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Abstract We revisit the Bose–Mesner algebra of the perfect matching association scheme. Our
main results are
• An inductive algorithm, based on solving linear equations, to compute the eigenvalues of

the orbital basis elements given the central characters of the symmetric groups.
• Universal formulas, as content evaluations of symmetric functions, for the eigenvalues of

fixed orbitals.
• An inductive construction of an eigenvector (the so called first Gelfand–Tsetlin vector) in

each eigenspace leading to a different inductive algorithm (not using central characters)
for the eigenvalues of the orbital basis elements.

1. Introduction
In this paper we revisit the Bose–Mesner algebra of the perfect matching association
scheme. The symmetric group S2n has a natural substitution action on the setM2n
of all perfect matchings in the complete graph K2n. The corresponding permutation
representation of S2n on C[M2n] (the complex vector space with M2n as basis) is
multiplicity free and the (commutative) algebra B2n = EndS2n(C[M2n]) is called the
Bose–Mesner algebra of the perfect matching association scheme. The eigenspaces of
B2n, in its left action on C[M2n], are indexed by even Young diagrams with 2n boxes
(i.e. Young diagrams with 2n boxes having an even number of boxes in every row)
and the orbital basis of B2n is indexed by even partitions of 2n (i.e. partitions of 2n
with all parts even). The present work is motivated by the following two results.

Diaconis and Holmes [8] determined all the eigenvalues of the orbital basis element
of B2n indexed by the even partition (4, 2n−2) of 2n (here (4, 2n−2) denotes the even
partition with one part equal to 4 and n − 2 parts equal to 2). We generalize this
result to all fixed orbitals in Theorem 1.2 below.

Godsil and Meagher [10, 11] and Lindzey [16] write down an eigenvector (using a
quotient argument) belonging to the eigenspace indexed by the even Young diagram
(2n − 2, 2) with 2n boxes, yielding the eigenvalues of all orbital basis elements on
this eigenspace. We generalize this result by giving an inductive procedure to write
down an eigenvector in every eigenspace in Theorem 1.3 below. This yields a practical
algorithm to compute the eigenvalues that we have implemented in Maple, see [26].
The program computes, reasonably efficiently, any given eigenvalue up to B40. We
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were able to determine the entire spectrum of the perfect matching derangement
matrix in B2n, up to 2n = 40 (see Problem 16.10.1 in [10]).

The rest of the introduction gives a more detailed, although still informal, descrip-
tion of our results.

A partition (or a Young diagram) λ is called even if all parts (or all row lengths)
of λ are even. Clearly, λ = (λ1, . . . , λk) 7→ 2λ = (2λ1, . . . , 2λk) is a bijection between
the set of all partitions of n (or Young diagrams with n boxes) and the set of all even
partitions of 2n (or even Young diagrams with 2n boxes). Let P denote the set of all
partitions and Y denote the set of all Young diagrams (there is a unique partition
of 0 and there is a unique Young diagram with 0 boxes, both denoted (0)). Let Pn
denote the set of all partitions of n and let Yn denote the set of all Young diagrams
with n boxes. If λ is a partition of n or if λ is a Young diagram with n boxes we write
λ ` n and |λ| = n (it will be clear from the context whether a partition or a Young
diagram is meant).

Given a Young diagram λ with n boxes, denote the (complex) irreducible repre-
sentation of Sn parametrized by λ by V λ and denote the character of V λ by χλ. For
µ ` n, denote the conjugacy class of permutations in Sn of cycle type µ by Cµ and
set χλµ = χλ(π), for (any) π ∈ Cµ. We let kµ ∈ C[Sn] (= the group algebra of Sn)
denote the sum of elements in Cµ.

Let Z[C[Sn]] denote the center of the group algebra of Sn. Then Z[C[Sn]] is a
semisimple commutative algebra of dimension p(n), the number of partitions of n,
with {kµ | µ ` n} as a basis. The eigenspaces of this algebra, in its left action on
C[Sn], are the isotypical components of V λ, λ ` n in C[Sn]. Let φ̂λµ denote the
eigenvalue of kµ on the isotypical component of V λ. By taking traces we see that

(1) φ̂λµ =
|Cµ|χλµ

dim(V λ) .

We call φ̂λµ a central character. It can be easily shown to be an integer. As there are
well known explicit formulas for |Cµ| and dim(V λ) we may regard φ̂λµ and χλµ as being
equivalent from the point of view of computing them. There are very efficient practical
algorithms, based on the Murnaghan–Nakayama rule, to compute χλµ for fairly large
values of n and these algorithms can be used to calculate φ̂λµ.

We now define an analog of Z[C[Sn]]. We have the following basic result (see
[3, 13, 17, 25, 27]): there is a S2n-linear isomorphism

(2) C[M2n] ∼= ⊕λ`nV 2λ.

Let B2n = EndS2n(C[M2n]). Since C[M2n] is multiplicity free, B2n is a semisimple
commutative algebra called the Bose–Mesner algebra of the perfect matching associ-
ation scheme. Its dimension is also p(n).

From (2) above we have that the common eigenspaces of B2n, in its left action on
C[M2n], are (S2n-isomorphic to) V 2λ, λ ` n. The orbits of the diagonal action of S2n
on M2n ×M2n, and thus the orbital basis of B2n, can be shown to be indexed by
even partitions of 2n (see Section 2). Given µ ` n, let N2µ denote the orbital basis
element of B2n indexed by the even partition 2µ and let θ̂2λ

2µ, λ, µ ` n, denote the
eigenvalue (which can be shown to be an integer, see Section 2) of N2µ on V 2λ. We
refer to the θ̂2λ

2µ as the eigenvalues of B2n. We think of θ̂2λ
2µ as an analog of φ̂λµ.

We are interested in combinatorial algorithms (recursive or direct) that compute
θ̂2λ

2µ. In this paper we give two such algorithms. The first algorithm, given in Section 3,
is quite involved and is not really suitable for implementation. It however has an im-
portant theoretical consequence which we present in Section 4. The second algorithm,
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given in Section 5, is extremely simple and is much easier to implement. Moreover,
there is a parallel and virtually identical algorithm that calculates the central char-
acters (not using (1) above). We now discuss these results.

In Section 3 we address the following question: assuming the central characters
of Sn as given, how can we calculate the eigenvalues of the Bose–Mesner algebra.
We give a recursive combinatorial algorithm for this task. We show that we can
inductively compute the eigenvalues of B2,B4, . . . ,B2n from the central characters of
S2, S4, . . . , S2n by solving systems of linear equations.

Let Θ̂(2n) denote the eigenvalue table of B2n, i.e. Θ̂(2n) is the Yn × Pn matrix
with entry in row λ, column µ given by θ̂2λ

2µ.

Theorem 1.1. Assume given the central characters of S2, S4, . . . , S2n and the eigen-
values of B2,B4, . . . ,B2n−2. There is an algorithm that determines the eigenvalues
of B2n by solving nonsingular systems of linear equations with coefficient matrices
Θ̂(2), Θ̂(4), . . . , Θ̂(2n − 2) and with right hand sides determined by the central char-
acters of S4, S6, . . . , S2n.

Thus we can inductively compute the eigenvalues of the Bose–Mesner algebra from
the central characters of the symmetric groups by solving linear equations.

Theorem 1.1, when combined with the work of Corteel, Goupil, and Schaeffer [6]
and Garsia [9] expressing central characters (at fixed conjugacy classes) as content
evaluations of symmetric functions, yields similar formulas for the eigenvalues of fixed
orbital basis elements. Let us explain this. First we introduce notation concerning fixed
classes and symmetric functions.

Let P(2) denote the set of partitions with all parts > 2. Note that the unique
partition of 0 belongs to P(2). For µ ∈ P(2), let µ be the partition of |µ| − `(µ) (`(µ)
= number of parts of µ) obtained by subtracting 1 from every part of µ. The map
P(2) → P given by µ 7→ µ is clearly a bijection. Let P(2, n) denote the set of all
µ ∈ P(2) with |µ| 6 n.

By a nontrivial cycle of a permutation we mean a cycle of length > 2. Given
µ ∈ P(2) and n > 1, define cµ(n) to be element of Z[C[Sn]] given by the sum of all
permutations π in Sn that have µ as the partition determined by the lengths of the
nontrivial cycles of π. Thus, cµ(n) is 0 if n < |µ| and is equal to k(µ,1n−|µ|) if n > |µ|
(here (µ, 1n−|µ|) denotes the partition of n obtained by adding, to µ, n − |µ| parts
equal to 1). In this notation, c(3)(n) denotes the conjugacy class sum of 3-cycles in
C[Sn] (which is automatically zero if n = 1, 2), c(0)(n) denotes the identity element
of C[Sn], and {cµ(n) | µ ∈ P(2, n)} is a basis of Z[C[Sn]].

Given µ ∈ P(2) and λ ∈ Y, define φλµ to be the eigenvalue of cµ(|λ|) on V λ. That
is, if λ has n boxes, φλµ is equal to φ̂λ(µ,1n−|µ|) if n > |µ| and is equal to 0 if n < |µ|.

Similarly, given µ ∈ P(2) and n > 1, defineM2µ(2n) to be the element of B2n given
as follows: it is equal to the orbital basis element N2(µ,1n−|µ|) if n > |µ| and it is 0 if
n < |µ|. For instance, if µ = (3, 2, 1, 1) ` 7 and τ = (3, 2) we can write the element N2µ
of B14 asM2τ (14). The orbital basis of B2n can be written as {M2τ (2n) | τ ∈ P(2, n)}.

Given µ ∈ P(2) and λ ∈ Y, define θ2λ
2µ to be the eigenvalue of M2µ(2|λ|) on V 2λ.

That is, if λ has n boxes, θ2λ
2µ is equal to θ̂2λ

2(µ,1n−|µ|) if n > |µ| and is equal to 0 if
n < |µ|.

We think of φ̂λµ and θ̂2λ
2µ as functions of λ, µ ` n, for fixed n . While considering φλµ

and θ2λ
2µ, we regard µ as fixed, and think of φλµ, θ2λ

2µ as functions on Y.
The content c(b) of a box b of a Young diagram λ is its y-coordinate minus its

x-coordinate (our convention for drawing Young diagrams is akin to writing down
matrices with x-axis running downwards and y axis running to the right). Thus the
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content of the boxes in the first row (from left to right) are 0, 1, 2, . . ., in the second
row are −1, 0, 1, . . ., and so on. We denote by c(λ) the multiset of contents of all the
boxes of λ. So c(λ) has (multiset) cardinality |λ|.

Let Λ[t] denote the algebra, over Q[t], of symmetric functions in {x1, x2, x3, . . .}.
Define p0 = 1 and pn =

∑
i x

n
i , n > 1. For λ ∈ P the power sum symmetric function

pλ is defined as follows:
pλ = pλ1pλ2 · · · if λ = (λ1, λ2, . . .).

The set {pλ | λ ∈ P} is a Q[t]-module basis of Λ[t] ([5, 17, 23, 24, 27]).
Given f ∈ Λ[t] and λ ∈ Y with n boxes we define the content evaluation f(c(λ))

to be the rational number obtained from f by setting t = n, xi = 0 for i > n, and
{x1, x2, . . . , xn} = (the multiset) c(λ).

Note that this definition makes sense as f is symmetric.
Frobenius proved that the central character at the conjugacy class of transposi-

tions is given by content evaluation of the symmetric function p1 ∈ Λ[t] and Ingram
proved that the central character at the conjugacy class of 3-cycles is given by content
evaluation of the symmetric function p2 − t(t−1)

2 ∈ Λ[t] (see [6]). These are universal
formulas (i.e. independent of λ) made precise as follows:

φλ(2) = p1(c(λ)) = Sum of contents of all boxes of λ , λ ∈ Y,

φλ(3) =
(
p2 −

t(t− 1)
2

)
(c(λ))

= Sum of squares of contents of all boxes of λ− |λ|(|λ| − 1)
2 , λ ∈ Y.

Note that φλ(3) is 0 when |λ| = 1, 2. These formulas can be generalized to all fixed
conjugacy classes.

For each µ ∈ P(2), it is shown in [6] that there is a symmetric function Wµ ∈ Λ[t]
such that {Wµ | µ ∈ P(2)} is a Q[t]-module basis of Λ[t] and, for all µ ∈ P(2), λ ∈ Y,

φλµ = Wµ(c(λ)).

An algorithm to compute Wµ is given in [9]. We motivate and discuss this result in
Section 4.

Diaconis and Holmes [8] observed, using Frobenius’ result, that the eigenvalues
of the orbital basis element of B2n corresponding to 4-cycles (i.e. the even partition
(4, 2n−2)) are given by content evaluation of the symmetric function p1

2 −
t
4 ∈ Λ[t],

i.e.

θ2λ
2(2) =

(
p1

2 −
t

4

)
(c(2λ))

= Sum of contents of all boxes of 2λ
2 − 2|λ|

4 , λ ∈ Y.

Note that θ2λ
2(2) = 0 when |λ| = 1. This can be generalized to all fixed orbital basis

elements.
In Section 4, we show that the algorithm of Theorem 1.1 converts the basis {Wµ}

of Λ[t] into another basis {Eµ} of Λ[t] with the following property.

Theorem 1.2. For each µ ∈ P(2) there is a symmetric function Eµ ∈ Λ[t] such that
(i) {Eµ | µ ∈ P(2)} is a Q[t]-module basis of Λ[t].
(ii) For all µ ∈ P(2) and λ ∈ Y, we have

θ2λ
2µ = Eµ(c(2λ)).
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Information about the coefficients in the expansion ofWµ and Eµ in the power sum
basis is given in Section 4. Example 4.6 in Section 4 lists these symmetric functions
for |µ| 6 4.

One method for computing the eigenvalues {θi} of a real symmetric matrix N is
to write down eigenvectors {vi}, one in each eigenspace, and then to solve for θi in
the equation Nvi = θivi. In Section 5 we use this method to give a different inductive
algorithm (not using the characters or central characters of Sn) for computing the
eigenvalues θ̂2λ

2µ of B2n.
Every Sn-irreducible V λ has a canonically defined basis, determined up to scalars,

and called the Gelfand–Tsetlin (GZ) basis. We systematically choose one of these
basis vectors and call it the first GZ vector (see Sections 4 and 5 for definitions).
Let v2λ denote the first GZ vector of the eigenspace V 2λ of B2n. Let λ′ ∈ Yn+1 with
λ = λ′ − {last box in the last row of λ′}. Then there is a simple expression for v2λ′

in terms of v2λ (see Section 5). The simplest nontrivial case of this occurs when λ′ =
(n, 1). Here λ = (n) and V 2(n) is the trivial representation giving v2λ =

∑
A∈M2n

A.
In this case the eigenvector v2λ′ coincides with that written down by Godsil and
Meagher [10, 11] and Lindzey [16] (using a quotient argument).

Of course, explicitly writing down these vectors is inefficient since v2λ lives in a
space of dimension (2n−1)!! = 1 ·3 ·5 · · · ·(2n−1). However, we use this expression im-
plicitly to give an algorithm that works with only the rows of Θ̂(2n). Note that a row of
Θ̂(2n) has only p(n) components, which is subexponential and is only moderately large
for small values of n (for example, compare p(13) = 101 with 25!! = 7905853580625).

Theorem 1.3. Let λ′ ∈ Yn+1 with λ = λ′ − {last box in the last row of λ′}. Assume
that the row of Θ̂(2n) indexed by λ, i.e. the vector (θ̂2λ

2µ)µ`n, is known.
There is an algorithm to determine (θ̂2λ′

2µ′)µ′`n+1, i.e. the row of Θ̂(2n+ 2) indexed
by λ′.

The statement of Theorem 1.3 hides some details. Strictly speaking, we need to
work not with row vectors of length p(n) but of length pp(n), the number of pointed
partitions of n (see Section 5 for the definition). The main point is that pp(n) is
also subexponential and is only moderately large for small values of n. For instance,
pp(13) = 272.

The eigenvector approach also applies to the central characters and in Section 5 we
give a very similar inductive algorithm (not using irreducible characters) to compute
φ̂λµ. Although this method of computing the central characters is not as efficient as the
one based on (1) (since the irreducible characters can be very efficiently calculated),
it further brings out the essential analogy between θ̂2λ

2µ and φ̂λµ. A simple recursive
implementation of these algorithms in Maple is given in [26].

Finally, we would like to add a terminological remark. The Bose–Mesner algebra
B2n is isomorphic to the Hecke algebra (also called the double coset algebra) of the
Gelfand pair (S2n, Hn), where Hn is the hyperoctahedral group (see Example 5 of
Chapter VII.2 of [17]), and the two settings are equivalent. Except in the last section,
in this paper we adopt the perfect matching point of view.

2. The Sn-module C[Mn]
The regular modules C[Sn] have the following recursive structure

(3) indSn+1
Sn

(C[Sn]) ∼= C[Sn+1].

The modules C[M2n] have a similar recursive structure. Informally, we can say that
the induction happens at every other step and we do nothing in between (see items (v)
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and (vi) of Lemma 2.1 below). This is best brought out by simultaneously considering
the odd case, i.e. the action of S2n+1 on near perfect matchings (= matchings with n
edges) of K2n+1. This idea is implicit in the detailed proof of (2) given in Chapter 43
of Bump’s book [3] (also see [13, 25]) but it is useful to make it explicit as it simplifies
certain technicalities and also suggests an approach to writing down the eigenvectors
of B2n in Section 5. We adopt a uniform notation for both the even and odd cases.

Let Pn denote the set of all even partitions of n, if n is even, or the set of all near
even partitions of n (i.e. exactly one part odd), if n is odd. Let Yn denote the set of
all even Young diagrams with n boxes, if n is even, or the set of all near even Young
diagrams with n boxes (i.e. exactly one row length odd), if n is odd.

LetMn denote the set of all maximum matchings in Kn (i.e. perfect matchings if
n is even and near perfect matchings if n is odd). Given A,B ∈ Mn, let d(A,B) be
the partition whose parts are the number of vertices in the connected components of
the spanning subgraph of Kn with edge set A∪B. It is easily seen that d(A,B) ∈ Pn.

For µ ∈ Pn, A ∈Mn define
M(A,µ) = {B ∈Mn | d(A,B) = µ},

and define a linear operator
Nµ : C[Mn]→ C[Mn]

by setting, for A ∈Mn,
Nµ(A) =

∑
B∈M(A,µ)

B.

The symmetric group Sn has a natural action on Mn and this gives rise to the
Sn-module C[Mn]. We have the diagonal action of Sn on Mn × Mn. Set Bn =
EndSn(C[Mn]).

For n odd, given A ∈ Mn we denote by v(A) the unique vertex of Kn that is not
the endpoint of any edge in A. An edge connecting vertices i and j will be denoted
[i, j] (or [j, i]). The following result collects together basic properties of the Sn-action
onMn.

Lemma 2.1. Let n be a positive integer.
(i) (A,B), (C,D) ∈Mn×Mn are in the same Sn-orbit if and only if d(A,B) =

d(C,D).
(ii) The set {Nµ | µ ∈ Pn} is a basis of Bn.
(iii) (A,B), (B,A) are in the same Sn-orbit, for all (A,B) ∈Mn ×Mn.
(iv) The Sn-module C[Mn] is multiplicity free.
(v) Assume n is odd. We have an Sn-module isomorphism (treating Sn as the

subgroup of Sn+1 fixing n+ 1)

C[Mn] ∼= res Sn+1
Sn

(C[Mn+1])
given by A 7→ A ∪ {[v(A), n+ 1]}, A ∈Mn.

(vi) Assume n is even. We have an Sn+1-module isomorphism

ind Sn+1
Sn

(C[Mn]) ∼= C[Mn+1].

Proof. (i) This is clear.
(ii) This follows from part (i) by a standard result (see [5, 10]).
(iii) Follows from part (i).
(iv) This follows from part (iii) by a standard result (see [5, 10]).
(v) This is clear.
(vi) Consider the disjoint union given by coset decomposition

Sn+1 = Sn ∪ (1 n+ 1)Sn ∪ · · · ∪ (n n+ 1)Sn.
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We think of ind Sn+1
Sn

(C[Mn]) as the (left) C[Sn+1]-module C[Sn+1]⊗C[Sn]C[Mn] with
basis {(i n+ 1)⊗A : 1 6 i 6 n+ 1, A ∈ Mn} (here (n+ 1 n+ 1) = ε, the identity
permutation).

Define a bijective linear map f : ind Sn+1
Sn

(C[Mn])→ C[Mn+1] by

f((i n+ 1)⊗A) = (i n+ 1) ·A, 1 6 i 6 n+ 1, A ∈Mn.

Fix 1 6 i 6 n + 1 and A ∈ Mn. Let τ ∈ Sn+1. Set j = τ(i) and write τ(i n + 1) =
(j n+ 1)τ ′ where τ ′ = (j n+ 1)τ(i n+ 1). Note that τ ′(n+ 1) = (n+ 1). Then

f(τ · ((i n+ 1)⊗A)) = f((j n+ 1)⊗ (j n+ 1)τ(i n+ 1) ·A)
= (j n+ 1) · ((j n+ 1)τ(i n+ 1) ·A)
= τ · f((i n+ 1)⊗A).

Thus, f is an Sn+1-module isomorphism. �

We call {Nµ | µ ∈ Pn} the orbital basis of Bn. Parts (ii) and (iv) of Lemma 2.1
show that the eigenvalues of Nµ are integers using the following standard argument
(and the fact that the irreducible characters of Sn are integer valued).

Lemma 2.2. Let a finite group G act on a finite set X and for, g ∈ G, let ρ(g)
denote the X ×X permutation matrix corresponding to the action of g on X. Let A
be a X × X matrix with integer entries that commutes with the action of G on X,
i.e. Aρ(g) = ρ(g)A for all g ∈ G. Assume that

(i) The permutation representation of G on C[X] is multiplicity free.
(ii) The character of every G-irreducible appearing in C[X] is integer valued.

Then the eigenvalues of A are integral.

Proof. Write
C[X] = V1 ⊕ · · · ⊕ Vt,

where V1, . . . , Vt are nonisomorphic irreducible G-submodules of C[X]. Let χi be the
character of Vi.

Let λ be an eigenvalue of A. By Schur’s lemma, every Vj is contained in an
eigenspace of A. Thus the eigenspace of λ is a direct sum of some of the Vj ’s. Say Vi
is contained in the eigenspace of λ.

The G-linear projection C[X]→ C[X] onto Vi is given by

v 7→ dimVi
|G|

∑
g∈G

χi(g) g · v.

Since χi is integer valued the matrix of the projection above (in the standard basis X)
has rational entries and thus there is an eigenvector for λ with rational entries. Since
A is integral it follows that λ is a rational number and since it is also an algebraic
integer (being an eigenvalue of an integer matrix) it follows that λ is an integer. �

The recursive structure of the modules C[Mn] given by parts (v) and (vi) of
Lemma 2.1, together with the branching rule, yields a proof of (2). This part of
the proof, which we include for completeness, is essentially the same as in [3]. Let us
first recall the branching rule.

A fundamental result (see [5, 13, 22, 23, 24]) in the representation theory of the
symmetric groups states that there is a unique assignment, denoted λ 7→ V λ, which
associates to each Young diagram λ an equivalence class V λ of irreducible S|λ|-modules
(we also let V λ denote an irreducible Sn-module in the corresponding equivalence
class) such that properties (i) and (ii) below are satisfied:
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(i) Initialization: V (2) is the trivial representation of S2 and V (1,1) is the sign
representation of S2 (here (2), respectively (1, 1), denotes the Young diagram
with a single row of two boxes, respectively a single column of two boxes).

(ii) Branching rule: Given µ ∈ Y, we denote by µ− the set of all Young diagrams
obtained from µ by removing a box corresponding to one of the inner corners
in the Young diagram µ. For n > 2, given λ ∈ Yn, consider the irreducible
Sn-module V λ. Viewing Sn−1 as the subgroup of Sn fixing n we have an
Sn−1-module isomorphism

(4) resSnSn−1
(V λ) ∼=

⊕
µ∈λ−

V µ.

It is a consequence of properties (i) and (ii) above that {V λ | λ ∈ Yn} is a complete
set of pairwise inequivalent irreducible representations of Sn. Another consequence is
that, for any n, the Young diagram consisting of a single row of n boxes (respectively, a
single column of n boxes) corresponds to the trivial representation of Sn (respectively,
the sign representation of Sn).

Given µ ∈ Y, we denote by µ+ the set of all Young diagrams obtained from µ by
adding a box corresponding to one of the outer corners in the Young diagram µ. For
n > 1, given λ ∈ Yn, consider the irreducible Sn-module V λ. By Frobenius reciprocity,
the branching rule can be equivalently stated as

(5) indSn+1
Sn

(V λ) ∼=
⊕
µ∈λ+

V µ.

Theorem 2.3. Let n be a positive integer. There is a Sn-linear isomorphism
C[Mn] ∼=

⊕
λ∈Yn

V λ.

Proof. The proof is by induction on n, the cases n = 1, 2 being clear. Let n > 3 and
consider the following two cases.

(i) n is odd: This easily follows from the induction hypothesis, Lemma 2.1 (iv),
(vi), and the branching rule.

(ii) n is even: Let V λ, λ ∈ Yn occur in C[Mn] and assume that `(λ) > 3. Suppose
that not all rows of λ are of even length. Then, since n is even, we can find
an inner corner of λ such that deleting the corresponding box leaves a Young
diagram with at least two rows of odd length. By Lemma 2.1 (v) and the
branching rule, this contradicts the induction hypothesis (for n − 1). Thus,
V λ cannot occur in C[Mn].

Define Young diagrams λk = (n − k, k), 0 6 k 6 n/2. Note that λ0, . . . , λn/2 are
all the Young diagrams with at most two rows. We shall show, by induction on k,
that V λk , 0 6 k 6 n/2 occurs in C[Mn] if and only if k is even. Now V λ0 is the
trivial representation and thus occurs in permutation representation C[Mn]. Assume,
inductively, that our claim has been proven for V λ0 , . . . , V λt−1 and consider V λt . Sup-
pose t is even. By the main induction hypothesis on n, V (n−t,t−1) occurs in C[Mn−1].
By Lemma 2.1 (v) and the branching rule, one of V (n−t,t−1,1), V (n−t+1,t−1), V (n−t,t)

must occur in C[Mn]. The first cannot occur by the paragraph above, the second can-
not occur by the secondary induction hypothesis on k, and so the third must occur.
Now suppose that t is odd and that V (n−t,t) occurs in C[Mn]. Then, since V (n−t+1,t−1)

occurs in C[Mn] (by the secondary induction hypothesis on k), V (n−t,t−1) will occur
at least twice in C[Mn−1] contradicting its multiplicity freeness. Thus the claim on
V λk , 0 6 k 6 n/2 is established.

What we have shown so far implies that if V λ, λ ∈ Yn occurs in C[Mn] then
all rows of λ must have even length. Since, by the branching rule, res SnSn−1

(V λ) and
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res SnSn−1
(V µ), for λ, µ ∈ Pn, µ 6= λ can have no irreducibles in common, the result

follows from the induction hypothesis and Lemma 2.1 (v). �

3. Eigenvalues and (class-coset) intersection numbers
Assuming the central characters of S2, S4, . . . , S2n as given, we show in this section
that we can compute the eigenvalues of B2n by solving linear equations.

We begin by recalling, without proof, the following classical formula for the eigen-
values of B2n that appears in Bannai and Ito [2] (see page 179), Hanlon, Stanley, and
Stembridge [12] (see equation (3.3) of Lemma 3.3) and in Godsil and Meagher [10]
(see Lemma 13.8.3). It is proved by writing down the primitive idempotents of B2n
and then expanding the orbital basis in terms of these. Another paper, using Jack
symmetric functions, on the eigenvalues of B2n is Muzychuk [21].

Denote by I the perfect matching {[1, n+ 1], [2, n+ 2], . . . , [n, 2n]} of K2n. If µ is
a partition with mi parts equal to i we set zµ = 1m1m1! 2m2m2! 3m3m3! · · · .

Theorem 3.1 ([2, 12, 10]). Let λ, µ ` n. Fix A ∈M2n with d(I, A) = 2µ. Then

θ̂2λ
2µ = 1

2`(µ)zµ

 ∑
π∈S2n, π·I=A

χ2λ(π)

 .

The formula above has 2nn! terms on the right hand side. We can group terms by
cycle type to reduce this number.

Let µ ` n. Fix A ∈M2n with d(I, A) = 2µ. For τ ` 2n, define

m(τ, 2µ) = |Cτ ∩ {π ∈ S2n | π · I = A}|,

i.e. m(τ, 2µ) is the number of permutations in S2n of cycle type τ taking I to A
(this number is clearly independent of A as long as d(I, A) = 2µ). We refer to the
m(τ, 2µ) as the (class-coset) intersection numbers of B2n (being the cardinality of the
intersection of a conjugacy class with a coset of the subgroup fixing I).

We thus have the following formula which has only p(2n) terms

(6) θ̂2λ
2µ = 1

2`(µ)zµ

{∑
τ`2n

m(τ, 2µ)χ2λ
τ

}
.

There is, however, no simple formula for m(τ, 2µ). Thus, in the identity (6) above,
the characters of S2n are known but we have two sets of unknowns: eigenvalues of B2n
and the intersection numbers of B2n. The idea of the present approach is the following
bootstrap procedure:

(i) Given the central characters, we shall simultaneously inductively calculate
the eigenvalues and intersection numbers of B2n.

(ii) In Theorems 3.3 and 3.4 below we show that the eigenvalues of B2n can be
found from the central characters of S2n and the intersection numbers of
B2, . . . ,B2n−2.

(iii) In Lemma 3.2 below we show that we can find the intersection numbers of
B2n from the central characters of S2n and the eigenvalues of B2n by solving
linear equations.

For τ ` n, µ ` 2n define column vectors of length p(n)

φ̂µ = (φ̂2λ
µ )λ`n and θ̂τ = (θ̂2λ

2τ )λ`n.

Note that θ̂τ is the column of Θ̂(2n) indexed by τ . We have
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Lemma 3.2. Let µ ` 2n. Then

φ̂µ =
∑
τ`n

m(µ, 2τ)θ̂τ ,

i.e. defining the column vector m(µ) = (m(µ, 2τ))τ`n we have

φ̂µ = Θ̂(2n)m(µ).

Proof. Consider the element kµ ∈ Z[C[S2n]]. Then

kµ · I =
∑
τ`n

m(µ, 2τ)N2τ (I).

It follows that the actions of kµ and
∑
τ`nm(µ, 2τ)N2τ on C[M2n] are identical. The

eigenvalue of kµ on V 2λ is φ̂2λ
µ and that of N2τ on V 2λ is θ̂2λ

2τ . The result follows. �

The matrix Θ̂(2n) of eigenvalues of B2n is clearly nonsingular. Thus, Lemma 3.2
above shows that, given the central characters of S2n and the eigenvalues of B2n,
and given µ ` 2n, we can find all the m(µ, 2τ), τ ` n by solving a single system
of nonsingular linear equations of size p(n) × p(n). We shall now use this result to
inductively compute the eigenvalues of B2,B4, . . . ,B2n from the central characters of
S2, S4, . . . , S2n.

For π ∈ S2n define

supp(π) = {i ∈ {1, 2, . . . , n} | π(i) 6= i or π(n+ i) 6= n+ i (or both)}.

That is, supp(π) ∪ (n + supp(π)) (here, n + supp(π) = {n + i | i ∈ supp(π)}) is the
set of end points of all the edges of I that are touched by the nontrivial cycles of π
(i.e. by cycles of length > 2).

Let µ ∈ P(2). For n > 1, define

(7) f(µ, 2n) : C[M2n]→ C[M2n],

by x 7→ cµ(2n) · x. Note that 2n < |µ| implies that f(µ, 2n) = 0.
Clearly f(µ, 2n) ∈ B2n. Write

(8) f(µ, 2n) =
∑

τ∈P(2,n)

dτµ(2n)M2τ (2n).

The nonnegative integers dτµ(2n) defined above can be calculated as follows, for
n > |µ|. Below a ∨ b denotes the maximum of two nonnegative integers a, b.

Theorem 3.3.

(i) Let µ ∈ P(2) with |µ| = k and let n > k. For τ ∈ P(2, n) we have

dτµ(2n) =


0 if |τ | > k

0 if |τ | = k and τ 6= µ

2`(µ) if τ = µ

and, for |τ | = j < k, dτµ(2n) equals

(9)
k−1∑

r=j∨b k+1
2 c


r∑

s=j∨b k+1
2 c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j))


(
n− j
r − j

)
.

(ii) The set {f(µ, 2n) | µ ∈ P(2, n)} is a basis of B2n.
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Proof. (i) The result is clearly true if k = 0 (in which case f(µ, 2n) is the identity
map). So we may assume that k > 2. Let π ∈ C(µ,12n−k). A nontrivial r-cycle of π can
touch at most r edges of I and thus | supp(π)| 6 k. Moreover, if | supp(π)| = k then
each nontrivial r-cycle of π touches exactly r edges of I and no edge of I is touched
by two distinct nontrivial cycles. It follows that | supp(π)| = k implies d(I, π · I) =
2(µ, 1n−|µ|) and | supp(π)| 6 k − 1 implies d(I, π · I) = 2(λ, 1n−|λ|), where λ ∈ P(2)
satisfies |λ| 6 k − 1. Thus dτµ(2n) = 0 if |τ | > k or |τ | = k and τ 6= µ.

We now determine dµµ(2n). Consider the nontrivial r-cycle σ = (1 2 · · · r) ∈
S2n, 2 6 r 6 n. Then supp(σ) = {1, 2, . . . , r} and d(I, σ · I) = 2(r, 1n−r).
It can be checked that the only other r-cycle π with π · I = σ · I is π =
(n + 1 n + r n + r − 1 · · ·n + 2). Since any element of C(µ,12n−k) has `(µ) non-
trivial cycles it now follows from the paragraph above that dµµ(2n) = 2`(µ).

Now let τ ∈ P(2) with |τ | = j < k. We now calculate dτµ(2n).
Fix A ∈M2n with d(I, A) = 2(τ, 1n−j) and with I ∩A, the intersection of the set

of edges of I and A, given by
I ∩A = {[j + 1, n+ j + 1], [j + 2, n+ j + 2], . . . , [n, 2n]}.

We have
(10) dτµ(2n) = |{π ∈ C(µ,12n−k) | π · I = A}|.
Let π ∈ C(µ,12n−k) with π · I = A. Then we clearly have

(11) {1, 2, . . . , j} ⊆ supp(π),
⌊
k + 1

2

⌋
6 | supp(π)|, and | supp(π)| 6 k − 1,

where the last inequality follows from the first paragraph of the proof.
Let S(j, k, n) denote the set of all subsetsX of {1, 2, . . . , n} satisfying {1, 2, . . . , j} ⊆

X and bk+1
2 c 6 |X| 6 k − 1, i.e. S(j, k, n) consists of all subsets of {1, 2, . . . , n}

containing the elements {1, 2, . . . , j} and with cardinality between j ∨ bk+1
2 c and

k − 1 (inclusive). Partially order S(j, k, n) by set inclusion.
For X ∈ S(j, k, n) define

α(X) = |{π ∈ C(µ,12n−k) | supp(π) ⊆ X, π · I = A}|,
β(X) = |{π ∈ C(µ,12n−k) | supp(π) = X, π · I = A}|.

Note that, from (10) and (11), we have

(12) dτµ(2n) =
∑

X∈S(j,k,n)

β(X).

We have
α(X) =

∑
Y⊆X, Y ∈S(j,k,n)

β(Y ), X ∈ S(j, k, n),

and by the principle of inclusion-exclusion

(13) β(X) =
∑

Y⊆X, Y ∈S(j,k,n)

(−1)|X−Y |α(Y ), X ∈ S(j, k, n).

If X ∈ S(j, k, n) with |X| = s, then a little reflection shows that

α(X) = m((µ, 12s−k), 2(τ, 1s−j)).
If X ∈ S(j, k, n) with |X| = r, then we have (from (13) above)

(14) β(X) =
r∑

s=j∨b k+1
2 c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j)).
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Thus, from (12) above, we have

dτµ(2n) =
∑

X∈S(j,k,n)

β(X)

=
k−1∑

r=j∨b k+1
2 c

∑
X∈S(j,k,n),|X|=r

β(X).

Since the number of sets X ∈ S(j, k, n) with |X| = r is clearly
(
n−j
r−j
)
the result follows

from (14) above.
(ii) This follows from the triangularity of the coefficients dτµ(2n) established in

part (i) above. �

Choose a linear ordering of Pn in which the partitions are listed in weakly increasing
order of the sum of their nontrivial parts (i.e. parts > 2). List the columns of the
Yn × Pn matrix Θ̂(2n) in this order.

Theorem 3.4. The first column of Θ̂(2n), indexed by (1n), is the all 1’s vector. Let
µ ∈ P(2, n) with |µ| > 0. Then the column of Θ̂(2n), indexed by (µ, 1n−|µ|), is given by(
θ̂2λ

2(µ,1n−|µ|)

)
λ`n

= 1
2`(µ)

(φ̂2λ
(µ,12n−|µ|)

)
λ`n
−

∑
τ∈P(2,|µ|−1)

dτµ(2n)
(
θ̂2λ

2(τ,1n−|τ|)

)
λ`n

.
Proof. This follows by taking the eigenvalues on V 2λ on both sides of (8) and using
Theorem 3.3. �

Proof of Theorem 1.1. Assume the central characters of S2, S4, . . . , S2n and the eigen-
values of B2,B4, . . . ,B2n−2 as given.

Let µ ∈ P(2, n) with |µ| = k. For bk+1
2 c 6 s 6 k − 1, we can, by Lemma 3.2, find

all the nonnegative integers m((µ, 12s−k), 2(τ, 1s−|τ |)), τ ∈ P(2, s) by solving a single
system of linear equations of size p(s) × p(s) (this requires the central characters of
S2s and the eigenvalues of B2s but since s 6 k − 1 6 n− 1 the latter are known).

Thus the numbers dτµ(2n), for µ ∈ P(2, n), |τ | < |µ| can computed from (9). We
can now calculate the eigenvalues of B2n using the recurrence in Theorem 3.4. �

Example 3.5. To illustrate, we calculate the eigenvalue tables Θ̂(4) and Θ̂(6) starting
from Θ̂(2). The central characters of S4, S6 can be calculated from the character tables
of S4, S6 given in [13].

We rewrite Lemma 3.2 as follows: for µ ` 2n

(15) (m(µ, 2τ))τ`n = Θ̂(2n)−1(φ̂2λ
µ )λ`n.

Θ̂(2) is the Y1 × P1 matrix [1]. Thus, from (15) above we have

m((2), 2(1)) = φ̂
2(1)
(2) = 1.

We list the elements of Y2 as {(2), (1, 1)} and the elements of P2 as {(1, 1), (2)}. The

first column of Θ̂(4) is
(

1
1

)
. From Theorem 3.4, the second column is(

θ̂
2(2)
2(2)

θ̂
2(1,1)
2(2)

)
= 1

2

{(
φ̂

2(2)
(2,12)

φ̂
2(1,1)
(2,12)

)
− d(0)

(2)(4)
(

1
1

)}
.

From Theorem 3.3 we have
d

(0)
(2)(4) = 2m((2), 2(1)) = 2,
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and hence the second column is
(

2
−1

)
. Thus we get

Θ̂(4) =
[
1 2
1 −1

]
, Θ̂(4)−1 =

[
1/3 2/3
1/3 −1/3

]
.

From (15) above we get(
m((3, 1), 2(1, 1))
m((3, 1), 2(2))

)
=
[
1/3 2/3
1/3 −1/3

](
φ̂

2(2)
(3,1)

φ̂
2(1,1)
(3,1)

)
=
(

0
4

)
.

We list the elements of Y3 as {(3), (2, 1), (13)} and the elements of P3 as
{(13), (2, 1), (3)}. The first column of Θ̂(6) is the all 1’s vector. From Theorem 3.4,
the second column is

θ̂
2(3)
2(2,1)

θ̂
2(2,1)
2(2,1)

θ̂
2(13)
2(2,1)

 = 1
2



φ̂

2(3)
(2,14)

φ̂
2(2,1)
(2,14)

φ̂
2(13)
(2,14)

− d(0)
(2)(6)

1
1
1


 .

From Theorem 3.3 we have
d

(0)
(2)(6) = 3m((2), 2(1)) = 3,

and hence the second column is

 6
1
−3

.

From Theorem 3.4, the third column of Θ̂(6) is
θ̂

2(3)
2(3)

θ̂
2(2,1)
2(3)

θ̂
2(13)
2(3)

 = 1
2



φ̂

2(3)
(3,13)

φ̂
2(2,1)
(3,13)

φ̂
2(13)
(3,13)

− d(2)
(3)(6)

 6
1
−3

− d(0)
(3)(6)

1
1
1


 .

From Theorem 3.3 we have
d

(0)
(3)(6) = 3m((3, 1), 2(12)) = 0, d

(2)
(3)(6) = m((3, 1), 2(2)) = 4,

and hence

Θ̂(6) =

1 6 8
1 1 −2
1 −3 2

 .
We now refine the triangularity of the coefficients dτµ(2n) shown in part (i) of

Theorem 3.3 above. Define a partial order on P as follows: µ 6 λ provided |µ| < |λ|
or |µ| = |λ| and µ can be obtained from λ by partitioning the parts of λ into disjoint
blocks and then summing the parts in each block. For instance, (5, 3, 2) 6 (4, 2, 2, 1, 1)
but (3, 1, 1) 66 (2, 2, 1) and (2, 2, 1) 66 (3, 1, 1).

Lemma 3.6. Let µ ∈ P(2) with |µ| = k and let n > k. Let τ ∈ P(2, n) be such that the
coefficient dτµ(2n) defined in (8) above is nonzero. Then

(i) |τ | 6 |µ|.
(ii) |τ | = |µ| implies τ = µ.
(iii) τ 6 µ.

Proof. Parts (i), (ii) follow from part (i) of Theorem 3.3.
(iii) Let π ∈ C(µ,12n−k) with d(I, π ·I) = 2(τ, 1n−|τ |). Let D(I, π ·I) denote the (set)

partition of [2n] = {1, 2, . . . , 2n} whose blocks are the vertex sets of the connected
components of the spanning subgraph of K2n with edge set I ∪ π · I (note that each
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block has an even number of elements). Define a graph on the vertex set [2n] by
declaring vertices i 6= j to be connected by an edge provided i = n + j or j = n + i
or i and j are in the same nontrivial cycle of π and define pπ to be the set partition
of [2n] whose blocks are the vertex sets of the connected components of this graph.
Note that each block of pπ has an even number of elements. Clearly, as set partitions,
we have
(16) D(I, π · I) 6 pπ.
Define µπ to be the partition in P(2) obtained from pπ by taking half the sizes of all
blocks of pπ of cardinality > 4. It is easy to see, using (16), that

|τ | 6 |µπ| 6 |µ|,(17)
|τ | = |µ| implies τ = µπ = µ.(18)

Write the parts of µ as {µ1, . . . , µt} so that the parts of µ are {µ1 − 1, . . . , µt − 1}.
Let B be a block of pπ of size > 4. Suppose this block contains m nontrivial cycles of
π whose sizes (we may assume without loss of generality) to be µ1, . . . , µm. Consider
the hypergraph with vertex set B and edge set the nontrivial cycles of π contained in
B together with the edges of I contained in B. This hypergraph is connected (since
B is a block of pπ) and so we have

|B|
2 6 µ1 + (µ2 − 1) + (µ3 − 1) + · · ·+ (µm − 1),

or, equivalently, |B|2 − 1 6 (µ1 − 1) + · · ·+ (µm − 1).
Writing the above inequality for every block of pπ of size > 4 and summing we see

that
(19) |µπ| 6 |µ|.
If |µπ| = |µ| then the argument above also shows that µπ 6 µ and if |µπ| < |µ| then
µπ 6 µ by definition. So we have
(20) µπ 6 µ.

We now show that τ 6 µ. This is clear from (18) if |τ | = |µ|. Otherwise, by (17),
|τ | < |µ|. We consider two cases.

(a) D(I, π · I) 6= pπ: By (16) and (19) we have |τ | < |µπ| 6 |µ| and so τ 6 µ.
(b) D(I, π · I) = pπ: We have τ = µπ. The result follows from (20). �

We now define a polynomial in Q[t] using (9). In Theorem 3.8 below we shall
evaluate this polynomial at values not covered by Theorem 3.3.

Given τ, µ ∈ P(2) with j = |τ | 6 |µ| = k, define a polynomial ζτµ(t) ∈ Q[t] as
follows:

ζτµ(t) =
{

0 if j = k and τ 6= µ

2`(µ) if τ = µ

and, for j < k, ζτµ(t) equals
k−1∑

r=j∨b k+1
2 c


r∑

s=j∨b k+1
2 c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j))


( t

2 − j
r − j

)
.

Lemma 3.7. Fix τ, µ ∈ P(2) with |τ | 6 |µ|. Then
(i) ζµµ (t) = 2`(µ).
(ii) ζτµ(t) is a polynomial in Q[t] with degree 6 |µ| − |τ |.
(iii) ζτµ(t) = 0 unless τ 6 µ.
(iv) |τ | = |µ| implies that ζτµ(t) does not depend on t, i.e. is a constant.
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Proof. Parts (i) and (ii) follow from the definition of ζτµ(t).
(iii) The result is true if |τ | = |µ| and so we may assume |τ | < |µ|. Part (iii) of

Lemma 3.6 and (9) show that if τ 66 µ then ζτµ(2n) = 0 for all n > |µ|. The result
follows.

(iv) The result is true if |τ | = |µ| and so we may assume |τ | < |µ|. Let |τ | = |µ|
and let n > |µ|. Let π, σ ∈ C(µ,12n−k) satisfy d(I, π · I) = 2(τ, 1n−|τ |) and σ · I = π · I.
Then

(a) By (16) and by case (a) in the proof of part (iii) in Lemma 3.6 above we have
pσ = D(I, σ · I) = D(I, π · I) = pπ.

(b) the proof of part (iii) in Lemma 3.6 above |µπ| = |µσ| = |µ|. This implies that
π and σ have no transpositions of the form (i n+ i).

It follows from (a) and (b) above that ζτµ(2n) does not depend on n. The result
follows. �

Theorem 3.8. Let µ ∈ P(2) with |µ| = k.
(i) For k 6 n we have

f(µ, 2n) = 2`(µ)M2µ(2n) +
∑

τ∈P(2,k−1)

ζτµ(2n)M2τ (2n).

(ii) For n < k 6 2n we have

f(µ, 2n) =
∑

τ∈P(2,k−1)

ζτµ(2n)M2τ (2n).

(iii) For 2n < k and τ ∈ P(2), |τ | 6 n, we have ζτµ(2n) = 0.

Proof. (i) This follows from Theorem 3.3.
Before proving parts (ii) and (iii) we make the following observation.
Let 2n > k so that cµ(2n) 6= 0. Then, from (8) and the statement of Theorem 3.3(i)

we have

(21) f(µ, 2n) = dµµ(2n)M2µ(2n) +
∑

τ∈P(2,k−1)

dτµ(2n)M2τ (2n).

Fix τ ∈ P(2, k−1) with |τ | = j < k. Define γτ to be the number of perfect matchings
A inM2j with d({[1, j+1], [2, j+2], . . . , [j, 2j]}, A) = 2τ . Thus the number of perfect
matchings A inM2n with d(I, A) = 2(τ, 1n−j) is γτ

(
n
j

)
.

For j ∨ bk+1
2 c 6 r 6 k define

α(r, τ) = |{π ∈ C(µ,12n−k) | supp(π) = {1, 2, . . . , r}, d(I, π · I) = 2(τ, 1n−j)}|.

Note that α(r, τ) is defined and is independent of n whenever n > max{r, k/2}.
A little reflection shows that

(22)

dτµ(2n) =
∑k
r=j∨b k+1

2 c
α(r, τ)

(
n
r

)
γτ
(
n
j

)
=

k∑
r=j∨b k+1

2 c

j!
r!
α(r, τ)
γτ

(n− j)(n− j − 1) · · · (n− r + 1).

The expression in (22) above is valid for all n > k/2 and thus it follows that

(23) ζτµ(t) =
k∑

r=j∨b k+1
2 c

j!
r!
α(r, τ)
γτ

(
t

2 − j
)(

t

2 − j − 1
)
· · ·
(
t

2 − r + 1
)
.
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(ii) Since n < k we have M2µ(2n) = 0 (and dµµ(2n) = 0 is undefined). The result
now follows from (21), (22), and (23) above.

(iii) This follows from (23) on noting that, for 2n < k and |τ | = j 6 n we have
n ∈ {j, j + 1, . . . , bk+1

2 c − 1}. �

4. Content evaluation of symmetric functions
We now consider algorithms for expressing φλµ and θ2λ

2µ, for fixed µ ∈ P(2) and varying
λ ∈ Y, as content evaluations of symmetric functions. The motivation comes from
certain basic results in the representation theory of symmetric groups [5, 9, 22]. We
now recall these in items (i)–(iii) below (this will also be used in the next section on
eigenvectors).

(i) Consider an irreducible Sn-module V λ, for λ ∈ Yn. Since the branching is
multiplicity free, the decomposition into irreducible Sn−1-modules of V λ is
canonical. Each of these modules, in turn, decompose canonically into irre-
ducible Sn−2-modules. Iterating this construction, we get a canonical decom-
position of V λ into irreducible S1-modules, i.e. one dimensional subspaces.
Thus, there is a canonical basis of V λ, determined up to scalars, and called
the Gelfand–Tsetlin (or GZ-) basis of V λ. Since V λ is irreducible an Sn-
invariant inner product on V λ is unique up to scalars and we note that the
GZ-basis is orthogonal with respect to this inner product.

(ii) For i = 1, 2, . . . , n define Xi = (1, i) + (2, i) + · · · + (i − 1, i) ∈ C[Sn]. The
Xi’s are called the Young–Jucys–Murphy elements (YJM-elements). Note that
X1 = 0.

Consider the Fourier transform, i.e. the algebra isomorphism

(24) C[Sn] ∼=
⊕
λ∈Yn

End(V λ),

given by
π 7→ (V λ π→ V λ : λ ∈ Yn), π ∈ Sn.

We have identified a canonical basis, the GZ-basis, in each Sn-irreducible. Let
D(V λ) consist of all operators on V λ diagonal in the GZ-basis of V λ. It is
known that the image of

⊕
λ∈Yn D(V λ) (a maximal commutative subalgebra

of the right hand side of (24)) under the inverse Fourier transform is the
subalgebra of C[Sn] generated by X1, . . . , Xn, which is thus a maximal com-
mutative subalgebra of C[Sn]. It follows that the only common eigenvectors
of X1, . . . , Xn in an irreducible module V λ are (up to scalars) the elements
of the GZ-basis of V λ. Moreover, the eigenvalues of the YJM elements on the
GZ-basis vectors in each irreducible module can also be written down once
we parametrize the GZ-basis by standard Young tableaux. We recall this in
the next item below.

(iii) Let µ ∈ Y. A Young tableau of shape µ is obtained by taking the Young
diagram µ and filling its |µ| boxes (bijectively) with the numbers 1, 2, . . . , |µ|.
A Young tableau is said to be standard if the numbers in the boxes strictly
increase along each row and each column of the Young diagram of µ. Let
tab(n, µ), where µ ∈ Yn, denote the set of all standard Young tableaux of
shape µ and let tab(n) = ∪µ∈Yn tab(n, µ). There is a well known bijection
between tab(n, λ) and sequences (λ1, λ2, . . . , λn) of Young diagrams with λn =
λ and λi ∈ λ−i+1, for 1 6 i 6 n − 1 (given T ∈ tab(n, λ), define λi to be
the diagram obtained by considering the boxes of T containing the numbers
1, . . . , i). It now easily follows from the branching rule that the GZ-basis of
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V λ can be parametrized by tab(n, λ). Given T ∈ tab(n, λ), we write vT for
the corresponding GZ-basis vector of V λ.

Given T ∈ tab(n, λ), the eigenvalue of Xi on vT is c(bT (i)), the content of
the box bT (i) of T containing i.

Let f = f(X1, . . . , Xn) be a symmetric polynomial in X1, . . . , Xn (with complex
coefficients). By considering the GZ-basis of V λ we see that the action of f on V λ is
multiplication by the scalar f(c(λ)). Using the Fourier transform, it now follows that
any symmetric polynomial in X1, . . . , Xn is in Z[C[Sn]]. The converse of this assertion
is also true.

Given n variables x1, . . . , xn and 1 6 k 6 n, we let ek(x1, . . . , xn) denote the
elementary symmetric polynomials. Suppose a = {a1, . . . , an} and b = {b1, . . . , bn} are
two multisets of (complex) numbers of cardinality n. By considering the polynomials
(x−a1) · · · (x−an) and (x− b1) · · · (x− bn) we see that a = b as multisets if and only
if ek(a1, . . . , an) = ek(b1, . . . , bn), for 1 6 k 6 n.

Let λ, µ ∈ Yn. The number of 0’s in c(λ) is the number of boxes in the main
diagonal of λ, the number of 1’s is the number of boxes in the first superdiagonal, the
number of -1’s is the number of boxes in the first subdiagonal and so on. It follows
that µ = λ if and only if c(µ) = c(λ) if and only if ek(c(λ)) = ek(c(µ)) for 1 6 k 6 n.

Fix λ ∈ Yn. For 1 6 k 6 n, define the following symmetric polynomials in
X1, . . . , Xn:

fk(X1, . . . , Xn) =
∏
µ

(ek(X1, . . . , Xn)− ek(c(µ)),

where the product is over all µ ∈ Yn with ek(c(µ)) 6= ek(c(λ)).
Let µ ∈ Yn. If µ 6= λ then, by the observation above, ek(c(µ)) 6= ek(c(λ)) for some

1 6 k 6 n. It follows that(
n∏
k=1

fk(X1, . . . , Xn)
)
· V µ =

{
0 if µ ∈ Yn, µ 6= λ,

nonzero scalar if µ = λ.

Using the Fourier transform we now see that every element in Z[C[Sn]] is a symmetric
polynomial in X1, . . . , Xn.

Thus Z[C[Sn]] consists of all symmetric polynomials in X1, . . . , Xn. This is Jucys’
fundamental theorem given, with a different proof, in [14]. Constructive proofs of this
result are given in Murphy [19], Moran [18], Diaconis and Greene [7], and Garsia [9].
A good reference for this material is the book of Cecchereni-Silberstein, Scarabotti,
and Tolli [5].

For instance, the symmetric polynomial X1 +X2 + · · ·+Xn is the sum of transpo-
sitions c(2)(n). The eigenvalue of c(2)(n) on V λ is φλ(2). By considering any element of
the GZ-basis of V λ we see, from item (III) above, that the eigenvalue of X1 + · · ·+Xn

on V λ is p1(c(λ)). Thus we get Frobenius’ formula from the introduction. Similarly
(letting ε denote the identity permutation),

X2
n =

(
n−1∑
i=1

(i n)
)n−1∑

j=1
(j n)

 =
∑

16i,j6n−1,i6=j
(j i n) + (n− 1)ε,

and thus we get

X2
1 + · · ·+X2

n = c(3)(n) + n(n− 1)
2 ε.

By considering the action of both sides of the identity above on a GZ-basis element
of V λ we get Ingram’s formula from the introduction.

We thus come to the following basic problem in the present context: for fixed
µ ∈ P(2), write the conjugacy class sum cµ(n) ∈ Z[C[Sn]] as a linear combination of,
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say, the power sum symmetric functions in X1, . . . , Xn and say something about the
dependence of the coefficients on n. This problem was solved in [6, 9].

Given f ∈ Λ[t] and n > 1 we define the YJM evaluation f(n,X) to be the element
of Z[C[Sn]] obtained from f by setting t = n, xi = 0 for i > n, and xi = Xi, i =
1, . . . , n.

The following result was proved in [6]. An algorithm for constructing the symmetric
function Wµ was given in [9]. See [5] for another proof (Part (iv) below is taken from
Theorem 5.4.7 of this reference).

Theorem 4.1. For each µ ∈ P(2) there is an algorithm to compute a symmetric
function Wµ ∈ Λ[t] such that

(i) {Wµ : µ ∈ P(2)} is a Q[t]-module basis of Λ[t].
(ii) For µ ∈ P(2) and n > 1 we have

Wµ(n,X) = cµ(n).
(iii) For µ ∈ P(2) and λ ∈ P we have

Wµ(c(λ)) = φλµ.

(iv) Let µ ∈ P(2) with multiplicity of i equal to mi, i > 2. The expansion of Wµ

in the power sum basis has the form

Wµ =
∑
λ 6 µ

aλµ(t) pλ,

where
(a) aλµ(t) ∈ Q[t] with degree 6 |µ|−|λ|2 + `(µ)− `(λ).
(b) aµµ = 1∏

i>2
mi!

and aλµ ∈ Q (i.e. does not depend on t) for |λ| = |µ|.

(c) aλµ(t) = 0 if |µ| and |λ| do not have the same parity.

Remark 4.2. Let µ, τ ∈ P(2). Using Theorem 4.1(i), we can write

WµWτ =
∑
λ

ωλµ,τ (t) Wλ,

where the sum is over finitely many λ ∈ P(2) and ωλµ,τ (t) ∈ Q[t]. From Theorem
4.1(ii) we have

cµ(n)cτ (n) =
∑
λ

ωλµ,τ (n) cλ(n), n > 1.

In other words, the structure constants of the algebra of fixed conjugacy classes (the
so-called Farahat–Higman algebra) are integer valued rational polynomials. See [6, 5]
for more details.

We now consider a perfect matching analog of Theorem 4.1 above. We begin with
a simple example. The symmetric polynomial X1 + · · · + X2n is the conjugacy class
sum c(2)(2n). It is easy to see (in the notation of (7) above) that

f((2), 2n) = nε+ 2M2(2)(2n).

Taking the eigenvalue of both sides on V 2λ and using Frobenius’ result we get the
formula ([8])

θ2λ
2(2) =

(
p1

2 −
t

4

)
(c(2λ)).

The example above can be generalized to all fixed orbitals.

Theorem 4.3. For each µ ∈ P(2) there is an algorithm to compute a symmetric
function Eµ ∈ Λ[t] such that
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(i) {Eµ : µ ∈ P(2)} is a Q[t]-module basis of Λ[t].
(ii) For µ ∈ P(2) and λ ∈ P we have

Eµ(c(2λ)) = θ2λ
2µ.

(iii) Let µ ∈ P(2) with multiplicity of i equal to mi, i > 2. The expansion of Eµ
in the power sum basis has the form

Eµ =
∑
λ 6 µ

bλµ(t) pλ,

where
(a) bλµ(t) ∈ Q[t] with degree 6 |µ| − |λ|+ `(µ)− `(λ).
(b) bµµ = 1

2`(µ)
∏

i>2
mi!

and bλµ ∈ Q (i.e. does not depend on t) for |λ| = |µ|.

Remark 4.4. Let µ, τ ∈ P(2). Using Theorem 4.3(i) we can write

EµEτ =
∑
λ

βλµ,τ (t) Eλ,

where the sum is over finitely many λ ∈ P(2) and βλµ,τ (t) ∈ Q[t]. From Theorem
4.3(ii) we have

M2µ(2n)M2τ (2n) =
∑
λ

βλµ,τ (2n) M2λ(2n), n > 1.

In other words, the structure constants of the algebra of fixed orbitals are integer
valued rational polynomials. For a direct study of these structure constants in much
more detail see the two recent papers [1, 4, 28] (our focus in this paper is more on the
eigenvalues and eigenvectors of B2n). These papers work in the context of the Hecke
algebra of the Gelfand pair (S2n, Hn) (which explains the extra factor 2nn! in their
structure constants).

Proof. We proceed by induction on |µ|. Set E(0) = 1 and assume that, for some k > 1,
we have defined Eµ ∈ Λ[t], for all µ ∈ P(2) with |µ| 6 k − 1, such that items (ii)
and (iii) in the statement of the theorem are satisfied.

Now let µ ∈ P(2) with |µ| = k and with multiplicity of i equal to mi, i > 2. Define

Eµ = 1
2`(µ)

Wµ −
∑

τ∈P(2,k−1)

ζτµ(t) Eτ

 .

We shall now verify items (ii) and (iii)(a), (iii)(b) in the statement for Eµ. We begin
with item (iii).

By Theorem 4.1(iv) we can write

(25) Wµ =
∑
λ 6 µ

aλµ(t) pλ,

where degree of aλµ(t) 6 |µ|−|λ|2 + `(µ)− `(λ) 6 |µ| − |λ|+ `(µ)− `(λ).
Let τ ∈ P(2) with |τ | 6 k − 1. By the induction hypothesis we can write

(26) Eτ =
∑
λ 6 τ

bλτ (t) pλ,

where degree of bλτ (t) 6 |τ | − |λ|+ `(τ)− `(λ).
Now, degree of ζτµ(t) 6 |µ| − |τ | = |µ| − |τ | − `(τ) (by Lemma 3.7(ii)) and thus

degree of ζτµ(t)bλτ (t) 6 |µ| − |λ| − `(λ) = |µ| − |λ|+ `(µ)− `(λ).
By Lemma 3.7(iii) we have that ζτµ(t) 6= 0 implies τ 6 µ. Item (iii)(a) now follows

from (25) and (26).
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Item (iii)(b) also follows from (25) and (26) by using the induction hypothesis,
Theorem 4.1 (iv)(b) and Lemma 3.7(iii), (iv).

We now verify item (ii). Let λ ∈ Ym and consider the following three cases:
(i) k 6 m: This follows from Theorems 4.1(iii), Theorem 3.8(i), and the induction

hypothesis.
(ii) m < k 6 2m: We need to show that Eµ(c(2λ)) = 0. This follows from

Theorem 4.1(iii), Theorem 3.8(ii), and the induction hypothesis.
(iii) k > 2m: We need to show that Eµ(c(2λ)) = 0. By Theorem 4.1(iii) we have

Wµ(c(2λ)) = 0. By the induction hypothesis Eτ (c(2λ)) = 0 for m < |τ | and
by Lemma 3.8(iii) ζτµ(2m) = 0 for |τ | 6 m. The result follows.

That completes the proof of items (ii) and (iii). Item (i) now follows from Theo-
rem 4.1(i) and the triangular definition of the Eµ. �

It is easily seen that property (ii) of Theorem 4.3 characterizes the symmetric
function Eµ.

Corollary 4.5. Let f, g ∈ Λ[t]. Suppose that there exists n0 such that f(c(2λ)) =
g(c(2λ)) for all λ ∈ Y, |λ| > n0. Then f = g.

Proof. Suppose f 6= g. Write

(27) f − g = aµ1(t)Eµ1 + aµ2(t)Eµ2 + · · ·+ aµk(t)Eµk ,

where µi ∈ P(2) for all i and aµi(t) 6= 0 for all i.
Choose a positive integer m such that m > n0, |µi| 6 m for 1 6 i 6 k, and

aµi(2m) 6= 0 for 1 6 i 6 k. We can now rewrite (27) (by adding terms with zero
coefficients) as

(28) f − g =
∑

µ∈P(2,m)

aµ(t)Eµ,

where not all aµ(2m) are zero.
Evaluate both sides of (28) on the contents of 2λ, for every λ ` m. By assumption

we get

(29) 0 =
∑

µ∈P(2,m)

aµ(2m)θ̂2λ
2(µ,1m−|µ|), λ ` m.

From (29) we get that a nontrivial linear combination of the columns of (the nonsin-
gular matrix) Θ̂(2m) is zero, a contradiction. �

Example 4.6. Below we give tables of Wµ and Eµ polynomials for |µ| 6 4. The
Wµ polynomials are from [6, 9] while the Eµ polynomials were calculated using the
definition given in the proof of Theorem 4.3.

W(0) = 1, E(0) = 1

W(2) = p1, E(2) = p1

2 −
t

4

W(3) = p2 −
t(t− 1)

2 , E(3) = p2

2 − p1 + 3t− t2

4

W(2,2) = p2
1
2 −

3p2

2 + t(t− 1)
2 , E(2,2) = p2

1
8 −

3p2

4 + (10− t)p1

8 + 9t2 − 24t
32

W(4) = p3 − (2t− 3)p1, E(4) = p3

2 −
9p2

4 + (11− 2t)p1

2 + 8t2 − 23t
8
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We can calculate the eigenvalue table Θ̂(8) of B8 using the list above. We list the
elements of P4 in the order {(14), (2, 12), (2, 2), (3, 1), (4)} and the elements of Y4 in
the order {(4), (3, 1), (2, 2), (2, 12), (14)}. We have

Θ̂(8) =


1 12 12 32 48
1 5 −2 4 −8
1 2 7 −8 −2
1 −1 −2 −2 4
1 −6 3 8 −6

 .

5. Eigenvectors: similar algorithms for φ̂λµ and θ̂2λ
2µ

In this section we shall give an inductive procedure to write down a specific eigenvector
(a so called first GZ-vector) in each eigenspace of the (left) actions of Z[C[Sn]] and B2n
on C[Sn] and C[M2n] respectively. This then yields simple inductive algorithms to
calculate φ̂λµ and θ̂2λ

2µ (that do not depend on knowing the symmetric group characters).
To begin with, it will be useful to know (as suggested by (3) and Lemma 2.1) how

GZ-vectors behave under restriction and induction.
The case of restriction follows from the following result.

Lemma 5.1. Let λ ∈ Yn and consider the irreducible Sn-module V λ.
(i) Let v ∈ V λ be an eigenvector for the action of X1, . . . , Xn−1. Then v is also

an eigenvector for the action of Xn.
(ii) Suppose T ∈ tab(n, λ) and v ∈ V λ satisfy

Xi · v = c(bT (i))v, 1 6 i 6 n− 1.

Then Xn · v = c(bT (n))v.
(iii) The GZ-basis of V λ is the union of the GZ-bases of V µ, as µ varies over λ−.

Proof. (i) Let X be the sum of all transpositions in Sn. Note that X = X1 + · · ·+Xn

and that X is in the center of C[Sn]. Thus, by Schur’s lemma, the action of X on
V λ is multiplication by a scalar. Thus v is an eigenvector for the action of Xn =
X − (X1 + · · ·+Xn−1).

(ii) The action of X on V λ is multiplication by a scalar α. By considering a GZ-
vector of V λ we see that α is equal to the sum of the contents of all boxes of the
Young diagram λ. The result follows.

(iii) This follows from parts (i) and (ii) above using the branching rule (4). �

Now we consider the case of induction. Since we will also be applying this construc-
tion to the case of the regular module C[Sn], which is not multiplicity free, we first
extend the notion of a GZ-vector to a Sn-module with a single isotypical component.

Let V be a Sn-module with a single isotypical component, the irreducibles occuring
in V all being isomorphic to V λ, for some λ ∈ Yn. Let T ∈ tab(n, λ) and define the
following subspace of V :

VT = {v ∈ V | Xi(v) = c(bT (i))v, i = 1, . . . , n}.

It is easy to see that we have the canonical decomposition:

V =
⊕

T∈tab(n,λ)
VT .

By a GZ-vector of V associated to T we mean a nonzero vector in VT .
For a Young diagram λ let O(λ) be the set of boxes corresponding to the outer

corners of λ. Note that no two boxes in O(λ) have the same content. For λ ∈ Yn, we
denote the isotypical component of V λ in a Sn-module W by Wλ.
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Lemma 5.2. Let W be a Sn-module and let
U = C[Sn+1]⊗C[Sn] W = ind Sn+1

Sn
(W ).

Let T ∈ tab(n, λ) and let v ∈Wλ be a GZ-vector associated to T . Let µ ∈ λ+ and let
b ∈ O(λ) be the box added to λ to get µ. Let S ∈ tab(n+ 1, µ) be the standard tableau
obtained from T by adding n+ 1 in box b. Then∏

d∈O(λ)r{b}

(Xn+1 − c(d)ε) · (ε⊗ v)

is a GZ-vector of Uµ associated to S.

Proof. It suffices to prove the case W = V λ. In this case v = vT (up to scalars) and,
by the branching rule, U = ⊕τ∈λ+V τ . Clearly, ε ⊗ vT ∈ U is 6= 0. Write ε ⊗ vT =∑
τ∈λ+ vτ , where vτ ∈ V τ .
For 1 6 i 6 n we have Xi · (ε ⊗ vT ) = ε ⊗ (Xi · vT ) = c(bT (i))(ε ⊗ vT ). It follows

that Xi · vτ = c(bT (i))vτ , 1 6 i 6 n, τ ∈ λ+. From part (ii) of Lemma 5.1 it now
follows that Xn+1 · vτ = c(d)vτ , τ ∈ λ+, where d is the box added to λ to get τ . The
result follows. �

Let λ = (λ1, . . . , λt) ` n. Define the standard tableau R ∈ tab(n, λ) by filling the
boxes of λ with the integers 1, 2, . . . , n in row major order, i.e. the first row is filled
with the numbers 1, 2, . . . , λ1 (from left to right), the second row with the numbers
λ1 +1, λ1 +2, . . . , λ1 +λ2 and so on. We call R the first tableau in tab(n, λ) and given
a Sn-module W , a nonzero vector v in (Wλ)R will be called a first Gelfand–Tsetlin
vector in Wλ.

We now give an example of a first GZ-vector and rederive a result from [11, 16].
First, we make a definition. The perfect matching derangement operator

D2n : C[M2n]→ C[M2n]
is defined as follows: for A ∈ M2n set D2n(A) =

∑
B B, where the sum is over all

B ∈ M2n with d(A,B) having no part equal to 2. In other words, D2n =
∑
µN2µ,

where the sum is over all µ ∈ P(2) with |µ| = n. For λ ` n, let m2λ
2n denote the

eigenvalue of D2n on V 2λ.
Fix a matching A ∈ M2n. The number of B ∈ M2n with d(A,B) having no part

equal to 2 is easily seen (by inclusion-exclusion) to be

d(2n) =
n∑
i=0

(−1)i
(
n

i

)
(2n− 2i− 1)!!

where we let (−1)!! = 1.
We denote by v2λ the first GZ-vector in the subspace V 2λ of C[M2n]. For the rest

of this section fix J = {[1, 2], [3, 4], . . . , [2n− 1, 2n]} ∈ M2n.

Examples 5.3.
(i) Clearly, v2(n) =

∑
A∈M2n

A. Let µ ∈ Pn. The coefficient of J in v2(n) is 1
while the coefficient of J in N2µ(v2(n)) (respectively, D2n(v2(n))) is |M(J, 2µ)|
(respectively, d(2n)). It follows that

θ̂
2(n)
2µ = |M(J, 2µ)|,

m
2(n)
2n = d(2n).

It is easy to see that

|M(J, 2µ)| = 2nn!
zµ2`(µ) .
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(ii) We now write down v2(n−1,1). Using the inductive structure of C[M2n] given
in Lemma 2.1 (v), (vi) and applying Lemmas 5.1 and 5.2, we get from item (i)
above,

v2(n−1,1) = (X2n−1 − (2n− 2)ε) ·

 ∑
A∈M2n−2

(A ∪ {[2n− 1, 2n]})


=

2n−2∑
i=1

∑
A∈M2n,[i,2n]∈A

A

− (2n− 2)

 ∑
A∈M2n,[2n−1,2n]∈A

A


=

∑
A∈M2n

A− (2n− 1)

 ∑
A∈M2n,[2n−1,2n]∈A

A

 .

The coefficient of J in v2(n−1,1) is −(2n − 2) and the coefficient of J in
D2n(v2(n−1,1)) is d(2n). We can easily calculate the coefficient of J in
N2µ(v2(n−1,1)). Two cases arise:
(a) µ has no part equal to 1: The coefficient of J in N2µ(v2(n−1,1)) is
|M(J, 2µ)|.

(b) µ has a part equal to 1: Let µ′ ∈ Pn−1 be obtained from µ by deleting
a 1 from the parts of µ and let J ′ = {[1, 2], [3, 4], . . . , [2n− 3, 2n− 2]} ∈
M2n−2. The coefficient of J in N2µ(v2(n−1,1)) is |M(J, 2µ)| − (2n −
1)|M(J ′, 2µ′)|.

It follows that

θ̂
2(n−1,1)
2µ =

{ |M(J,2µ)|
−(2n−2) , if 1 is not a part of µ,
|M(J,2µ)|−(2n−1)|M(J′,2µ′)|

−(2n−2) , if 1 is a part of µ,

and that
m

2(n−1,1)
2n = d(2n)

−(2n−2) .

In principle, it is possible to extend the method of Example 5.3 to certain other
eigenspaces, such as V 2(n−2,2) and V 2(n−2,1,1), and derive complicated explicit for-
mulas for m2(n−2,2)

2n and m
2(n−2,1,1)
2n . We do not pursue this here. Instead we shall

show how Lemmas 5.1 and 5.2 can be used to give a practical recursive algorithm for
calculating θ̂2λ

2µ.
Before developing our algorithm we shall show that the coefficient of J in the first

GZ-vector of V 2λ is nonzero.
The construction of Lemma 5.2 leads to the following elements pT ∈ C[Sn], T ∈

tab(n) (originally defined in [20] and further studied in [9, 5]):
(i) pT = ε for T the unique element of tab(1).
(ii) Let T ∈ tab(n+ 1, µ), where µ ∈ Yn+1. Let b be the box corresponding to the

inner corner of µ containing n + 1. Drop this box from µ to get λ ∈ Yn and
drop this box from T to get S ∈ tab(n, λ). Note that b ∈ O(λ). Inductively
define

pT = pS

 ∏
d∈O(λ)r{b}

Xn+1 − c(d)ε
c(b)− c(d)

 .

We consider every V λ to be equipped with a (unique up to scalars) Sn-invariant
inner product. The fundamental property of the elements pT is given in part (i) of
the result below and parts (ii), (iii) are simple consequences of part (i).
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Theorem 5.4.
(i) Let λ, µ ∈ Yn, λ 6= µ and let T ∈ tab(n, µ).

(a) The action of pT on V λ is the zero map, i.e. pT · v = 0 for all v ∈ V λ.
(b) The action of pT on V µ is orthogonal projection onto the one dimensional

subspace spanned by the GZ-vector vT .
(ii) We have the following identity in C[Sn]:

(30)
∑

T∈tab(n)

pT = ε.

(iii) For T ∈ tab(n, µ) the coefficient of ε in pT is nonzero.
Proof. (i)(a) Let S ∈ tab(n, λ) and let vS be the corresponding GZ-vector in V λ. It
is enough to show that pT · vS = 0 (as the GZ-vectors form a basis of V λ).

The element 1 is in row 1, column 1 in both T and S. Let i ∈ {2, . . . , n} be the
least integer whose coordinates differ in T and S. Let d be the box of S containing i.
Then pT contains the term (Xi − c(d)ε). Since vS is the GZ-vector corresponding to
S we have Xi · vS = c(d)vS . It follows that pT · vS = 0.

(i)(b) Let S ∈ tab(n, µ) with T 6= S and with vS the corresponding GZ-vector.
Then a similar argument as in the previous paragraph shows that pT · vS = 0. From
the definition of pT it follows that pT ·vT = vT . Since the GZ-basis is orthogonal with
respect to the Sn-invariant inner product on V µ the result follows.

(ii) Decompose C[Sn] into irreducibles and consider the basis of C[Sn] that is the
union of the GZ-bases of each of the irreducibles. Part (i) shows that the left hand
side of (30) acts as the identity on each basis element. The result follows since the
regular representation is faithful.

(iii) Given an Sn-module W and a ∈ C[Sn] by TraceW (a) we mean the trace of the
action of a onW . Let us first recall the Fourier inversion formula. If a =

∑
π∈Sn aππ ∈

C[Sn] then

(31) aπ = 1
n!
∑
λ∈Yn

dim(V λ) TraceV λ(π−1a).

The coefficient of ε in pT is thus
1
n!
∑
λ∈Yn

dim(V λ) TraceV λ(pT ).

By part (i)(a) the sum above is equal to 1
n! dim(V µ) TraceV µ(pT ) and by part (i)(b)

this is equal to dim(V µ)
n! . �

Lemma 5.5.
(i) Let λ ∈ Yn and T ∈ tab(n, λ). Then pT ∈ C[Sn]λ and is itself a GZ-vector

associated to T .
(ii) Let S, T ∈ tab(n). Then pT pS = δTS pS.
(iii) Let W be a Sn-module. Let 0 6= v ∈ W , λ ∈ Yn, and T ∈ tab(n, λ). Then

v ∈Wλ and is a GZ-vector associated to T if and only if pT · v = v.
Proof. (i) Consider the GZ-vector ε of V (1). It follows from (3) and Lemma 5.2 that

pT · ε = pT

is a GZ-vector of C[Sn]λ associated to T .
(ii) This follows from part (i) and Theorem 5.4(i).
(iii) This follows by decomposing W into irreducibles, writing v as a linear combi-

nation of the basis of W consisting of the union of the GZ-bases of the irreducibles in
the decomposition and applying Theorem 5.4(i). �
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We now consider the coefficient of J in GZ-vectors in C[M2n]. Given λ ∈ Yn, call
T ∈ tab(2n, 2λ) good if i + 1 is in the same row as i (and therefore immediately
following i) for all odd i. For instance, the first tableau is good. It is easily seen that
the number of good tableaux in tab(2n, 2λ) is equal to | tab(n, λ)|.

Lemma 5.6. Let λ ∈ Yn and T ∈ tab(2n, 2λ). Then
(i) pT · J 6= 0 implies that the GZ-vector in C[M2n]2λ associated to T is pT · J .
(ii) pT · J 6= 0 if and only if T is good.

Proof. (i) This follows from parts (ii) and (iii) of Lemma 5.5.
(ii) If the recursive definition of pT is expanded out it will be a product of terms

of the form Xj−c(d)ε
c(b)−c(d) . Collect all the terms with j even and call the product peT and

collect all the terms with j odd and call the product poT . Then pT = peT p
o
T .

(if) It follows from Lemma 2.1(v), (vi) and Lemma 5.2 that v = poT · J 6= 0 is the
GZ-vector associated to T . We claim that peT · v = v. This will prove the result. Let
j be even and let it appear in box b in T . Then Xj · v = c(b)v. By definition every
term involving Xj in peT will be of the form Xj−c(d)ε

c(b)−c(d) where b 6= d. The claim follows.
(only if) Suppose T is not good. Let 2j be the least even number not in the same

row as 2j−1. Define a standard tableau T ′ with 2j boxes as follows. Let T2j−1 be the
standard tableau obtained from T by considering the boxes containing the numbers
{1, 2, . . . , 2j − 1}. Now add a box b at the end of the row containing 2j − 1 and fill it
with the number 2j. Note that T ′ ∈ tab(2j, λ′) (for some λ′) is good.

