A conjectural basis for the $(1,2)$-bosonic-fermionic coinvariant ring
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 711-743

We give the first conjectural construction of a monomial basis for the coinvariant ring $R_n^{(1,2)}$, for the symmetric group $\mathfrak{S}_n$ acting on one set of bosonic (commuting) and two sets of fermionic (anticommuting) variables. Our construction interpolates between the modified Motzkin path basis for $R_n^{(0,2)}$ of Kim–Rhoades (2022) and the super-Artin basis for $R_n^{(1,1)}$ conjectured by Sagan–Swanson (2024) and proven by Angarone et al. (2025). We prove that our proposed basis has cardinality $2^{n-1}n!$, aligning with a conjecture of Zabrocki (2020) on the dimension of $R_n^{(1,2)}$, and show how it gives a combinatorial expression for the Hilbert series. We also conjecture a Frobenius series for $R_n^{(1,2)}$. We show that these proposed Hilbert and Frobenius series are equivalent to conjectures of Iraci, Nadeau, and Vanden Wyngaerd (2024) on $R_n^{(1,2)}$ in terms of segmented Smirnov words, by exhibiting a weight-preserving bijection between our proposed basis and their segmented permutations. We extend some of their results on the sign character to hook characters, and give a formula for the $m_\mu $ coefficients of the conjectural Frobenius series. Finally, we conjecture a monomial basis for the analogous ring in type $B_n$, and show that it has cardinality $4^nn!$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.424
Classification: 01A35, 14A15, 11L05
Keywords: Coinvariant rings, Artin basis, Frobenius series, Hilbert series, symmetric functions

Lentfer, John 1

1 Department of Mathematics University of California, Berkeley Berkeley, CA (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_711_0,
     author = {Lentfer, John},
     title = {A conjectural basis for the $(1,2)$-bosonic-fermionic coinvariant ring},
     journal = {Algebraic Combinatorics},
     pages = {711--743},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     doi = {10.5802/alco.424},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.424/}
}
TY  - JOUR
AU  - Lentfer, John
TI  - A conjectural basis for the $(1,2)$-bosonic-fermionic coinvariant ring
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 711
EP  - 743
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.424/
DO  - 10.5802/alco.424
LA  - en
ID  - ALCO_2025__8_3_711_0
ER  - 
%0 Journal Article
%A Lentfer, John
%T A conjectural basis for the $(1,2)$-bosonic-fermionic coinvariant ring
%J Algebraic Combinatorics
%D 2025
%P 711-743
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.424/
%R 10.5802/alco.424
%G en
%F ALCO_2025__8_3_711_0
Lentfer, John. A conjectural basis for the $(1,2)$-bosonic-fermionic coinvariant ring. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 711-743. doi: 10.5802/alco.424

[1] Ajila, Carlos; Griffeth, Stephen Representation theory and the diagonal coinvariant ring of the type B Weyl group, J. Pure Appl. Algebra, Volume 228 (2024) no. 6, Paper no. 107592, 10 pages | DOI | MR | Zbl

[2] Angarone, Robert; Commins, Patricia; Karn, Trevor; Murai, Satoshi; Rhoades, Brendon Superspace coinvariants and hyperplane arrangements, Adv. Math., Volume 467 (2025), Paper no. 110185, 36 pages | DOI | MR | Zbl

[3] Bergeron, François The Bosonic-Fermionic Diagonal Coinvariant Modules Conjecture, 2020 | arXiv | Zbl

[4] Bergeron, François ( GL k ×𝕊 n )-modules of multivariate diagonal harmonics, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 1-22 | MR | DOI

[5] Bergeron, François; Haglund, Jim; Iraci, Alessandro; Romero, Marino Bosonic-fermionic diagonal coinvariants and Theta operators, 2023 https://www2.math.upenn.edu/...

[6] Bergeron, François; Préville-Ratelle, Louis-François Higher trivariate diagonal harmonics via generalized Tamari posets, J. Comb., Volume 3 (2012) no. 3, pp. 317-341 | DOI | MR | Zbl

[7] Carlsson, Erik; Mellit, Anton A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl

[8] Carlsson, Erik; Oblomkov, Alexei Affine Schubert calculus and double coinvariants, 2018 | arXiv | Zbl

[9] Corteel, Sylvie; Nunge, Arthur Combinatorics of the 2-species exclusion processes, marked Laguerre histories, and partially signed permutations, Electron. J. Combin., Volume 27 (2020) no. 2, Paper no. 2.53, 27 pages | DOI | MR | Zbl

[10] D’Adderio, Michele; Iraci, Alessandro; Vanden Wyngaerd, Anna Theta operators, refined delta conjectures, and coinvariants, Adv. Math., Volume 376 (2021), Paper no. 107447, 59 pages | DOI | MR | Zbl

[11] D’Adderio, Michele; Romero, Marino New identities for theta operators, Trans. Amer. Math. Soc., Volume 376 (2023) no. 8, pp. 5775-5807 | DOI | MR | Zbl

[12] Egge, Eric; Loehr, Nicholas A.; Warrington, Gregory S. From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix, European J. Combin., Volume 31 (2010) no. 8, pp. 2014-2027 | DOI | MR | Zbl

[13] Garsia, Adriano; Remmel, Jeffrey A note on passing from a quasi-symmetric function expansion to a Schur function expansion of a symmetric function, 2018 | arXiv | Zbl

[14] Gessel, Ira M. On the Schur function expansion of a symmetric quasi-symmetric function, Electron. J. Combin., Volume 26 (2019) no. 4, Paper no. 4.50, 5 pages | MR | DOI | Zbl

[15] Gordon, Iain On the quotient ring by diagonal invariants, Invent. Math., Volume 153 (2003) no. 3, pp. 503-518 | DOI | MR | Zbl

[16] Haglund, J.; Haiman, M.; Loehr, N.; Remmel, J. B.; Ulyanov, A. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl

[17] Haglund, J.; Loehr, N. A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete Math., Volume 298 (2005) no. 1-3, pp. 189-204 | DOI | MR | Zbl

[18] Haglund, J.; Remmel, J. B.; Wilson, A. T. The delta conjecture, Trans. Amer. Math. Soc., Volume 370 (2018) no. 6, pp. 4029-4057 | DOI | MR | Zbl

[19] Haglund, James The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages | MR | Zbl

[20] Haglund, James; Rhoades, Brendon; Shimozono, Mark Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl

[21] Haiman, Mark Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 17-76 | DOI | MR | Zbl

[22] Haiman, Mark Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl

[23] Iraci, Alessandro; Nadeau, Philippe; Vanden Wyngaerd, Anna Smirnov words and the delta conjectures, Adv. Math., Volume 452 (2024), Paper no. 109793, 41 pages | DOI | MR | Zbl

[24] Iraci, Alessandro; Rhoades, Brendon; Romero, Marino A proof of the fermionic theta coinvariant conjecture, Discrete Math., Volume 346 (2023) no. 7, Paper no. 113474, 11 pages | DOI | MR | Zbl

[25] Kim, Jongwon; Rhoades, Brendon Lefschetz theory for exterior algebras and fermionic diagonal coinvariants, Int. Math. Res. Not. IMRN (2022) no. 4, pp. 2906-2933 | DOI | MR | Zbl

[26] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl

[27] OEIS Foundation Inc. (2024), The On-Line Encyclopedia of Integer Sequences, Published electronically at https://oeis.org

[28] Rhoades, Brendon; Wilson, Andrew Timothy The Hilbert series of the superspace coinvariant ring, Forum Math. Pi, Volume 12 (2024), Paper no. e16, 35 pages | DOI | MR | Zbl

[29] Sagan, Bruce E.; Swanson, Joshua P. q-Stirling numbers in type B, European J. Combin., Volume 118 (2024), Paper no. 103899, 35 pages | DOI | MR | Zbl

[30] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR | Zbl

[31] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl

[32] Swanson, Joshua P.; Wallach, Nolan R. Harmonic differential forms for pseudo-reflection groups I. Semi-invariants, J. Combin. Theory Ser. A, Volume 182 (2021), Paper no. 105474, 30 pages | DOI | MR | Zbl

[33] Swanson, Joshua P.; Wallach, Nolan R. Harmonic differential forms for pseudo-reflection groups II. Bi-degree bounds, Comb. Theory, Volume 3 (2023) no. 3, Paper no. 17, 43 pages | DOI | MR | Zbl

[34] Zabrocki, Mike A module for the Delta conjecture, 2019 | arXiv | Zbl

[35] Zabrocki, Mike Coinvariants and harmonics, 2020 https://realopacblog.wordpress.com/...

Cited by Sources: