, . . . , xn) be an arbitrary polynomial from Rn to R. Then the sum
of the coefficients of monomials in f containing exactly m distinct variables is

m∑
r=0

(−1)m−r
(
n− r
n−m

)
〈r〉f.
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Proof. Suppose that µ is a monic monomial containing t distinct variables. Then
m∑
r=0

(−1)m−r
(
n− r
n−m

)
〈r〉µ =

m∑
r=t

(−1)m−r
(
n− r
n−m

)(
n− t
r − t

)

=
(
n− t
n−m

) m∑
r=t

(−1)m−r
(
m− t
r − t

)

=
{

1 if t = m,
0 otherwise.

The result follows. �

For any transversal, {(ri, ci, si)}, we define three corresponding permutations of
the index set [n] by σr(ri) = ci, σc(ci) = si and σs(si) = ri. The following result is
immediate.

Lemma 2.3. Let T = {(ri, ci, si)} be a transversal of a Latin square L with corre-
sponding permutations σr, σc and σs. Then σr ◦ σc ◦ σs is the identity permutation.

Proof. For any given symbol si, we have si
σs−→ ri

σr−→ ci
σc−→ si. �

As an immediate corollary of Lemma 2.3, we have that ε(σr) + ε(σc) + ε(σs) = 0,
where ε : Sn → Z2 is the standard parity homomorphism on the symmetric group
Sn. Thus, we can classify transversals into four types: T 000, T 011, T 101 or T 110 where
the superscript records the parities of σr, σc and σs, respectively. We will use these
parities to aid in counting transversals.

Definition 2.4. Let L be a Latin square of order n. The parity of a transversal is
the parity of the permutation σr defined above. We define E±n (L) to be the number of
transversals in L with ε(σr) = 0 ( even transversals) minus the number of transversals
in L with ε(σr) = 1 (odd transversals).

Though the symbols in our Latin square L are normally from [n], we sometimes
need to utilise the corresponding matrix L[X], where each symbol i is replaced with
a variable xi.

Theorem 2.5. Let L be a Latin square of order n. Then

(3) En(L) =
n∑
r=0

(−1)n−r〈r〉perL[X],

and

(4) E±n (L) =
n∑
r=0

(−1)n−r〈r〉detL[X].

Proof. We use the m = n case of Lemma 2.2. The terms in perL[X] which include
n distinct variables correspond to the transversals in L. Similar terms in detL[X]
correspond to the transversals of L up to sign. Any transversal which has even parity
increases the sum in (4) by 1 and any odd transversal decreases the sum by 1. �

The following lemma is adapted from [20, Lemma 1].

Lemma 2.6. Let A = [aij ] be a (0, 1)-matrix of even order. Define A∗ = [bij ] by

bij =
{
aij if the ith row has an even number of ones,
1− aij otherwise.

Then detA+ detA∗ is even.
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Proof. Let δ be a row vector of ones. By permuting rows if necessary, we may assume
that the first k rows of A have odd sum and the remaining rows have even sum
(permuting rows may alter the sign of the determinant, but this does not matter
modulo 2). Thus, we have

±detA∗ = det



δ −A1
δ −A2

...
δ −Ak
Ak+1
...
An


= det



δ −A1
A1 −A2

...
A1 −Ak
Ak+1
...
An


= det



−A1
A1 −A2

...
A1 −Ak
Ak+1
...
An


+ det



δ
A1 −A2

...
A1 −Ak
Ak+1
...
An



= (−1)k detA+ det



δ
A1 −A2

...
A1 −Ak
Ak+1
...
An


≡ detA mod 2,

by Lemma 1.2. The result follows. �

Consider the special case of Lemma 2.6 where the row sums of A are all the
same. If all of the row sums are even, then the result shows nothing interesting.
However, when each row sum is odd, Lemma 2.6 tells us that detA + det(J − A) ≡
0 mod 2. Balasubramanian [6] used this result and (3) to show the following theorem
(actually, [6] showed a generalisation of this result, which we discuss later). We give
a full proof here, as we will use a similar technique for several of our new results.

Theorem 2.7. If L is a Latin square of even order n then L has an even number of
transversals.

Proof. Note that En(L) ≡ E±n (L) mod 2. We pair up complementary terms in (4).
In other words, each term of the sum 〈r〉detL[X] is paired with the unique term in
〈n − r〉detL[X] for which the indexing zero-one vectors sum to the all-ones vector.
For each of these pairs of terms, we have one of two situations. If r is even, then
n− r is also even and so both determinants are even, by Lemma 1.2. Alternatively, if
r is odd, then each row sum in L[X] is odd, so detL[X] + det(J − L[X]) ≡ 0 mod 2
by Lemma 2.6. Thus, each of the 2n−1 pairs contributes a multiple of two to the
summation in (4). The result follows. �

To proceed, we need a few linear algebraic results.

Lemma 2.8. If A ∈ Λkn where both n and k are even, then detA ≡ 0 mod 4.

