The faces of the braid arrangement form a monoid. The associated monoid algebra – the face algebra– is well-studied, especially in relation to card shuffling and other Markov chains. In this paper, we explore the action of the symmetric group on the face algebra from the perspective of invariant theory. Bidigare proved the invariant subalgebra of the face algebra is (anti)isomorphic to Solomon’s descent algebra. We answer the more general question: what is the structure of the face algebra as a simultaneous representation of the symmetric group and Solomon’s descent algebra?
Special cases of our main theorem recover the Cartan invariants of Solomon’s descent algebra discovered by Garsia–Reutenauer and work of Uyemura-Reyes on certain shuffling representations. Our proof techniques involve the homology of intervals in the lattice of set partitions.
Revised:
Accepted:
Published online:
Keywords: Solomon’s descent algebra, higher Lie characters, plethysm, finite dimensional algebras, poset topology, reflection arrangements, Tits semigroup, left regular band
Commins, Patricia 1

@article{ALCO_2025__8_2_421_0, author = {Commins, Patricia}, title = {Invariant theory for the face algebra of the braid arrangement}, journal = {Algebraic Combinatorics}, pages = {421--468}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.412}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.412/} }
TY - JOUR AU - Commins, Patricia TI - Invariant theory for the face algebra of the braid arrangement JO - Algebraic Combinatorics PY - 2025 SP - 421 EP - 468 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.412/ DO - 10.5802/alco.412 LA - en ID - ALCO_2025__8_2_421_0 ER -
%0 Journal Article %A Commins, Patricia %T Invariant theory for the face algebra of the braid arrangement %J Algebraic Combinatorics %D 2025 %P 421-468 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.412/ %R 10.5802/alco.412 %G en %F ALCO_2025__8_2_421_0
Commins, Patricia. Invariant theory for the face algebra of the braid arrangement. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 421-468. doi : 10.5802/alco.412. https://alco.centre-mersenne.org/articles/10.5802/alco.412/
[1] Coxeter groups and Hopf algebras, Fields Institute Monographs, 23, American Mathematical Society, Providence, RI, 2006, xvi+181 pages | DOI | MR
[2] Topics in hyperplane arrangements, Mathematical Surveys and Monographs, 226, American Mathematical Society, Providence, RI, 2017, xxiv+611 pages | DOI | MR
[3] Cyclic sieving, necklaces, and branching rules related to Thrall’s problem, Electron. J. Combin., Volume 25 (2018) no. 4, Paper no. 4.42, 38 pages | DOI | MR | Zbl
[4] The symmetric functions catalog https://www.symmetricfunctions.com
[5] Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006, x+458 pages | DOI | MR
[6] Solomon’s descent algebra revisited, Bull. London Math. Soc., Volume 24 (1992) no. 6, pp. 545-551 | DOI | MR
[7] On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Combin. Theory Ser. A, Volume 55 (1990) no. 1, pp. 93-129 | DOI | MR | Zbl
[8] Schur indices and splitting fields of the unitary reflection groups, J. Algebra, Volume 38 (1976) no. 2, pp. 318-342 | DOI | MR | Zbl
[9] A decomposition of the descent algebra of the hyperoctahedral group. I, J. Algebra, Volume 148 (1992) no. 1, pp. 86-97 | DOI | MR | Zbl
[10] A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin., Volume 1 (1992) no. 1, pp. 23-44 | DOI | MR | Zbl
[11] A hyperoctahedral analogue of the free Lie algebra, J. Combin. Theory Ser. A, Volume 58 (1991) no. 2, pp. 256-278 | DOI | MR | Zbl
[12] A decomposition of the descent algebra of the hyperoctahedral group. II, J. Algebra, Volume 148 (1992) no. 1, pp. 98-122 | DOI | MR
[13] A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J., Volume 99 (1999) no. 1, pp. 135-174 | DOI | MR | Zbl
[14] Hyperplane arrangement face algebras and their associated Markov chains, Ph. D. Thesis, University of Michigan (1997), 151 pages
[15] A symmetry of the descent algebra of a finite Coxeter group, Adv. Math., Volume 193 (2005) no. 2, pp. 416-437 | DOI | MR | Zbl
[16] The module structure of Solomon’s descent algebra, J. Aust. Math. Soc., Volume 72 (2002) no. 3, pp. 317-333 | DOI | MR | Zbl
[17] Around Solomon’s descent algebras, Algebr. Represent. Theory, Volume 11 (2008) no. 6, pp. 577-602 | DOI | MR | Zbl
[18] Eulerian representations for real reflection groups, J. Lond. Math. Soc. (2), Volume 105 (2022) no. 1, pp. 412-444 | DOI | MR | Zbl
[19] Invariant theory for the free left-regular band and a q-analogue, Pacific J. Math., Volume 322 (2023) no. 2, pp. 251-280 | DOI | MR | Zbl
[20] Semigroups, rings, and Markov chains, J. Theoret. Probab., Volume 13 (2000) no. 3, pp. 871-938 | DOI | MR | Zbl
[21] Random walks and hyperplane arrangements, Ann. Probab., Volume 26 (1998) no. 4, pp. 1813-1854 | DOI | MR | Zbl
[22] Spectral analysis of random-to-random Markov chains, Adv. Math., Volume 323 (2018), pp. 427-485 | DOI | MR | Zbl
[23] Introduction to representation theory, Student Mathematical Library, 59, American Mathematical Society, Providence, RI, 2011, viii+228 pages | DOI | MR
[24] The homology groups of a lattice, J. Math. Mech., Volume 15 (1966), pp. 631-636 | MR | Zbl
