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Regularity of powers of edge ideals: from
local properties to global bounds

Arindam Banerjee, Selvi Kara Beyarslan & Huy Tài Hà

Abstract Let I = I(G) be the edge ideal of a graph G. We give various general upper bounds
for the regularity function reg Is, for s > 1, addressing a conjecture made by the authors and
Alilooee. When G is a gap-free graph and locally of regularity 2, we show that reg Is = 2s

for all s > 2. This is a weaker version of a conjecture of Nevo and Peeva. Our method is to
investigate the regularity function reg Is, for s > 1, via local information of I.

1. Introduction
During the last few decades, studying the regularity of powers of homogeneous ideals
has evolved to be a central research topic in combinatorial commutative algebra.
This research program began with a celebrated theorem, proved independently by
Cutkosky–Herzog–Trung [10] and Kodiyalam [26], which stated that for a homoge-
neous ideal I in a standard graded algebra over a field, the regularity function reg Is
is asymptotically a linear function (see also [3, 35]). Though despite much effort from
many researchers, this asymptotic linear function is far from being well understood. In
this paper, we investigate this regularity function for edge ideals of graphs. We shall
explore several classes of graphs for which this regularity function can be explicitly
described or bounded in terms of combinatorial data of the graphs. This problem has
been studied recently by many authors (cf. [1, 2, 4, 5, 6, 13, 14, 23, 24, 25, 29, 32]).

Our initial motivation for this paper is the general belief that global conclusions
often could be derived from local information. Particularly, local conditions on an edge
ideal I (i.e. conditions on reg(I : x), for x ∈ V (G)) should give a global understanding
of the function reg Is, for s > 1. Our motivation furthermore comes from the following
conjectures (see [5, 30, 31]), which provide a general upper bound for the regularity
function of edge ideals, and describe a special class of edge ideals whose powers (at
least 2) all have linear resolutions.

Conjecture A (Alilooee–Banerjee–Beyarslan–Hà). Let G be a simple graph with
edge ideal I. For any s > 1, we have

reg Is 6 2s+ reg I − 2.

Conjecture B (Nevo–Peeva). Let G be a simple graph with edge ideal I. Suppose
that G is gap-free and reg I = 3. Then, for all s > 2, we have

reg Is = 2s.
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Our aim is to investigate Conjectures A and B using the local-global principle.
Finding general upper bounds for reg I(G)s has received a special interest and gen-
erated a large number of papers during the last few years. This partly thanks to a
general lower bound for reg I(G)s given in [6]; particularly, if ν(G) denotes the induced
matching number of G then, for any s > 1, we have

reg I(G)s > 2s+ ν(G)− 1.(1)
Our first main result gives a weaker general upper bound for reg I(G)s than that
of Conjecture A. The motivation of this result comes from an upper bound for the
regularity of I(G) given by Adam Van Tuyl and the last author, namely reg I(G) 6
β(G) + 1, where β(G) denotes the matching number of G (see [16]). We prove the
following theorem.
Theorem 3.4. Let G be a graph with edge ideal I, and let β(G) be its matching
number. Then, for all s > 1, we have

reg Is 6 2s+ β(G)− 1.
As a consequence of Theorem 3.4, for the class of Cameron–Walker graphs, where

ν(G) = β(G), we have, for all s > 1,
reg Is = 2s+ ν(G)− 1.

A graph G is said to be locally of regularity at most r − 1 if reg(I(G) : x) 6 r − 1
for all vertex x in G. Note that, by [9, Proposition 4.9], if G is locally of regularity at
most r − 1 then reg I(G) 6 r. In the local-global spirit, we reformulate Conjecture A
to a slightly weaker conjecture as follows.
Conjecture A′. Let G be a simple graph with edge ideal I. Suppose that G is locally
of regularity at most r − 1, for some r > 2. Then, for any s > 1, we have

reg Is 6 2s+ r − 2.
Our next main result proves Conjecture A′ for gap-free graphs.

Theorem 4.2. Let G be a simple graph with edge ideal I. Suppose that G is gap-free
and locally of regularity at most r − 1, for some r > 2. Then, for any s > 1, we have

reg Is 6 2s+ r − 2.
It is an easy observation from (1) that if I(G)s has a linear resolution for some

s > 1 then G must be gap-free. Conjecture B serves as a converse statement to this
observation, and has remained intractable. By applying the local-global principle, we
prove a weaker statement, in which the condition reg I = 3 is replaced by the condition
that G is locally linear (i.e. locally of regularity at most 2). Our main result toward
Conjecture B is stated as follows.
Theorem 4.5. Let G be a simple graph with edge ideal I. Suppose that G is gap-free
and locally linear. Then for all s > 2, we have

reg Is = 2s.
As a consequence of Theorem 4.5, we quickly recover a result of Banerjee, which

showed that if G is gap-free and cricket-free then I(G)s has a linear resolution for all
s > 2 (see Corollary 4.6).

We end the paper by exhibiting an evidence for Conjecture A′ at the first nontrivial
value of s, i.e. s = 2, for all graphs.
Theorem 5.1. Let G be a graph with edge ideal I. Suppose that G is locally of regu-
larity at most r − 1. Then, for any edge e ∈ E(G), reg(I2 : e) 6 r. Particularly, this
implies that reg(I2) 6 r + 2.
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Our paper is structured as follows. In the next section we give necessary notation
and terminology. The reader who is familiar with previous work in this research area
may want to proceed directly to Section 3. In Section 3, we discuss general upper
bound for the regularity function, aiming toward Conjecture A. Theorem 3.4 is proved
in this section. In Section 4, we focus further on gap-free graphs, investigating both
Conjectures A′ and B using the local-global principle. Theorems 4.2 and 4.5 are proved
in this section. We end the paper with Section 5, proving Theorem 5.1 and discussing
briefly how an effective bound on the regularity of I(G)2 may give us information on
the regularity of the second symbolic power I(G)(2). This gives a glimpse into future
work on the regularity function of symbolic powers of edge ideals.

2. Preliminaries
In this section, we collect notations and terminology used in the paper. For unex-
plained notions, we refer the reader to standard texts [7, 12, 17, 19, 28, 33, 36].

2.1. Graph Theory. Throughout the paper, G shall denote a finite simple graph
with vertex set V (G) and edge set E(G). A subgraph G′ of G is called induced if for
any two vertices u, v in G′, uv ∈ E(G′) ⇔ uv ∈ E(G). For a subset W ⊆ V (G), we
shall denote by GW the induced subgraph of G over the vertices in W , and denote by
G−W the induced subgraph of G on V (G)rW . When W = {w} consists of a single
vertex, we also write G− w for G− {w}. The complement of a graph G, denoted by
Gc, is the graph on the same vertex set V (G) in which uv ∈ E(Gc)⇔ uv 6∈ E(G).

Definition 2.1. Let G be a graph.
(1) A walk in G is a sequence of (not necessarily distinct) vertices x1, x2, . . . , xn

such that xixi+1 is an edge for all i = 1, 2, . . . , n− 1.
(2) A path in G is a walk whose vertices are distinct (except possibly the first and

the last vertices).
(3) A cycle in G is a closed path. A cycle consisting of n distinct vertices is called

an n-cycle and often denoted by Cn.
(4) An anticycle is the complement of a cycle.

A graph in which there is no induced cycle of length greater than 3 is called a
chordal graph. A graph whose complement is chordal is called a co-chordal graph.

Definition 2.2. Let G be a graph.
(1) A matching in G is a collection of disjoint edges. The matching number of

G, denoted by β(G) is the maximum size of a matching in G.
(2) An induced matching in G is a matching C such that the induced subgraph of

G over the vertices in C does not contain any edge other than those already
in C. The induced matching number of G, denoted by ν(G), is the maximum
size of an induced matching in G.

(3) A vertex cover of G is a collection of vertices in G that contains at least one
endpoint of every edge in G.

Definition 2.3. Let G be a graph.
(1) Two disjoint edges uv and xy are said to form a gap in G if G does not have

an edge with one endpoint in {u, v} and the other in {x, y}.
(2) If G has no gaps then G is called gap-free. Equivalently, G is gap-free if and

only if ν(G) = 1 (i.e. Gc contains no induced C4).

For any integer n, Kn denotes the complete graph over n vertices (i.e. there is an
edge connecting any pair of vertices). For any pair of integers m and n, Km,n denotes
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the complete bipartite graph; that is, a graph with a bipartition (U, V ) of the vertices
such that |U | = m, |V | = n and E(Km,n) = {uv | u ∈ U, v ∈ V }.

Definition 2.4.
(1) A graph isomorphic to K1,3 is called a claw. A graph without any induced

claw is called a claw-free graph.
(2) A graph isomorphic to the graph with vertex set {w1, w2, w3, w4, w5} and edge

set {w1w3, w2w3, w3w4, w3w5, w4w5} is called a cricket. A graph without any
induced cricket is called a cricket-free graph.

Remark 2.5. A claw-free graph is cricket-free.

Notation 2.6. Let G be a graph, let u, v ∈ V (G), and let e = xy ∈ E(G).
(1) The set of vertices incident to u, the neighborhood of u, is denoted by NG(u).

Set NG[u] = NG(u) ∪ {u}.
(2) The set of vertices which are not in e and incident to an endpoint of e, the

neighborhood of e, is denoted by NG(e). Set NG[e] = NG(e) ∪ e.
(3) The degree of u is degG(u) =

∣∣NG(u)
∣∣. An edge is called a leaf or a whisker

if any of its vertices has degree exactly 1.

We can naturally extend these notions to get NG(W ), NG[W ], NG(E) and NG[E ]
for a subset of the verticesW ⊆ V (G) or a subset of the edges E ⊆ E(G). Particularly,
NG(W ) denotes the set of vertices which are not in W and incident to a vertex in W ,
NG[W ] = NG(W ) ∪W , and NG(E) is the set of vertices which are not in any of the
edges in E and incident to an endpoint of an edge in E , NG[E ] = NG(E) ∪ (∪e∈Ee).

2.2. Commutative Algebra. Let G be a graph over the vertices V (G) =
{x1, . . . , xn}. By abusing notation, we shall identify the vertices of G with the
variables in a polynomial ring S = k[x1, . . . , xn], where k is field. Particularly, we
shall use uv to denote both the edge uv in G and the monomial uv in S (the choice
would be obvious from the context).

Definition 2.7. Let G be a graph over the vertices V (G) = {x1, . . . , xn}. The edge
ideal of G is defined to be

I(G) = (xy | xy ∈ E(G)) ⊆ S.

Castelnuovo–Mumford regularity is the invariant being investigated in this paper.
We shall give a definition most suitable for our context (see, for example, [7, p. 168]).

Definition 2.8. Let S be a standard graded polynomial ring over a field k. The reg-
ularity of a finitely generated graded S-module M , written as regM , is given by

regM := max{j − i|Tori(M,k)j 6= 0}.

The following simple bound is often used without references; it follows immediately
from Hochster’s formula [22, Theorem 5.1].

Lemma 2.9. Let G be a graph and let H be an induced subgraph of G. Then

reg I(H) 6 reg I(G).

Particularly, for any vertex v ∈ V (G), we have that reg I(G− v) 6 reg I(G).

A standard use of short exact sequences yields the following result, which we shall
also often use (see [11, Lemma 2.10] and [4, Lemma 2.11]).
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Lemma 2.10. Let I ⊆ S be a monomial ideal, and let m be a monomial of degree d.
Then

reg I 6 max{reg(I : m) + d, reg(I,m)}.
Moreover, if m is a variable appearing in I, then reg I is equal to one of the right-
hand-side terms.

Definition 2.11. Let r ∈ N. A graph G is said to be locally of regularity 6 r if
for every vertex x ∈ V (G), we have reg(I(G) : x) 6 r. A graph which is locally of
regularity 6 2 is called locally linear.

2.3. Auxiliary Results. We next recall a few results that are useful for our purpose.
We shall make use of the following characterization for edge ideals of graphs with

linear resolutions. This characterization was first given in topological language by
Wegner [37] and later, independently, by Lyubeznik [27] and Fröberg [15] in monomial
ideals language.

Theorem 2.12 (See [15, Theorem 1]). Let G be a graph. Then reg I(G) = 2 if and
only if G is a co-chordal graph.

In the study of powers of edge ideals, Banerjee developed the notion of even-
connection and gave an important inductive inequality in [4]. This inductive method
has proved to be quite powerful, which we shall make use of often.

Theorem 2.13. For any graph G and any s > 1, let the set of minimal monomial
generators of I(G)s be {m1, ....,mk}, then

reg I(G)s+1 6 max{reg(I(G)s+1 : ml) + 2s, 1 6 l 6 k, reg I(G)s}.

Remark 2.14. Any minimal generator of I(G)s is the product of s edges in G and,
vice-versa, for any s edges e1, . . . , es of G the s-fold product e1 · · · es is a minimal
generator of I(G)s. Note that a minimal generator of I(G)s may come from different
choices of s edges in G.

The ideal (I(G)s+1 : m) in Theorem 2.13 and its generators are understood via the
following notion of even-connection.

Definition 2.15. Let G = (V,E) be a graph. Two vertices u and v (u may be the
same as v) are said to be even-connected with respect to an s-fold product e1 · · · es
where ei’s are edges of G, not necessarily distinct, if there is a path p0, p1, . . . , p2k+1,
k > 1, in G such that:

(1) p0 = u, p2k+1 = v.
(2) For all 0 6 l 6 k − 1, p2l+1p2l+2 = ei for some i.
(3) For all i,

∣∣{l > 0 | p2l+1p2l+2 = ei}
∣∣ 6 ∣∣{j | ej = ei}

∣∣.
It turns out that (I(G)s+1 : m) is generated by monomials in degree 2.

Theorem 2.16 ([4, Theorem 6.1 and Theorem 6.7]). Let G be a graph with edge ideal
I, and let s > 1 be an integer. Let m be a minimal generator of Is. Then (Is+1 : m)
is minimally generated by monomials of degree 2, and uv (u and v may be the same)
is a minimal generator of (Is+1 : m) if and only if either {u, v} ∈ E(G) or u and v
are even-connected with respect to m.

Thanks to Theorems 2.13 and 2.16, much of our work is to understand colon ideals
of the form I(G)s+1 : m, when m is a minimal generator of Is. Our technique is to
use polarization to bring such an ideal to a squarefree monomial ideal and to look at
its corresponding graph. Note that the regularity does not change in passing to the
polarization; see, for example, [19, Corollary 1.6.3].
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Definition 2.17. Let I ⊆ S = k[x1, . . . , xn] be a monomial ideal. For each i = 1, . . . , n
let ai be the maximum power of xi appearing in the monomial generators of I. The
polarization of I, denoted by Ipol, is constructed as follows.

• Let Spol = k[x11, . . . , x1a1 , . . . , xn1, . . . , xnan ].
• The ideal Ipol is generated by monomials in Spol that are obtained from
generators of I under the following substitution, for each (γ1, . . . , γn) 6
(a1, . . . , an),

xγ1
1 · · ·xγn

n −→ x11 · · ·x1γ1 · · ·xn1 · · ·xnγn
.

Remark 2.18. In the polarization process, we can identify x11, . . . , xn1 with
x1, . . . , xn. Let G′ be the graph corresponding to the polarization of Is+1 : m,
where m is a minimal generator of Is. By Theorem 2.16, G′ is obtained from G by
adding edges uv, where u, v ∈ V (G) are even-connected with respect to m in G, and
whiskers uu′, where u ∈ V (G) is even-connected to itself with respect to m in G and
u′ is a new vertex.

3. General Upper Bounds for Regularity Function
The aim of this section is to give a weaker general upper bound for reg I(G)s than
that of Conjecture A.

The heart of many studies on regularity of powers of edge ideals is to understand
the colon ideal J = I(G)s : e1 · · · es−1 in making use of Banerjee’s inductive method,
Theorem 2.13. We start by examining a local property for J .

Lemma 3.1. Let G be a graph with edge ideal I and let s ∈ N. Let e1, . . . , es−1 ∈ E(G),
J = Is : e1 · · · es−1, and let G′ be the graph associated to the polarization of J . Let
w ∈ V (G).

(1) If e1 is a leaf of G then J = Is−1 : e2 · · · es−1.
(2) Suppose that w 6∈ NG[{e1, . . . , es−1}]. Then

J : w = I(G−NG[w])s : e1 · · · es−1 + (u
∣∣ u ∈ NG[w]).

(3) Suppose that w ∈ NG[e1]. Then

J : w = (I(G−NG′ [w])t : f1 · · · ft−1) + (u
∣∣ u ∈ NG′(w))

for some t 6 s, and a subcollection {f1, . . . , ft−1} of {e2, . . . , es−1}. More-
over, in this case, the graph associated to the polarization of I(G−NG′ [w])t :
f1 · · · ft−1 is an induced subgraph of that associated to the polarization of
I(G−NG[w])t : f1 · · · ft−1.

Proof. (1) It follows from Theorem 2.16 that J is obtained by adding to I quadratic
generators uv, where u and v are even-connected in G with respect to e1 · · · es−1. If
e1 is an isolated edge then clearly, by definition, the even-connected path between u
and v does not contain e1. Thus, uv ∈ Is−1 : e2 · · · es−1 and (1) is proved.

(2) It can be seen that if w 6∈ NG[{e1, . . . , es−1}] then w is not in any even-
connected path with respect to e1 · · · es−1. Thus, even-connected paths with respect
to e1 · · · es−1 between two vertices that are not in NG[w] are even-connected path
with respect to e1 · · · es−1 in G − NG[w]. Furthermore, any edge uv ∈ J , for which
u ∈ NG[w] (similarly if v ∈ NG[w]), would be divisible by u ∈ J : w and, thus,
subsumed into the ideal (u

∣∣ u ∈ NG[w]). Therefore, (2) follows.
(3) By the definition of even-connection, we first observe that for any subcollection

{f1, . . . , ft−1} of {e1, . . . , es−1} (for some t 6 s), if x and y are even-connected with
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u v

e1

w

ei1 eip

even-connected

even-connected

Figure 1. When w ∈ e1

u
w v

ei1 e1 eip

even-connected

even-connected

Figure 2. When w ∈ NG(e1)

respect to f1 · · · ft−1 in an induced subgraph of G then x and y are also even-connected
with respect to e1 · · · es−1 in G. Thus,

I(G−NG′ [w])t : f1 · · · ft−1 ⊆ J ⊆ (J : w).
Moreover, for any u ∈ NG′(w), u and w are even-connected with respect to

e1 · · · es−1, and so uw ∈ J , i.e. u ∈ (J : w). Thus, we have the inclusion
(I(G−NG′ [w])t : f1 · · · ft−1) + (u

∣∣ u ∈ NG′(w)) ⊆ (J : w).
To prove the other inclusion, let us analyse the minimal generators of (J : w)

more closely. Consider any uv ∈ J , where u and v are even-connected with respect to
e1 · · · es−1. If v ≡ w (similarly if u ≡ w) then u ∈ NG′(w). If u, v 6≡ w, but v ∈ NG′(w)
(similarly if u ∈ NG′(w)), then uv is subsumed in the ideal (u

∣∣ u ∈ NG′(w)).
Suppose now that u, v 6∈ NG′ [w]. Then u, v ∈ G−NG′ [w], which are even-connected

with respect to e1 · · · es−1. Observe that if the even-connected path between u and v
contains e1 then, by considering a subpath of this path, either u and w or v and w are
even-connected with respect to e1 · · · es−1 (see Figures 1 and 2). That is, either u or
v is in NG′(w), and so uv is again subsumed in the ideal (u

∣∣ u ∈ NG′(w)). Therefore,
we may assume that u and v are even-connected with respect to a subcollection
{f1, . . . , ft−1} of {e2, . . . , es−1}. That is, uv ∈ I(G−NG′ [w])t : f1 . . . ft−1.

u v

fj

w′

w

even-connected

even-connected

even-connected

Figure 3. When an even-connected path u — v contains w′ ∈ NG′ [w]

To establish the last statement, consider any two vertices u and v which are even-
connected in G−NG[w] with respect to f1 · · · ft−1. If the even-connected path between
u and v does not contain any vertex in NG′ [w] r NG[w] then u and v are even-
connected in G−NG′ [w]. If the even-connected path between u and v contain a vertex
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w′ ∈ NG′ [w]rNG[w] (see Figure 3) then, by combining with the even-connected path
from w to w′, either u and w or v and w are even-connected in G′. That is, either
u or v is already in NG′ [w] (or equivalently, not in G − NG′ [w]). Hence, the graph
associated to the polarization of I(G −NG′ [w])t : f1 · · · ft−1 is an induced subgraph
of that associated to the polarization of I(G−NG[w])t : f1 · · · ft−1. �

By understanding local properties of J in Lemma 3.1, we are able to give a general
upper bound for the regularity function based on a well chosen numerical function
on families of graphs. Specific interesting general bounds can be obtained by picking
these numerical functions suitably.

Definition 3.2. A collection F of graphs is a hierarchy if for every nonempty graph
G ∈ F , both G − u and G − NG[u] are in F for any vertex u ∈ V (G). A nonempty
graph is a graph with at least one edge.

Theorem 3.3. Let F be a hierarchy of graphs. Let f : F −→ N be a function satisfying
the following properties:

(1) for any G ∈ F , reg I(G) 6 f(G); and
(2) for any nonempty graph G ∈ F and each non-isolated vertex w ∈ V (G),

f(G− w) 6 f(G) and f(G−NG[w]) 6 max{f(G)− 1, 2}.
Then, for any G ∈ F and any s > 1, we have

reg I(G)s 6 2s+ f(G)− 2.

Proof. Fix a graph G ∈ F . If f(G) 6 2 then I(G) has a linear resolution, and so
the result is immediate from [20, Theorem 3.2]. Assume that f(G) > 3. Then the
condition on f(G−NG[w]) reads f(G−NG[w]) 6 f(G)− 1.

By Theorem 2.13 and the hypothesis that reg I(G) 6 f(G), it suffices to show that
for any collection of edges e1, . . . , es−1 in G (not necessarily distinct), we have

reg(Is : e1 · · · es−1) 6 f(G).(2)
We shall prove (2) by induction on s and on the size of the graph G. Let J = Is :
e1 · · · es−1. The statement is trivial if s = 1 (whence, J = I) or if G is an empty graph
(whence, J = (0)). Suppose that s > 2 and G is not an empty graph.

Let w ∈ V (G) be any vertex in G. It follows from Lemma 3.1 that reg(J : w) is
equal to either reg(I(G − NG[w])s : e1 · · · es−1) or reg(I(G − NG′ [w])t : f1 · · · ft−1)
where the graph associated to the polarization of I(G − NG′ [w])t : f1 · · · ft−1 is an
induced subgraph of that associated to the polarization of I(G−NG[w])t : f1 · · · ft−1.
If the latter is the case, then by Lemma 2.9 and the fact that polarization does not
change the regularity [19, Corollary 1.6.3], we have

reg(J : w) 6 reg(I(G−NG[w])t : f1 · · · ft−1).
Thus, since G−NG[w] ∈ F , by induction on the size of the graphs and our assumption,
we have
(3) reg(J : w) 6 f(G−NG[w]) 6 f(G)− 1 for any vertex w ∈ V (G).

By taking, for example, a vertex cover of the graph associated to the polarization
of J , we may assume that we have a collection of distinct vertices w1, . . . , wl of G
such that (J,w1, . . . , wl) = (w1, . . . , wl).

Observe that for each i = 1, . . . , l − 1, we have
(J,w1, . . . , wi) : wi+1 = (J : wi+1) + (w1, . . . , wi).

Thus, by [18, Corollary 3.2] and (3), we get
reg[(J,w1, . . . , wi) : wi+1] 6 reg(J : wi+1) 6 f(G)− 1.
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This, by successively applying Lemma 2.10 with (J,w1, . . . , wi) and wi+1, implies
that

reg(J,w1) 6 f(G).
The assertion now follows by utilizing Lemma 2.10 with J and w1. �

Based on the known upper bound for reg I(G), given in [16], one can take f(G)
in Theorem 3.3 to be the matching number of a graph and obtain the following
interesting bound for the regularity function.

Theorem 3.4. Let G be a graph with edge ideal I. Let β(G) denote the matching
number of G. Then, for all s > 1, we have

reg Is 6 2s+ β(G)− 1.

Proof. Let F be the family of all graphs. Then F clearly is a hierarchy. Let f(G) =
β(G) + 1 for all G ∈ F . It is easy to see that:

(1) reg I(G) 6 f(G) by [16, Theorem 6.7]; and
(2) For any non-isolated vertex w in G, clearly β(G − w) 6 β(G), and we can

always add an edge incident to w to any matching of G − NG[w] to get a
bigger matching, and so f(G−NG[w]) 6 f(G)− 1.

Hence, the statement follows from Theorem 3.3. �

A particular interesting application of Theorem 3.4 is for the class of Cameron–
Walker graphs introduced in [8]. These are graphs for which ν(G) = β(G). See [21]
for a further classification of Cameron–Walker graphs.

Corollary 3.5. Let G be a Cameron–Walker graph and let I be its edge ideal. Then,
for all s > 1, we have

reg Is = 2s+ ν(G)− 1.

Proof. The conclusion is an immediate consequence of Theorem 3.4 and (1), noting
that ν(G) = β(G) if G is a Cameron–Walker graph. �

It is known, by the main theorem of [20], that if I(G) has a linear resolution then
so does I(G)s for any s ∈ N. Thus, the first nontrivial case of Conjecture A is for
those graphs G such that G is locally linear and reg I(G) > 2. Recall that by [9,
Proposition 4.9], in this case, we necessarily have reg I(G) = 3. Theorem 3.3 allows
us to settle Conjecture A for this class of graphs.

Theorem 3.6. Let G be a graph with edge ideal I. Suppose that G is locally linear.
Then for all s > 1, we have

reg Is 6 2s+ reg I − 2 6 2s+ 1.

Proof. Let F be the family of locally linear graphs (including those whose edge ideals
have linear resolutions). Define f : F −→ N by f(G) = reg I(G) for all G ∈ F .
By the definition and Lemma 2.9, the edge ideal of any proper induced subgraph of
G ∈ F has a linear resolution. Thus, F is a hierarchy and f satisfies conditions of
Theorem 3.3. The conclusion now follows from that of Theorem 3.3. �

Example 3.7. Let G be a graph such that Gc is triangle-free (see, for example, Fig-
ure 4). It can be seen that for any x ∈ V (G), G − NG[x] is a complete graph and,
thus, is of regularity 2 except when x = x3. In the latter case, G−NG[x3] is a single
vertex and its regularity is 1. Therefore, G is a locally linear graph.
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x1 x2 x3

x4 x5

x6

Figure 4. A graph whose complement is triangle-free

4. Regularity Function of Gap-free Graphs
In this section, we focus on gap-free graphs, investigating both Conjectures A′ and
B. We start with a stronger version of [4, Lemma 6.18]. The proof is almost the same
as that given in [4, Lemma 6.18].

Lemma 4.1. Let G be a gap-free graph with edge ideal I. Let e1, . . . , es−1 be a collection
of edges, let J = Is : e1 · · · es−1, and let G′ be the graph associated to the polarization
of J . Let W ⊆ V (G). Suppose that u = p0, . . . , p2k+1 = v is an even-connected path
in G with respect to e1 · · · es−1 satisfying:

(1) u, v 6∈W ; and
(2) this path is of the longest possible length with respect to condition (1).

Then G′ −W −NG′ [u] is obtained by adding isolated vertices to an induced subgraph
of G−NG[u].

Proof. By Theorem 2.16, uv ∈ G′ −W . Consider any other edge u′v′ ∈ G′ rG with
u′, v′ 6∈ W . Then, there is an even-connected path u′ = q0, . . . , q2l+1 = v′ in G with
respect to e1 · · · es−1 for some 1 6 l 6 k.

If there exist i and j such that p2i+1p2i+2 and q2j+1q2j+2 are the same edge in
G then by combining these two even-connected paths, either u′ or v′ will be even-
connected to u. That is, either u′ or v′ is in NG′ [u]. We now assume that the two
even-connected paths between u, v and u′, v′ do not share any edge.

Consider p1p2 and q1q2. Since these two edges do not form a gap in G, they must
be connected. Let us explore different possibilities for this connection.

If p1 ≡ q1 then u and v′ are even-connected with respect to e1 · · · es−1, and so
v′ ∈ NG′ [u]. If p1 ≡ q2 (similarly for the case that p2 ≡ q1) then u and u′ are even-
connected with respect to e1 · · · es−1, and so u′ ∈ NG′ [u]. If p2 ≡ q2 then u and v′ are
even-connected with respect to e1 · · · es−1, and so v′ ∈ NG′ [u].

If p1q1 ∈ E(G) then combining the two even-connected paths between u, v and u′, v′
and the edge p1q1, we get an even-connected path between v and v′ that is of length
> k, a contradiction. If p1q2 ∈ E(G) then by combining the two even-connected paths
between u, v and u′, v′ and the edge p1q2, we have an even-connected path between
u′ and v that is of length > k, a contradiction.

If p2q1 ∈ E(G) then combining the even-connected paths between u, v and u′, v′ and
the edge p2q1, we get an even-connected path between u and v′, and so v′ ∈ NG′ [u].
If p2q2 ∈ E(G) then, similarly, we get an even-connected path between u and u′, and
so u′ ∈ NG′ [u].

Thus, in any case, either u′ or v′ is in NG′ [u]. That is, any edge in G′ r G will
reduce to an isolated vertex in G′ −W −NG′ [u]. The statement is proved. �

Our next main result establishes Conjecture A′ for gap-free graphs.
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Theorem 4.2. Let G be a graph with edge ideal I and let r > 3 be an integer. Assume
that G is gap-free and locally of regularity 6 r − 1. Then, for all s ∈ N, we have

reg Is 6 2s+ r − 2.

Proof. By Theorem 2.13, it suffices to show that for any collection of edges e1, . . . , es−1
(not necessarily distinct) in G, we have

reg(Is : e1 · · · es−1) 6 r.
Let G′ be the graph associated to the polarization of J = Is : e1 · · · es−1. Observe

that for any vertex x ∈ G′, I(G′) : x = I(G′ −NG′ [x]) + (NG′(x)), and so reg(I(G′) :
x) = reg I(G′ −NG′ [x]). Thus, it follows from Lemma 2.10 that

reg I(G′) 6 max{reg I(G′ −NG′ [x]) + 1, reg I(G′ − x)}.(4)

Thus, we shall show that there exists a vertex x ∈ G′ such that reg I(G′−x) 6 r and
reg I(G′ −NG′ [x]) 6 r − 1.

Let u and v be even-connected in G with respect to e1 · · · es−1 such that the even-
connected path u = p0, . . . , p2k1+1 = v is of maximum possible length. By Lemma 4.1,
G′ − NG′ [u] is obtained by adding isolated vertices to an induced subgraph of G −
NG[u]. Thus, by Lemma 2.9, we have reg I(G′ −NG′ [u]) 6 reg I(G−NG[u]) 6 r− 1.

It remains to consider reg I(G′ − u). Let u′ and v′ be even-connected in G with
respect to e1 · · · es−1 such that u′, v′ ∈ G′−u and there is an even-connected path u′ =
q0, . . . , q2l+1 = v′ in G with respect to e1 · · · es−1 such that l is the maximum possible
length. By using Lemma 4.1 again, we can deduce that reg I(G′ − u − NG′ [u′]) 6
reg I(G−NG[u′]) 6 r− 1. Note that I(G′−u) : u′ = I(G′−u−NG′ [u′]) + (NG′(u′)).
Thus, by applying Lemma 2.10 to I(G′−u) and u′, it suffices to show that reg I(G′−
{u, u′}) 6 r.

We can continue in this fashion until all edges in G′rG are examined, i.e. we obtain
a collectionW ⊆ V (G) such that I(G′−W ) = I(G−W ), and the problem is reduced to
showing that reg I(G′−W ) = reg I(G−W ) 6 r. This is obviously true by Lemma 2.9
and the fact that reg I(G) 6 r, by [9, Proposition 4.9]. The theorem is proved. �

We shall now shift our attention to Conjecture B. We begin by an improved state-
ment of [9, Corollary 6.5].

Lemma 4.3. Let G be a gap-free and cricket-free graph. Then G is locally linear.

Proof. We may assume that G contains no isolated vertices. Note that for any vertex
x in G, I(G) : x = I(G − NG[x]) + (NG(x)). This implies that reg(I(G) : x) =
reg I(G − NG[x]). Thus, by Theorem 2.12, it suffices to show that (G − NG[x])c is
chordal for any vertex x in G. Note that since G −NG[x] is an induced subgraph of
G, it is gap-free and cannot have any induced anticycle of length 4.

Suppose that W = {w1, w2, . . . , wn} is such that G[W ] is an anticycle of length
n > 5 in G − NG[x]. Clearly, W ∩ NG[x] = ∅. Let y be a neighbor of x. Since G is
gap-free, {x, y} and {w1, w3} cannot form a gap. Thus, these edges must be connected
in G. That is, either {y, w1} or {y, w3} (or both) must be an edge in G.

Suppose that {y, w1} and {y, w3} are both edges in G. Then, by considering edges
{x, y} and {w2, wn} in G, either {y, w2} or {y, wn} must be an edge in G. If {y, w2} is
an edge, then the induced subgraph on {x, y, w1, w2, w3} is a cricket in G, a contradic-
tion. Otherwise, {y, wn} ∈ E(G). Since {x, y} and {w2, wn−1} cannot form a gap in G,
we must have {y, wn−1} ∈ E(G). Thus, the induced subgraph on {x, y, w1, wn−1, wn}
is a cricket in G, a contradiction.

If {y, w1} ∈ E(G) and {y, w3} 6∈ E(G) (similarly for the case {y, w1} 6∈ E(G)
and {y, w3} ∈ E(G)), then {y, wn} must be an edge in G; otherwise, {x, y} and
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{w3, wn} form a gap in G. By considering {x, y} and {w2, wn−1}, either {y, w2} or
{y, wn−1} must be an edge in G. If {y, w2} ∈ E(G), then the induced subgraph on
{x, y, w1, w2, wn} is a cricket in G, a contradiction. Otherwise, {y, wn−1} ∈ E(G), and
the induced subgraph on {x, y, w1, wn−1, wn} is a cricket in G, a contradiction. �

Example 4.4. There are examples for locally linear gap-free graphs for which the
regularity could be either 2 or 3 (see Figure 5).

x1

x2 x3

x4 x1

x2

x3

x4

x5

C4 C5

Figure 5. Locally linear gap-free graphs with regularity 2 and 3 (respectively)

On the other hand, note that if G is not gap-free, then ν(G) > 2 =⇒ reg I(G) >
3. Thus, if, in addition, I(G) is locally linear, then we have reg I(G) = 3 by [9,
Proposition 4.9]. Figure 6 depicts such a graph.

x1

x2 x3 x4

x5

Figure 6. A graph that is not gap-free but locally linear with reg-
ularity 3

We are now ready to state our main result toward Conjecture B. In this result, we
establish the conclusion of Conjecture B replacing the condition that reg I(G) = 3 by
the condition that G is locally linear.

Theorem 4.5. If G is a graph with edge ideal I. Suppose that G is gap-free and locally
linear. Then, for all s > 2, we have

reg Is = 2s.

Proof. Again, by Theorem 2.13, it suffices to show that for any collection of edges
e1, . . . , es−1 (not necessarily distinct), we have

reg(Is : e1 · · · es−1) 6 2.
That is, the graph G′ associated to the polarization of the ideal J = Is : e1 · · · es−1 is
a co-chordal graph.

By [4, Lemma 6.14], G′ is also gap-free, and so G′ does not contain an anticycle of
length 4. Suppose thatW = {w1, . . . , wn}, for n > 5, is such that G′[W ] is an induced
anticycle of G′. It follows from [4, Lemma 6.15] that G[W ] is an induced anticycle of G.

Let e1 = ab. We shall consider different possibilities for the relative position of a
and b with respect W .

If a, b ∈ W , say a ≡ w1 and b ≡ wi (for i 6= 1), then since {w1, w2}, {w1, wn} 6∈
E(G′), b 6= w2, wn. Consider the edges {a, b} and {w2, wn}. These do not form a
gap (and a is not connected to neither w2 nor wn), and so either {b, w2} ∈ E(G) or
{b, wn} ∈ E(G). If {b, w2} ∈ E(G) then w2 and w3 are even-connected with respect
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to e1 = ab, which implies that {w2, w3} ∈ E(G′), a contradiction. If {b, wn} ∈ E(G)
then wn−1 and wn are even-connected with respect to e1 = ab, which implies that
wn−1wn ∈ E(G′), also a contradiction.

If a ∈ W , say a = w1, and b 6∈ W (similar to the case where a 6∈ W and b ∈ W )
then by considering the edges {a, b} and {w2, wn} again, the same arguments as
above would lead to a contradiction.

If a, b 6∈ W and either a or b is not connected to any vertices in W , then G′[W ]
(being also an anticycle in G) is an anticycle in either G−NG[a] or G−NG[b], which
is a contradiction to the local linearity of G.

It remains to consider the case that a, b 6∈ W , and both a and b are connected
to W . Assume that aw1 ∈ E(G). Consider the pair of edges {a, b} and {w2, wn}.
If either {b, w2} ∈ E(G) or {b, wn} ∈ E(G) then, as before, we would have either
{w2, w3} ∈ E(G) or {wn−1, wn} ∈ E(G), which is a contradiction. Thus, we must
have either {a,w2} ∈ E(G) or {a,wn} ∈ E(G). Without loss of generality, we may
assume that {a,w2} ∈ E(G). We continue by considering the pair of edges {a, b} and
{w3, wn}. A similar argument shows that {a,w3} ∈ E(G). We can keep going in this
fashion to get {a,wi} ∈ E(G) for all i = 1, . . . , n − 2. Now, it can be seen that b
cannot be connected to any of the wi without creating an even-connection that gives
{wi, wi+1} ∈ E(G), for some i, which is a contradiction.

We have shown that such a collection of the vertices W cannot exists. That is, G′
is a co-chordal graph. The theorem is proved. �

Theorem 4.5 immediately recovers the following result of Banerjee [4].

Corollary 4.6 ([4, Theorem 6.7]). Let G be a gap-free and cricket-free graph. Then,
for any s > 2, we have

reg I(G)s = 2s.

Proof. The conclusion follows from Lemma 4.3 and Theorem 4.5. �

Example 4.7. Let 2K2 denote a gap and let K6 denote the complete graph on 6
vertices. Let G = 2K2 + K6 be the join of these two graphs (the join of two graphs
H and K is obtained by taking the disjoint union of H and K and connecting each
vertex in H with every vertex in K). Then, it can be seen G is locally linear but
not gap-free. Particularly, it follows that reg I(G)s 6= 2s for all s ∈ N. This gives an
example of a locally linear graph G for which reg I(G)s 6= 2s for all s ∈ N.

5. Regularity of Second Powers of Edge Ideals
We end the paper with a flavor of Conjecture A′ when s = 2. We also take a look at
the symbolic square of edge ideals.

Theorem 5.1. Let G be a graph with edge ideal I. Suppose that G is locally of regu-
larity at most r − 1. Then, for any edge e ∈ E(G), reg(I2 : e) 6 r. Particularly, this
implies that reg(I2) 6 r + 2.

Proof. The second statement follows from the first statement and Theorem 2.13. To
prove the first statement, we shall use induction on |V (G)|. Let e = ab, J = I2 : e,
and let G′ be the graph associated to the polarization of J .

If there are no even-connected vertices in G with respect to e, then I2 : e = I, and
the conclusion follows from [9, Proposition 4.9].

If there are edges in G′ which are not initially in G, then these edges are of the
form xy where x ∈ N(a), y ∈ N(b) or xx′ where x ∈ N(a) ∩ N(b) and x′ is a new
whisker vertex.
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Suppose that there exists at least one new edge of the form xy for x 6= y. Observe
that J : x = I : x+ (u | u ∈ N(b)). Thus reg(J : x) 6 reg(I : x) 6 r− 1. Furthermore,
(J, x) = I(G−x)2 : e+ (x). Therefore, by induction on |V (G)|, we have reg(J, x) 6 r.
Hence, by Lemma 2.10, we have reg J 6 r.

Suppose that the only new edges are of the form xx′, where x′ is a new whisker
vertex. Observe that, in this case,

J : x = I : x+ (u | u ∈ N(a) ∪N(b)) + (u′ | u′ is a whisker in the new edges )
(J, x) = I(G− x)2 : e+ (x).

Thus, we also have reg(J : x) 6 reg(I : x) 6 r − 1 and reg(J, x) 6 r by induction.
Hence, by Lemma 2.10 again, we have reg J 6 r. This completes the proof. �

Symbolic powers in general are much harder to handle than ordinary powers
(see [36, Definition 4.3.22] for a definition of symbolic power of an ideal). The sym-
bolic square of an edge ideal appears to be more tractable. We recall and rephrase a
result from [34].

Theorem 5.2 ([34, Corollary 3.12]). For any graph G,

I(G)(2) = I(G)2 + (xixjxk | {xi, xj , xk} forms a triangle in G).

The last result of our paper is stated as follows.

Theorem 5.3. Let G be a graph with edge ideal I. Suppose that G is locally of regu-
larity at most r − 1. Then reg(I(2)) 6 r + 2.

Proof. We first note that, by Theorem 5.2, I(2) ⊆ I. Let E(G) = {e1, . . . , el} and, for
0 6 i 6 l, define

Ji = (I(2), e1, . . . , ei) : (ei+1) and Ki = (I(2), e1, . . . , ei).

Observe that Kl = I, and for all i we have the following short exact sequence.

(5) 0 −→ R

Ji
(−2) −→ R

Ki
−→ R

Ki+1
−→ 0

This, particularly, implies that reg(I(2)) 6 max
16i6l−1

{reg(Ji) + 2, reg I}. It follows
from Theorem 5.2 that

Ji = I2 : ei+1 + (xixjxk : ei+1 | {xi, xj , xk} forms a triangle in G).

Note that if e is an edge in the triangle {xi, xj , xk}, then (xixjxk : e) is a variable.
If e shares just one vertex with the triangle, then the colon ideal is generated by
an edge and (xixjxk : e) ∈ I. If e and {xi, xj , xk} have no common vertices, then
(xixjxk : e) = xixjxk ∈ I. Then, by Theorem 2.16 we have Ji = I2 : ei+1 +(variables)
and hence, reg Ji 6 reg(I2 : ei+1). The conclusion now follows from Theorem 5.1 and
the use of [9, Proposition 4.9]. �
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