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balanced design

Stuart Margolis, John Rhodes & Pedro V. Silva

Abstract We give a new perspective of the relationship between simple matroids of rank 3 and
pairwise balanced designs, connecting Wilson’s theorems and tools with the theory of truncated
boolean representable simplicial complexes. We also introduce the concept of Wilson monoid
W (X) of a pairwise balanced design X. We present some general algebraic properties and study
in detail the cases of Steiner triple systems up to 19 points, as well as the case where a single
block has more than 2 elements.

1. Introduction
The purpose of this paper is to describe the deep connection between the theory
of truncated boolean representable simplicial complexes (TBRSC) [29, 24] and
R. Wilson’s famous theorem that pairwise block designs (PBDs) exist for large
enough sets meeting the usual necessary conditions on their parameters [35, 36, 38].
In addition, we begin the algebraic study of the monoid of Wilson morphisms from
a PBD to itself. This gives important connections between the theory of matroids,
truncated boolean representable simplicial complexes, design theory and semigroup
theory that are mutually beneficial for all these fields. We outline these connections
briefly in this section.

In matroid theory, the inverse operation of truncation is called erection [26]. The
study of this operator was initiated by Crapo [10] and plays an important part in
matroid theory [20, 25, 27]. In this paper we study erections for matroids of rank 3
within the context of the theory of TBRSC. That is, if M is a matroid of rank 3, on
the set of points V and independent sets I, then we wish to compute the maximal
boolean representable simplicial complex (BRSC) [29]Mε whose truncation to rank 3
is M . Remarkably, this question is directly related to the fundamental papers of
Wilson [35, 36, 38], one of the most important works in Combinatorics in the last 40
years. Indeed, we will see that the subsystems of a Pairwise Balanced Design (PBDs),
(called flats of a PBD by Wilson in [35]) are precisely the flats of Mε in the sense of
the theory of boolean representable simplicial complexes (BRSC) [29]. As the lattice
of subsystems of a PBD is rarely a geometric lattice, the connection to the work of
Wilson was not studied by matroid theorists. It is only through the theory of BRSC
that the lattice of subsystems of a PBD plays its proper role.
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Crapo [10] proved that for matroids of any rank, the collection of all matroid
erections form a lattice for the weak order and described the largest element in the
lattice called the free erection. See also, [20, 25, 27]. The relationship between free
erections and the BRSC Mε is discussed in [24].

More precisely, we recall that a PBD with parameter λ = 1 is well known to
be equivalent, except for some trivial cases, to a matroid of rank 3 [11]. Every such
matroid M defines a largest BRSC, Mε, such that the truncation of Mε to rank 3
is M . An important result of this paper is to show that Mε is the BRSC defined by
taking the subsystems of the corresponding PBD as the defining flats in the sense
of [29]. Recall that a subsystem of a PBD is a subset X of the base set such that
for each pair of distinct points x, y ∈ X, the unique block of the PBD containing
them is contained in X. This latter BRSC is not in general a matroid itself, but gives
us a way to lift the original matroid M to higher dimensions. We give a number of
illuminating examples.

In [35], Wilson defines a notion of morphism between PBDs that gives the col-
lection of PBDs the structure of a category. In particular, if X is a PBD, then the
collection W (X) of all morphisms from X to itself forms a monoid that we call the
Wilson monoid of X. Morphisms play a central role in [35] where they are used to
prove [35, Section 8] what is now called Wilson’s Fundamental Construction [8, IV.2.1
Theorem 2.5]. This is one of the most important recursive constructions in design the-
ory. Wilson’s proof is by understanding the structure of the kernel of a morphism [35,
Theorem 8.1-8.2].

Despite their importance in Wilson’s seminal work, morphisms were not subse-
quently developed. In particular, there has been no study of the algebraic properties
of the monoid W (X) of a PBD X and its relationship to the combinatorial and
geometric properties of X. A major portion of this paper is devoted to developing
these connections. We show that W (X) consists precisely of the continuous partial
functions on the collection of open sets O(X), in that inverse images of open sets
are open. An open set is the complement of a subsystem of X. O(X) is closed under
unions, but not necessarily intersection and thus we are working with a generalized
version of a topology. Algebraically, W (X) has a unique 0-minimal ideal I(X) on
which W (X) acts faithfully on both the left and the right and is the largest monoid
with this property. The connection between incidence structures and maximal faithful
ideal extensions was studied by Dinitz and Margolis [23, 13, 12] in the 1980s.

As illuminating examples we look at two “minimal” cases. First we look at Wilson
monoids of Steiner triple systems, that is, PBDs all of whose block sizes are 3. Then
we look at PBDs that have at most one block of size greater than 2. The case of triple
systems indicates that almost every Wilson monoid consists of a unique 0-minimal
ideal and its group of units, which is the automorphism group of the design. Monoids
with this property are called small monoids. On the other hand, the monoid of all
n × n matrices over F2, the field of order two, is contained in the Wilson monoid
of the triple system associated to both affine n-space and projective n-space over
F2. This dichotomy between PBDs that are “small” and those that are “big” is an
important part of the theory. Thus, most triple systems are “weeds”, in that they
have no non-trivial automorphisms nor subsystems. Almost all of these have small
monoids as Wilson monoid. On the other hand, the “jewels” are both rare and have
a very intricate Wilson monoid.

This paper is interdisciplinary in nature, combining results and methods from the
theory of semigroups and monoids, matroid theory, combinatorial geometry, design
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theory and the theory of boolean representable simplicial complexes. For the conve-
nience of the reader who may not be familiar with one or more of these fields we
gather the basic definitions and references.

A semigroup is a set with an associative product and a monoid is a set with an
associative binary product and an identity element. A morphism f : M → N between
semigroupsM and N is a function that preserves products. IfM and N are monoids, a
morphism also preserves identity elements. See [30], especially chapter 4 and Appendix
A for the necessary background on finite semigroup theory used in this paper.

There is a minimal use of basic results in category theory and the reader can con-
sult [22] if necessary. There are many cryptomorphic definitions of matroids. Since we
concentrate on notions of independence in this paper, we define and refer to a matroid
via its independent sets as outlined in the next section. See [26] for background on
matroid theory. For background in design theory, see [32].

Since the theory of boolean representable simplicial complexes will be the least
familiar to readers, we review its basics in the next section. The reader is referred
to [29] for more details. All the results mentioned here will be used throughout the
paper without further reference.

2. Boolean Representable Simplicial Complexes
All lattices and simplicial complexes in this paper are assumed to be finite. Given a
set V and n > 0, we denote by Pn(V ) (respectively P6n(V )) the set of all subsets of
V with precisely (respectively at most) n elements.

A (finite) simplicial complex is a structure of the form S = (V, I), where V is a
finite nonempty set and I ⊆ 2V is nonempty and closed under taking subsets. The
elements of V and I are called respectively points and independent sets.

A maximal independent set is called a basis. The maximum size of a basis is the
rank of S. We say that S is pure if all its bases have the same size. We say that
S = (V, I) is simple if P2(V ) ⊆ I.

A simplicial complex M = (V, I) is called a matroid if it satisfies the exchange
property:
(EP ) For all I, J ∈ I with |I| = |J | + 1, there exists some i ∈ I r J such that

J ∪ {i} ∈ I.
There are many cryptomorphic definitions of matroids [26]. In this paper, since we

are concerned with simplicial complexes with various notions of independence, we will
always refer to a matroid via its simplicial complex of independent sets as above.

Important examples of matroids are the uniform matroids Uk,n: for all 1 6 k 6 n,
we write Uk,n = (V, P6k(V )) with |V | = n.

A subset F of 2V is called a Moore family if V ∈ F and if for all F1, F2 ∈ F ,
it follows that F1 ∩ F2 ∈ F . In other words, a Moore family is a submonoid of the
monoid of all subsets of V under intersection. Every Moore family, under inclusion,
constitutes a lattice with intersection as meet and the join of two members F1, F2
of F is the determined join, that is, the intersection of all members of F containing
F1 ∪ F2. We say that X ⊆ V is a transversal of the successive differences for a chain

F0 ⊂ F1 ⊂ · · · ⊂ Fk

in F if X admits an enumeration x1, . . . , xk such that xi ∈ Fi rFi−1 for i = 1, . . . , k.
We denote by Tr(F) the set of transversals of the successive differences for chains
in F .

We say that a simplicial complex S = (V, I) is boolean representable (BRSC) if
I = Tr(F) for some Moore family F ⊆ 2V . Moreover, every BRSC can be obtained
this way by taking as Moore family its lattice of flats (see [29, Chapters 5 and 6]):
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We say that X ⊆ V is a flat of S if

∀I ∈ I ∩ 2X ∀p ∈ V rX I ∪ {p} ∈ I.

The set of all flats of S is denoted by L(S). Note that V,∅ ∈ L(S) in all cases, and
L(S) is indeed a Moore family.

It follows from [29, Corollary 5.2.7] that a simplicial complex S = (V, I) is boolean
representable if and only if I = Tr(L(S)). Furthermore, the lattice L(S) induces a
closure operator on 2V defined by

Cl(X) = ∩{F ∈ L(S) | X ⊆ F}

for every X ⊆ V .
An alternative characterization of BRSC is provided by boolean matrices [29],

which explains the terminology.
All matroids are boolean representable [29, Theorem 5.2.10], but the converse is

not true. Indeed, all matroids are pure but BRSC need not to be so. Unlike simple
matroids, simple BRSC do not need to have a geometric lattice of flats [29, Exam-
ple 5.2.11].

3. Truncated Boolean Representable Simplicial Complexes
Given a simplicial complex S = (V, I) and k > 1, the k-truncation of S is the simplicial
complex Tk(S) = (V, Tk(I)), where Tk(I) = I ∩P6k(V ). We say that S is a truncated
boolean representable simplicial complex (TBRSC) if S = Tk(S′) for some BRSC
S′ and k > 1.

It is known that not every simplicial complex is a TBRSC [29, Example 8.2.6] and
not every TBRSC is a BRSC [29, Example 8.2.1].

To understand TBRSCs, we need the following definition. Given a simplicial com-
plex S = (V, I) of rank r, we define

ε(S) = ε(I) = {X ⊆ V | ∀Y ∈ I ∩ P6r−1(X) ∀p ∈ V rX Y ∪ {p} ∈ I}.

Lemma 3.1. [29, Lemma 8.2.3] Let S be a simplicial complex. Then:
(i) ε(S) is closed under intersection;
(ii) L(S) ⊆ ε(S).

Thus ε(S) is a Moore family and defines consequently a BRSC, denoted by Sε.

Theorem 3.2. [29, Theorem 8.2.5] Let S be a simplicial complex of rank r. Then the
following conditions are equivalent:

(i) S is a TBRSC;
(ii) S = Tr(Sε).

Furthermore, in this case we have L(Sε) = ε(S).

It follows from [29, Section 8.2] that Sε is the largest BRSC on V whose truncation
to rank r is S.

4. Pairwise Balanced Designs and Their Subsystems
In [24, Example 3.5] it is shown that there are rank 3 TBRSCs which are not boolean
representable (unlike rank 2, see [24, Proposition 4.1]). In this section we study the
class of rank 3 TBRSCs in detail. We show its connection to other important com-
binatorial structures, the pairwise balanced designs and partial geometries. We are
led directly into a connection between rank 3 TBRSC and Wilson’s fundamental
results [35, 36, 38].
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A pairwise balanced design (PBD) is given by the following data. Let X be a finite
set. Let L be a collection of subsets L = {Bi | i ∈ I} of X called blocks. We assume
that |Bi| > 1 for all i ∈ I. Let v be a non-negative integer and K a set of positive
integers. The pair (X,L) is called a K-PBD of size v if it satisfies the following
conditions.

(1) |X| = v
(2) |Bi| ∈ K for all i ∈ I
(3) Every pair of distinct points x, y ∈ X is contained in a unique block Bi ∈ L.
Except for the cases (∅,∅), (X,∅), |X| = 1 and (X, {X}), |X| > 1, a PBD is the

same thing as a 2-partition of X in the sense of [11]. This means that the blocks
partition the collection of subsets of X of cardinality 2. When we use the term PBD
we exclude these three cases in this paper. Thus, we assume that 1 /∈ K.

The following results of [11] describe the connection of PBDs to rank 3 simple
matroids. We give the details for completeness.

Proposition 4.1. Let M = (V, I) be a simple matroid of rank 3. Then (V,L) is a
PBD where L is the set of closures of two-element sets of M .

Proof. In the context of matroids, it is easy to see that if x, y are distinct points of V ,
then the flat generated by x, y is Cl{x, y} = {x, y} ∪ {u ∈ V | {x, y, u} /∈ I} and is a
proper subset of V . SinceM has rank 3, it follows that the intersection of two distinct
proper flats has cardinality at most 1. Therefore every pair of distinct elements of V
is in a unique block and (V,L) is a PBD. �

Proposition 4.2. Let (V,L) be a PBD. Let I = P62(V )∪{X ∈ P3(V ) | X " L,∀L ∈
L}. Then (V, I) is a simple matroid of rank 3.

Proof. We just need verify that (V, I) satisfies the Exchange Axiom. Let X = {x, y}
be a set of size 2 and {u, v, w} ∈ I. If X ⊂ {u, v, w} then we are done, so we can
assume without loss of generality that X ∩ {u, v} = ∅. Assume that neither X ∪ {u}
nor X ∪ {v} are in I. From the definition of I and (V,L) being a PBD, it follows
that there is an L ∈ L such that {x, y, u, v} ⊆ L. But then w /∈ L, since {u, v, w} ∈ I.
It follows that w /∈ X and that {x, y, w} ∈ I, completing the proof. �

As a corollary of these propositions, we see that the lattice of flats of a rank 3
matroid is constructed as follows.

Corollary 4.3. Let (V,L) be a PBD. Then P61(V ) ∪ L ∪ {V } is closed under in-
tersection and is the lattice of flats of the matroid from Proposition 4.2. Every rank 3
geometric lattice is constructed in this manner.

We discuss some issues of terminology. In [35], Wilson calls a subset X of a PBD
(V,L) a flat if for all distinct points x 6= y ∈ X, the unique block xy of (V,L)
containing x, y is contained inX. This is what Crapo [10] calls a 2-closed set. The term
“flat” is also an integral part of the theory of matroids, combinatorial geometry and
the theory of BRSC [26, 29] where they have a different meaning. To avoid confusion,
we will call flats in Wilson’s sense, subsystems of a PBD. Pairwise balanced designs
are called linear spaces [3] by combinatorial geometers. In this context subsystems
are called subgeometries. We will not use this term.

The main result of this section is that flats in Wilson’s sense are indeed exactly
the same as flats in the sense of the theory of BRSC. Let S = (V, I) be a TBRSC of
rank r. In Theorem 3.2 we showed how to compute the largest BRSC Sε on V whose
truncation to r is S. The next theorem gives a precise connection between ε(I) and
the lattice of flats in Wilson’s sense of the PBD of a rank 3 matroid.
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Theorem 4.4. Let (V,L) be a PBD and let M be the corresponding rank 3 ma-
troid.Then ε(M) is equal to the lattice of flats, Fl((V,L)) in the sense of Wilson, of
(V,L). That is, ε(M) is equal to the lattice of subsystems of (V,L).

Proof. Write M = (V, I). Since M is a matroid of rank 3, we have

ε(M) = {X ⊆ V | ∀Y ∈ I ∩ P62(X) ∀p ∈ V rX Y ∪ {p} ∈ I}.

Let X ∈ ε(M). Then for all distinct x, y ∈ X and p ∈ V r X, {x, y, p} ∈ I. By
Proposition 4.2 this implies that p is not in the unique block xy of (V,L). Therefore
xy is contained in X and X is a subsystem of (V,L).

Conversely, assume that X is a subsystem of (V,L). Let x 6= y ∈ X and p ∈ V rX.
Then p is not in xy since X is a subsystem. Therefore, {x, y, p} ∈ I by Theorem 4.2
and therefore X ∈ ε(M). �

Despite the simplicity of the result, we see that the theories of BRSC and TBRSC
are a missing link between these theories and the theory of PBDs. In the next section
we give examples of the connection given by Theorem 4.4.

5. Examples
We look at a number of examples in this section. The book [3] includes an Appendix
containing all PBDs on at most 9 points.

Example 5.1 (Complete Graphs). We can identify the unique 2-PBD on V with the
complete graph on V . The corresponding matroid is M = U|V |,3 whose independent
sets are P63(V ). Clearly every subset of V is a subsystem in this case. Therefore,
Mε = U|V |,|V |, the uniform matroid on V .

Example 5.2 (Near Pencils). Let V = {0, 1, . . . , n}. Let L = {{0, i}|i = 1, . . . , n} ∪
{{1, . . . , n}}. That is, L consists of the block {1, . . . , n} and all 2-sets containing
0. Then NP (n) = (V,L) is a {2, n}-PBD called a near pencil. The corresponding
matroid M has as set of bases all 3-sets that contain 0. It is easy to check that
the flats of M are the empty set, all singletons, all the blocks of NP (n) and V . A
straightforward calculation then shows that ε(M) = L(M) and Mε = M .

Example 5.3 (Projective spaces). Let Fq be the field of order q and let Fn+1
q be an n+1

dimensional vector space over Fq. We can consider the projective n-dimensional space
over Fq to be a PBD Pn,q as follows. The 1-dimensional subspaces of Fn+1

q are the
points and the 2-dimensional subspaces of Fn+1

q are the blocks. Incidence is given by
containment. It is well known that Pn,q is a PBD on a set of size qn +qn−1 +. . .+q+1
points and K = {q + 1}. The corresponding matroid M = (V, I) has as bases all sets
of 3 lines through the origin that are not co-planar. ε(I) is easily seen to be all the
projective subspaces of Fn+1

q in the usual sense of projective geometry.

Example 5.4 (Affine spaces). Let V = Fn
q be an n-dimensional space over Fq. Affine

n-space is the structure whose vertices are V and whose blocks are all the cosets of
the form W + v, where W is a one-dimensional subspace of V and v ∈ V . This is
a PBD with qn vertices and K = {q}. The corresponding matroid M = (V, I) has
as bases all 3-sets of non-collinear points. The subsystems of the PBD are the usual
affine subspaces.

The above PBDs all have the properties that their lattice of flats is a geometric
lattice; equivalently the BRSC defined by the lattice of flats of the PBD is a matroid.
We present examples that do not have this property. The first example was constructed
by Marshall Hall in 1943 on a set of size 21. See [15], page 236 for details.
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Example 5.5. Let V = {1, 2, 3, 4, 5, 6}. Let L consist of the sets {1, 2, 3}, {1, 5, 6}
and {3, 4, 5} together with all two-element sets not contained in any of these. This
defines a {2, 3}-PBD. It is easy to see that in the corresponding matroid (V, I),
I = P63(V ) r {{1, 2, 3}, {1, 5, 6}, {3, 4, 5}} and ε(I) = P61(V ) ∪ L ∪ {{2, 4, 6}, V }.
Therefore, both {1, 3, 6} and {1, 2, 4, 6} are bases in the BRSC corresponding to this
PBD and thus the BRSC is not a pure simplicial complex and in particular, not a
matroid.

Example 5.6. The next example is related to the classical Desargues configuration.
Let K5 be the complete graph on 5 points. The graphic matroid G(K5) on K5 has all
its subforests as independent sets. We let D be the truncation of G(K5) to rank 3, so
that D has independent sets all subforests with at most 3 edges. Since matroids are
closed under truncation, D is a matroid.

The corresponding PBD has as points the edges of K5 and as blocks all pairs of
parallel edges and all 3 sets that form a triangle. Since the latter can be identified as
the lines of the Desargues configuration, we call D the Desargues matroid. By general
results about truncations ([26, Chapter 7], [29, Proposition 8.2.2]), the lattice of flats
L(D) is equal to the Rees quotient of L(G(K5)), considered as a join lattice, by the
ideal of all partitions with at most two equivalence classes. Recall [30] that the Rees
quotient of a semigroup S by an ideal I identifies all elements of I with 0 and leaves
all elements of S r I alone. It is not difficult to prove that ε(D) is the full partition
lattice and thus the corresponding BRSC is G(K5).

Now we consider the “non-Desargues” matroid. Recall [26, Chapter 1.5], that if M
is a matroid with set of bases B and X is both a circuit and a hyperplane (that is,
a flat of co-rank 1, which means that it is of rank one less than that of the matroid)
of M , then B ∪ {X} is the set of bases of a matroid called the relaxation of M with
respect to X. Any triangle in K5 is indeed a hyperplane and a circuit of D and fixing
T = {34, 35, 45} we obtain the non-Desargues matroid N by relaxation of D with
respect to T . We now analyze ε(N) and the corresponding BRSC. We note that by
general facts about relaxations, the lattice of flats of N is L(N) = P2(T )∪L(D)\{T}.
Thus every flat, thought of as a subgraph of K5, is a disjoint union of cliques and
possibly a subset of order of 2 of T .

By Theorem 4.4, ε(N) is the lattice of subsystems of the corresponding PBD.
These in turn are obtained by closing subsets under the operation that for any subset
X of V adjoins the flat of N generated by any pair of distinct elements to X. We
claim that ε(N) is, by considering a set of edges as a subgraph of K5, equal to the
set of graphs on 5 points, all of whose connected components are either cliques or a
2-element subset of T . Clearly any such set is a subsystem. Conversely, every flat of
N has the required form. The flat generated by a pair of points, i.e. edges in K5 is
either that pair, if they have no point in common or they are a two-element subset
of T or the unique triangle containing the pair if they have a point in common. By
iterating this operation, the required property is preserved. Thus, every subsystem
has this property.

Let E denote the set of edges of K5. Now it is easily seen that the chain

∅ ⊂ Cl({1, 2}) ⊂ Cl({1, 2, 3}) ⊂ Cl({1, 2, 3, 4}) ⊂ E

is a maximal chain in ε(N). But so is

∅ ⊂ Cl({3, 4}) ⊂ {34, 45} ⊂ Cl({3, 4, 5}) ⊂ Cl({1, 2}) ∪ Cl({3, 4, 5}) ⊂ E.

Therefore, ε(N) is not a graded lattice and in particular, not a geometric lattice and
thus the BRSC of ε(N) is not a matroid.
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6. Wilson Monoids
In [35, 36, 38], Wilson proved the existence theorem for PBDs which we recall here.
If K is a set of positive integers, define two numbers as follows:

α(K) = gcd{k − 1|k ∈ K}
and

β(K) = gcd{k(k − 1)|k ∈ K}
It is not difficult to prove that if (V,L) is a K-PBD and |V | = v, then v − 1 ≡ 0
mod α(K) and v(v − 1) ≡ 0 mod β(K). Wilson’s Theorem proves that except for a
finite number of cases, if |V | = v satisfies these congruential conditions, then there
exists a K-PBD with points V .

Wilson proves his theorem by combining direct constructions, that is, PBDs built
from finite fields, finite groups and other algebraic structures with recursive techniques
to build bigger PBDs from smaller pieces. Wilson implicitly defines a category of
PBDs by defining a notion of morphism. The self-morphisms of a PBDX then have
the structure of a monoid W (X) that we call the Wilson monoid on X. We will ex-
plore the relationship between combinatorial properties of X and semigroup theoretic
properties of W (X). This leads to surprising connections between these two theories.

We begin with an example before giving formal definitions. We will call a PBD
subsystem-free if its only subsystems are the empty set, the singleton sets, the blocks
and the whole point set. That is, a PBD is subsystem-free if its only subsystems are
the ones that every PBD has. Equivalently, this means that the lattice of subsystems
of the PBD is the lattice of flats of the corresponding rank 3 matroid. Such geometries
are also called non-degenerate planes [14], but we prefer the term subsystem-free. It
is quite easy to see that the Fano plane is a subsystem-free PBD. Of course, it is a
Steiner triple system (that is, a {3}-PBD).

We first build a {3, 7}-PBD. We start with the Cayley table of the group of order
7 as a Latin Square, LS(Z7) with rows R1, . . . , R7 and columns C1, . . . , C7. We begin
with three blocks of size 7 consisting of the Ri, Ci and i, i = 1, . . . , 7. We add all
49 blocks of size 3 that we obtain from LS(Z7) of the form {Ri, Cj , i + j(mod 7)},
i, j = 1, . . . , 7. Since any two entries of such a triple uniquely determine the third,
we obtain a {3, 7} − PBD,PBD(Z7). A short calculation will show that this is a
subsystem-free PBD.

We now use the technique in [35] to build a Steiner triple system, on the 21 points
of PBD(Z7). We replace or “break up” each of the three blocks of size 7 with disjoint
copies of the Fano plane. It is easy to see that this is indeed a triple system X on
21 points. Furthermore, the blocks that were of size 7 in PBD(Z7) are now flats of
size 7 in X and thus X is not a subsystem-free PBD.

Clearly we can use any Latin Square L on n points in place of LS(Z7) and any
Steiner triple system of order n to build a {3, n}-PBD, PBD(L) on 3n points. Steiner
triple systems built this way are called systems of Wilson-type in [18]. We will look
in more detail at Wilson monoids of Steiner triple systems later in the paper.

We now define the morphisms in Wilson’s sense between PBDs. We first need
a non-conventional definition of inverse image of partial functions. Let f : S → T
be a partial function between sets S and T . If S0 is the domain of f , then we call
S r S0 the co-domain of f . Throughout the paper the term “co-domain” refers to
the complement of the domain of a partial function and not the target space Y of
a function f : X → Y . Wilson [35] calls this the kernel of f , but we use this term
for the partition on Dom(f) that identifies two elements if they have the same image
under f . We let f0 : S0 → T be the total function defined by f . If A ⊆ S, then we
let f(A) = f0(A ∩ S0) and if B ⊆ T , we define f−w(B) = f−1

0 (B) ∪ (S r S0). We use
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the notation f−w to denote the inverse image in the sense of Wilson and the usual
notation f−1 for the standard notion of inverse image of a partial function. Thus, the
co-domain of f is contained in the Wilson inverse image of any subset B of T .

Let X = (S,L) and Y = (T,L′) be PBDs. A partial function f : S → T is called
a morphism between X and Y if f−w(F ) is a subsystem of X for every subsystem
F of Y . Notice that by the definition of Wilson inverse image, f−w(∅) is the co-
domain of f and since the empty set is a subsystem, the co-domain of any morphism
is a subsystem of X. We define an open set of a PBD to be the complement of a
subsystem of X and it follows that the domain of a morphism is an open set. The
following straightforward lemma allows us to use the following equivalent definition
of morphism in terms of open sets and the usual definition of inverse image in the
rest of the paper. This also allows us to use the results of [12, 13, 23] to understand
the monoid of morphisms on a PBD.

Proposition 6.1. Let X = (S,L) and Y = (T,L′) be PBDs. A partial function
f : S → T is a morphism if and only if the domain of f is an open subset and f−1(O)
is an open set of X for every open set O of Y .

Proof. Let f : S → T be a morphism between X and Y and let O be an open subset
of T . By definition, f−w(T r O) = f−1

0 (T r O) ∪ co-domain(f) is a subsystem of
X. But S is the disjoint union of f−1(O) and f−1

0 (T r O) ∪ co-domain(f) and thus
f−1(O) is an open subset of X.

Conversely assume that the domain of f : S → T is open and that f−1(O) is an
open set of X for every open set O of Y . Then f−w(∅) = co-domain(f) is a subsystem
of X.

Now let F be a non-empty subsystem of Y . Then f−1(T rF ) is an open subset of
S. Clearly, the complement of f−1(T rF ) in S is f−1(F )∪ co-domain(f) = f−w(F ).
Therefore, f−w(F ) is a subsystem of X and thus f is a morphism. �

Corollary 6.2. Let f : S → T and g : T → U be morphisms of PBDs. Then
gf : S → U is a morphism of PBDs.

Proof. Since Dom(g) is an open set and f is a morphism if follows that Dom(gf) =
f−1(Dom(g)) is an open set. Also, if O is an open subset of U, then (gf)−1(O) =
f−1(g−1(O)) is an open set of S since both f and g are morphisms. It follows from
Proposition 6.1 that gf : S → U is a morphism. �

This allows us to define PBD to be the category whose objects are PBDs and
whose morphisms are those defined in this section. In particular, for every PBD
X = (S,L), we define its Wilson monoid W (X) to be the monoid of all morphisms
from X to itself. We will elucidate the structure of W (X) in the rest of this section.

We interpret Proposition 6.1 as follows. The collection O of open subsets of a PBD
is closed under unions and contains the co-points, that is, the sets of cardinality one
less than V , as well as the empty set and the whole set. Thus O satisfies all the axioms
of a topology except possibly closure under intersection. In this “generalized topol-
ogy”, Proposition 6.1 says that the Wilson morphisms between PBDs are precisely
the partial continuous functions. It was this analogy that lead Dinitz and Margolis
to call such partial functions between arbitrary incidence structures continuous par-
tial functions [13, 23]. We view the category PBD as a natural generalization of the
category of topological spaces.

We begin with the following very important proposition of Wilson [35, Proposi-
tion 7.1] that gives a characterization of morphisms by their effect on direct image on
blocks of a PBD. Thus Wilson self-morphisms are a special kind of endomorphism of
a PBD. We give the proof for purposes of completeness.

Algebraic Combinatorics, Vol. 3 #3 (2020) 645



S. Margolis, J. Rhodes & P. V. Silva

Proposition 6.3. Let X = (S,L) and Y = (T,L′) be PBDs. A partial map f : S →
T is a morphism if and only if the domain of f is open and for every block B ∈ L,
either

(i) |f(B)| 6 1 or
(ii) f is defined on all of B, is one-to-one on B and there is a (necessarily unique)

block B′ ∈ L′ such that f(B) ⊆ B′.

Proof. Assume that the domain of f is open and satisfies conditions (i) or (ii) for every
block B ∈ L. Let F be a subsystem of Y and let E = f−w(F ). If |E| 6 1, then E is a
subsystem of X. Assume then, that x1, x2 are two distinct points of E and let B be
the unique block of X that contains x1, x2. If (i) holds, then either f(B) is the empty
set or f(B) = y for some y ∈ F . In both cases, B ⊆ f−w(F ) = E. If |f(B)| > 1, then
by (ii), f is defined on all of B and is one-to-one on B and there is a block B′ of Y such
that f(B) ⊆ B′. B′ contains the two distinct points f(x1), f(x2) of f(E) = F . Since
F is a subsystem of Y , B′ ⊆ F and thus B ⊆ f−1(B′) ⊆ f−w(F ) = E. Therefore, f
is a morphism.

Conversely, assume that f : S → T is a morphism. Then the domain of f is open.
Let B be a block of X. Since block sizes are greater than 1, if f is either not defined
on all of B or is not one-to-one on B, then there are two distinct points x1, x2 in B
such that |{f(x1), f(x2)}| 6 1. Therefore, the set F = {f(x1), f(x2)} is a subsystem
of Y and since f is a morphism, f−w(F ) is a subsystem that contains the two distinct
points x1, x2. Thus, B ⊆ F and therefore f(B) ⊆ {f(x1), f(x2)} and it follows that (i)
holds. It follows that if (i) doesn’t hold, then f is defined on all of B and is one-to-one
on B. Therefore, for two distinct points, x1, x2 in B, |{f(x1), f(x2)}| = 2 and thus
lie in a unique block B′ of Y . Since f is a morphism, x1, x2 are contained in the
subsystem f−w(B′) and it follows that B ⊆ f−w(B′). Since f is defined on all of B,
B ⊆ f−1(B′). Therefore, f(B) ⊆ B′ and (ii) holds. �

A morphism between X = (S,L) and Y = (T,L′) is called an open morphism if
and only if the image of every subsystem of X is a subsystem of Y . A proof similar
to that of Proposition 6.3 proves the next proposition.

Proposition 6.4. Let X = (S,L) and Y = (T,L′) be PBDs. A morphism f : S → T
is an open morphism if and only if for every block B ∈ L, either |f(B)| 6 1 or f(B)
is a block of Y .

Proposition 6.3 and Proposition 6.4 show that the blocks of a PBDX = (S,L)
form a weakly-preserved cover of the action of W (X). That is, the union of all the
blocks is all the points, and the image of any block under the action of any ele-
ment of W (X) is contained in (a not necessarily unique block, if case (i) of Proposi-
tion 6.3 holds). Weakly-preserved covers play an important part in Zieger’s proof of
the Krohn–Rhodes Theorem [39]. In this and a future paper, we exploit the properties
in these two propositions and use the interaction of the combinatorics of X and the
geometry of the actions of W (X) on points, open sets and blocks to study various de-
compositions: one and two-sided wreath products, triangular products [30] of W (X)
and its semiring of subsets P (W (X)).

The following corollary follows easily from Proposition 6.3 and Proposition 6.4. An
automorphism of a PBD is a permutation on the points that sends blocks to blocks.
A partial constant function f : S → S is a partial function such that |f(S)| 6 1.

Corollary 6.5. Let X = (S,L) be a PBD.
(i) A permutation f : S → S is a morphism if and only if f is an automorphism

of X.
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(ii) A partial constant map f : S → S is a morphism if and only if f is the empty
function or the domain of f is a non-empty open subset O of S and its image
is a point p ∈ S.

Let X = (S,L) be a PBD. If the morphism f : S → S ∈ W (X) is a non-empty
partial constant function, then we write f = (p,O) if the domain of f is the non-empty
open subset O of S and its image is {p}. We write θ for the empty function. Clearly,
the collection of all partial constant functions in W (X) is an ideal in W (X). We
identify this ideal as the unique 0-minimal ideal of W (X) and compute its structure
as a 0-simple semigroup and how it sits inside W (X) as an ideal.

Let (p′, O′), (p,O) be two partial constant functions in W (X). Clearly,

(p′, O′)(p,O) = (p′, O) if p ∈ O′

and the empty function otherwise. If we define a pairing <,>: O × S → {0, 1},
where O is the collection of non-empty open sets of X by < O′, p > = 1 if p ∈ O′
and 0 otherwise, then we can write the product above as (p′, O′)(p,O) = (p′ <
p,O′ >,O), where we identify multiplication by 0 as giving the empty function. It is
straightforward then to see that the ideal I(X) of partial constant maps of W (X) is
isomorphic to the Rees matrix semigroup [30, A4]M0({1}, S,O, <,>).

We now note that the natural left action of W (X) on S, that is, fp = f(p), f ∈
W (X), p ∈ S by partial functions has an “adjoint” right action on O. Namely, let
f ∈W (X) and define the partial function f̄ : O → O acting on the right of O by Of̄ =
f−1(O) if this set is non-empty and undefined otherwise. Adjointness means that for
the pairing <,> defined above, we have < Of̄, p > = < O, fp > for all O ∈ O, p ∈ S.
In the language of semigroup theory, this means that W (X) is the translational hull
of the 0-simple semigroup I(X). See [30, Section 5.5] for a general introduction to the
translational hull of a finite 0-simple semigroup.

We note that the pairing <,> (also known as the structure matrix of the 0-simple
semigroup) is reduced. This means that for all distinct p, q ∈ S there is an O ∈ O
such that < p,O > 6= < q,O > (since any two points are in exactly one block and
we are assuming that there are at least two blocks) and for each O 6= O′ ∈ O, there
is a p ∈ S such that < p,O > 6= < p,O′ >. If we think of <,> as a |S| × |O|
matrix over {0, 1}, then reduced means that distinct rows (columns) are not equal
to one another. 0-simple semigroups over the trivial group with reduced structure
matrices are precisely the congruence-free 0-simple semigroups and along with the
semigroups of order 2 and finite simple groups, form the class of all finite congruence-
free semigroups [30, Theorem 4.7.17]. A semigroup S is called Generalized Group
Mapping (GGM) if it has a unique 0-minimal ideal I(S) which is a 0-simple semigroup
and such that S acts faithfully on both the left and right of I(S) by left and right
multiplication [30, Chapter 4]. More precisely, S acts faithfully by partial functions on
any L and R class in I(S)r {0}, which means both the left and right Schützenberger
representations on the J -class I(S) r {0} are faithful. An important theorem says
that if the maximal subgroup of I(S)r{0} is trivial, then S is GGM if and only if I(S)
is a congruence-free 0-simple semigroup and S is a subsemigroup of the translational
hull of I(S) [30, Sections 4.6, 5.5]. We summarize all of this discussion in the following
Theorem. By “non-trivial PBD” we mean one that contains at least two blocks, that
is, it is not the PBD (S, {S}).

Theorem 6.6. Let X = (S,L) be a non-trivial PBD and W (X) its Wilson monoid
of continuous functions. Let O be the collection of non-empty open subsets of X.
Then W (X) is a GGM semigroup with unique 0-minimal ideal I(X) isomorphic to
the congruence-free Rees matrix semigroup M0({1}, S,O, <,>), where < O, p > is 1
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if p ∈ O and 0 otherwise. Furthermore, W (X) is isomorphic to the translational hull
of I(X).

6.1. Examples. In this subsection, we look at the Wilson monoids of the examples
in Section 5.

Example 6.7 (Complete Graphs). We saw in Example 5.1 that the complete graph
on a set V is the unique 2-PBD on V . We saw that every subset of V is a subsystem
and hence every subset is also open. Therefore every partial function is a morphism
and the Wilson monoid of the complete graph is the monoid of all partial functions
on V .

The next two examples show that as one might expect, projective spaces and affine
spaces have many continuous maps arising from the ambient monoid of matrices.

Example 6.8 (Projective Spaces). As in Example 5.3 we consider the the projective
n-dimensional space over Fq, the field of order q, to be the PBD Pn,q whose points are
the 1-dimensional subspaces of Fn+1

q and whose blocks arethe 2-dimensional subspaces
of Fn+1

q . A semilinear function f : Fn+1
q → Fn+1

q is a function such that f(v + w) =
f(v)+f(w) for all v, w ∈ Fn+1

q and f(cv) = σ(c)f(v) for all c ∈ Fq, v ∈ Fn+1
q and where

σ : Fq → Fq is a fixed automorphism of Fq. An invertible semilinear map clearly sends
points of Pn,q to itself and preserves incidence, so defines an automorphism (also called
a collineation) of Pn,q. The fundamental theorem of projective geometry [1] states
conversely, that every automorphism of Pn,q is induced by an invertible semilinear
map. It follows from Corollary 6.5, that the group of units of W (Pn,q) is this same
group.

More generally, let f : Fn+1
q → Fn+1

q be an arbitrary semilinear map. The kernel
ker(f) of f , that is, the set of all v ∈ Fn+1

q sent to 0 by f is a subspace of Fn+1
q . Let

[ker(f)] denote the subspace of Pn,q associated to ker(f). We now define f̄ : Pn,q →
Pn,q a partial function with domain Pn,q r [ker(f)]. That is, the domain of f̄ consists
of the one-dimensional subspaces of Fn+1

q not contained in ker(f). Therefore, if v is
such a line, f(v) is also a one-dimensional subspace of Fn+1

q and we define f̄(v) to be
the point f(v) of Pn,q.

We note that the domain of f̄ is an open subset of Pn,q, being the complement of
a subspace of Pn,q. Now let b be a block of Pn,q, that is a 2-dimensional subspace of
Fn+1

q . If b ⊆ ker(f), then f̄(b) is the empty set. If the intersection of b and ker(f)
is one-dimensional , then f(b) is a one-dimensional subspace of Fn+1

q , so that f̄(b)
is a point of Pn,q. Finally, if b ∩ ker(f) = {0}, then f maps b one-to-one onto the
2-dimensional space f(b) and induces a bijection on the one-dimensional subspaces
from those of b to those of f(b). Therefore, in this case, f̄ is one-to-one on the points
of b considered as a block in Pn,q. It follows from Proposition 6.3 that f̄ is an element
of W (Pn,q).

See [12] where it is proved that the monoid of continuous functions on a design
defined on projective space is the monoid of all projective matrices over the corre-
sponding field.

Example 6.9 (Affine Spaces). In Example 5.4 we defined n-dimensional affine space
A(n, q) over the field Fq to be the PBD whose points are the elements of Fn

q and
whose blocks are all the cosets of one-dimensional spaces of Fn

q . Let M be an n × n
matrix over Fq.M acts on Fn

q and if l is a one-dimensional subspace of Fn
q and a ∈ Fn

q ,
then M(l + a) = Ml + Ma. Since the latter is either a point or is a block which is
a bijective image of l + a, M defines a total continuous function by Proposition 6.3.
More generally, any affine function on Fn

q , that is a function f : Fn
q → Fn

q of the form
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f(v) = Mv + w, where M is an n × n matrix over Fq and w is a fixed element of
Fn

q defines a continuous function on A(n, q). We leave the problem of determining the
full monoid W (A(n, q)) for later work.

7. Group Divisible Designs and PBDs of Split Wilson Type
Morphisms between PBDs are important in that they allow a very general scheme to
build large designs from smaller ones. This plays a crucial role in Wilson’s proof that
the easy congruential necessary conditions for the existence of designs are eventually
sufficient.

Let X = (S,L) and Y = (T,L′) be PBDs and let f : S → T be a morphism. The
key is that for B a block of Y , f−1(B) is either empty or a group divisible design
(GDD), a concept that we now recall.

A GDD is a triple X = (S,G,L), where S is a finite set, G is a partition of S and L
is a set of subsets of S of size at least 2. Elements of G are called groups and elements
of L are called blocks. It is required that every distinct pair of points x, y ∈ S, is
contained in either a unique group or a unique block, but not both. If G′ is the set of
groups of size at least 2, then (S,L∪G′) is a PBD. Conversely, if (S,L) is a PBD and
G′ is a collection of blocks of G′ that is a partial partition of S (that is, a collection of
non-empty disjoint subsets of S), then (S,G,L) is a GDD, where G is the partition of
S consisting of the elements of G′ together with all the singleton subsets of elements
of S not in the union of the elements of G′. These operations are clearly inverses and
thus a GDD is the same thing as a PBD with a distinguished partial partition of S.
A subsystem of a GDD is a subsystem of its corresponding PBD.

A GDD is uniform if all its blocks have the same size. A transversal of a GDD
is a block Y that meets every group in precisely one point. That is, a transversal is
a system of distinct representatives for the groups of the GDD. A (k,m)-transversal
design, TD(k,m) is a uniform GDD in which all blocks have size k and there are k
groups each with m elements. Thus a TD(k,m) has km points and each block is a
transversal. Conversely, if X is a GDD with at least 3 groups, such that every block
is a transversal, then X is a TD(k,m) for some m. [35, Theorem 6.2].

Example 7.1. Let L be a Latin square of order m, that is an m × m matrix L
with entries in {1, . . . ,m} such that each entry appears precisely once in every row
and column of L. Let S = {R1, . . . , Rm} ∪ {C1, . . . , Cm} ∪ {1, . . . ,m} be a set of
size 3m. We let G be the partition of S into these three sets of size m and we let
L = {{Ri, Cj , L(i, j)}|1 6 i, j 6 m}. Since L is a Latin square, any two elements of a
triple in L uniquely determine the third element and thus (S,G,L) is a TD(3,m). It
is known that every TD(3,m) is constructed this way.

The following is part of Theorem 8.1 of [35]. We give the proof for purposes of
completeness.

Lemma 7.2. Let X and Y be PBDs on the sets S and T respectively and let f : S → T
be a morphism. Then the co-domain D, that is the set of points on which f is not
defined, is a subsystem of X as is D ∪ f−1(y) for all y ∈ Y . Let B be a block of Y
such that f−1(B) is not empty. Let Z = f−1(B), G = {f−1(y) | y ∈ (B ∩ f(S))} and
let L be the set of blocks of X that are contained in Z and that intersect every class
of G in at most one point. Then (Z,G,L) is a GDD.

Proof. Since f is a morphism Dom(f) is an open subset of S. Therefore the co-domain,
D = S r Dom(f) is a subsystem of X. Let y ∈ Y . Then {y} is a subsystem of Y and
thus f−w(y) = D ∪ f−1(y) is a subsystem of X.
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Let x1, x2 be two distinct points of Z. By definition they can not both be in some
group in G and a block in L. Furthermore, since X is a PBD, x1, x2 can be in at most
one block in L. We claim that if x1, x2 are in two different groups f−1(y1), f−1(y2)
of G, then there is some block b ∈ L containing them.

Let b be the unique block of X containing x1, x2. Since B is a block of Y and f
is a morphism, f−w(B) = D ∪ Z is a subsystem of X containing x1, x2 and thus,
b ⊆ D∪Z. If b contained a point x3 of D, then b would be contained in the subsystem
f−w(y1) = D ∪ f−1(y1) since x1, x3 are in this subsystem. This implies that x2 ∈
D ∪ f−1(y1) and since x2 is in the domain of f , it must be in the group f−1(y1)
contradicting the assumption that x1, x2 are in two distinct groups. Therefore, b ⊆ Z.
If b contained two points in the same group f−1(y) of G, then b would be contained in
the subsystem f−w(y) = D ∪ f−1(y) again contradicting that x1, x2 are in different
groups. Therefore, b ∈ L and (Z,G,L) is a GDD. �

The converse of Lemma 7.2 is also true. That is, if Y is a PBD and there is a
collection of suitable sized GDDs, one for each block of Y , and PBDs that play the
role of D and f−1(y) in the above proof, then there exists a PBD X and a morphism
f : X → Y that respects this data as in Lemma 7.2. This allows one to build a PBD
X from a PBD Y and a collection of suitable GDDs, glued together by a morphism
from X to Y . See [35, Theorems 8.1, 8.2] for details. These results are among the
most important ways to build large collections of designs and show why morphisms
are an important part of the theory of PBDs.

We now study idempotents and regular elements in Wilson monoids. Recall that
a regular element s of a semigroup S is an element such that there exists t ∈ S such
that sts = s.

Lemma 7.3. Let X be a PBD and let e be an idempotent in W (X). Then the image
of e is a subsystem of X.

Proof. Let x1 and x2 be two distinct elements of the image of e and let b be the
(unique) block of X containing these points. Since e is an idempotent, it follows that
e(x1) = x1 and e(x2) = x2. It follows from Proposition 6.3, that e is defined on all of
b and is one-to-one on b and there is a block b′ of X such that e(b) ⊆ b′. As x1 and x2
are both in e(b), it follows that b′ = b (by uniqueness) and thus e(b) = b. Therefore b
is contained in the image of e, which is therefore a subsystem. �

Corollary 7.4. Let X be a PBD and let f be a regular element in W (X). Then the
image of f is a subsystem of X.

Proof. Let g ∈W (X) be such that fgf = f . Then e = fg is an idempotent in W (X)
and it is easy to prove that the image of f is equal to the image of e. The result
follows from Lemma 7.3 that the image of f is a subsystem of X. �

The following example shows that despite having proved that the range of an
idempotent morphism is a subsystem, it need not be an open map. That is, it need
not send every subsystem onto a subsystem.

Example 7.5. Consider the PBD ({0, 1, 2, 3}, {{1, 2, 3}, {0, 1}, {0, 2}, {0, 3}}). Then
the map f : {0, 1, 2, 3} → {0, 1, 2, 3} defined by f(0) = f(1) = 1, f(2) = 2, f(3) = 3 is
an idempotent morphism by Proposition 6.3, but is not an open morphism since the
image of the subsystem {0, 2} is not a subsystem.

Certain idempotent morphisms that we call split idempotents allow us to split a
PBD over a proper subsystem in the sense we now describe. Let X and Y be PBDs
on the sets S and T respectively and let f : S → T be a surjective morphism. A
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section of f is a subsystem F such that f |F is a bijection. If f is an open morphism,
then f |F is an isomorphism. In this case, if g : Y → X is the inverse morphism of
f |F , then e = gf : X → X is an open idempotent in W (X) with image F , which
we identify with Y . Clearly, e is an open self-morphism. In general, we call an open
idempotent e = e2 ∈W (X) a split idempotent. This leads to the following definition.

Definition 7.6. A PBD X is called split of Wilson type, if W(X) contains a split
idempotent e with range a subsystem Y with 1 < |Y | < |X|. We usually just write
“PBD of Wilson type.”

Recall that a small monoid is a monoid that is the disjoint union of its group of
units and a unique 0-minimal ideal that is a 0-simple semigroup. As we have seen that
the set of all partial constant maps of a Wilson monoid form the unique 0-minimal
ideal and is a 0-simple semigroup, it follows that if a PBD is of Wilson type then its
Wilson monoid is not small.

8. Steiner Triple Systems of Order up to 19
PBDs of Wilson type are on the one hand rare among all PBDs but are powerful
enough to construct a wide range of PBDs and be counted efficiently [35, 36, 38]. A
Steiner triple system (STS) is a PBD with all blocks of size 3. That is an STS is a
(v, 3, 1) Balanced Incomplete Block Design (BIBD). It is well known that an STS
exists if and only if v ≡ 1 (mod 6) or v ≡ 3 (mod 6). In this subsection we survey STS
of size up to 19 and their Wilson monoids.

v = 3.
If v = 3, then the unique STS, I3 up to isomorphism is the trivial STS with the set

of points as the unique block. The open sets are the empty set, the sets of cardinality
2 and the whole set. By Proposition 6.3, W (I3) consists of the symmetric group S3 as
group of units, all the maps (p,O) of rank 1, where p is a point and O is a non-empty
open set (see Corollary 6.5) and the empty function. It is straightforward to compute
that there are 19 elements in W (I3).
W (I3) is a small monoid. That is, it consists of a group of units and a unique

0-minimal ideal which is a 0-simple semigroup. We will shortly see that generically
the Wilson monoid of an STS is a small monoid.

v = 7.
It is well known that the unique STS up to isomorphism on 7 points is the Fano

plane, which is isomorphic to the projective plane P2,2 over the field of order 2. As a
PBD, the Fano plane is a (7, 3, 1)-BIBD. We can identify its point set V with the
seven non-zero elements of F3

2.The subsystems of P2,2 are the empty set, the points,
the seven lines and the whole point set. The open sets are the complements of these.

As for any BIBD, every Wilson self-map on the Fano plane is open. Thus the
possible ranges of Wilson maps, are the subsystems. The group of units of W (P2,2) is
the collineation group of P2,2 which is well known to be the simple group PSL(3, 2),
the projective special linear group of order 168. There are 15 open sets and thus the
unique 0-minimal ideal of W (P2,2) has order 106 = (15 ∗ 7) + 1. It follows from the
description in Example 6.8 that every linear transformation M on F3

2 restricts to a
Wilson map fM : V → V with domain V − Ker(M). If the rank of M is 2, then the
image of fM is a block. We will now show that every Wilson map with image a block
is of this form.

Assume that f : V → V is a Wilson map with range a block b of the Fano
plane, so b consists of the non-zero elements of a 2-dimensional subspace of F 3

2 . By
Propositions 6.3 and 6.4 and sections 7–9 of [35], the domain of f has 6 points and
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f−1(b) is a transversal design TD(3, 2). This means that for every v ∈ b, then f−1(v)
has two points and that f−w(v) = f−1(v) ∪ {p} is a block of the Fano plane, where
p is the unique point not in the domain of f . Thus, f−w(b) is the pencil on p, that
is, the 3 blocks of the Fano plane that pass through p. By elementary linear algebra,
there is a linear transformation M : F3

2 → F3
2 with kernel {0, p}, range b ∪ {0} and

such that the inverse image of points of b are the non-zero cosets of {0, p}. It follows
that f = fM .

It is well known that the linear transformations of rank 2 of F3
2 form a J -class of

the monoid of all linear transformations of F3
2. The maximal subgroup of this J -class

is the general linear group Gl2(2), which is isomorphic to the symmetric group on 3
points. Since there are seven subspaces of F3

2 of dimension 1 and 2, and each pair can
serve as the kernel and range of a linear transformation, there are 7 × 7 × 6 = 294
linear transformations of rank 2 over F3

2. It follows together with the count above of
the group of units and elements of rank at most 1 in W (P2,2) that |W (P2,2)| = 568.

v = 9.
It is known that up to isomorphism the unique STS on 9 points is the affine

plane AG(2, 3) over the field of order 3. The subsystems are all affine subspaces of
F2

3 including the empty set and the open sets are their complements. As mentioned
in Example 6.9, every affine function on F2

3 defines a Wilson map on AG(2, 3). An
argument similar to the one in the previous example shows thatW (AG(2, 3)) consists
of the affine functions together with all the partial constant maps.

Before continuing, we need two results. The first is a well known result about
BIBDs generalizing Fisher’s inequality. See Proposition 4.1 of [35], for a proof.

Proposition 8.1. Let X be a (v,k,1)-BIBD, k > 2. If X has a subsystem of order
u < v, then v > (k − 1)u+ 1. In particular, if X is an STS, then v > 2u+ 1.

Let X be a BIBD. By Propositions 6.3 and 6.4, every element of W (X) is an
open morphism. The following additional property follows immediately from Propo-
sition 9.2 and Theorem 9.3 of [35].

Theorem 8.2. Let X be a BIBD and let f ∈ W (X). Then f is an open map and in
particular, the image of f is a subsystem of X. Furthermore, there is an integer d
such that for every y ∈ Im(f), |f−1(y)| = d.

Thus the partition induced by f on Dom(f), is a uniform partition: all classes
have the same number of elements. We call the integer d the degree of f and write
d = deg(f). It follows that |Dom(f)| = deg(f)|Im(f)|. See [23] where a similar result
for BIBDs with arbitrary λ is called the Homogeneous Lemma.

We have called a PBD X subsystem-free if the only subsystems of X are the empty
set, the points, the blocks and the whole set of points. That is, X is subsystem-free
if its only subsystems are the subsystems that every PBD has. Equivalently, X is
subsystem-free if the corresponding matroid of X has no proper extension to a larger
BRSC on the same point set.

The next theorem shows that subsystem-free STSs on more than 9 points have
small Wilson monoids. Thus the only subsystem-free STS with non-small Wilson
monoid are the Fano plane and the affine geometry AG(2, 3) as described above.

Proposition 8.3. Let X be a subsystem-free STS on v > 9 points. Then W (X) is a
small monoid.

Proof. Let f ∈ W (X). We have noted that f is an open map and in particular, its
range is a subsystem. Since X is subsystem-free, the only possible ranges have size
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0,1,3,v, where v = |X|. To prove that W (X) is small, we must negate the possibility
that the range of f has 3 points, that is that the range of f is a block.

So assume that the range of f is a block b of X. Let d = deg(f) as per Theorem 8.2.
We recalled that v is congruent to either 1 or 3 modulo 6 and we break up the proof
into 2 cases.

(1) v ≡ 1 mod(6)
We know that |Dom(f)| = d|Im(f)| = 3d so that Dom(f) is an open

set with cardinality divisible by 3. The co-domain D, that is, the points on
which f is not defined is a subsystem. Let y ∈ b. Then we also have that
f−w(y) = D ∪ f−1(y) is a subsystem as well.

The open sets of X have size 0,v − 3, v − 1, v. As noted above, |Dom(f)|
is a positive integer divisible by 3. Therefore, in this case, |Dom(f)| = v − 1
and thus d = v−1

3 . It follows that the subsystem D ∪ f−1(y) has cardinality
v+2

3 . Given the possible sizes of subsystems, it follows that v is at most 7,
contradicting the assumption that v > 9.

(2) v ≡ 3 mod(6)
Arguing as in the first case, Dom(f) is an open set with cardinality divisible

by 3. The possibilities are then either |Dom(f)| = v − 3 or |Dom(f)| = v.
If |Dom(f)| = v − 3, then d = v−3

3 and the subsystem D ∪ f−1(y) has
cardinality v+6

3 . Given the possible sizes of subsystems, it follows that v is at
most 3, contradicting the assumption that v > 9.

If |Dom(f)| = v, then d = v
3 and thus D is empty and the subsystem

D ∪ f−1(y) has cardinality v
3 . Again, it follows that v is at most 9 and this is

a contradiction. �

We now return to our survey of the Wilson monoids of STS.

v = 13.
It is known that there are precisely 2 STS up to isomorphism with v = 13 [9]. It

follows easily from Proposition 8.1 and the congruential conditions on the orders of
STS that both of the STS of order 13 are subsystem-free. Therefore each of them
has a small Wilson monoid by Proposition 8.3.

v = 15.
Up to isomorphism there are 80 STS of order 15 [8, Pages 31–32]. Of these 57

are subsystem-free [8, Table 1.29] and thus have small Wilson monoids by Proposi-
tion 8.3. Among the 23 non-subsystem-free STS of order 15 is the projective space
of dimension 3 over the field of order 2, P3,2. We have described its Wilson monoid
in Example 6.8. In particular, it contains all 4 × 4 matrices over the field of order 2
as a submonoid and thus is not a small monoid. The interested reader is welcome to
survey the remaining 22 STS of order 15.

v = 19.
While the number of isomorphic STS of order 15 was computed by hand in 1919 [8]

it wasn’t until the early 2000’s that computer methods determined that there are
11,084,874,829 pairwise non-isomorphic STS of order 19 [16]. Of these, 10,997,902,498
are subsystem-free [18]. By Proposition 8.3 all have small Wilson monoids. Thus at
least 99.2 % of the STS of order 19 have small Wilson monoids.

We use the method of [35, 37] to construct an STS on 19 points with a non-small
Wilson monoid. Let L be a Latin Square on six points. We build a GDD,G(L) on the
18 points R = {Ri | i = 1, . . . , 6}∪C = {Ci | i = 1, . . . , 6}∪X = {1, 2, 3, 4, 5, 6}. These
three sets form the groups of G(L). The blocks are the triples {Ri, Cj , L(i, j)}, i, j =
1, . . . , 6. It is easy to see this forms a GDD and more precisely a transversal design
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TD(3, 6). That is, the GDD has 3 groups each with 6 points. We have the associated
{3, 6}-PBD by considering the groups to be blocks of order 6. We add a new point p
to G(L) and replace each of R∪{p}, L∪{p} and X ∪{p} by copies of the Fano plane.
We now have defined an STS, S(L) on 19 points that has 3 copies of the Fano plane
that intersect pairwise in the point p. Let Y = ({x, y, z}, {{x, y, z}}) be a trivial PBD
on 3 points. The function f : S(L)→ Y with co-domain {p} and that sends R to x, C
to y and X to z is a continuous map. Since any block of the form {Ri, Cj , L(i, j)} is a
section of f , it follows that S(L) is of Wilson type and thus as mentioned previously,
W (S(L)) is not a small monoid.

Of the 11,084,874,829 STS of order 19, only 10,489, less than one in a million, are of
Wilson type with a split idempotent of rank 3 and fibre a TD(3, 6) [18]. This paper also
shows that there are precisely 2,156,186 STS of Wilson type with a split idempotent
of rank 3 and fibre a TD(3, 7). At the current time, there is no classification of all STS
of order 21. Current algorithms do not allow for a count of all STS of order 21 in less
than years of computer time. The paper [17] determines the number of isomorphism
classes of STS on 21 points with a subsystem of order 9 and also those on 27 points
with a subsystem of order 13.

An STS is rigid if its automorphism group is trivial. Babai [2] proved that almost
all STS are rigid. That is, the proportion of such objects of an admissible order
n admitting non-trivial automorphisms tends to zero as n → ∞. For n=19, of the
11,084,874,829 STS up to isomorphism, only 164,078 have a non-trivial automorphism
group.