[25] A decomposition of Solomon’s descent algebra, Adv. Math., Volume 77 (1989) no. 2, pp. 189-262 | DOI | MR | Zbl
[26] Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, Volume 64 (1993) no. 2, pp. 189-215 | DOI | MR | Zbl
[27] Cohomology of Dowling lattices and Lie (super)algebras, Adv. in Appl. Math., Volume 24 (2000) no. 4, pp. 301-336 | DOI | MR | Zbl
[28] Hopf algebras in combinatorics, 2014 | arXiv
[29] The fixed-point partition lattices, Pacific J. Math., Volume 96 (1981) no. 2, pp. 319-341 | DOI | MR | Zbl
[30] The characters of the wreath product group acting on the homology groups of the Dowling lattices, J. Algebra, Volume 91 (1984) no. 2, pp. 430-463 | DOI | MR | Zbl
[31] Eine Symmetrieeigenschaft von Solomons Algebra und der höheren Lie-Charaktere, Abh. Math. Sem. Univ. Hamburg, Volume 71 (2001), pp. 105-111 | DOI | MR | Zbl
[32] Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001, x+379 pages | DOI | MR
[33] Lie elements in a tensor algebra, Sibirsk. Mat. Ž., Volume 15 (1974), p. 1296-1304, 1430 | MR
[34] Eigenvalues of symmetrized shuffling operators, Sém. Lothar. Combin., Volume 82B (2020), Paper no. 78, 12 pages | MR | Zbl
[35] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[36] Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997, xviii+238 pages | DOI | MR
[37] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[38] Combinatorial topology and the global dimension of algebras arising in combinatorics, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 12, pp. 3037-3080 | DOI | MR | Zbl
[39] Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry, Mem. Amer. Math. Soc., Volume 274 (2021) no. 1345, p. xi+135 | DOI | MR | Zbl
[40] Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992, xviii+325 pages | DOI | MR
[41] A quiver presentation for Solomon’s descent algebra, Adv. Math., Volume 220 (2009) no. 5, pp. 1428-1465 | DOI | MR | Zbl
[42] Cycle type and descent set in wreath products, Discrete Math., Volume 180 (1998) no. 1-3, pp. 315-343 Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995) | DOI | MR | Zbl
[43] Spectra of symmetrized shuffling operators, Mem. Amer. Math. Soc., Volume 228 (2014) no. 1072, p. vi+109 | MR | Zbl
[44] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993, xviii+269 pages (Oxford Science Publications) | DOI | MR
[45] Random walk, semi-direct products, and card shuffling, Ph. D. Thesis, Stanford University (2002), 163 pages
[46] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[47] The quiver of the semigroup algebra of a left regular band, Internat. J. Algebra Comput., Volume 17 (2007) no. 8, pp. 1593-1610 | DOI | MR | Zbl
[48] On the quiver of the descent algebra, J. Algebra, Volume 320 (2008) no. 11, pp. 3866-3894 | DOI | MR | Zbl
[49] The face semigroup algebra of a hyperplane arrangement, Canad. J. Math., Volume 61 (2009) no. 4, pp. 904-929 | DOI | MR | Zbl
[50] The Loewy length of the descent algebra of type , Algebr. Represent. Theory, Volume 13 (2010) no. 2, pp. 243-254 | DOI | MR | Zbl
[51] Multiplicities of higher Lie characters, J. Aust. Math. Soc., Volume 75 (2003) no. 1, pp. 9-21 | DOI | MR | Zbl
[52] The descent algebra of the symmetric group, Representations of finite dimensional algebras and related topics in Lie theory and geometry (Fields Inst. Commun.), Volume 40, Amer. Math. Soc., Providence, RI, 2004, pp. 145-161 | DOI | MR | Zbl
[53] The module structure of the Solomon-Tits algebra of the symmetric group, J. Algebra, Volume 301 (2006) no. 2, pp. 554-586 | DOI | MR | Zbl
[54] A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976) no. 2, pp. 255-264 | DOI | MR | Zbl
[55] Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Volume 32 (1982) no. 2, pp. 132-161 | DOI | MR | Zbl
[56] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[57] Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | DOI | MR
[58] Applications of the Hopf trace formula to computing homology representations, Jerusalem combinatorics ’93 (Contemp. Math.), Volume 178, Amer. Math. Soc., Providence, RI, 1994, pp. 277-309 | DOI | MR | Zbl
[59] The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | DOI | MR | Zbl
[60] Plethysm, partitions with an even number of blocks and Euler numbers, Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994) (DIMACS Ser. Discrete Math. Theoret. Comput. Sci.), Volume 24, Amer. Math. Soc., Providence, RI, 1996, pp. 171-198 | DOI | MR | Zbl
[61] SageMath, the Sage Mathematics Software System (Version 10.1) (2024) (https://www.sagemath.org)
[62] On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl
[63] Two properties of Coxeter complexes, J. Algebra, Volume 41 (1976) no. 2, pp. 265-268 | DOI | MR
[64] Whitney homology of semipure shellable posets, J. Algebraic Combin., Volume 9 (1999) no. 2, pp. 173-207 | DOI | MR | Zbl
[65] Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Math. Ser.), Volume 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497-615 | DOI | MR | Zbl
[66] A course in finite group representation theory, Cambridge Studies in Advanced Mathematics, 161, Cambridge University Press, Cambridge, 2016, xi+325 pages | DOI | MR
Cited by Sources: