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On the Sperner property for the absolute
order on complex reflection groups

Christian Gaetz & Yibo Gao

Abstract Two partial orders on a reflection group W , the codimension order and the prefix
order, are together called the absolute order Abs(W ) when they agree. We show that in this
case the absolute order on a complex reflection group has the strong Sperner property, except
possibly for the Coxeter group of type Dn, for which this property is conjectural. The Sperner
property had previously been established for the noncrossing partition lattice NCW [11, 13],
a certain maximal interval in Abs(W ), but not for the entire poset, except in the case of the
symmetric group [8]. We also show that neither the codimension order nor the prefix order has
the Sperner property for general complex reflection groups.

1. Introduction
A ranked poset P with rank decomposition P0 t P1 t · · · t Pr is k-Sperner if no
union of k antichains of P is larger than the union of the largest k ranks of P (see [4]
for an introduction to Sperner theory). It is strongly Sperner if it is k-Sperner for
k = 1, 2, . . . , r + 1.

The absolute order on a Coxeter group W has two equivalent descriptions: one in
terms of the reflection lengths of its elements, and the other in terms of the codi-
mensions of their fixed spaces. The maximal intervals [id, c] in Abs(W ), where c is
a Coxeter element, are known as the noncrossing partition lattices NCW . They ap-
peared in work of Brady and Watt [2] on K(π, 1)’s for Artin braid groups and have
been studied combinatorially by Reiner [13] and Armstrong [1], among others. The
posets NCW are known to be strongly Sperner [11, 13]; this paper follows recent work
of Harper and Kim [8] in studying the problem of whether the whole absolute order
Abs(W ) is strongly Sperner.

We choose to work in the setting of general complex reflection groups, rather than
just Coxeter groups. In this generality, the two orders (the prefix and codimension
orders) do not always agree. We reserve the term absolute order for the situation
when they do agree (these cases have been classified by Foster-Greenwood [5], see
Proposition 2.2). It is a common feature of work in this area that the two orders are
better-behaved when they agree; and Theorem 1.1 and Conjecture 1.3 below make
the case that this is true in regard to the Sperner property.
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Our main result follows; see Section 2 for background and definitions, Section 3
for the proof, and Section 4 for examples showing that the strong Sperner property
does not hold in general for either the prefix order or codimension order when they
disagree. Conjecture 1.3 is discussed in Section 5.

Theorem 1.1. Let W = W1 × · · · ×Wk be a finite complex reflection group, where
each Wi is in the family G(m, 1, n) or is an irreducible Coxeter group of type other
than type D; then Abs(W ) is strongly Sperner.

Remark 1.2. Theorem 1.1 in the case where all Wi are symmetric groups follows
from a result of Harper and Kim [8]. The type B case was proven independently by
Harper, Kim, and Livesay [9] while this paper was in preparation.

Conjecture 1.3.
(a) Let W be the Coxeter group of type Dn, then Abs(W ) has a normalized flow

with ν ≡ 1 (see Section 2.4). And, therefore,
(b) Abs(W ) is strongly Sperner for any finite complex reflection group W such

that the prefix order P(W ) is equal to the codimension order C(W ).

2. Background and definitions
2.1. Complex reflection groups. For V an n-dimensional complex vector space,
a finite group W ⊂ GL(V ) is a complex reflection group of rank n if it is generated
by its set of reflections T = {w ∈ W | dim(V w) = n − 1}, where V w denotes the
fixed subspace of w. We say W is irreducible if V is irreducible as a representation
of W . Any finite reflection group is a product of irreducible reflection groups. The
finite irreducible complex reflection groups were famously classified by Shephard and
Todd [14]. They consist of the following groups:

• A 3-parameter infinite family of groups G(m, p, n) where p|m and n,m > 1,
with the exception that G(2, 2, 2) is reducible. G(m, p, n) has rank n except
when m = 1, in which case G(1, 1, n) ∼= Sn has rank n− 1.

• 34 exceptional groups usually denoted G4, G5, ..., G37.
Among these, the groups which can be realized over a real vector space V are

exactly the finite Coxeter groups. These too have a familiar classification into Cartan–
Killing types:

• Type An−1: the symmetric groups Sn = G(1, 1, n),
• Type Bn: the hyperoctahedral groups (Z/2Z) o Sn = G(2, 1, n),
• Type Dn: the groups G(2, 2, n), index-2 subgroups of the hyperoctahedral
groups,

• Type I2(m): the dihedral groups G(m,m, 2), and
• The exceptional finite Coxeter groups of types H3, H4, F4, E6, E7, E8 (which
coincide with G23, G30, G28, G35, G36 and G37 respectively).

2.2. The absolute order on a reflection group. Given W a reflection group,
the reflection length `R(w) of an element w ∈W is defined to be the smallest k such
that w = t1 · · · tk with each ti ∈ T , where T denotes the set of all reflections in W . In
this case, we say t1 · · · tk is a reduced word or reduced decomposition for w. The prefix
order P(W ) is the partial order on W such that u 6 v if and only if

(1) `R(u) + `R(u−1v) = `R(v).

P(W ) is a ranked poset with rank function `R.
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Remark 2.1. The prefix order should not be confused with the weak order on W
when W is a Coxeter group. The weak order is defined by an equation similar to (1),
but with the reflection length `R replaced by the more classical length `, which records
the shortest decomposition of an element of W as a product of simple reflections. The
strong Sperner property for the weak order in type An was previously established
by the authors [6]. Another related order, the (strong) Bruhat order, is known to be
strongly Sperner for all Coxeter groups by work of Stanley [17].

The codimension order C(W ) is defined so that u 6 v if and only if

(2) codim(V u) + codim(V u
−1v) = codim(V v),

where V w denotes the subspace of V fixed by the action of w given by the inclusion
W ⊂ GL(V ).

It was first proven by Carter [3] that when W is a Coxeter group, we have `R(w) =
codim(V w) for all w ∈W , so that in particular C(W ) = P(W ). Foster-Greenwood has
classified the complex reflection groups for which this coincidence continues to hold:

Proposition 2.2 (Foster-Greenwood [5]). For W an irreducible complex reflection
group, C(W ) = P(W ) if and only if W is a Coxeter group or is in the family
G(m, 1, n).

We follow Huang, Lewis, and Reiner’s convention [10] by using the term absolute
order to refer to the codimension and prefix orders when they agree (in other parts
of the literature, “absolute order” is used to refer to what we call the prefix order).

The functions `R(w) and codim(V w) are both subadditive; this means that for any
u, v ∈W

`R(uv) 6 `R(u) + `R(v),(3)
codim(V uv) 6 codim(V u) + codim(V v).(4)

Now, for a reducible reflection group W × W ′ ⊂ GL(V ⊕ V ′) it is clear that
`R((w,w′)) = `R(w)+`R(w′) and codim((V ⊕V ′)(w,w′)) = codim(V w)+codim(V w′).
This implies that for either the prefix or codimension order, if u 6 v and u′ 6 v′ then
(u, u′) 6 (v, v′). The reverse implication then follows by subadditivity. Together these
facts imply:

Proposition 2.3. Let W ×W ′ ⊂ GL(V ⊕ V ′) be a reducible reflection group. Then
P(W ×W ′) ∼= P(W )× P(W ′) and C(W ×W ′) ∼= C(W )× C(W ′).

2.3. Rank generating functions. For P a finite ranked poset, we let

F (P, q) =
rank(P )∑
i=0

|Pi| · qi

denote the rank generating function of P . It is known that for any complex reflection
group W the codimension generating function

(5) C(W, q) =
rank(W )∑
i=0

|{w ∈W | codim(V w) = i}| · qi

is equal to (1 + e1q) · · · (1 + enq) where the ei’s are positive integer invariants of W
called the exponents (see Solomon [16] for a uniform proof). For general complex
reflection groups, the rank of w in C(W ) is not necessarily equal to codim(V w) (for
example, Foster-Greenwood [5] gives examples of elements in rank one of C(W ) with
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fixed-space codimension two), so that C(W, q) 6= F (C(W ), q) in general. However,
P(W ) is always ranked by `R, and thus when P(W ) = C(W ) we have

(6) F (Abs(W ), q) =
n∏
i=1

(1 + eiq) .

This fact demonstrates the common theme that both P(W ) and C(W ) are more
tractable when they agree.

2.4. The normalized flow property. The main tool that we will be using to
establish the Sperner property of a poset is the theory of normalized flows, developed
by Harper [7], and we will be mainly following his notation in this section.

Let G = (V = A t B,E) be a bipartite graph, equipped with a weight function
ν : V → R>0. We consider ν as a measure. Namely, for any subset X ⊂ V , let
ν(X) :=

∑
x∈X ν(x). A normalized flow on G, with respect to ν, is a map f : E → R>0

defined on the set of edges of G, such that for any a ∈ A we have∑
b∈D(a)

f(a, b) = ν(a)/ν(A),

and for any b ∈ B we have ∑
a∈D(b)

f(a, b) = ν(b)/ν(B),

where D(x) denote the set of neighbors of x.
Now let P be a ranked poset with rank decomposition P0 t P1 t · · · t Pr, with a

weight function ν : P → R>0. We say that f : E → R>0 is a normalized flow on
P with respect to ν, if the restriction of f to the bipartite graph consisting of Pi
and Pi+1 and the covering relations between them is a normalized flow for each i.
Normalized flows will be useful to us thanks to the following theorem:

Theorem 2.4 (Corollary to Theorem III of [7]). If a ranked poset P has a normalized
flow with respect to the weights ν ≡ 1, then P is strongly Sperner.

An important advantage of using normalized flows is that they behave well un-
der product. Let P and Q be two ranked posets with weight functions νP and νQ
respectively. Their (Cartesian) product P × Q is {(p, q) : p ∈ P, q ∈ Q} where the
partial order is defined as (p, q) 6 (p′, q′) if p 6 p′ in P and q 6 q′ in Q, with a
weight function νP×Q((p, q)) = νP (p) ·νQ(q). We say that a ranked poset P with rank
decomposition P0 t P1 t · · · t Pr is log-concave with respect to a weight function ν,
if ν(Pi)2 > ν(Pi−1)ν(Pi+1) for all i.

Theorem 2.5 (Theorem I.C of [7]). Let P and Q be two ranked posets that are log-
concave with respect to weight functions νP and νQ. If both of them have normalized
flows, then their product also has a normalized flow and is log-concave.

Another useful property of normalized flow is described as “the Fundamental
Lemma” by Harper [7]; we reformulate it here:

Theorem 2.6 (Lemma I.B of [7]). Let ϕ : P → Q, with weight functions νP on P
and νQ on Q, be a surjective, measure-preserving and rank-preserving map of ranked
posets. If Q admits a normalized flow with weights νQ and for each covering rela-
tion q l q′ on Q, the induced bipartite graph on ϕ−1({q}) and ϕ−1({q′}) admits a
normalized flow with weights νP , then P admits a normalized flow with weights νP .
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3. Proof of Theorem 1.1
3.1. The generalized symmetric groups G(m, 1, n). We first review some back-
ground on the complex reflection groups G(m, p, n). Any w ∈ G(m, p, n) can be ex-
pressed in the form w = [a1, . . . , an|σ] where each ai ∈ Z/mZ and p divides

∑n
i=1 ai.

Note that we always require p|m. Naturally, we can view such w = [a1, . . . , an|σ] as
an element in GL(Cn) that sends the kth coordinate vector vk to exp( 2π

√
−1ak

m )vσ(k).
Correspondingly, we can also think of such w as a permutation on (Z/mZ)× [n] such
that w(b, k) = (b + ak, σ(k)). There are two types of reflections in G(m, p, n), which
we call type (1) and type (2):

(1) σ = (i, j) is a transposition for some i < j, ai = −aj and ak = 0 for k 6= i, j;
(2) σ = id, p|ai 6= 0 for some i ∈ [n] and ak = 0 for k 6= i.
Shi [15] gives explicit formulae for the reflection length `R in G(m, p, n) and we will

be using his results for the special case p = 1. For w = [a1, . . . , an|σ] ∈ G(m, 1, n),
we can write σ = σ(1) · · ·σ(r) in disjoint cycle notation. For i = 1, . . . , r, define the
sign of the cycle σ(i) to be sgn(σ(i)) =

∑
j∈σ(i) aj ∈ Z/mZ. Let t0(w) = #{i ∈ [r] :

sgn(σ(i)) = 0} be the number of cycles of σ with sign 0.

Proposition 3.1 (Theorem 2.1 of [15]). For w ∈ G(m, 1, n),

`R(w) = n− t0(w).

We note the following subword property of the prefix order of any complex reflection
group, which follows from [10] (or from [1] in the case of Coxeter groups).

Proposition 3.2. If w = t1 · · · t` is a reduced word for w, then any subword u =
tj1 · · · tjk

where 1 6 j1 < · · · < jk 6 ` is reduced and u 6 w in P(W ).

We define the claw poset of order n, denoted Cn, to be the ordinal sum of a
single element with an antichain of size n − 1. In other words, elements of Cn are
given by x0, x1, . . . , xn−1 and their orders relations are defined to be x0 < xi for all
i = 1, . . . , n − 1. For n > 2, Cn is a ranked poset of rank 2, which clearly has a
normalized flow (with respect to ν ≡ 1). We are now ready to state the main result
of the section.

Theorem 3.3. For W = G(m, 1, n), Abs(W ) has a coarsening (on the same underly-
ing set W ) isomorphic to Cm × C2m × · · · × Cnm.

Proof. We partition all reflections of G(m, 1, n) into sets T1t· · ·tTn, where Tj consists
of the following reflections t = [a1, . . . , ak|σ]:

(1) σ = (i, j) for some i < j, ai + aj = 0 and ak = 0 for k 6= i, j, and
(2) σ = id, aj 6= 0, ak = 0 for j 6= k.

In Tj , there are (j − 1)m reflections of type (1) and m− 1 reflections of type (2). So
its cardinality is |Tj | = jm− 1.

We claim that for each w ∈ G(m, 1, n), there is a unique way to write w =
ti1ti2 · · · tik such that 1 6 i1 < · · · < ik 6 n and tij ∈ Tij . Moreover, such decompo-
sition of w is reduced, meaning `R(w) = k. Proceed by induction on n. The claim is
clear when n = 1. Now assume n > 2. All reflections in T1, . . . , Tn−1, viewed as per-
mutations on (Z/mZ)×[n], keep (b, n) fixed for any (or a specific) b ∈ Z/mZ, while all
reflections in Tn do not. Therefore, if w fixes (b, n), we cannot choose any tn ∈ Tn, and
induction hypothesis takes care of the rest of the argument. If w doesn’t fix (b, n), we
have to choose tn ∈ Tn such that wt−1

n fixes (b, n). Let w−1(b, n) = (a+ b, n′) 6= (b, n)
for some a ∈ Z/mZ, and all b ∈ Z/mZ. Then tn must map (b, n) to (a + b, n′). It’s
not hard to see such tn = [a1, . . . , an|σ] is unique: if n′ 6= n, then tn must be of
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type (1) with σ = (n′, n), an = a, an′ = −a; if n′ = n, then a 6= 0 and tn must
be of type (2) with an = a. Then w′ = wt−1

n fixes (b, n) and lies in G(m, 1, n − 1).
By induction, the uniqueness and existence of such decomposition are established.
To see that the expression obtained in this way is reduced, let’s consider the signs
of cycles in w, as in Proposition 3.1. If tn is of type (1), multiplication by t−1

n on w
splits the cycle containing n into two cycles, keeping the overall sign. But as one of
the cycles is a singleton containing n with sign 0, we know that t0(w′) = t0(w) + 1 so
`R(w′) = `R(w)− 1 by Proposition 3.1. If tn is of type (2), then in w, n is a singleton
with nonzero sign. After multiplication by t−1

n , n becomes a singleton with sign 0 so
similarly, `R(w′) = `R(w)− 1. The rest of the argument follows by induction.

For each j = 1, . . . , n, label the unique minimum element of the claw poset Cjm by
id and its elements in rank 1 by the elements of Tj , recalling that |Tj | = jm−1. Every
element in P = Cm×C2m× · · · ×Cnm is then labeled by a tuple x = (x1, x2, . . . , xn)
where xj ∈ Tj t{id}. We identify this element as w(x) = x1x2 · · ·xn ∈ G(m, 1, n). By
the uniqueness and existence argument in the last paragraph, we obtain a bijection
between elements in P and W = G(m, 1, n). Moreover, the rank of x in P equals the
number of xj ’s in Tj , which is precisely `R(w(x)) as shown above. Finally, x′ 6 x
in P precisely means that x′1 · · ·x′n is a subword of x1 · · ·xn, after ignoring identity
terms, which implies that w(x′) 6 w(x) by the subword property (Proposition 3.2).
As a result, P is contained in Abs(W ) as desired. �

The following corollary is immediate.

Corollary 3.4. The absolute order of G(m, 1, n) has a normalized flow with ν ≡ 1,
and is thus strongly Sperner.

Proof. Each Ck is trivially log-concave and has a normalized flow, with ν ≡ 1. By
Theorem 2.5, Cm×· · ·×Cnm is log-concave and has a normalized flow. But Cm×· · ·×
Cnm ⊂ Abs(W ), for W = G(m, 1, n) by Theorem 3.3 so Abs(W ) has a normalized
flow (taking the weights of all edges not contained in the product to be zero) and is
thus strongly Sperner by Theorem 2.4. �

3.2. The dihedral groups G(m,m, 2). The following proposition was also stated
without proof by Harper, Kim, and Livesay in their independent work [9]. We provide
a short proof here for the sake of completeness.

Proposition 3.5. Let W = G(m,m, 2) for some m > 2, then Abs(W ) admits a
normalized flow with ν ≡ 1.

Proof. The non-identity elements of W are either reflections, with fixed-space codi-
mension 1, or rotations, with fixed-space codimension 2. The product of a reflection
and a rotation is a reflection. This implies that every reflection is covered by every
rotation in the absolute order, so the Hasse diagram of Abs(W ) is a complete bipar-
tite graph between both pairs of consecutive ranks, which clearly admits the desired
normalized flow. �

3.3. Exceptional Coxeter groups. In order to verify the normalized flow prop-
erty for the exceptional Coxeter groups, we take advantage of the large automorphism
group of Abs(W ). Since the set of reflections in W is invariant under the conjuga-
tion action of W , it follows that the conjugation action of W on Abs(W ) is by poset
automorphisms.

For P a poset and G ⊂ Aut(P ) a group of poset automorphisms, the quotient poset
P/G has as elements the orbits of the action of G on the set P . For two orbits O,O′
we have O 6 O′ in P/G if and only if there exists some x ∈ O and some x′ ∈ O′ such
that x 6P x′ (equivalently, for all x ∈ O there exists such an x′ ∈ O′).
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Proposition 3.6. Let P be a finite ranked poset and let G ⊂ Aut(P ), then P has
a normalized flow with νP ≡ 1 if and only if P/G has a normalized flow with
νP/G(O) = |O|.

Proof. First suppose that P has a normalized flow with νP ≡ 1. Then it is immediate
from the definitions that P/G has a normalized flow with νP/G(O) = |O| and edge
weights

fP/G(O,O′) =
∑
x∈O
y∈O′

fP (x, y).

Next, suppose that P/G has a normalized flow with νP/G(O) = |O|. Then the
natural map ϕ : P � P/G given by x 7→ G · x is clearly surjective, rank preserving,
order preserving, and measure preserving. Thus, by Theorem 2.6 it only remains to
check that the induced subposet of P on the elements ϕ−1(O) ∪ ϕ−1(O′) admits a
normalized flow with ν ≡ 1 for any covering relation O lO′ in P/G. We claim that
the corresponding subgraph of the Hasse diagram of P is in fact a biregular graph
(regular on each side of the bipartition). Indeed, let x ∈ O and suppose y1, ..., yk are
the upper covers of x which lie in O′. Given any other element gx ∈ O for g ∈ G,
the upper covers of gx which lie in O′ are exactly gy1, ..., gyk, and similarly for lower
covers, so we have proven biregularity. As observed by Harper [7], any biregular graph
admits a normalized flow simply by taking all edge weights to be equal and scaled
appropriately. �

Proposition 3.6 makes it feasible to construct normalized flows on Abs(W ) for
the exceptional Coxeter groups of types H3, H4, F4, E6, E7, and especially E8. For
example, the Coxeter group W of type E8 has approximately 7 × 108 elements, and
the absolute order Abs(W ) has approximately 4 × 1010 cover relations. Explicitly
checking for a normalized flow on a poset of this size is unfeasible; however Abs(W )/W
has only 112 elements and 449 cover relations, allowing for a simple computer check
for a normalized flow using SageMath [18]. In this way explicit normalized flows
(with ν(O) = |O|) have been constructed for Abs(W )/W for all exceptional Coxeter
groupsW . Together with Proposition 3.6, this proves that these posets Abs(W ) admit
normalized flows (with ν ≡ 1). The above discussion proves the following proposition:

Proposition 3.7. Let W be an irreducible exceptional Coxeter group (type H3, H4,
F4, E6, E7, or E8), then Abs(W ) admits a normalized flow with ν ≡ 1. In particular,
Abs(W ) is strongly Sperner.

3.4. Finishing the proof.

Proof Theorem 1.1. Let W = W1 × · · · × Wk be as described in the statement of
Theorem 1.1. By Corollary 3.4, Proposition 3.5, and Proposition 3.7, the absolute
order Abs(Wi) of each factor admits a normalized flow with ν ≡ 1. By Proposition 2.3,

Abs(W ) ∼= Abs(W1)× · · · ×Abs(Wk).

By Equation (6) and the classical result that the coefficients of a real-rooted real
polynomial are log-concave, we may apply Theorem 2.5 to see that Abs(W ) admits a
normalized flow (with ν ≡ 1), implying that it is strongly Sperner. �

Remark 3.8. It is important to note that proving the stronger normalized flow prop-
erty for the irreducible groups Wi is necessary for our proof of Theorem 1.1. It is not
in general true that the product of (even rank log-concave) strongly Sperner posets
is Sperner [12].
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4. Counterexamples
In this section we show that neither C(W ) nor P(W ) is Sperner for general complex
reflection groups W .

4.1. Codimension order. Many small examples show that C(W ) need not be
Sperner when C(W ) 6= P(W ). For example,

Proposition 4.1. C(G(4, 2, 2)) is not Sperner.

Proof. Let P = C(G(4, 2, 2)), then P has rank sizes |P0| = 1, |P1| = 8, and |P2| = 7.
There are two maximal elements x, y in rank one, thus P2 ∪ {x, y} is an antichain of
size 9, larger than any rank size. �

In fact, C(W ) need not even be ranked in general: there is no consistent rank
function for C(G(4, 2, 4)). This means that, for some complex reflection groups W
anyway, it does not even make sense to ask whether C(W ) is Sperner. We are not aware
of an example C(W ) which is ranked and Sperner, except in the cases C(W ) = P(W ).

Question 4.2. Is there a complex reflection group W such that C(W ) 6= P(W ), but
C(W ) is ranked and Sperner?

4.2. Prefix order. A finite poset is graded if all of its maximal chains have the
same length. Although the posets P(W ) are always ranked, they are not in general
graded when P(W ) 6= C(W ). Our strategy for finding a prefix order which is not
Sperner is therefore to construct a reflection groupW such that P(W ) has a maximal
element m occurring in a rank below the largest rank. The antichain consisting of m
together with the largest rank would then violate the Sperner property.

Proposition 4.3. The prefix order on the reflection group G(10, 5, 3)12 is not Sperner.

Proof. Let W = G(10, 5, 3) and P = P(W ); the following facts are all easily verified
by computer:

• rank(P ) = 5,
• P has a maximal element m of rank 3, and
• F (P, q) = 1 + 33q + 287q2 + 519q3 + 314q4 + 48q5.

Although P itself is strongly Sperner, we observe that the largest coefficient in
F (P, q)12 is the coefficient of q37. This means that the largest rank in P 12 is (P 12)37.
However (m, ...,m) is a maximal element in P 12 of rank 36, so P 12 ∼= P(W 12) is not
Sperner. �

5. A conjecture for type Dn

In this section, we discuss absolute order on the Weyl group W of type Dn for n > 4
(W is also the group G(2, 2, n)), and explain why the methods used to prove Theo-
rem 3.3 will not work in this case.

It is well-known that the exponents ei for type Dn are 1, 3, 5, . . . , 2n− 3, n− 1. By
the discussion in Section 2, we know that

F (Abs(W ), q) = (1 + (n− 1)q) ·
n−1∏
i=1

(1 + (2i− 1)q).

Therefore it is natural to hope that Abs(W ) contains a a product of claw posets so
that we might apply the techniques of Section 3.1. However, we will show that such
strategy cannot work.

Following the setup from Section 3.1, every element in G(2, 2, n) can be written
as w = [a1, . . . , an|σ] with ak ∈ Z/2Z for k ∈ [n],

∑n
k=1 ak = 0, and σ ∈ Sn. We
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can also view w as a permutation on 1, 2, . . . , n,−1,−2, . . . ,−n (also called a signed
permutation on [n]) such that w(i) = −w(−i) for all i, with the condition that there
are an even number of k ∈ [n] such that w(k) < 0. For convenience, we write such
w in disjoint cycle notation for σ, and put a dot on k ∈ [n] if ak = 1 ∈ Z/2Z. For
example, (1̇2̇) refers to w = [1, 1, 0, 0, . . . |(1, 2)] ∈ G(2, 2, n), which is also represented
as w(1) = −2, w(2) = −1, w(k) = k for k = 3, . . . , n, as a signed permutation.

We see that G(2, 2, n) doesn’t have any reflections of type (2) (see Section 3.1). In
fact, all of its reflections are of the form (i, j) for some i < j ∈ [n] or (i̇, j̇) for some
i < j ∈ [n].

Proposition 5.1. For W = G(2, 2, n) with n > 4, Abs(W ) does not contain C2 ×
C4 × · · · × C2n−2 × Cn.

Proof. Assume for the sake of contradiction that P = C2 ×C4 × · · · ×C2n−2 ×Cn ⊂
Abs(W ). Each element of rank 1 in P can be identified with a reflection in W , and
the inclusion P ⊂ Abs(W ) partitions these elements into sets of size 1, 3, 5, . . . , 2n−
3, n − 1. Denote these sets of reflections as T1, T2, . . . , Tn where |Tk| = 2k − 1 for
k = 1, . . . , n− 1 and |Tn| = n− 1. Now, each element of P , and correspondingly each
element of W , is labeled as (t1, t2, . . . , tn) where tk ∈ Tk or tk = id.

Focus on elements of rank 2. Each of them is labeled as (t1, t2, . . . , tn), where all
but two tk’s are the identity. In particular, this element covers exactly two reflections
in P , which belong to different Tk’s. Therefore, if w ∈ Abs(W ) has length 2, and
covers exactly two reflections t and t′ in Abs(W ), then t ∈ Tk, t′ ∈ Tk′ for distinct
k 6= k′. It is not hard to see that the following types of elements of G(2, 2, n) with
absolute length 2 cover exactly two reflections:

• tt′ = t′t with t ∈ {(i, j), (i̇, j̇)} and t′ ∈ {(i′, j′), (i̇′, j̇′)} such that {i, j} ∩
{i′, j′} = ∅;

• tt′ = t′t with w = (i̇)(j̇), t = (i, j) and t′ = (i̇, j̇).
Define a helper function φ : T →

([n]
2
)
, where T = T1 t · · · t Tn is the set of

reflections, by φ((i, j)) = φ((i̇, j̇)) = {i, j}. By arguments above, (i, j) and (i̇, j̇)
cannot be in the same Tk, meaning that φ|Tk

is injective for each k ∈ [n]. Moreover,
for distinct t 6= t′ ∈ Tk, φ(t) and φ(t′) must intersect. Thus, the image of φ(Tk),
having the same cardinality as Tk, is a set of pairwise intersecting 2-element subset
of [n]. When n > 4, there can be at most n− 1 such sets, meaning |Tk| 6 n− 1. But
|Tn−1| = 2n− 3 > n− 1, a contradiction. �

Proposition 5.1 shows that the approach used in Theorem 3.3 doesn’t work for the
absolute order in type D. However, we still conjecture that the absolute order of type
Dn admits a normalized flow (Conjecture 1.3), and have verified this conjecture using
computer search up to n = 8.
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