Set qoT to be the product of all odd terms in pT involving {X1, X3, . . . , X2j−1}. It
follows from Lemma 2.1(v), (vi) and Lemma 5.2 that v = qoT ·J satisfiesX2j ·v = c(b)v.
Now pT has a term of the form X2j−c(b)ε

c(d)−c(b) , where d 6= b, and thus it follows that
pT · J = 0. �

It remains to show that the coefficient of J in pT ·J is nonzero whenever T is good.
At this point it is convenient to switch to the Gelfand pair viewpoint and consider a
realization of C[M2n] as a submodule of C[S2n] (see Sections 7.1 and 7.2 in [17]).

Let Hn denote the subgroup of all permutations π ∈ S2n with π · J = J . Then
|Hn| = 2nn! and we set

e = 1
2nn!

∑
π∈Hn

π ∈ C[S2n].

We have e2 = e. The submodule C[S2n]e of C[S2n] is isomorphic to the represen-
tation of S2n obtained by inducing from the trivial one dimensional representation of
Hn.

For an arbitrary v =
∑
π∈S2n

αππ ∈ C[S2n] the coefficients of ve are constant on
the left cosets of Hn (and are equal to the average of the α’s on the cosets). Thus
v ∈ C[S2n] is in C[S2n]e if and only if the coefficients of v are constant on the left
cosets of Hn. The number of left cosets of Hn is equal to |M2n| and every left coset
of Hn is the set of all π ∈ S2n with π · J = A, for some A ∈M2n.

For A ∈M2n define eA ∈ C[S2n]e by

eA = 1
2nn!

∑
π

π,

where the sum is over all π ∈ S2n with π · J = A (note that eJ = e). It follows that
{eA | A ∈M2n} is a basis of C[S2n]e and the mapping

C[S2n]e→ C[M2n]

sending eA 7→ A, A ∈M2n is a S2n-linear isomorphism.
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Given λ ∈ Yn consider the following central idempotent in C[S2n]:

ψ2λ = dim(V 2λ)
(2n)!

∑
π∈S2n

χ2λ(π)π.

For any S2n-module W action of the element ψ2λ is projection onto W 2λ. We have
(32) ψ2λψ2µ = δλµψ

2λ.

For λ ∈ Yn set e2λ = ψ2λe. Note that e2λ 6= 0 as otherwise V 2λ will not occur in
C[S2n]e. We have

e =
∑
λ∈Yn

e2λ,(33)

e2λe2µ = ψ2λeψ2µe = δλµe
2λ.(34)

Similarly we can show that, for λ 6= µ, we have
(35) e2λC[S2n]e2µ = 0.

The algebra B2n is isomorphic to the endomorphism algebra EndC[S2n](C[S2n]e)
which, since it is commutative and since e is idempotent, is isomorphic to eC[S2n]e,
the isomorphism being given by f 7→ f(e). We have, from (33), (35),

(36) eC[S2n]e =
(∑
λ∈Yn

e2λ

)
C[S2n]

∑
µ∈Yn

e2µ

 =
∑
λ∈Yn

e2λC[S2n]e2λ.

It follows from (34) that the sum in (36) is direct. Now, dimension of eC[S2n]e is
p(n) and each summand on the right hand side of (36) in nonzero (as it contains e2λ)
so each is one dimensionsal. It follows that
(37) e2λC[S2n]e2λ = Ce2λ.

Now consider C[S2n] with the standard inner product (i.e. the standard basis S2n
is orthonormal) which is S2n-invariant. The matrix, in the standard basis, for the left
action of e is real and symmetric. Since e2 = e this matrix is idempotent. It follows
that the action of e on C[S2n]e is orthogonal projection onto its image eC[S2n]e. It now
follows from (33), (34), (35), (37) that the action of e2λ on (C[S2n]e)2λ is orthogonal
projection onto Ce2λ and thus its trace is 1.

Theorem 5.7. Let λ ∈ Yn and let T ∈ tab(2n, 2λ) be good. Then the coefficient of J
in pT · J 6= 0.

Proof. From Lemma 5.6 pT · J 6= 0. By the S2n-linear isomorphism between C[S2n]e
and C[M2n] we see that pT e 6= 0. Write

pT e =
∑

A∈M2n

αAeA.

We need to show that αJ 6= 0 or, equivalently, |Hn|αJ 6= 0. Now, |Hn|αJ is the sum
of the coefficients of elements of Hn in pT e. By the Fourier inversion formula the sum
of the coefficients of elements of Hn in pT e is

2nn!
(2n)!

 ∑
µ∈Y2n

dim(V µ) TraceV µ(epT e)

 .

By Theorem 5.4(i)(a) and (33), (35) this sum reduces to

(38) 2nn!
(2n)! dim(V 2λ) TraceV 2λ(epT e) = 2nn!

(2n)! dim(V 2λ) TraceV 2λ(e2λpT e
2λ).
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Let S ∈ tab(2n, 2λ) and assume that S is good. By Lemma 5.6 and the S2n-linear
isomorphism between C[M2n] and C[S2n]e we see that 0 6= pSe is the GZ-vector
associated to S in (C[S2n]e)2λ. From (33) and Theorem 5.4(i)(a) we have pSe = pSe

2λ.
By (30), Theorem 5.4(i)(a), and Lemma 5.6(ii) we have

(39) e2λ =
∑
S

pSe
2λ,

where the sum is over all good S ∈ tab(2n, 2λ).
The vectors on the right hand side of (39) are nonzero and orthogonal (being GZ-

vectors associated to distinct tableaux). It follows that the projection of pT e2λ on
e2λ is nonzero and thus e2λpT e

2λ = βe2λ, where β is the square of the ratio of the
lengths of pT e2λ and e2λ. Thus the expression in (38) is equal to β 2nn!

(2n)! dim(V 2λ).
That completes the proof. �

Remark 5.8. Let T ∈ tab(2n, 2λ) be not good. Let aT e2λ, where aT ∈ C[S2n] be
the GZ-vector in C[S2n]2λ associated with T . As the GZ-basis is orthogonal it follows
from (39) that aT e2λ is orthogonal to e2λ and thus e2λaT e

2λ = 0.

We shall now develop our algorithm for computing the eigenvalues of B2n by writ-
ing down the eigenvectors. To be efficient we shall not write down the eigenvectors
explicitly but only keep track of the values of these eigenvectors at a (subexponential)
number of linear functionals on C[M2n].

For µ ∈ Pn define a linear functional
f2µ : C[M2n]→ C

as follows: given v ∈ C[M2n] write

v =
∑

A∈M2n

αAA, αA ∈ C.

Define f2µ(v) =
∑
A αA, where the sum is over all A ∈ M2n with d(J,A) = 2µ. We

call (f2µ(v))µ`n the orbital coefficients of v ∈ C[M2n]. Note that the vector v, living
in a vector space of dimension (2n− 1)!!, has only p(n) orbital coefficients.

Given λ ∈ Yn, let v2λ denote the first GZ-vector of the submodule C[M2n]2λ of
C[M2n], normalized so that the coefficient of J in v2λ is 1. Then it follows that

θ̂2λ
2µ = f2µ(v2λ).

Thus, the eigenvalues can be determined once we know the orbital coefficients of
the first GZ-vectors. The basic idea of the algorithm is to inductively compute the
orbital coefficients using Lemmas 5.1 and 5.2. This leads to the following problem,
called the update problem:

Given the orbital coefficients of v ∈ C[M2n], determine the orbital coefficients of
X2n−1 · v.

In order to solve the update problem we need to go slightly beyond orbital coeffi-
cients to relative orbital coefficients.

Let
P ′n = {(µ, i) | µ ∈ Pn and i is a part of µ}.

Elements of P ′n are called pointed partitions of n. Let pp(n) denote the number of
pointed partitions of n. Clearly, pp(n) = 1 + p(1) + · · ·+ p(n− 1) (note that pp(n) is
also subexponential). Pointed partitions play an important role in Okounkov–Vershik
theory (see [22, 5]) as pp(n) is the dimension of the relative commutant {π ∈ C[Sn] |
πC[Sn−1] = C[Sn−1]π}.

For (µ, i) ∈ P ′n define a linear functional
f(2µ,2i) : C[M2n]→ C
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as follows: given v ∈ C[M2n] write

v =
∑

A∈M2n

αAA, αA ∈ C.

Define f(2µ,2i)(v) =
∑
A αA, where the sum is over all A ∈ M2n with d(J,A) = 2µ

and with the size of the component of J ∪ A containing the edge [2n − 1, 2n] being
2i. We call (f(2µ,2i)(v))(µ,i)∈P′n the relative orbital coefficients of v ∈ C[M2n].

For λ ∈ Yn, µ ∈ Pn we now have

θ̂2λ
2µ =

∑
i

f(2µ,2i)(v2λ),

where the sum is over all parts i of µ.
The update problem for relative orbital coefficients can be easily solved using the

following lemma.

Lemma 5.9. Let A ∈ M2n. Let C1, C2, . . . , Ct be the components of the spanning
subgraph of K2n with edge set J ∪A, with Ct containing the edge [2n− 1, 2n]. Let 2µi
be the number of vertices of Ci, i = 1, . . . , t. Thus {2µ1, . . . , 2µt} is the multiset of
parts of d(J,A).

(i) Let s be a vertex of Cj, j = 1, . . . , t− 1 and put A′ = (s 2n− 1) ·A. Then the
multiset of parts of d(A′, J) is

({2µ1, . . . , 2µt} − {2µj , 2µt}) ∪ {2(µj + µt)},

with 2(µj + µt) as the size of the component of A′ ∪ J containing the edge
[2n− 1, 2n].

(ii) Traverse the vertices of the alternating cycle Ct in cyclic order, beginning
at the vertex 2n and going towards 2n − 1. List the vertices encountered as
{2n, 2n− 1, i1, i2, . . . , i2k−1, i2k}, where k > 0 and 2µt = 2k + 2. Then
(a) Let j ∈ {1, 2, . . . , k} and put A′ = (i2j 2n− 1) ·A. The multiset of parts

of d(A′, J) is {2µ1, . . . , 2µt−1, 2µt − 2j, 2j}, with 2µt − 2j as the size of
the component of A′ ∪ J containing the edge [2n− 1, 2n].

(b) Let j ∈ {1, 2, . . . , k} and put A′ = (i2j−1 2n − 1) · A. The multiset of
parts of d(A′, J) is {2µ1, . . . , 2µt}, with 2µt as the size of the component
of A′ ∪ J containing the edge [2n− 1, 2n].

Proof. (i) Let [s, x], [2n − 1, y] ∈ A. Then A′ = (A r {[s, x], [2n − 1, y]}) ∪ {[2n −
1, x], [y, s]}. It follows that Ck, k ∈ {1, . . . , t−1}r{j}, continue to remain components
of J ∪A′ and that Cj and Ct merge into a single alternating cycle in J ∪A′.

(ii)(a) It is clear that C1, . . . , Ct−1 continue to be components of J ∪ A′ and that
Ct splits into two alternating cycles with vertex sets

{i2j+1, i2j+2, . . . , i2k−1, i2k, 2n, 2n− 1} and {i1, i2, . . . , i2j−1, i2j}.

(ii)(b) Similar to case (ii)(a) except that Ct does not split. �

For v ∈ C[M2n], define

[v] = (f(2µ,2i)(v))(µ,i)∈P′n

to be the vector of the relative orbital coefficients of v. We denote f(2µ,2i)(v) by
v(2µ, 2i).

The following is the algorithm for updating the vector of relative orbital coefficients.
Its correctness directly follows from Lemma 5.9.
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Algorithm 1 (Update for relative orbital coefficients).
INPUT [v], for some v ∈ C[M2n], and an integer a.
OUTPUT [u], where u = (X2n−1 − aε) · (v) ∈ C[M2n].
METHOD
1. For all (µ, i) ∈ P ′n do γ(2µ, 2i) = 0.
2. For all (µ, i) ∈ P ′n do

2a. Write the multiset of parts of µ as {µ1, µ2, . . . , µt}, where µt = i.
2b. For j = 1 to t− 1 do

2b.1. µ′ = ({µ1, µ2, . . . , µt}r {µj , µt}) ∪ {µj + µt}, i′ = µj + µt.
2b.2. γ(2µ′, 2i′) = 2µjv(2µ, 2i) + γ(2µ′, 2i′).

2c. k = µt − 1.
2d. For j = 1 to k do

2d.1. µ′ = ({µ1, µ2, . . . , µt−1, µt − j, j}, i′ = µt − j.
2d.2. γ(2µ′, 2i′) = v(2µ, 2i) + γ(2µ′, 2i′).
2d.3. γ(2µ, 2i) = v(2µ, 2i) + γ(2µ, 2i).