Combining with the results on the number of STS on 19 points [16, 18], there
are 10,998,096,084 subsystem-free rigid STS of order 19. All of their Wilson monoids
are small monoids with trivial group of units. Thus more than 99 % of the STS of
order 19 have monoids consisting of a 0-simple semigroup with an identity element
adjoined as Wilson monoids and thus the translational hull of the 0-simple semigroup
is obtained by just adding an identity element.

As far as we know, there are no asymptotic results on subsystem-free STS. It seems
reasonable for the results on STS of order 19 that almost all STS are subsystem-free.
This would in turn mean that almost all Wilson monoids of STS are small monoids
with trivial group of units.

9. Wilson Monoids of Pairwise Balanced Designs with One Block
of Size Greater than 2

In the previous section we looked in detail at the structure of Wilson monoids of
Steiner Triple Systems. These are the smallest collection of PBDs, each of whose
blocks has size greater than 2. In this section we look at the collection of PBDs that
have exactly one block of size greater than 2. For these, we can give the detailed struc-
ture of their Wilson monoids from the local (Green’s relations) and global (various
complexity functions) points of view.

Let l > 3 and d > 1 be given. Define M(l, d) to be the {2, l}-PBD with points
V = {1, . . . , l + d}. Let L = {1, . . . , l}. The blocks of M(l, d) are L together with
{{i, j} | l + 1 6 j 6 l + d, 1 6 i < j}. That is, M(l, d) has exactly one block of size
greater than 2 and all the blocks of size 2 needed to ensure that we have a PBD.
Notice that M(l, 1) is the Near Pencil of Example 5.2. Let W (l, d) be the Wilson
monoid of M(l, d). Let D = {l + 1, . . . , l + d}.

We begin by computing the subsystems and the open subsets of M(l, d).

Lemma 9.1. Let l > 3, d > 1.
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(i) A subset X of the points of M(l, d) is a subsystem if and only if L ⊆ X or
|L ∩X| 6 1.

(ii) A subset X of the points of M(l, d) is open if and only if X ⊆ D or |L∩X| >
l − 1.

Proof. (i) It is easy to check that each such setX is a subsystem ofM(l, d). Conversely,
if X is a subsystem that contains at least 2 points from L, then it contains L by
definition of a subsystem and the definition of M(l, d).

(ii) follows from (i) by taking complements of sets. �

We now characterize the partial functions f : V → V that are in W (l, d).

Lemma 9.2. Let l > 3, d > 1 and let f : V → V be a partial function.
(i) If L is not contained in Dom(f), then f ∈ W (l, d) if and only if Dom(f) is

open and |f(L)| 6 1.
(ii) If L is contained in Dom(f), then f ∈ W (l, d) if and only if |f(L)| = 1 or f

restricted to L is a permutation from L to itself.

Proof. (i) Assume that f ∈ W (l, d). Then it follows from Proposition 6.3 that the
domain of f is open. Furthermore, since L is not contained in the domain of f it also
follows from Proposition 6.3 that |f(L)| 6 1. Conversely, let f : V → V be a partial
function whose domain is open and does not contain L and is such that |f(L)| 6 1.
Since the image under f of any block of size 2 of M(l, d) is either of size at most 1,
another block of M(l, d) or a 2 element subset of L it follows from Proposition 6.3
that f ∈W (l, d).

(ii) Assume that L is contained in Dom(f) and that f ∈ W (l, d). It follows from
Proposition 6.3 that if |f(L)| > 1, then f restricted to L is a permutation from L to
itself since L is the unique block of M(l, d) of size greater than 2. Conversely assume
that f is such that |f(L)| = 1 or f restricted to L is a permutation from L to itself
and that L is contained in the domain of f . Then Dom(f) is open by Lemma 9.1.
Furthermore, as in part (i), the image under f of any block of size 2 of M(l, d) is
either of size at most 1, another block of M(l, d) or a 2 element subset of L. It follows
from Proposition 6.3 that f ∈W (l, d). �

This Lemma allows us to characterize the possible images of elements of W (l, d).

Corollary 9.3. Let l > 3, d > 1 and let X ⊆ V . Then there is an element f ∈W (l, d)
with Im(f) = X if and only if L ⊆ X or |X| 6 d+ 1.

Proof. Assume that f ∈W (l, d). By Lemma 9.2 it follows that if L is not a subset of
X, then |f(L)| 6 1 and thus |Im(f)| 6 d+ 1.

Conversely, if L ⊆ X, then the identity function restricted to X, 1|X is a member of
W (l, d) by Lemma 9.2 and has range X. Let then X be a subset of V with |X| 6 d+1
and let Y = L ∩X and Z = D ∩X. If Y is empty, then X is the domain of 1X and
is open by Lemma 9.1. Thus 1X ∈ W (l, d) by Lemma 9.2 and X is the range of an
element of W (l, d).

Assume then that |Y | = k and that k > 0. If |Z| = r, then from r + k 6 d + 1 it
follows that |D r Z| > k − 1. Pick an element j ∈ Y and a subset W of D r Z with
|W | = k − 1 and let g be a bijection from W to Y − {j}. Then the partial function
f : V → V with domain L∪Z ∪W defined by f(v) = j if v ∈ L, f(v) = g(v) if v ∈W
and f(v) = v if v ∈ Z is in W (l, d) by Lemma 9.2 and has image X. �

Recall that if f : X → X is a partial function, then the kernel of f is the equivalence
relation Ker(f) on Dom(f) defined by (x, y) ∈ Ker(f) if and only if f(x) = f(y),
x, y ∈ Dom(f). We now characterize the kernels of elements of W (l, d). If ∼ is an
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equivalence relation on a setX and Y ⊆ X, then the restriction ∼ |Y is the equivalence
relation on Y defined by ∼ ∩(Y ×Y ). In terms of partitions restriction to Y has classes
obtained by taking the non-empty intersections of classes of ∼ with Y .

Lemma 9.4. Let l > 3, d > 1. Let Y ⊆ V be an open set and let ∼ be an equivalence
relation on Y .

(i) If L ⊆ Y , then there is an f ∈ W (l, d) such that Ker(f) = ∼ if and only if
either ∼ |L is the identity relation on L or ∼ |L is the universal relation on L.

(ii) If L is not contained in Y then there is an f ∈W (l, d) such that Ker(f) = ∼
if and only if ∼ |L∩Y is the universal relation on L ∩ Y .

(iii) Let f ∈W (l, d). Then there is an idempotent e ∈W (l, d) such that Ker(f) =
Ker(e).

Proof. (i) Assume that L ⊆ Y . If f ∈W (l, d), then ∼ |L is either the identity relation
or the universal relation on L by Lemma 9.2. Conversely, let ∼ be an equivalence
relation on Y such that ∼ |L is the identity relation. We define a partial function
f with domain Y by first having it be the identity function on L. Let x ∈ Y r L.
Then the ∼ equivalence class of x contains at most one element l(x) of L. For such
classes, we extend the definition of f so that f(x) = l(x). The remaining equivalence
classes of ∼ are contained in Y r L. Let Z be such a class. Pick an element z ∈ Z
and extend the definition of f by sending each element of Z to z. Doing this for each
such class defines a partial function f with domain Y and kernel ∼. Now f ∈W (l, d)
by Lemma 9.2.

Assume that ∼ |L = L × L. Let Z be an equivalence class of ∼. Either L ⊆ Z or
L ∩ Z is the empty set. Pick a fixed element of each equivalence class. The partial
function with domain Y that sends an element to the representative of its class is in
W (l, d) by Lemma 9.2 and has kernel equal to ∼.

(ii) Now assume that f ∈ W (l, d) and that L is not contained in Y . Then by
Lemma 9.2, ∼ |L∩Y is the universal relation on L ∩ Y . Conversely, assume that Y is
an open set and that ∼ |L∩Y is the universal relation on L ∩ Y . Pick an element in
each class of ∼. The function f that sends each element of Y to its representative is
then an element of W (l, d) by Lemma 9.2 and has kernel ∼.

(iii) Note that the functions constructed in the proofs of parts (i) and (ii) are
idempotents of W (l, d). �

A semigroup S is said to be a regular semigroup, if each of its elements is regu-
lar. Important regular semigroups include groups, inverse semigroups (defined by the
property that each element has a unique inverse), the monoid of all functions (either
total or partial) on a set and the monoid of all n × n matrices over a field. Despite
these important examples, we now note that W (l, d) is never a regular monoid.

Example 9.5. Let l > 3, d > 1. Let i 6= j ∈ L. Consider the total function f : V → V
defined by f(v) = i if v ∈ L and f(v) = j if v ∈ D. Then f ∈W (l, d) by Lemma 9.2.
But f is not a regular element of W (l, d) by Corollary 7.4, since Im(f) is not a
subsystem.

Question 9.6. We do not know the existence of a Steiner triple system, X such that
its Wilson monoid W (X) is not regular. As the preceding section showed, generically,
Wilson monoids of Steiner triple systems seem to be small monoids, all of which are
regular.

We now describe the regular elements of W (l, d). We first recall some basic prop-
erties of Green’s relations. See [7, 30] for more details. Let M be a finite monoid.

Green’s relations R, L and J are defined on M by
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• m L n if Mm = Mn;
• m R n if mM = nM ;
• m J n if MmM = MnM .

The L-class of m ∈ M is denoted by Lm and similar notation is used for R- and
J -classes. One defines the L-order on M by m 6L n if Mm ⊆Mn. The quasi-orders
6R and 6J are defined analogously.

The set of idempotents ofM is denoted by E(M). Regularity of an element m ∈M
is equivalent to each of the following: Lm ∩ E(M) 6= ∅; Rm ∩ E(M) 6= ∅; and
Jm ∩E(M) 6= ∅ (the last equivalence uses finiteness). A J -class is called regular if it
contains an idempotent or, equivalently, contains only regular elements. An important
fact about finite monoids is that they enjoy a property called stability which states that

xy J x ⇐⇒ xy R x and xy J y ⇐⇒ xy L y
for x, y ∈ M [31, Theorem 1.13]. One consequence of stability is that the intersec-
tion of any R-class and L-class in a J -class is non-empty. Another fact about finite
semigroups that we shall use is that if J is a J -class such that J2 ∩ J 6= ∅, then J is
regular (cf. [31, Corollary 1.24]).

Since Wilson monoids are explicitly given as submonoids of the monoid PF (V ) of
all partial functions, we first quickly recall how to describe idempotents and Green’s
relations on this monoid. These results are classical and easy to prove. We have
defined the kernel of a partial function as an equivalence relation on its domain, but
we identify it with the corresponding partition on the domain. For a partial function
f : X → X, let Fix(f) = {x ∈ Dom(f) | f(x) = x}.

Proposition 9.7. Let V be a set and f, g ∈ PF (V ), the monoid of all partial functions
on V .

(i) f is an idempotent if and only if Im(f) = Fix(f).
(ii) fRg if and only if Im(f) = Im(g).
(iii) fLg if and only if Ker(f) = Ker(g).
(iv) fJ g if and only if |Im(f)| = |Im(g)|.

The following result is also well known and we include it for completeness sake.

Proposition 9.8. Let M be a monoid and N be a submonoid of M .
(i) Let e, f be idempotents in M . Then eRf if and only if ef = f and fe = e.
(ii) Let e, f be idempotents in M . Then eLf if and only if ef = e and fe = f .
(iii) Let x, y be regular elements of N . Then xRy in N if and only if xRy in M .

The dual statement for L also holds.

Proof. Clearly if ef = f and fe = e then eRf . Conversely, if there are elements x, y
in M such that ex = f and fy = e, then ef = eex = ex = f and similarly fe = e. A
dual proof works for L. This proves (i) and (ii).

Now assume that x, y are regular elements of N and xRy in M . Since x and y are
regular elements of N , there are idempotents e, f in N , such that xRe and yRf in N .
It follows that eRf in M . Therefore, ef = f and fe = e by part 1. These equations
also hold in N and thus eRf in N . We then have that xReRfRy in N . A dual proof
holds for L. �

We now characterize which idempotents of PF (V ) belong toW (l, d). The following
follows immediately from Lemma 9.2.

Lemma 9.9. Let l > 3, d > 1 and let e be an idempotent in PF (V ).
(i) If L ⊆ Dom(e), then e ∈W (l, d) if and only if e|L is the identity function on

L or |e(L)| = 1.

Algebraic Combinatorics, Vol. 3 #3 (2020) 657



S. Margolis, J. Rhodes & P. V. Silva

(ii) If L * Dom(e), then e ∈W (l, d) if and only if Dom(e) is an open subset and
|e(L)| 6 1.

We can now describe the regular elements of W (l, d).

Lemma 9.10. Let l > 3, d > 1. An element f ∈W (l, d) is regular if and only if f |L is
a permutation of L or |Im(f) ∩ L| 6 1.

Proof. First assume that f ∈W (l, d) and that L ⊆ Im(f). In particular, |Im(f)∩L| >
1. By Lemma 9.2, either f |L is a permutation of L or |f(L)| 6 1.

If f |L is a permutation of L, for each element x ∈ Im(f) − L pick an element x̄
such that f(x̄) = x. Note that x̄ ∈ D. Define a partial function g : V → V with
Dom(g) = Im(f) by g|L = (f |L)−1 and for each x ∈ Im(f) − L, g(x) = x̄. Then
g ∈ W (l, d) by Lemma 9.2. It is routine to calculate that fgf = f and thus f is a
regular element of W (l, d).

Now let f be such that L ⊆ Im(f) and that |f(L)| 6 1. Since L ⊆ Im(f), there is
a subset X ⊆ D such that |X| = l− 1 and f(X) ⊆ L and also satisfies |f(X)| = l− 1.
Let g be any element of W (l, d). It follows from Lemma 9.2 that either g(f(X)) ⊂ L
or that |g(f(X))| 6 1. In both cases, it follows from our assumption that |f(L)| 6 1
that |fgf(X)| 6 1. Since l− 1 > 1, it follows that fgf 6= f . This completes the proof
in the case that L ⊆ Im(f).

Now assume that f ∈ W (l, d) is a regular element and that L is not a subset of
Im(f). Since f is a regular element, it follows from Corollary 7.4 that Im(f) is a
subsystem of M(l, d). It follows from Lemma 9.1 that |Im(f) ∩ L| 6 1.

Conversely assume that f ∈W (l, d) has |Im(f)∩L| 6 1. It follows from Lemma 9.2
that |f(L)| 6 1 as well. We have two cases.

Case 1. Im(f) ∩ L = ∅.
Im(f) ⊆ D and is thus an open set by Lemma 9.1. For each x ∈ Im(f) pick an

x̄ ∈ Dom(f) such that f(x̄) = x. Define g : V → V to be the function such that
Dom(g) = Im(f) and with g(x) = x̄. It is clear that fgf = f and g ∈ W (l, d) by
Lemma 9.2 and fgf = f .

Case 2. Im(f) ∩ L = {j} for some j ∈ L.
For each x ∈ Im(f) pick x̄ such that f(x̄) = x. Define g : L ∪ Im(f)→ W (l, d) by

g(x) = x̄ if x ∈ Im(f) and g(x) = j̄ if x ∈ L. Then g ∈ W (l, d) by Lemma 9.2 and
fgf = f . �

Remark 9.11. It follows from Corollary 7.4 that the image of any regular element
of W (l, d) is a subsystem of M(l, d). Moreover if X is a subsystem, then there is a
regular element f such that Im(f) = X. Indeed, if X is a subset of D or L ⊆ X, then
the identity function restricted to X is in W (l, d) by Lemma 9.2 and has image X. If
L∩X = {j} for some j ∈ L, then the partial function with domain L∪X that sends
all of L to j and is the identity of X r {j} is an idempotent in W (l, d) by Lemma 9.2
and has range X.

Despite this, it does not follow that every element of W (l, d) with image a subsys-
tem is a regular element. For example, if l = d = 3, the partial function f with domain
{4, 5, 6} and such that f(4) = 1, f(5) = 2, f(6) = 3 is in W (l, d) by Lemma 9.2, has
range the subsystem L, but is not regular by Lemma 9.10.

We now describe the J relation for regular elements in W (l, d). We divide this
into two cases, depending on whether L is or is not a subset of the image of a regular
element. We first look at the case when L * Im(f), so that |Im(f) ∩ L| 6 1 by
Lemma 9.10. In this case, it follows from Lemma 9.2 that |f(L)| 6 1 as well. Let
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0 6 i 6 d+ 1 and define

Ji = {f ∈W (l, d)
∣∣ |Im(f) ∩ L| 6 1 and |Im(f)| = i}.

Recall that an ideal I of a monoidM is said to be prime if its complementM−I is a
submonoid or, equivalently, I is a proper ideal and ab ∈ I implies that a ∈ I or b ∈ I.

Lemma 9.12. Let l > 3, d > 1.
(i) Let I = {f ∈W (l, d)

∣∣ |f(L)| 6 1}. Then I is a prime ideal of W (l, d).
(ii) Let f, g ∈ I be regular elements of W (l, d). Then fJ g if and only if |Im(f)| =
|Im(g)|.

(iii) The regular J -classes contained in I are precisely {Ji | 0 6 i 6 d+ 1}.
(iv) The unique maximal J -class of I is Jd+1.

Proof. (i) Let f ∈ I and let k, h ∈ W (l, d). By Lemma 9.2, either h(L) = L or
|h(L)| 6 1. In both cases, f ∈ I implies that |fh(L)| 6 1 and thus |kfh(L)| 6 1.
Therefore, I is an ideal of W (l, d). Since every element of W (l, d) either restricts to a
permutation on L or is such that its image has rank at most 1 on L by Lemma 9.2,
it immediately follows that I is a prime ideal of M .

(ii) Let f, g be regular elements in I. If fJ g, then |Im(f)| = |Im(g)| by Proposi-
tion 9.7. Conversely, assume that |Im(f)| = |Im(g)| for f, g regular elements in I.

We first consider the case that |Im(f)| = d + 1. It follows from Lemma 9.10 that
Im(f) = D ∪ {j} and Im(g) = D ∪ {j′} for some j, j′ ∈ L. Let h : V → V be a
permutation that maps L onto L and such that h(j) = j′. Then h belongs to the group
of units of W (l, d) and thus hfLf . Since Im(hf) = Im(g), hfRg by Proposition 9.7
and Proposition 9.8(iii). Therefore, fJ g.

Assume then that |Im(f)| = |Im(g)| 6 d. Assume that there is a j ∈ L that
belongs to Im(f). Let v ∈ D be an element not in the image of f and let h : V → V
be the identity on D− {v}, send L to v and v to j. Then h ∈W (l, d) by Lemma 9.2.
Then Im(hf) ⊆ D and since h2f = f , hfLf . Therefore, we can assume that both
Im(f) and Im(g) are contained in D.

Let k : D → D be a permutation such that k(Im(f)) = Im(g). Then consid-
ered as partial functions on V both k, k−1 belong to W (l, d) and since k−1kf = f ,
we have that kfLf . Since Im(kf) = Im(g), we have kfRg by Proposition 9.7 and
Proposition 9.8(iii). Therefore, fJ g.

(iii) This is an immediate consequence of (ii).
(iv) Let f ∈ I. Then |Im(f)| 6 d + 1. If f(L) = ∅, then Dom(f) ⊆ D. Fix an

element j ∈ L. The total function g : V → V such that g(L) = {j} and is the identity
on D is in Jd+1 and fg = f . Therefore f 6J g. If f(L) = {v}, v ∈ V , we choose
j ∈ Dom(f) ∩ L and define a total function g g and such that g(x) = j if x ∈ L and
g(x) = x if x ∈ D. Again, fg = f and g ∈ Jd+1. Therefore f 6J g in this case as
well. �

We now turn to the description of J -classes for regular elements f ∈W (l, d) such
that L ⊆ Im(f). Let 0 6 i 6 d. Define

JL,i = {f ∈W (l, d) | f is a regular element, L ⊆ Im(f), |Im(f)| = l + i}.

Notice that JL,d is the group of units of W (l, d).

Lemma 9.13. Let l > 3, d > 1.
(i) Let N = {f ∈ W (l, d) | f |L is a permutation on L}. Then N is a regular

submonoid of W (l, d) and is a union of J -classes of W (l, d).
(ii) Let f ∈ W (l, d) be a regular element with L ⊆ Im(f). Then f ∈ N and the
J -class of f is JL,i where |Im(f)| = l + i.
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Proof. (i) By Lemma 9.2, N = W (l, d) − I where I is the ideal discussed in
Lemma 9.12. Since I is a prime ideal, N is a submonoid of W (l, d). Furthermore,
every element of N is regular by Lemma 9.10. Finally it follows from [31, Lemma 2.2]
that N is a union of J -classes of W (l, d).

(ii) Let f be a regular element with L ⊆ Im(f). It follows from Lemma 9.10 that
f ∈ N . Let J be the J -class of f and let g ∈ J . Then g is a regular element and
|Im(g)| = l + i, since fJ g as elements of PF (V ). By part (i), L ⊆ Im(g) and thus
g ∈ JL,i. Conversely, let g ∈ JL,i. Then Im(f) = L ∪ X and Im(g) = L ∪ Y where
X and Y are subsets of D with |X| = |Y | = i. Let h ∈ Sym(V ) be any permutation
that is the identity on L and maps X onto Y . Then h is in the group of units of
W (l, d) and thus hfLf . Since Im(hf) = Im(g), it follows from Proposition 9.7 and
Proposition 9.8(iii) that hfRg and thus fJ g. �

We summarize the results on Green’s relations for regular elements in W (l, d). We
use the notation from the previous lemmas.
Theorem 9.14. Let l > 3, d > 1 and let f and g be regular elements of W (l, d).

(i) fRg if and only if Im(f) = Im(g).
(ii) fLg if and only if Ker(f) = Ker(g).
(iii) There are precisely 2d+ 3 regular J -classes and they are {Ji | i = 0, . . . , d+

1} ∪ {JL,i | i = 0, . . . , d}.
(iv) The maximal subgroup of Ji is the symmetric group Si on i elements. The

maximal subgroup of JL,i is Sl × Si.
(v) Let Ω(l, d) be the poset of regular J -classes of W (l, d). Then {Ji | i =

0, . . . , d + 1} and {JL,i | i = 0, . . . , d} form chains of length d + 2 and d + 1
respectively in Ω(l, d).

(vi) In Ω(l, d), JL,i covers precisely JL,i−1 and Ji+1, for i = 0, . . . , d.
(vii) In Ω(l, d), Ji covers precisely Ji−1 for i = 1, . . . , d + 1 and J0 is the unique

minimal element.
(viii) The J -classes JL,d−1 and Jd+1 are the unique two maximal J -classes less

than the group of units in the poset of all J -classes of W (l, d).
Proof. (i), (ii) and (iii) follow from Proposition 9.7, Proposition 9.8, Lemma 9.12 and
Lemma 9.13.

It is well known that the maximal subgroup in a J -class, J in a monoid M is
isomorphic to the group of units of the monoid eMe for any idempotent e ∈ J [30].
Let X be a subset of D with |X| = i. Then 1X , the identity function restricted to X
is an idempotent that belongs to Ji. Every permutation of X considered as a partial
function on V is in the group of units of 1XW (l, d)1X and thus the maximal subgroup
of Ji is Si, 0 6 i 6 d.

We consider now the case of Jd+1. Let j ∈ L. The total function e that sends all
of L to j and is the identity on D is an idempotent in W (l, d) by Lemma 9.2 and
belongs to Jd+1. Let σ be a permutation of D ∪ {j}. Extend σ to a total function σ̄
on V by letting σ̄ agree with σ on D and by sending each element of L to σ(j). It is
easy to check that σ̄ is in the group of units G of eW (l, d)e and that the assignment
of σ to σ̄ is an isomorphism of Sd+1 onto G, since every element of G restricts to a
permutation of D ∪ {j}. Therefore, G is isomorphic to Sd+1.

Similarly, 1L∪X the identity restricted to L ∪ X belongs to JL,i. By Lemma 9.2
the invertible elements of 1L∪XW (l, d)1L∪X are precisely the permutations of V that
restrict to permutations of both L and X. Clearly, this group is isomorphic to Sl×Si.
This proves (iv).

Fix a chain of subsets X0 = ∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xd = D of subsets of D with
|Xi| = i. Recall that the collection of idempotents of a monoid M is partially ordered
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by declaring that for e, f ∈ E(M), e 6 f if and only if e = ef = fe, equivalently, that
f is below e in both the R and the L orders ofM . Furthermore, for regular J -classes,
J, J ′ of M , J 6J J ′ if and only if there are idempotents e ∈ J, f ∈ J ′ with e 6 f .
Moreover, if J 6 J ′ then for each idempotent f ∈ J ′, there is an idempotent e ∈ J
such that e 6 f [30].

For each set Xi, 0 6 i 6 d+1 and for each set L∪Xi the identity function restricted
to these sets is an idempotent in W (l, d). They clearly form chains in the idempotent
ordering and thus the J ordering, proving the assertion in (v). The proof of (vi)
and (vii) follow from consideration of the idempotents defined here as well.

We turn to the proof of (viii). By Lemma 9.12, Jd+1 is the unique maximal J -
class of W (l, d) in the ideal I. Since I is a prime ideal, any J -class above Jd+1 must
belong to the regular submonoid N and thus be equal to JL,i for some 0 6 i 6 d
by Lemma 9.13. If i < d and using the notation from the preceding paragraphs, the
identity function restricted to L ∪Xi is an idempotent f that belongs to JL,i. Every
idempotent e in Jd+1 has D as a subset of its range. But Xi is a proper subset of D
if i < d and thus no idempotent in Jd+1 is below f in the R order of W (l, d) and
thus there is no idempotent e ∈ Jd+1 such that e 6 f . Therefore Jd+1 is a maximal
J -class in the poset of all J -classes of W (l, d).

Finally, JL,d−1 is covered by the group of units JL,d by part (vi). of this Theorem
and no J class in I can be above JL,d−1 in the J order because I is an ideal and
JL,d−1 belongs to the complement W (l, d)− I. This completes the proof of (viii) and
of the theorem. �

The final topic of this section determines the complexity of W (l, d) in the sense
of Krohn–Rhodes decomposition theory [30, Part II]. We recall some basic defini-
tions and results. It follows from the Krohn–Rhodes Decomposition Theorem [30,
Theorem 4.1.30] that if S is a finite semigroup, then S divides, that is, S is the ho-
momorphic image of a subsemigroup of an iterated wreath product of finite groups
and finite semigroups all of whose maximal subgroups are trivial. The least num-
ber of non-trivial groups in any such decomposition is called the (Krohn–Rhodes)
complexity of S. We write Sc for the complexity of S. The reverse complexity of S,
denoted by Sc∗ is the complexity of the reverse semigroup Sop of S. There are ex-
amples where the complexity and reverse complexity of a semigroup can differ by an
arbitrary amount [21, Chapters 7-9]. We summarize here the results from complexity
theory that we need here. Some of these results are easy to prove and some require
some of the deepest results of complexity theory.
Theorem 9.15.

(i) Let S and T be finite semigroups. If S divides T , then Sc 6 Tc and if S and
T are non-empty, then (S × T )c = max{Sc, T c}.

(ii) Let V be a set. Then the complexity of the full transformation monoid and
the monoid of all partial transformations on V is |V | − 1.

(iii) Let I be an ideal of a semigroup S. Then Sc 6 (S/I)c+ Ic.
(iv) Let S be a semigroup that is equal to SeS for some idempotent e ∈ S. Then

Sc = (eSe)c.
(v) Let M be a small monoid. If the idempotent generated submonoid of M has

trivial subgroups then Mc = Mc∗ and is 0 if all subgroups of M are trivial
and equal to 1 otherwise.

Proof. (i) These are well known facts about complexity [30, Chapter 4].
(ii) This fact was first proved in [28] for the full transformation semigroup. The

results for the monoid of all partial functions can be proved similarly.
(iii) This statement is the Ideal Theorem [33], [30, Theorem 4.9.17].
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(iv) This statement follows from the Reduction Theorem [34],[30, Theorem 4.9.16].
(v) This statement follows from Tilson’s 2-J -class Theorem [30, Section 4.15]. �

We will now compute the complexity and reverse complexity of W (l, d). We need
a few technical lemmas. We use the notation for J -classes of W (l, d) used above.

Lemma 9.16. Let l > 3, d > 1. Let K be the ideal of W (l, d) generated by JL,d−1. Then
W (l, d)/K is a small monoid with 0-minimal ideal the principal factor corresponding
to Jd+1. Furthermore, (W (l, d)/K)c = (W (l, d)/K)c∗ = 1.

Proof. By Theorem 9.14(vi) and (viii), in order to prove that W (l, d)/K is a small
monoid with 0-minimal ideal the principal factor corresponding to Jd+1 it is enough
to prove that every non-regular element of W (l, d) is contained in K. By Lemma 9.2
and Lemma 9.10 if f is a non-regular element of W (l, d), then |Im(f)| 6 d + 1 and
|Im(f) ∩ L| > 2. Therefore, there is an i ∈ D that is not in the image of f . The
idempotent e that is the identity function restricted to V − {i} belongs to JL,d−1.
Since ef = f, f ∈ K as desired.

We have proved that W (l, d)/K = G ∪ Jd+1 ∪ {0} is a small monoid, where G is
the group of units of W (l, d). We claim that the idempotent generated submonoid
of this small monoid has trivial subgroups and the second statement will then follow
from Theorem 9.15(v).

Let e be an idempotent of Jd+1. Then Im(e) = {j}∪D for some j ∈ L. Since e is an
idempotent, the restriction of e to D is the identity function on D. Therefore if f =
e1e2 . . . ek is the product of the idempotents ei, i = 1, . . . k in Jd+1, then f restricted
to D is the identity on D. If Im(f) = D, then f = 0 in W (l, d)/K. Otherwise,
|Im(f)| = {j′} ∪D for some j′ ∈ L and f2 = f if j′ ∈ Dom(f) and f2 = 0 otherwise,
in W (l, d)/K. Therefore, in all cases, f2 = f3 and all subgroups of the idempotent
generated submonoid of W (l, d)/K are trivial. This completes the proof. �

The next two lemmas will allow us to use induction in the proof of the main
theorem.

Lemma 9.17. Let l > 3, d > 1. Let K be the ideal defined in the previous lemma.
Let e be the identity function restricted to V − {l + d}. Then e ∈ JL,d−1 and eKe is
isomorphic to W (l, d− 1).

Proof. It is clear from Lemma 9.2 that e ∈ JL,d−1. Furthermore, if f ∈ K, then
efe = f if and only if both Dom(f) and Im(f) are contained in V −{l+d}. Therefore,
by Lemma 9.2, we can consider each such function to be a member of W (l, d−1) and
this assignment is easily seen to be an isomorphism between eKe and W (l, d−1). �

Lemma 9.18.W (l, 1)c = W (l, 1)c∗ = 1.

Proof. Let S = W (l, 1) and let G be the group of units of S. By Theorem 9.14, the
complement of G∪ JL,0 ∪ J2 is an ideal I of S. The only regular J -classes in I are J1
and J0. Therefore all subgroups of I are trivial and therefore Ic = Ic∗ = 0. It follows
from Theorem 9.15 that Sc = (S/I)c and Sc∗ = (S/I)c∗.

Let T = S/I. By Theorem 9.14(viii), both JL,0 ∪ {0} and J2 ∪ {0} are 0-minimal
ideals of T and T is the union of these two ideals and its group of units G. There-
fore, T is a subdirect product of the Rees quotients T/(JL,0 ∪ {0}) and T/(J2 ∪ {0}).
By Theorem 9.15(i) it suffices to prove that each of these quotients has (reverse)
complexity equal to 1.

We have seen in the last paragraph of the proof of Lemma 9.16 that the idempotent
generated subsemigroup of J2∪{0} is aperiodic. Thus the (reverse) complexity of the
small monoid T/(JL,0 ∪ {0}) is equal to 1 by Theorem 9.15(v).
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Finally T/(J2∪{0}) is a small monoid with 0-minimal ideal JL,0∪{0} and thus by
Theorem 9.15(v), it suffices to show that the idempotent generated subsemigroup of
JL,0 ∪ {0} has trivial subgroups. If f ∈ JL,0, then |Im(f)| = |L| and since L ⊆ Im(f)
due to f |L being a permutation on L, we have that Im(f) = L for all f ∈ JL,0.
Therefore, all elements of JL,0 are in the same R-class by Theorem 9.14. It follows
easily from Proposition 9.8 that the idempotents of JL,0 form a right-zero semigroup
and this proves the result. �

The next lemma gives a lower bound to the complexity functions of W (l, d).

Lemma 9.19. Let l > 3, d > 1. The full transformation monoid on d + 1 points is
isomorphic to a subsemigroup of W (l, d). Therefore d 6W (l, d)c and d 6W (l, d)c∗.

Proof. Let j ∈ L and f : {j} ∪ D → {j} ∪ D be a total function. Then the total
function f̄ : V → V defined by sending all elements of L to f(j) and if d ∈ D, then
f̄(d) = f(d) belongs to W (l, d). It is easy to see that the assignment f to f̄ is an
injective morphism. The inequality for complexity and reverse complexity follow from
Theorem 9.15. �

Here is the main result on the complexity of W (l, d).

Theorem 9.20. Let l > 3, d > 1. Then the complexity and the reverse complexity of
W (l, d) are equal to d.

Proof. We prove this by induction on d. The case of d = 1 is given by Lemma 9.18.
By Lemma 9.19 we need only prove that W (l, d)c 6 d and W (l, d)c∗ 6 d.

Assume that the complexity and the reverse complexity of W (l, d− 1) are at most
d − 1, d > 1. Consider the ideal K in W (l, d) defined in Lemma 9.16. By Theo-
rem 9.15(iii),W (l, d)c 6 ((W (l, d)/K)c+Kc). Let e be the identity function restricted
to V − {l + d}. We claim that K = KeK.

Since e ∈ JL,d−1 ⊆ K, we have KeK ⊆ K. Conversely, let f ∈ K. If l+ d /∈ Im(f),
we immediately get f = eef ∈ KeK, hence we may assume that l + d ∈ Im(f).
Suppose first that D 6⊆ Im(f). Let v ∈ D − Im(f) and let g be the permutation of
V that exchanges v and l + d and is the identity elsewhere. Then g ∈ W (l, d) and
f = (ge)e(gf) ∈ KeK. Suppose now that D ⊆ Im(f). In the proof of Lemma 9.16,
it was noted that the non-regular elements of W (l, d) satisfy |Im(f)| 6 d + 1 and
|Im(f) ∩ L| > 2, hence f must be regular and so f ∈ Jd in view of Theorem 9.14.
Thus Im(f) = D. Let j ∈ L and let g be the permutation of V that sends L to l+ d,
l + d to j and is the identity elsewhere. Then g ∈ W (l, d) and f = (ge)e(gf) ∈ KeK
also in this case.

From Lemma 9.17 and Theorem 9.15(iv), the fact thatK = KeK and the inductive
hypothesis, we get Kc = W (l, d − 1)c 6 d − 1. By Lemma 9.16, (W (l, d)/K)c 6 1.
This proves the result for complexity. A similar proof proves the result for reverse
complexity as well. �

10. Future Directions
Wilson’s Theorem has been developed further from both a quantitative perspective [4,
5, 6] and the deep generalization of Keevash [19] to existence of t-designs for all t.
We thank one of the referees of this paper for the references to Chang’s work. We are
working on generalizing the methods of this paper in both of these directions. We are
confident that the algebraic methods that we have worked on here will be useful for
deepening connections between design theory and semigroup theory.
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