Proof. Since A ∈ Λkn, we have that detA is a multiple of k · gcd(n, k), by [20, Theo-
rem 2]. The desired result follows, since k and gcd(n, k) are both even. �

Lemma 2.9. Let n ≡ 2 mod 4 and k ≡ 1 mod 2. If A ∈ Λkn, then
detA+ det(J −A) ≡ 0 mod 4.

Proof. Since A ∈ Λkn, we have that
(5) k det(J −A) = (−1)n−1(n− k) detA,
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by [20, Lemma 1]. The result follows by noting that n− k ≡ k mod 4 and that k has
a multiplicative inverse modulo 4. �

We now have the framework to start counting transversals. The proof of our next
result is very similar to that of Theorem 2.7.

Theorem 2.10. If L is a Latin square of order n ≡ 2 mod 4 then E±n (L) ≡ 0 mod 4.

Proof. Again, we pair up complementary terms in (4). That is, each term of the sum
〈r〉detL[X] is paired with the unique term in 〈n− r〉detL[X] for which the indexing
zero-one vectors sum to the all-ones vector. For each of these pairs of terms, we have
one of two situations. If r is even, then n− r is also even and we use Lemma 2.8 twice
to show that both terms are a multiple of four. Alternatively, if r is odd, then we use
Lemma 2.9 to show that the terms sum to a multiple of four. The result follows. �

We now use Theorem 2.10 to show our first main result, which strengthens Theo-
rem 2.7 for Latin squares of singly-even order.

Theorem 2.11. If L is a Latin square of order n ≡ 2 mod 4 then En(L) ≡ 0 mod 4.

Proof. Let T be the set of transversals of L. We define w, x, y and z to be the number
of transversals of type T 000, T 011, T 101 and T 110, respectively. By definition, we have

(6) w + x+ y + z = En(L)

and

(7) w + x− y − z = E±n (L).

Let L′ be the 312-conjugate of L. There is a natural bijection between T and the
set of transversals of L′. Each transversal in L′ must be of the form {(ci, si, ri)},
where {(ri, ci, si)} ∈ T . The parity of each transversal in L′ depends on σc for the
corresponding transversal in T , so we have

(8) w − x+ y − z = E±n (L′).

Similarly, if L′′ is the 231-conjugate of L, then each transversal of L′′ has parity
matching that of σs for the corresponding transversal in T . So we have

(9) w − x− y + z = E±n (L′′).

The sum of (6), (7), (8) and (9) gives us

(10) 4w = En(L) + E±n (L) + E±n (L′) + E±n (L′′).

Theorem 2.10 applied to L, L′ and L′′ tells us that En(L) ≡ 0 mod 4. �

Based on computation of small squares, it seems that Theorem 2.7 and Theo-
rem 2.11 are the only general modular restrictions on the number of transversals of a
Latin square. By considering sets of Latin squares that are connected by turning in-
tercalates (that is, replacing a subsquare

[
a b
b a

]
with

[
b a
a b

]
), we were able to find Latin

squares that satisfy every other congruence with small modulus. For example, suppose
that 9 6 n 6 11 and 0 6 k < m 6 32. Except where it would violate Theorem 2.7 or
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Theorem 2.11, there is some subset of intercalates in these Latin squares

1 2 3 4 5 6 7 8 9
2 1 4 3 6 5 9 7 8
3 6 1 8 7 9 5 2 4
4 3 5 6 9 7 8 1 2
5 4 2 9 8 1 6 3 7
6 9 7 5 3 8 2 4 1
7 8 9 1 2 3 4 5 6
8 5 6 7 4 2 1 9 3
9 7 8 2 1 4 3 6 5

1 2 3 4 5 6 7 8 9 10
2 1 4 3 6 5 8 7 10 9
3 6 5 7 2 8 10 9 4 1
4 5 6 8 7 9 2 10 1 3
5 8 7 9 1 10 4 3 2 6
6 4 8 10 9 7 1 2 3 5
7 3 10 5 8 1 9 4 6 2
8 7 9 6 10 2 3 1 5 4
9 10 1 2 3 4 5 6 7 8
10 9 2 1 4 3 6 5 8 7

1 2 3 4 5 6 7 8 9 10 11
2 1 4 3 6 5 8 7 11 9 10
3 8 1 6 7 10 11 9 4 5 2
4 11 2 8 9 7 5 10 1 3 6
5 3 6 10 8 9 1 2 7 11 4
6 4 7 9 10 11 2 3 8 1 5
7 5 8 11 4 2 10 1 3 6 9
8 7 9 5 11 1 6 4 10 2 3
9 10 11 1 2 3 4 5 6 7 8
10 6 5 7 3 8 9 11 2 4 1
11 9 10 2 1 4 3 6 5 8 7

that can be turned to give a Latin square of order n with k mod m transversals. We
also found examples for 12 6 n 6 16 with the same property, but we do not display
them here for the sake of space. For n 6 7, there are some sporadic values of k,m 6 16
where no Latin square of order n contains k mod m transversals. For n = 8, there
is no Latin square that contains 22 mod 63 transversals, while there exists a Latin
square that contains k mod m transversals for all other 0 6 k < m 6 64 that satisfy
Theorem 2.7. However, we believe that the restrictions for n 6 8 are not interesting;
they are simply a result of there being comparatively few Latin squares of these orders.

The proof of Theorem 2.11 leads us to the following interesting property.

Corollary 2.12. Let L be a Latin square of order n ≡ 2 mod 4. The numbers of
transversals in L of types T 000, T 110, T 101 and T 110 are all equal modulo 2.

Proof. Define w, x, y and z as in Theorem 2.11. Adding (6) to (7) we find that
2w + 2x = En(L) + E±n (L) ≡ 0 mod 4 (by Theorem 2.10 and Theorem 2.11) which
gives us that w ≡ x mod 2. Similarly, (6) + (8) and (6) + (9) tell us that w ≡ y mod 2
and w ≡ z mod 2, respectively. �

It is important to remark that Theorem 2.11 is less general in one respect than Bala-
subramanian’s Theorem [6]. Balasubramanian proved that the number of transversals
in any row-Latin square of even order is even (a row-Latin square of order n is an
n× n matrix in which each row is a permutation of [n]). Theorem 2.11 does not gen-
eralise to row-Latin squares. Below we give two row-Latin squares whose number of
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transversals is not a multiple of 4. The row-Latin square of order 2 has 2 transversals
and the row-Latin square of order 6 has 6 transversals.

1 2
1 2

1 3 6 2 5 4
2 1 5 6 4 3
3 2 4 1 5 6
4 2 1 5 6 3
5 2 3 6 1 4
6 5 2 3 4 1

Computational evidence suggests the following generalisation of Theorem 2.11 and
Corollary 2.12.

Conjecture 2.13. Let L be a Latin square of even order n. Let w, x, y and z be the
number of transversals in L of types T 000, T 011, T 101 and T 110, respectively. Then

(a) En(L) ≡ E±n (L) mod 4 and
(b) w ≡ x ≡ y ≡ z mod 2.

Conjecture 2.13 is true for n ≡ 2 mod 4 since En(L) ≡ E±n (L) ≡ 0 mod 4 (by
Theorem 2.10 and Theorem 2.11) and w ≡ x ≡ y ≡ z mod 2 (by Corollary 2.12).
Note that there are many Latin squares of odd order for which Conjecture 2.13 is not
true.

Lemma 2.14. The conditions (a) and (b) in Conjecture 2.13 are equivalent for Latin
squares of even order.

Proof. By Theorem 2.7, we know that En(L) ≡ 0 mod 2 when n is even, showing
condition (a) is equivalent to En(L) + E±n (L) ≡ 0 mod 4. We may use the same idea
as the proof of Corollary 2.12 to show the result. �

3. Transversals of depleted Latin squares
In this section we give a number of results around the common theme of transversals
of depleted Latin squares, that is, matrices formed by removing a row and/or a column
of a Latin square. This depleted Latin square is a Latin array.

Given an n × n matrix A, we use ν(A) to denote the Z2-nullity of A and we use
A(i | j) to denote the (n−1)× (n−1) matrix obtained by deleting row i and column j
from A. We start by considering the permanent of this submatrix, which is analogous
to the consideration of minors when computing the determinant.

Theorem 3.1. Let A ∈Mn(Z) for n > 1. Then
• perA(i | j) ≡ 0 mod 2 for all i, j if and only if ν(A) > 2.
• perA(i | j) ≡ 1 mod 2 for all i, j if and only if ν(A) = 1 and all row and
column totals of A are even.

Proof. It suffices to show analogous properties for determinants since the determinant
and permanent agree modulo 2. All calculations in this proof will be working over Z2,
and all minors will be of order n− 1.

If ν(A) > 2, then for all i, j we know that ν(A(i | j)) > 1 so detA(i | j) ≡ 0 mod 2.
If ν(A) = 0, then A has an inverse so the adjugate adj(A) has full rank and hence

is not a multiple of J (given that n > 1). Hence not all minors of A are equal.
So suppose that ν(A) = 1, and hence detA = 0. Since ν(A) = 1 there is at least

one minor of A that equals 1.
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If there is any row or column of A with odd sum, then expanding the determinant
in that row/column shows that A has at least one minor which is zero, and hence not
all minors are equal.

It remains to treat the case where each row and column sum of A is even. It suffices
to show detA(1 |1) ≡ detA(2 |1) mod 2. But

detA(1 |1) + detA(2 |1) = det


a12 + a22 a13 + a23 · · · a1n + a2n
a32 a33 · · · a3n
a42 a43 · · · a4n
...

...
. . .

...
an2 an3 · · · ann

 ≡ 0 mod 2,

since all column sums are even (cf. Lemma 1.2). �

Since ν(A) > 1 whenever all row totals are even, we have:

Corollary 3.2. Let A ∈ Mn(Z) be such that all row and column sums are even.
Then perA(a | c) ≡ perA(b |d) mod 2 for all a, b, c, d.

The previous result gave a congruence mod 2. Our next results involve congruences
mod 4.

Theorem 3.3. Suppose that n is odd and k ≡ 2 mod 4. If A ∈ Λkn, then

perA(a | c) + perA(b | c) + perA(a |d) + perA(b |d) ≡ 0 mod 4

for any a, b, c, d.

Proof. If a = b (or symmetrically, c = d), then 2
(

perA(a | c)+perA(a |d)
)
≡ 0 mod 4,

by Corollary 3.2. Hence, it suffices to consider the case when a = c = 1 and b = d = 2.
Define

B =


a11 + a21 + a12 + a22 a13 + a23 · · · a1n + a2n

a31 + a32 a33 · · · a3n
a41 + a42 a43 · · · a4n

...
...

. . .
...

an1 + an2 an3 · · · ann

 .

Note that B has order n − 1 and that its first row and column each sum to 2k ≡
0 mod 4, while its other rows and columns each sum to k. Also, by multilinearity of
the permanent,

perB = per


a12 + a22 a13 + a23 · · · a1n + a2n
a32 a33 · · · a3n
a42 a43 · · · a4n
...

...
. . .

...
an2 an3 · · · ann



+ per


a11 + a21 a13 + a23 · · · a1n + a2n
a31 a33 · · · a3n
a41 a43 · · · a4n
...

...
. . .

...
an1 an3 · · · ann


= perA(1 |1) + perA(2 |1) + perA(1 |2) + perA(2 |2).

Algebraic Combinatorics, Vol. 3 #2 (2020) 547



Darcy Best & Ian M. Wanless

Next, apply (2) to calculate perB:

perB =
∑

S⊆[n−1]

(−1)n−1−|S|
n−1∏
i=1

∑
j∈S

bij .

Fix a set S0 and consider the terms corresponding to S0 and its complement in the
outer summation. We have,

(11)

(−1)n−1−|S0|
n−1∏
i=1

∑
j∈S0

bij + (−1)|S0|
n−1∏
i=1

∑
j 6∈S0

bij

= (−1)|S0|

(
n−1∏
i=1

xi + (2k − x1)
n−1∏
i=2

(k − xi)
)

≡ (−1)|S0|

2
n−1∏
i=1

xi − k
n−1∑
j=2

∏
i 6=j

xi

 mod 4,

where
xi =

∑
j∈S0

bij .

Now
∑
i xi is even, so there is an even number of choices of i for which xi is even.

If this number is non-zero, then (11) is clearly 0 modulo 4. So we may assume that
every xi is odd. But then (11) is 0 modulo 4 again, since each term in the sum is odd
and there is an odd number of summands. �

Theorem 3.4. Let n ≡ 1 mod 2 and k ≡ 2 mod 4. If A ∈ Λkn, then

perA+ 2 per(J −A) ≡ 0 mod 4.

Proof. By inclusion-exclusion,

per(J −A) =
n∑
i=0

(−1)i(n− i)! τi(A) ≡ τn−1(A)− perA mod 2,

where τi(A) is the sum of the permanents of all i× i submatrices of A. However, perA
is even by Lemma 1.2, so perA+2 per(J−A) ≡ perA+2τn−1(A) mod 4. Next, define
an n× n matrix C = [cij ] by cij = perA(i | j). By Corollary 3.2 and Theorem 3.3, we
know that modulo 4 each pair of rows of C either agrees in every position or differs
by 2 in every position. Hence, up to row and column permutations, C has the block
form (

C1 C2
C3 C4

)
where each entry in C2 ∪C3 differs from each entry in C1 ∪C4 by 2 mod 4. Note that
some blocks may be vacuous, but one of the four blocks must have odd dimensions.
Without loss of generality, we choose it to be C1. Now, partition A into 4 blocks(

A1 A2
A3 A4

)
whose dimensions and locations match the corresponding block of C. Define nr to be
the total of a row r in block A1. Next, consider calculating perA mod 4 by taking an
expansion along row r:

perA =
n∑
j=1

arjcrj ≡ nrcr1 + (k − nr)(cr1 + 2) ≡ 2cr1 − 2nr mod 4.
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The answer must be independent of r, which means that nr mod 2 is constant. Anal-
ogous statements hold for row totals in each block. In particular, A3, which has an
even number of rows, must contain an even number of ones. But then A1 must also
contain an even number of ones, given that the column totals of A are even. It follows
that nr must be even, so perA ≡ 2cr1 mod 4. Now,

τn−1(A) =
∑
i,j

cij ≡ n2cr1 ≡ cr1 mod 2.

So perA+ 2τn−1(A) ≡ 4cr1 ≡ 0 mod 4 and we are done. �

In our next major result, we show that a stronger form of Lemma 1.2 can be
obtained under some circumstances.

Theorem 3.5. Let A ∈Mn(Z) where n is odd. If all row sums are multiples of 4 and
all column sums are even, then perA ≡ 0 mod 4.

Proof. We compute the permanent via (2):

perA =
∑
S⊆[n]

(−1)n−|S|
n∏
i=1

∑
j∈S

aij .

Let ri be the sum of row i and cj be the sum of column j of A. Fix a set S = S0 of
odd cardinality and consider the contribution from S0 and its complement. We have,

(12)

n∏
i=1

∑
j∈S0

aij −
n∏
i=1

∑
j 6∈S0

aij =
n∏
i=1

∑
j∈S0

aij −
n∏
i=1

ri −∑
j∈S0

aij


≡ 2

n∏
i=1

∑
j∈S0

aij mod 4.

Since each column of A has an even total,

(13)
n∑
i=1

∑
j∈S0

aij =
∑
j∈S0

cj ≡ 0 mod 2.

Since n is odd,
∑
j∈S0

aij must be even for at least one value of i in (13). Thus,
the product of the partial row sums must be even and (12) must be a multiple of 4.
Summing over S0, the result follows. �

Corollary 3.6. Let A ∈ Λ4k
n for integers k, n with n odd. Then perA ≡ 0 mod 4.

It is well-known that perfect matchings in bipartite graphs can be counted using
the permanent of the bi-adjacency matrix of the graph. Corollary 3.6 says that the
number of perfect matchings will be a multiple of 4 in any 4k-regular bipartite graph
with an odd number of vertices in each class of the bipartition. Indeed, Theorem 3.5
says that the same conclusion can be reached under weaker hypotheses. It suffices for
all vertices in one class to have even degree, and all vertices in the other class to have
their degree divisible by 4.

We define tij(L) to be the number of transversals in the Latin array formed by
deleting the ith row and jth column of L. When clear from context, the shorthand
tij is used.

Theorem 3.7. Let L be a row-Latin square of order n. Then for all a, b, c,

tab ≡ tac mod 2.
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Proof. Without loss of generality, we may assume that n > 2, a = 1, b = 1, c = 2.
Let L[X] = [xij ] and define

L[X]′ =


1 1 0 · · · 0
x21 x22 x23 · · · x2n
...

...
...

. . .
...

xn1 xn2 xn3 · · · xnn

 .

Then tab + tac is the number of terms in perL[X]′ which have exactly n− 1 symbols.
Thus, by Lemma 2.2,

tab + tac =
n−1∑
r=0

(−1)n−1−r(n− r)〈r〉perL[X]′ ≡
n−1∑
r=1

(n− r)〈r〉detL[X]′ mod 2.

If n is odd, then we have two subcases. If r is even, then 〈r〉detL[X]′ is even, by
Lemma 1.2. If r is odd, then n−r is even, and so each term in the summation is even.

If n is even, then we use a trick similar to Theorem 2.10 by pairing up complemen-
tary terms. Our result follows from Lemma 1.2 and Lemma 2.6 when r is even and r
is odd, respectively. �

This immediately gives us a surprisingly simple result which lays the groundwork
for the patterns found in the remainder of the section.

Corollary 3.8. Let L be a Latin square of order n. Then for all a, b, c, d,

tab ≡ tcd mod 2.

Proof. Since L is a row-Latin square, tab ≡ tad mod 2 by Theorem 3.7. Moreover,
since the transpose of L is a row-Latin square, tad ≡ tcd mod 2. �

This simple observation leads to several patterns relating to deleting a row and a
column of a Latin square.

Corollary 3.9. Let R be an (n− 1)× n row-Latin rectangle, where n is even. Then
the number of transversals in R is even.

Proof. Let L be some row-Latin square formed by adding one row to R. By definition,
the number of transversals in R is

tn1(L) + tn2(L) + · · ·+ tnn(L).

Each of these terms is congruent modulo 2 (by Theorem 3.7) and n is even. �

Each (n−1)×n Latin rectangle R has a unique completion to a Latin square L, and
each transversal of R corresponds to a so-called near transversal of L. Corollary 3.9
does not generalise to odd orders, as there are some rectangles that have an even
number of transversals and other rectangles that have an odd number of transversals.
If any row is removed from the Cayley table of a cyclic group of odd order, the
resulting Latin rectangle has an odd number of transversals. This can been seen by
combining two well-known features of the cyclic group tables of odd order. Firstly
each near transversal extends to a (unique) transversal, and secondly there are an
odd number of transversals.

We define Nr = Nr(L) to be the number of diagonals of weight n − 1 in L where
the symbol that appears in row r also appears in another row of the diagonal. The
following two results follow directly from the definition of tij .
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Lemma 3.10. Let L be a Latin square of order n. Then for any row r,
n∑
c=1

trc = En +Nr.

Proof. Each transversal in the matrix formed by deleting row r and column c extends
to either a transversal of L or a diagonal of weight n− 1 depending on which symbol
is in the cell (r, c). �

Lemma 3.11. Let L be a Latin square of order n. Then
n∑
r=1

n∑
c=1

trc = nEn + 2En−1.

Proof. Across the whole summation, each transversal of L is counted n times (once
for each entry in the transversal) and each diagonal with weight n−1 is counted twice
(once for each entry containing the duplicated symbol). �

Our next main result has a curious feature, which we explain after proving the
result.

Theorem 3.12. Let L be a Latin square of odd order n. Then for any r and c,

trc ≡ En mod 2.

Proof. Since n is odd, Corollary 3.8 ensures that

trc ≡
n∑
i=1

n∑
j=1

tij mod 2.

Then Lemma 3.11 gives trc ≡ nEn + 2En−1 ≡ En mod 2, as desired. �

Corollary 3.13. Let L be a Latin square of order n. Then Nr is even for all rows r.

Proof. Each term in
∑n
c=1 trc is the same modulo 2. If n is even, this sum is even,

whereas if n is odd, the sum is equivalent to tr1 modulo 2. In either case, the sum
is equivalent to En modulo 2, by Theorem 2.7 and Theorem 3.12, respectively. The
result now follows from Lemma 3.10. �

An interesting feature of Theorem 3.12 lies in the fact that a transversal of L can
be inferred without locating one. In each of the other previous results, the number
of diagonals with specific properties is of a similar form: congruent to 0 modulo m
for some m. Congruences like this cannot be used to show existence of transversals.
However, Theorem 3.12 gives a slightly different approach. In particular, if trc ≡
1 mod 2 for any row and column, then there must exist a transversal in L even if
none go through the cell (r, c).

Example 3.14. Consider L5:

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4
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Every transversal in L5 goes through the shaded entry. In particular, there are no
transversals including the entry in the top left corner. However, the main diagonal is
the sole transversal in L5(1 |1), so t11 = 1. Thus, we can use Theorem 3.12 to deduce
that at least one transversal exists in L5 without finding such a transversal.

We finish the discussion of tij with a rather curious pattern found for small orders.
It is very much in the spirit of Theorem 3.3 (but does not seem to follow directly
from it).

Conjecture 3.15. Let L be a Latin square of order n. Then tac + tbc + tad + tbd ≡
0 mod 4 for all a, b, c, d.

In light of Corollary 3.8, Conjecture 3.15 implies a very specific structure for the
matrix [tij ]. Each pair of rows either agrees modulo 4 or differs in every column by 2
modulo 4. A similar observation holds for columns.

4. Counting diagonals by their number of symbols
In this section, we look at relationships between the Ei = Ei(L), that is, the counts of
diagonals of L according to how many symbols they contain. We will also be interested
in Ri = Ri(L) which we define to be shorthand for 〈i〉perL[X]. Note that R0 = 0.
The Ri are related to the Ei by

(14) Em =
m∑
r=1

(−1)m−r
(
n− r
n−m

)
Rr,

where n is the order of L. This relationship was given explicitly in [2] and can easily
be derived from Lemma 2.2.

In several proofs we will encounter dn, the number of derangements in Sn. From
the well-known recurrence dn = ndn−1 + (−1)n, we learn that

(15) dn ≡ 1 mod 4 when n is even.

The following proposition is a list of identities which are either immediate from the
definition of a Latin square or are proved in [6].

Lemma 4.1. Let L be a Latin square of order n.
(a) R1 = n,
(b) Rn−1 = ndn,
(c) Rn = n!,
(d) R2i is even for each integer i,
(e) Ri +Rn−i is even if n is even, and
(f) Rn/2 is even if n is even.

Balasubramanian [6] used (d) and (e) to show Theorem 2.7, while Akbari and
Alipour [2] showed the following two results.

Theorem 4.2. If L is a Latin square of order n ≡ 2 mod 4 then En−3 is even.

Theorem 4.3. If L is a Latin square of order n then En−1 is even.

We start with patterns in Latin squares of odd order. We have two direct corollaries
of earlier results.

Corollary 4.4. If L is a Latin square of odd order then R4k ≡ 0 mod 4 for each
integer k.

Proof. Simply apply Corollary 3.6 to each matrix in the sum that defines R4k. �
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Corollary 4.5. If L is a Latin square of odd order n and k ≡ 2 mod 4, then
Rk + 2Rn−k ≡ 0 mod 4.

Proof. Apply Theorem 3.4 to each of the complementary pairs in Rk and Rn−k. �

In addition, we have:

Theorem 4.6. If L is a Latin square of odd order n then Ei is even whenever i is
even.

Proof. By (14) we have

Ei ≡
i∑

j=1

(
n− j
n− i

)
Rj mod 2.

Now, Rj is even for even j, by Lemma 4.1(d). When j is odd,
(
n−j
n−i
)
is even by Lucas’

Theorem, given that n− j is even and n− i is odd. The result follows. �

We also have the following strengthening of Theorem 4.3 for odd orders:

Theorem 4.7. If L is a Latin square of odd order n then En−1 ≡ 0 mod 4.

Proof. We compute En−1 utilising (14). We pair up the complementary terms in this
summation, (n− r)Rr− rRn−r. Within each of these pairs, we assume that r is even,
by replacing r by n − r if necessary. We examine two cases. First, if r ≡ 0 mod 4,
then the second term vanishes modulo 4 and (n − r)Rr ≡ 0 mod 4 by Corollary 4.4.
Alternatively, if r ≡ 2 mod 4 thenRr is even, by Lemma 4.1(d), so (n−r)Rr ≡ Rr mod
4. Thus, (n−r)Rr−rRn−r ≡ Rr+2Rn−r mod 4. We may now use Corollary 4.5. Each
pair of complementary terms sums to a multiple of four, so the result follows. �

We now shift our attention to Latin squares of even order, where the results are
based on the global relationship between the different Ri values in contrast with the
local nature of Corollary 4.4 and Corollary 4.5.

Theorem 4.8. If L is a Latin square of even order n > 2 then
E1 + E3 + · · ·+ En−1 ≡ E2 + E4 + · · ·+ En ≡ n mod 4.

Proof. By (14),
n/2∑
m=1

E2m−1 =
n/2∑
m=1

2m−1∑
r=1

(−1)2m−1−r
(

n− r
n− 2m+ 1

)
Rr

=
n−1∑
r=1

(−1)n−r−1Rr

d(n−r)/2e∑
s=1

(
n− r
2s− 1

)

=
n−1∑
r=1

(−2)n−r−1Rr ≡ Rn−1 − 2Rn−2 ≡ ndn − 0 ≡ n mod 4,

by Lemma 4.1 and (15). If n > 4 then
∑n
i=1 Ei = n! ≡ 0 mod 4, and the second

congruence follows. �

Corollary 4.9. Every Latin square has an even number of diagonals that contain an
even number of symbols.

Proof. The order 2 case is trivial and Theorem 4.8 takes care of all larger even orders.
The odd case is immediate from Theorem 4.6. �

Corollary 4.10. Every Latin square of order n > 1 has an even number of diagonals
that contain an odd number of symbols.
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Proof. There are n! ≡ 0 mod 2 diagonals, so the result follows from Corollary 4.9. �

The even permanent perev is defined as the sum of the products of the entries
on the even diagonals of a matrix. In other words, it has the same definition as (1)
except that the sum is taken over the alternating group rather than the symmetric
group. Let Rev

i be defined the same as Ri, but using perev in place of per. Similarly,
let Eev

i be the number of even diagonals with exactly i different symbols on them. We
considered even permanents as one possible approach to Conjecture 2.13. While that
effort was unsuccessful, we did manage to prove this weak analogue of Theorem 4.8:

Theorem 4.11. If L is a Latin square of even order n > 2 then
Eev

3 + Eev
5 + · · ·+ Eev

n−1 ≡ Eev
1 + Eev

2 + Eev
4 + Eev

6 + · · ·+ Eev
n ≡ 0 mod 2.

Proof. Similar to the proof of Theorem 4.8, we have that
n/2∑
m=1

Eev
2m−1 ≡ Rev

n−1 mod 2.

Hence
n/2∑
m=3

Eev
2m−1 ≡ Eev

1 +Rev
n−1 ≡ Rev

1 +Rev
n−1 mod 2.(16)

Let P0 and P1 be permutation matrices corresponding to arbitrary even and odd
permutations, respectively. Then perev P0 = 1 and perev P1 = 0. Also perev(J−P0) =
a and perev(J−P1) = b, where a+b = per(J−P0) = dn, and a−b = det(J−P0) = 1−n,
by (5). Thus a = (dn + 1− n)/2 and b = (dn − 1 + n)/2. By (15),

perev P0 + perev(J − P0) ≡ 1 + (dn + 1− n)/2 ≡ n/2 ≡ (dn − 1 + n)/2
≡ perev P1 + perev(J − P1)

mod 2. Thus, in calculating (16) we can pair up complementary terms in Rev
1 and

Rev
n−1 to show that Rev

1 + Rev
n−1 ≡ n(n/2) ≡ 0 mod 2. The result follows, since∑

iE
ev
i = n!/2 ≡ 0 mod 2. �

Note that Eev
1 ≡ n− πs mod 2, where πs is the symbol parity described in § 1. It

is curious that the Eev
1 term in Theorem 4.11 appears on the side of the congruence

that it does. The analogous statement for standard permanents follows by considering
Theorem 4.8 modulo 2, and noting that the E1 term can be written on either side of
the congruence, since E1 = n is even.

We next show a parity relationship between consecutive pairs in the sequence
E1, . . . , En.

Theorem 4.12. If L is a Latin square of even order then E2i−1 ≡ E2i mod 2 for each
integer i.

Proof. By (14),

E2i + E2i−1 = R2i +
2i−1∑
r=1

[(
n− r
n− 2i

)
−
(

n− r
n− 2i+ 1

)]
(−1)rRr

= R2i +
2i−1∑
r=1

[(
n− r
n− 2i

)
−
(
n− r
n− 2i

)(
2i− r

n− 2i+ 1

)]
(−1)rRr

= R2i +
2i−1∑
r=1

(
n− r
n− 2i

)[
n− 4i+ r + 1
n− 2i+ 1

]
(−1)rRr.
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If r is even, then Rr is even. If r is odd, then n− 4i+ r + 1 is even, while n− 2i+ 1
is odd, so

(
n−r
n−2i

)
(n− 4i+ r + 1)/(n− 2i+ 1) must be even (it is an integer, since our

proof shows that it is the difference of two integers). The result follows. �

It seems that E2i and E2i+1 are unrelated except for the case En−2 and En−1 when
n ≡ 0 mod 4, which is covered in the following conjecture.