3. For all (µ, i) ∈ P ′n do u(2µ, 2i) = γ(2µ, 2i)− av(2µ, 2i).
4. RETURN (u(2µ, 2i))(µ,i)∈P′n .

We denote the output of Algorithm 1, on input [v], by Fa([v]).
We now give the inductive algorithm for computing the rows of the eigenvalue

tables Θ̂(2n). In Step 5 below we use the convention that, for a proposition P , [P ]
equals 1 if P is true and is equal to 0 if P is false.
Algorithm 2 (Computing rows of the eigenvalue table inductively).
INPUT (i) λ′ ∈ Yn+1, with λ = λ′ − {last box in last row of λ} ∈ Yn.
(ii) The row of Θ̂(2n) indexed by λ, i.e. (θ̂2λ

2µ)µ∈Pn .
OUTPUT The row of Θ̂(2n+ 2) indexed by λ′, i.e. (θ̂2λ′

2µ′)µ′∈Pn+1 .
METHOD
1. For all (µ′, i) ∈ P ′n+1 do v(2µ′, 2i) = 0.
2. For all µ ∈ Pn do v(2µ ∪ {2}, 2) = θ̂2λ

2µ.
3. Let the Young diagram 2λ have k + 1 outer corners. Adding two boxes (in a row)

in the place of one of these outer corners yields 2λ′. Denote the k other outer
boxes by b1, . . . , bk.

4. For j = 1 to k do [v] = Fc(bj)([v]).

5. For all µ′ ∈ Pn+1 do θ̂2λ′
2µ′ =

∑n+1
i=1

[i is a part of µ′] v(2µ′,2i)
v(2(1n+1),2) .

6. RETURN (θ̂2λ′
2µ′)µ′∈Pn+1 .

Theorem 5.10. Algorithm 2 is correct.
Proof. Let u ∈ C[M2n] be the first GZ-vector in V 2λ. Normalize u so that
the coefficient of J is 1. Let v ∈ C[M2n+2] be the vector corresponding to
1 ⊗ u ∈ indS2n+1

S2n
(C[M2n]), under the isomorphism between indS2n+1

S2n
(C[M2n])

and resS2n+2
S2n+1

(C[M2n+2]) (Lemma 2.1(v,vi)). Then it follows that steps 1 and 2 of
Algorithm 2 correctly calculate [v].

It now follows from Lemma 5.2 that steps 3, 4, 5, and 6 of Algorithm 2 correctly
compute the (normalized) orbital coefficients of the first GZ-vector of V 2λ′ . �

It is clear that a similar algorithm exists for any good tableau and the use of the
first tableau is only for convenience. We have implemented Algorithms 1 and 2 in
Maple. Both the program and its binary file are available at [26]. The program is able
to compute θ̂2λ

2µ reasonably quickly for |λ| = |µ| 6 20. We were able to determine the
entire spectrum of D40.
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Example 5.11. We give below the eigenvalue table Θ̂(10) computed using this pro-
gram. List the elements of P5 in the order {(15), (2, 13), (22, 1), (3, 12), (3, 2), (4, 1), (5)}
and the elements of Y5 in the order {(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), (15)}. We
have

Θ̂(10) =



1 20 60 80 160 240 384
1 11 6 26 −20 24 −48
1 6 11 −4 20 −26 −8
1 3 −10 2 −4 −8 16
1 0 5 −10 −10 10 4
1 −4 −3 2 10 6 −12
1 −10 15 20 −20 −30 24


.

Summing the fifth and seventh columns of Θ̂(10) we get the spectrum of D10:

m
(10)
10 = 544, m

(8,2)
10 = −68, m

(6,4)
10 = 12, m

(6,2,2)
10 = 12,

m
(4,4,2)
10 = −6, m

(4,2,2,2)
10 = −2, m

(2,2,2,2,2)
10 = 4.

Note the sole zero value in row 5, column 2. The eigenvalue table Θ̂(2n) tends to
have far fewer zero values than the character (or central character) table of Sn. For
instance, p(15) = 176 and of the 1762 = 30976 entries in the character table of S15 as
many as 11216 are zero while only 878 of the entries in Θ̂(30) are zero.

Recently, Ku and Wong [15] gave elegant explicit formulas for m
2(1n)
2n and

m
2(2m,1n−2m)
2n . Namely, they showed that

m
2(1n)
2n = (−1)n−1(n− 1), m

2(2m,1n−2m)
2n = (−1)n−2((m− 1)n−m2 + 2m+ 1).

It would be interesting to see whether these formulas can be derived from the algo-
rithm presented here. This possibility arises as follows. The number k of times the for
loop in Step 4 of Algorithm 2 is executed depends on the number of outer boxes of
the input Young diagram. In the case of the Young diagrams 2(1n) and 2(2m, 1n−2m)
this number is 1 or 2 throughout (i.e. at every level of recursion). This considerably
simplifies the recursion and it may be possible to use generating function techniques
to derive the formulas above. We hope to return to this later.

We shall now give an almost identical algorithm for computing the central charac-
ters of Sn, based on the inductive structure (3) of the regular modules C[Sn].

For µ ∈ Pn define a linear functional
gµ : C[Sn]→ C

as follows: given v ∈ C[Sn] write

v =
∑
π∈Sn

αππ, απ ∈ C.

Define gµ(v) =
∑
π απ, where the sum is over π ∈ Cµ. We call (gµ(v))µ`n the class

coefficients of v ∈ C[Sn]. Note that the vector v, living in a vector space of dimension
n!, has only p(n) class coefficients.

Given λ ∈ Yn, let R ∈ tab(n, λ) be the first tableau and consider pR ∈ C[Sn]λ, a
GZ-vector associated to R. Let vλ denote the vector obtained by normalizing pR so
that the coefficient of ε is 1. Then it follows that

φ̂λµ = gµ(vλ).
Thus, the eigenvalues can be determined once we know the class coefficients of vλ.

The basic idea of the algorithm is to inductively compute the class coefficients using
Lemma 5.2. Like before, this leads to the update problem:
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Given the class coefficients of v ∈ C[Sn], determine the class coefficients of Xn · v.
To solve the update problem we define relative class coefficients. For (µ, i) ∈ P ′n

define a linear functional
g(µ,i) : C[Sn]→ C

as follows: given v ∈ C[Sn] write

v =
∑
π∈Sn

αππ, απ ∈ C.

Define g(µ,i)(v) =
∑
π απ, where the sum is over all π ∈ Sn with π ∈ Cµ and with the

size of the cycle of π containing n being i. We call (g(µ,i)(v))(µ,i)∈P′n the relative class
coefficients of v ∈ C[Sn].

For λ ∈ Yn, µ ∈ Pn we now have

φ̂λµ =
∑
i

g(µ,i)(vλ),

where the sum is over all parts i of µ.
The update problem for relative class coefficients can be easily solved using the

following lemma.

Lemma 5.12. Let π ∈ Sn with C1, C2, . . . , Ct as its disjoint cycles and with Ct con-
taining n. Let µi = |Ci|, i = 1, . . . , t, so that {µ1, . . . , µt} is the multiset of cycle
lengths of π.

(1) Let s be an element of Cj, j = 1, . . . , t − 1 and put π′ = (s n)π. Then the
multiset of cycle lengths of π′ is

({µ1, . . . , µt} − {µj , µt}) ∪ {µj + µt},
with µj + µt as the length of the cycle containing n.

(2) Write Ct = (n ik ik−1 · · · i1), where k > 0 and µt = k+1. Let j ∈ {1, 2, . . . , k}
and put π′ = (ij n)π. Then the multiset of parts of π′ is {µ1, . . . , µt−1, µt −
j, j}, with µt − j as the length of the cycle containing n.

Proof. This is similar to the proof of Lemma 5.9. �

For v ∈ C[Sn], define
[v] = (g(µ,i)(v))(µ,i)∈P′n

to be the vector of the relative class coefficients of v. We denote g(µ,i)(v) by v(µ, i).
The following is the algorithm for updating the vector of relative class coefficients.

Its correctness directly follows from Lemma 5.12.

Algorithm 3 (Update for relative class coefficients).
INPUT [v], for some v ∈ C[Sn], and an integer a.
OUTPUT: [u], where u = (Xn − aε) · (v) ∈ C[Sn].
METHOD
1. For all (µ, i) ∈ P ′n do γ(µ, i) = 0.
2. For all (µ, i) ∈ P ′n do

2a. Write the multiset of parts of µ as {µ1, µ2, . . . , µt}, where µt = i.
2b. For j = 1 to t− 1 do

2b.1. µ′ = ({µ1, µ2, . . . , µt}r {µj , µt}) ∪ {µj + µt}, i′ = µj + µt.
2b.2. γ(µ′, i′) = µjv(µ, i) + γ(µ′, i′).

2c. k = µt − 1.
2d. For j = 1 to k do

2d.1. µ′ = ({µ1, µ2, . . . , µt−1, µt − j, j}, i′ = µt − j.
2d.2. γ(µ′, i′) = v(µ, i) + γ(µ′, i′).
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3. For all (µ, i) ∈ P ′n do u(µ, i) = γ(µ, i)− av(µ, i).
4. RETURN (u(µ, i))(µ,i)∈P′n .

We denote the output of Algorithm 3, on input [v], by Ga([v]).
We now give the inductive algorithm for computing the rows of the central character

tables of Sn.

Algorithm 4 (Computing rows of the central character table inductively).
INPUT (i) λ′ ∈ Yn+1, with λ = λ′ − {last box in last row of λ} ∈ Yn.
(ii) The row of the central character table of Sn indexed by λ, i.e. (φ̂λµ)µ∈Pn .
OUTPUT Row of the central character table of Sn indexed by λ′, i.e. (φ̂λ′µ′)µ′∈Pn+1 .
METHOD
1. For all (µ′, i) ∈ P ′n+1 do v(µ′, i) = 0.
2. For all µ ∈ Pn do v(µ ∪ {1}, 1) = φ̂λµ.
3. Let λ have k + 1 outer corners. One of these outer corners, when added to λ,

yields λ′. Denote the k other outer boxes by b1, . . . , bk.
4. For j = 1 to k do [v] = Gc(bj)([v]).

5. For all µ′ ∈ Pn+1 do φ̂λ′µ′ =
∑n+1

i=1
[i is a part of µ′] v(µ′,i)

v(1n+1,1) .
6. RETURN (φ̂λ′µ′)µ′∈Pn+1 .

Theorem 5.13. Algorithm 4 is correct.

Proof. Let R ∈ tab(n, λ) be the first tableau. Normalize pR ∈ C[Sn]λ to get a GZ-
vector u associated to R so that the coefficient of ε is 1.

Let v correspond to u under the embedding of C[Sn] into C[Sn+1] (adding (n+ 1)
as a singleton cycle to each permutation in Sn). Then it follows that steps 1 and 2
of Algorithm 4 correctly calculate [v]. It now follows from Lemma 5.2 that steps 3, 4,
5, and 6 of Algorithm 4 correctly compute the (normalized) class coefficients of pR′
(where R′ ∈ tab(n+ 1, λ′) is the first tableau). �

It is clear that a similar algorithm exists for any tableau and the use of the first
tableau is only for convenience. This algorithm has also been implemented in [26].

Acknowledgements. I thank the referees for their remarks. I am especially grateful to
Reviewer C for detailed suggestions that have considerably improved the exposition
and, most importantly, for pointing out that the proof of validity of the algorithms
in Section 5 had a gap.
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[22] Andrei Okounkov and Anatolĭı M. Vershik, A new approach to the representation theory of the

symmetric groups. II, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. mat. Inst. Steklov.
(POMI) 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 57-98, 281; trans-
lation in J. Math. Sci. (New York) 131 (2005), 5471–5494.

[23] Amritanshu Prasad, Representation theory. A combinatorial viewpoint, Camb. Stud. Adv.
Math., vol. 147, Cambridge University Press, Delhi, 2015.

[24] Bruce E. Sagan, The symmetric group. Representations, combinatorial algorithms, and sym-
metric functions, Second ed., Grad. Texts Math, vol. 203, Springer-Verlag, New York, 2001.

[25] Jan Saxl, On multiplicity free permutation representations, in Finite geometries and designs,
Lond. Math. Soc. Lect. Note Ser., vol. 49, Cambridge University Press, 1981, pp. 337–353.

[26] Murali K. Srinivasan, A Maple program for computing θ̂2λ
2µ, http://www.math.iitb.ac.in/~mks/

papers/EigenMatch.pdf, 2018.
[27] Richard P. Stanley, Enumerative combinatorics - Volume 2, Camb. Stud. Adv. Math., vol. 62,

Cambridge University Press, Cambridge, 1999.
[28] Omar Tout, Structure coefficients of the Hecke algebra of (S2n,Bn), Electronic Journal of Com-

binatorics 21 (2014), no. 4, Paper 4.35 (41 pages).

Murali K. Srinivasan, Department of Mathematics, Indian Institute of Technology Bombay,
Powai, Mumbai 400076, India
E-mail : murali.k.srinivasan@gmail.com

Algebraic Combinatorics, Vol. 3 #3 (2020) 591

http://www.math.ucsd.edu/~garsia/somepapers/Youngseminormal.pdf
http://www.math.ucsd.edu/~garsia/somepapers/Youngseminormal.pdf
http://www.math.iitb.ac.in/~mks/papers/EigenMatch.pdf
http://www.math.iitb.ac.in/~mks/papers/EigenMatch.pdf
mailto:murali.k.srinivasan@gmail.com

	1. Introduction
	2. The SN-module C[Mn]
	3. Eigenvalues and (class-coset) intersection numbers
	4. Content evaluation of symmetric functions
	5. Eigenvectors: similar algorithms for phi lambda mu and theta 2lambda 2mu
	References