Conjecture 4.13. Let L be a Latin square of order n. The following holds for all i, j
and r. If n ≡ 0 mod 4, then

En ≡ En−1 ≡ 2En−2 ≡ 2tij ≡ Nr mod 4,

(17) R1 +R3 + · · ·+Rn−1 ≡ 0 mod 4 and R2 +R4 + · · ·+Rn ≡ En mod 4.

If n ≡ 2 mod 4, then En−1 ≡ 2tij ≡ Nr mod 4.

Using (14), Theorem 2.7 and Lemma 4.1(d), if n ≡ 0 mod 4, then
∑
Ri ≡ En mod

4. Also, En−1 + 2En−2 ≡ R1 +R3 + · · ·+Rn−1 mod 4. Thus, En−1 ≡ 2En−2 mod 4 is
equivalent to (17). Note, for even n, that En, En−1 and Nr are even by Theorem 2.7,
Theorem 4.3 and Corollary 3.13, respectively.

Suppose that n ≡ 0 mod 4 and that Conjecture 4.13 holds. It follows thatNr+En ≡
0 mod 4, which combines with Lemma 3.10 to imply that the number of transversals
in any (n− 1)×n Latin rectangle is divisible by 4, whenever n itself is divisible by 4.

Our results to this point have all been congruences mod 2 or 4. We finish by showing
for any given order n that R2 and E2 have only two possible values mod 6. The main
interest in this result is that it involves a different modulus to our other results.

Lemma 4.14. Let L be a Latin square of any order n. Then R2 ≡ E2 ≡ 0 mod 2 and

R2 6≡ (−1)n(n+ 1) mod 3 and E2 6≡ (−1)n(n+ 1)− n(n− 1) mod 3.

Proof. By (14) we have that E2 = R2 − (n − 1)R1 = R2 − n(n − 1), so it suffices to
prove the claims about R2. By Lemma 4.1(d), we know that R2 is even, and it follows
immediately that E2 is even as well.

For each symbol s of L, define a permutation θs : [n]→ [n] by θs(i) = j if Lij = s.
Then R2 is the sum over symbols s, s′ ∈ [n] of 2c(s,s′), where c(s, s′) is the number of
cycles in (θs)−1θs′ . The number of cycles in any permutation σ ∈ Sn is n−ε(σ) mod 2.
Hence

R2 =
∑
s,s′

2c(s,s
′) ≡

∑
s,s′

(−1)n−ε((θs)−1θs′ ) ≡ (−1)n
∑
s,s′

(−1)ε(θs)+ε(θs′ )

≡ (−1)n
((

e

2

)
+
(
n− e

2

)
− e(n− e)

)
mod 3,

where e =
∣∣{s ∈ [n] : ε(θs) = 0}

∣∣. The required result now follows by a simple case
analysis concerning the value of e mod 3. �

5. Concluding remarks
We have shown a number of congruences satisfied by various quantities motivated
by the study of transversals in Latin squares. There are many others which are di-
rect consequences of the results we have given. For example, it is easy to use (14),
Lemma 4.1(d) and Corollary 4.4 to show that E8 ≡ 0 mod 4 when n ≡ 3 mod 4, given
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that (
n− 7

1

)
≡
(
n− 5

3

)
≡
(
n− 3

5

)
≡
(
n− 2

6

)
≡
(
n− 1

7

)
≡ 0 mod 4 and(

n− 6
2

)
≡ 0 mod 2.

As mentioned in the introduction, a notion of parity has been useful in a number of
different studies of Latin squares. In this paper we have introduced parity for transver-
sals of Latin squares, and used it in the analysis of the number of transversals. In our
investigation we uncovered a number of interesting patterns, some of which we have
proved, and others we conjecture. Several of the conjectures classify Latin squares
of a given even order into two types which seem to have different properties. These
classifications do not seem to be related to each other, or to pre-existing notions of
parity. In Conjecture 2.13 the value of w mod 2, say, partitions Latin squares based
on the parity of their transversals, while Conjecture 4.13 partitions Latin squares into
two classes based on En−1 modulo 4. However, these partitions seem to be indepen-
dent of each other and of the previously studied parities πr and πc. By randomly
generating Latin squares, we found a Latin square with each of the 16 possibilities for
(w,En−1/2, πr, πc) mod 2 for orders 8, 10 and 12.

Finally, we remark that we have only considered the classical 2-dimensional case
in this paper. However, transversals are of interest in the context of Latin hypercubes
and permanents can also be generalised to higher dimensions. All of the questions that
we have investigated could also be asked in these higher dimensional contexts. A first
step in this direction has been taken by Taranenko [24], who noted that Theorem 2.7
generalises to Latin hypercubes.

Acknowledgements. The authors are grateful to Saieed Akbari for interesting discus-
sions on the topic of this paper.
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